
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Declarative Fence Insertion

John Bender
University of California,

Los Angeles (UCLA)
johnbender@cs.ucla.edu

Mohsen Lesani
Massachusetts Institute
of Technology (MIT)
lesani@csail.mit.edu

Jens Palsberg
University of California,

Los Angeles (UCLA)
palsberg@ucla.edu

Abstract
Previous work has shown how to insert fences that enforce
sequential consistency. However, for many concurrent algo-
rithms, sequential consistency is unnecessarily strong and
can lead to high execution overhead. The reason is that, of-
ten, correctness relies on the execution order of a few spe-
cific pairs of instructions. Algorithm designers can declare
those execution orders and thereby enable memory-model-
independent reasoning about correctness and also ease im-
plementation of algorithms on multiple platforms. The lit-
erature has examples of such reasoning, while tool support
for enforcing the orders has been lacking until now. In this
paper we present a declarative approach to specify and en-
force execution orders. Our fence insertion algorithm first
identifies the execution orders that a given memory model
enforces automatically, and then inserts fences that enforce
the rest. Our benchmarks include three off-the-shelf trans-
actional memory algorithms written in C/C++ for which we
specify suitable execution orders. For those benchmarks, our
experiments with the x86 and ARMv7 memory models show
that our tool inserts fences that are competitive with those in-
serted by the original authors. Our tool is the first to insert
fences into transactional memory algorithms and it solves
the long-standing problem of how to easily port such algo-
rithms to a novel memory model.

Categories and Subject Descriptors D.3.4 [Processors]:
Compilers; D.4.1 [Process Management]: Concurrency;
F.3.2 [Semantics of Programming Languages]: Program
Analysis

Keywords Compilers, Concurrency, Weak Memory Mod-
els, Static Analysis

1. Introduction
For concurrent programs, programmers often face a gap be-
tween their assumptions about execution and the memory
model of a specific architecture. For example, some pro-
grammers assume that execution is sequentially consistent,
while most architectures provide weaker properties. Specifi-
cally, many of the performance optimizations performed by
modern processors involve relaxing the perceived execution
order of instructions. For example, both x86 and ARMv7
permit stores to move past loads of different addresses due
to out of order execution or store buffering. A processor with
such optimizations has a weak memory model.

The gap between a programmer’s assumptions and a
weak memory model creates the challenge to insert fences
that enforce the assumptions on the weak memory model.
Fortunately, researchers have shown how to insert fences
automatically. For the case of sequential consistency, the
goal is to do better than to insert a fence between every pair
of consecutive instructions. A common idea is to recognize
that so-called critical cycles [32] represent minimal viola-
tions of sequential consistency. A tool can identify critical
cycles and insert fences to break them, as demonstrated by,
for example, Alglave et al. [2]. Their approach first builds
an integer-linear program that encodes the program, critical
cycles, architecture, and potential fences, and then solves the
ILP to determine where to insert fences.

While some concurrent programs are designed to be cor-
rect under the assumption of sequential consistency, others
rely on weaker assumptions. For algorithms based on weaker
assumptions, sequential consistency slows down execution
more than is necessary because it requires many fences.

What is the nature of those weaker assumptions? We have
found that, often, each assumption can be phrased as a re-
quired thread-local execution order of a pair of instructions.
For example, if i1 and i2 are instructions, then the assump-
tion (i1, i2) says that i1 must happen before i2. A program-
mer can enforce that assumption by, for example, inserting a
fence right after i1 or right before i2. However, such a fence
is a blunt instrument and an implementation detail, while the
assumption (i1, i2) is memory-model independent. We have

found that the number of required execution orders is usually
rather small, often just a few per method. In contrast, sequen-
tial consistency is the special case where, in each thread, ev-
ery instruction must happen before the next.

We believe execution orders should be an integral part of
a concurrent algorithm and we envision that future languages
may support them as a novel form of “control structure.” For
now, we note that algorithm designers can declare such ex-
ecution orders. The idea is that the execution orders specify
all that is needed from the implementation without consider-
ation for the memory model. Then all reasoning about cor-
rectness can take place at the algorithm level, while the im-
plementation on a particular platform is an entirely separate
issue. Our thesis is that concurrent algorithms with declared
execution orders are easier to design and prove correct than
concurrent algorithms with fences. Declared execution or-
ders raise the level of abstraction for specifications of con-
current algorithms: they enable algorithm designers to focus
on what, that is, which assumptions are needed for correct-
ness, and leave the how, that is, how to enforce those as-
sumptions, to a tool.

Lesani and Palsberg [24] proved the correctness of the
transactional memory algorithm TL2 based on a few ex-
ecution orders, and Lesani [23] proved the correctness of
Dekker’s algorithm based on a few execution orders. Those
examples demonstrate the viability of the approach based on
declared execution orders. However, tool support for enforc-
ing the orders has been lacking until now.

The problem. How do we specify and enforce the as-
sumptions made by concurrent algorithms? The specifica-
tion should be memory-model independent, while the en-
forcement should be parameterized by a memory model.

Our solution. In this paper, we present a declarative ap-
proach to specify and enforce the assumptions made by con-
current algorithms. Our specification language is memory-
model independent and supports declaration of execution
orders that must be enforced. Thus, our approach enables
concurrent-algorithm designers to specify their algorithms
and assumptions independently of memory models. Our
fence insertion algorithm first identifies the execution orders
that are enforced automatically by a given memory model,
and then inserts fences that enforce the rest. Thus, our algo-
rithm bridges the gap between the specified assumptions and
a given weak memory model.

Our tool. We have implemented our approach in a tool
called Parry that as input takes a concurrent algorithm writ-
ten in C/C++, declared execution orders, and a memory
model, and as output produces C/C++ with fences.

Our experiments. Our benchmarks are seven open-
source implementations of concurrent algorithms. Three of
the benchmarks are transactional memory algorithms for
which we first removed all fences and then added specifi-
cations of execution orders. Our experiments on x86 and
ARMv7 show that Parry inserts fences that are competitive

1 bool p0() {

2 flag0 = 1;

3 // fence

4 if(flag1 == 1){

5 return false;

6 }

7 // critical

8 flag0 = 0;

9 return true;

10 }

1 bool p1() {

2 flag1 = 1;

3 // fence

4 if(flag0 == 1){

5 return false;

6 }

7 // critical

8 flag1 = 0;

9 return true;

10 }

ODekker = { st(flag0)→ ld(flag1),

st(flag1)→ ld(flag0) }

Figure 1. Dekker’s Mutual Exclusion Algorithm

with those inserted by the original authors. For example, for
the TL2 transactional memory algorithm [12] on x86, we
show that Parry inserts one fewer fence than the experts who
implemented the algorithm. Our tool is the first to insert
fences into transactional memory algorithms and it solves
the long-standing problem of how to easily port such algo-
rithms to a novel memory model. For example, for the By-
teeager implementation of the RSTM transactional memory
algorithm, the implementers had in mind particular memory
models that excluded ARMv7. Parry discovered the need
for a fence that would have been missed entirely if one tried
simply to modify the fences used for other architectures.

Modularity. Our approach both assumes and provides
modularity. The correctness theorems for concurrent al-
gorithms typically assume noninterference, that is, other
threads won’t access the algorithm’s shared state, which
therefore is encapsulated. In return, those correctness theo-
rems guarantee that the algorithm will work correctly in any
noninterfering context. Thus, our tool inserts fences once-
and-for-all that will work in any noninterfering context.

Rest of the paper. In Section 2 we give examples, in Sec-
tion 3 we present our algorithm, in Section 4 we introduce
our implementation, in Section 5 we show experimental re-
sults, and in Section 6 we discuss related work.

2. Examples
We begin with two examples to illustrate the ideas behind
declarative execution orders. First we will consider Dekker’s
mutual exclusion algorithm as an introduction. Then we will
examine part of the TL2 transactional memory algorithm to
highlight the subtlety of enforcing execution orders. We con-
clude with an outline of how we enforce execution orders.

2.1 Dekker’s Mutex
Figure 1 shows an implementation of Dekker’s mutual ex-
clusion algorithm. Each procedure represents a process that
will attempt to enter a critical section. Note that flag0 and
flag1 are shared memory addresses.

The idea is that each process will signal its intent to
enter the critical section by setting its own flag. Then it will

check whether the other process has done the same. If not,
it executes the critical section and signals to the caller that it
was able to enter the critical section. If the other process has
set its flag then it will exit early and signal to the caller that
it was not able to enter the critical section.

If either of the stores on line 2 happens after the corre-
sponding loads on line 4, the algorithm cannot guarantee
mutual exclusion. This can occur on most modern processor
architectures. In particular, x86 may buffer stores delaying
their global visibility, thereby allowing the stores to “move”
past the loads. Consider the following execution: p0 stores
1 to flag0 which languishes in the store buffer, p0 loads a
value of 0 for flag1, p0 enters the critical section, p1 stores
1 to flag1, p1 reads 0 from flag0 because the store buffer
of p0 has not been flushed, p1 enters the critical section.

Importantly, it has been shown that if both stores on line
2 happen before the corresponding loads on line 4 the algo-
rithm will permit either one process to enter the critical sec-
tion or neither process [23]. To ensure the correct execution
of the algorithm we define a set of execution orders between
the stores on line 2 and corresponding loads on line 4 that
must be enforced, see the definition of ODekker in Figure 1.

To enforce execution orders architectures provide mem-
ory fence instructions. These instructions guarantee that
some subset of the supported memory operations will take
place before and after the fence during execution. For x86
an appropriate memory fence is the mfence instruction. For
Dekker’s algorithm we can use an mfence instruction be-
tween the stores and loads to ensure that the stores happen
before the fence and that the loads happen after the fence.
That is we can use the fence to enforce the order.

The problem of enforcing execution orders becomes more
complicated when considering portability between architec-
tures. For Dekker’s algorithm, a sequentially consistent ar-
chitecture requires no fence, but on ARMv7 one of three
fences dsb, dmb and dmb st can be used to enforce the or-
der. Even on x86 we have a choice: a lock xchg instruction
can be used here in place of the store and the order will be
enforced.

All of these choices have an impact on the performance
of the algorithm during execution. We call these choices
fence selection. Additionally we consider the placement or
insertion of fences. For Dekker’s algorithm the placement is
straightforward but this is not always the case.

2.2 TL2 Commit
We illustrate the complexity of fence insertion by examin-
ing the commit procedure of the TL2 transactional memory
algorithm which we will reference throughout the paper.

Intuitively, a transactional memory [18, 33] is a concur-
rent object that encapsulates and manages accesses to an ar-
ray of memory locations. The TM interface has four highly
concurrent methods, namely init, read, write, and commit,
that a typical user program calls a large number of times.

1658 ...

1659 # ifndef TL2_EAGER

1660 # ifdef TL2_OPTIM_HASHLOG

1661 for (wr = logs; wr != end; wr++)

1662 # endif

1663 {

1664 // write the deferred stores

1665 WriteBackForward(wr);

1666 }

1667 # endif

1668
1669 // make stores visible before unlock

1670 MEMBARSTST ();

1671
1672 // release locks and increment version

1673 DropLocks(Self , wv);

1674
1675 // ensure loads are from global writes

1676 MEMBARSTLD ();

1677
1678 return 1;

1679 ...

OTxCommit = {st(addr)→ st(lock), st(lock)→ ld(x)}

Figure 2. STAMP TL2 TxCommit Procedure

When TL2 is managing a transaction, stores made in-
side the transaction do not go to main memory. Instead TL2
records the stores in a “write-set”. When the transaction
ends, the algorithm attempts to acquire locks for each ad-
dress, commit the write-set to main memory, and release the
acquired locks.

For TL2’s commit to function properly the “real” stores
made to each memory address from the write-set must be
seen to take place before the release of the corresponding
locks. Otherwise, an external observer may see an address
in the write-set as unlocked before the actual store from the
write-set makes it to main memory.

Similarly, the release of the lock for each address must be
seen to take place before any load after the commit is fin-
ished. This ensures that loads performed in the same thread
as the transaction will see the same values in memory from
the write-set and locks as any external observer.

Figure 2 shows the source code for these execution orders
from the TL2 commit procedure, TxCommit, as it appears in
the TL2 implementation included with the STAMP bench-
mark suite [12]. The WriteBackForward procedure con-
tains the store instruction that moves values from the write-
set to main memory and the DropLocks procedure contains
the store instruction that releases the locks.

Where addr represents the addresses in the write-set, lock
represents the corresponding lock address, and x represents
any memory address, we write these orders as a set, see
Figure 2. To enforce these orders, the TL2 authors have
placed memory fence macros on lines 1670 and 1676. An
implementer who is porting TL2 to different architectures
can define each macro to be an architecture appropriate
memory fence to enforce the correct behavior. The drawback

x86 ARMv7 IA64

st(x) 7→ ld(x) st(x) 7→ ld(x) st(x) 7→ ld(x)

st(x) 7→ st(y) st(x) 7→ st(x) st(x) 7→ st(x)

ld(x) 7→ ld(y) ld(x) 7→ ld(x) ld(x) 7→ ld(x)

ld(x) 7→ st(y) ld(x) 7→ st(x) ld(x) 7→ st(x)

∗ 7→ mfence ∗ 7→ dmb ∗ 7→ mfence

mfence 7→ ∗ dmb 7→ ∗ mfence 7→ ∗
st(x) 7→ dmb st st(x) 7→ sfence

dmb st 7→ ∗ sfence 7→ st(x)

ld(x) 7→ lfence

lfence 7→ ld(x)

Figure 3. Architecture Definitions

of such a fence-centric approach is that for a programmer
who wishes to understand the TM algorithm and perhaps
to port it to a different architecture, a fence in itself says
little about why the programmer chose it and placed it at
a particular program point. Fences are best viewed as an
implementation mechanism for a higher level of abstraction.

Fence Insertion. Inserting fences requires knowledge of
the control flow paths between the ordered instructions, as
well as the other instructions on those paths.

Without knowing the control flow information it is possi-
ble to miss paths and allow executions in which the instruc-
tions may be seen to pass each other. On the other hand, a
naive approach to fence placement that avoids missing paths
by inserting a fence directly after the first instruction in the
order can be expensive. For example, if the first fence macro
is placed directly after the call to WriteBackForward it
can result in an expensive loop over the fence when the
TL2 OPTIM HASHLOG flag is set at compile-time.

Without knowing the other instructions in the control flow
paths, one might place a new fence where another already
exists, or where properties of the memory models makes
fences unnecessary in the presence of other instructions.

For example, consider the first order in TxCommit. The
x86 memory model already enforces many orders. Looking
at the orders enforced by the x86 architecture definition in
Figure 3, we can see st(x) 7→ st(y) suggests that two stores
to any address will not move past each other. We use this
to prove that the instructions in the first order of TxCommit,
st(addr)→ st(lock), will not move past each other:

p, x86 ` st(addr)→ st(lock)

That is, if x86 prevents stores from moving past each other
and the order we want to enforce involves two stores, then
we can conclude that the order is enforced. This means we
can safely define the first macro in the example as a no-
op on x86. Note that our architecture rules for x86 do not

include non-temporal hinted store instructions like movnti

and movntdq.
In contrast, this order is not enforced by ARMv7. Since

stores can be seen to move past other stores when the ad-
dresses are different on ARMv7 we do not include this rule
in the architecture definition. Instead the rule relating stores
requires that the addresses be the same.

The second order in TxCommit, st(lock) → ld(x), rep-
resents a more complex example of how intervening in-
structions can affect order enforcement. When TxCommit is
compiled with Clang, the compiler generates a store and a
load to the same temporary address after the lock release in
DropLocks but before the end of the procedure as illustrated
in both graphs in Figure 5. We can use these instructions and
the properties of x86 to prove the transitive order in Figure
4 where tmp represents the temporary memory location. We
conclude that the store to lock can never be seen to move past
the final load in TxCommit and also any subsequent load. We
define the notation, rules and memory model properties more
completely in the next section.

Selecting Fences. Selecting the correct fence requires
knowledge of how the compiler will treat the source code
and knowledge of the fences available for each architecture.
We saw an example of this in Dekker’s algorithm.

For TxCommit on ARMv7 the second macro can be de-
fined correctly using many different fence configurations
according to the ARM documentation [3], e.g. dsb, dmb,
or a qualified dmb st. Both the litmus test documentation
[17] and the assembler reference [3] are complicated texts
in accordance with the complexity of the ARMv7 memory
model. Determining the best fence is a nontrivial task.

2.3 Our Approach
We decompose fence insertion into two sub-problems. First
we eliminate any orders that are provably enforced by exist-
ing instructions and the properties of the target architecture.
For the remaining orders we modify the program with new
instructions that enforce the remaining orders.

We address both sub-problems by considering control
flow graphs with a restricted set of instructions. Each node is
labeled with the instruction, the address that it operates on,
and the line number that it was generated from in the source
code. Every path between two instructions in the control
flow graph represents a possible execution involving those
instructions. We construct these graphs using the intermedi-
ate representation and control flow graph that LLVM gener-
ates for a given procedure.

At the top of Figure 5 we have a control flow sub-graph
for the second order in TxCommit, constructed from LLVM’s
output when compiling the procedure. It contains all of the
paths and a subset of the instructions (elided with dashed
arrows) that appear between the store, st(lock), to release the
locks in DropLocks and the end of the TxCommit procedure.
Note that the store to release the locks appears in a cycle that
comes from the body of the DropLocks procedure though it

p, x86 ` st(lock)→ st(tmp)

p, x86 ` st(tmp)→ ld(tmp) p, x86 ` ld(tmp)→ ld(x)

p, x86 ` st(tmp)→ ld(x)

p, x86 ` st(lock)→ ld(x)

Figure 4. Derivation of st(lock)→ ld(x) in TxCommit

Figure 5. A graph before and after fence insertion

does not appear in the code in Figure 2. Also the name of
the variable containing the lock address has been renamed
to lock for clarity.

Order Elimination. We eliminate an order by proving
that the order is enforced for every path between the ordered
instructions. Proofs for orders correspond with paths in the
graph through a second set of architecture edges. If two
instructions exist in a control flow path and the architecture
guarantees that they will never move past each other, we add
an architecture edge.

Returning to our example, recall that on x86 we can
eliminate the second order in TxCommit because the com-
piler generates a load and store to a temporary variable.

At the top of Figure 5, we add architecture edges (not
pictured) between two nodes pairs. We add the first edge
between the nodes labeled with store(lock):1413 and
store(tmp):1679 because stores cannot move past stores.
We add the second edge between the nodes labeled with
store(tmp):1679 and ld(tmp):1679 because stores can
not move past loads from the same address. These edges
correspond with a transitive order derivation for every path
between the store to lock and the load to tmp. As a result we
can eliminate the order.

In contrast, on ARMv7, we cannot add the first architec-
ture edge between the store to lock and the store to tmp be-
cause stores are permitted to move past other stores for dif-
ferent addresses. In that case, since we can’t eliminate the
order with the original graph, we must alter the graph so that
we can prove the order is enforced.

Fence Insertion. We model the problem of finding these
graph alterations as minimum multi-commodity cut [7]
(hereafter multi-cut). Intuitively, multi-cut finds a minimum
set of edges such that, when they are removed, no paths
exist between the sources and sinks for all commodities. If
we define the sources and sinks for commodities using the
paired instructions in orders and then “split” the edges in the
resulting cut with a fence, we will have transitive orders for
all paths and all orders.

The altered control flow graph at the bottom in Fig-
ure 5 shows the results of fence insertion on ARMv7 for
TxCommit. The algorithm selects a single edge from the
original graph to split with a fence, represented here as
fstore. This alteration ensures that all paths from the store to
the load are provably enforced.

Note also that the cut should happen outside the loop-
cycle in the control flow graph. This prevents an unnecessary
performance penalty when placing the fence. This is handled
directly by the minimum cut algorithm. Since the cut is
determined based on the sum of the capacities of the edges
in the cut, we can use larger capacities to discourage the
selection of edges that occur in loops. This ensures a fence
will only be placed in a loop when all paths for an order are
in a loop. Modeling fence insertion as multi-cut accounts
for the full generality of control flow graphs including odd
control flow configurations and order overlap.

Fence Selection. Finally, we select appropriate fences for
each placement by defining a partial order over fences based
on their capabilities. For example on ARMv7 a dmb fence
can enforce strictly more orders than dmb st since the latter

only waits for stores. In the case of Figure 5 either fence
will work but we prefer the “weaker” dmb st represented
here as the abstract fence type fstore. We do this under the
assumption that it is less costly during execution which is
supported by the ARMv7 documentation [17].

2.4 Orders, Not Fences
The memory fence is a blunt instrument that relates possibly
hundreds of instructions across many execution paths and
blurs its original purpose. Instead we supply a scalpel in the
form of declarative orders, which are more specific about
the desired behavior of the program. Declarative orders at
the source level enable authors to reason more easily about
their algorithm, while a compiler can do the work to insert
fences that enforce the orders.

3. The Fence Insertion Algorithm
Our algorithm for fence insertion takes three inputs: a
control-flow graph G, architecture rules A, and declared
execution orders O. The output is a transformed graph
Insert(G,A,O) with fences that enforce those execution
orders. In Section 3.1, we define a basic version of Insert
and prove it correct. The basic version relies on the simpli-
fying assumption that the only fence available is fany. We
will assume that fany enforces that all instructions prior to
the fence happen before all instructions after the fence. In
Section 3.2, we describe briefly how to generalize Insert to
work with multiple fences.

3.1 The Core Algorithm
We proceed as follows. First we define the basic concepts
of graphs, architecture rules, and declared execution orders,
along with some helper notation. Then we define a correct-
ness criterion of the form G,A |= O, which says that the
combination of G and A enforces all the declared execution
orders O. This brings us to definition of our algorithm Insert
whose goal is to produce an output graph G that satisfies
G,A |= O. Finally, we give an example and then prove the
correctness of Insert.

Graphs. A control-flow graph G = (V,E, `) consists of
a set V of nodes, a set E ⊆ (V × V) of directed edges, and
a labeling function `. Intuitively, a node is a program point,
the label of a node is the instruction at that program point,
and an edge is potential control flow between two program
points. We use i, j to range over V . The function ` maps
each element of V to a label, which is an element of

{ st(a), ld(a), fany }

where a is an address, st abbreviates store, ld abbreviates
load, and fany is a fence. We use l to range over labels.
Notice that our control-flow graphs focus entirely on loads,
stores, and fences. This is is in contrast to the conventional
notion of a control-flow graph that represents every instruc-
tion in a program. One can abstract such a conventional

graph into one of our graphs by, intuitively, omitting the
nodes of no interest to our approach.

For a graph G with i1, i2 among its nodes, we use
paths(G, i1, i2) to denote the set of paths in G from i1 to
i2. A path from i1 to i2 is itself a graph in which 1) each
node has one outgoing edge, except i2 which has no outgo-
ing edges, and 2) all nodes on the path are reachable from i1
by following zero, one, or more edges. Our notion of path is
usually known as a simple path because it allows no loops.
Still, we will use the terminology “path” for simplicity. We
will use p to range over paths.

Architecture rules. A set of architecture rules specifies
a memory model. Intuitively, the fewer the rules, the weaker
the memory model. The idea is that even if a control-flow
graph has an edge from i1 to i2, the execution of i1 and
i2 may happen in either order or overlap, unless specific
architecture rules enforce an order of execution. A set A
of architecture rules consists of rules of the form L 7→ R,
where L,R are rule components that range over

{ ∗, st(x), ld(x), fany }

and where x is a variable that ranges over addresses. Intu-
itively, ∗ is a wildcard. A rule L 7→ R expresses that if we
have a graph (V,E, `) with two nodes i1 and i2 such that
i1 can reach i2, and such that we can instantiate L 7→ R
to (`(i1), `(i2)), then we can conclude that i1 must happen
before i2. We will define the notion of instantiation below.

For example, the rules (∗ 7→ fany), (fany 7→ ∗) express,
intuitively, that fany is a fence. Specifically, the first rule
says that all instructions that can reach the fence will happen
before the fence, while the second rule says all instructions
that can be reached from the fence will happen after the
fence. The combined effect of those two rules is that all
instructions prior to the fence happen before all instructions
after the fence. In this section we define Insert in a way that
relies on that A contains those two rules.

As another example, the rule st(x) 7→ st(y) expresses,
intuitively, that all store instructions must happen in the
order in which they are reached in the control-flow graph.

As a third example, the rule st(x) 7→ ld(x) expresses,
intuitively, that if a store instruction to a particular address
can reach a load instruction from that same address in the
control-flow graph, then the store instruction must happen
before the load instruction.

We will now define a notion of instantiating an architec-
ture rule to a pair of labels. Specifically, if (L 7→ R) is an
architecture rule and (l1, l2) is a pair of labels, then we write
(L 7→ R) � (l1, l2) to denote that (L 7→ R) instantiates to
(l1, l2).

The definition of instatiation will ensure that for rules
such as (st(x) 7→ ld(x)), the two occurrences of x must
be replaced with the same address. Our technical device
to make that happen is that of a substitution. We use σ to
range over substitutions that map variables of the form x to

addresses. For our use, each substitution has either a domain
of either zero, one, or two elements, depending on whether
a rule mentions zero, one or two variables. The definition of
(L 7→ R) � (l1, l2) uses the relation I to distribute the use
of a substitution to each of L and R. Now we are ready to
present the detailed definition of instantiation.

We say that a rule (L 7→ R) instantiates to a pair of labels
(l1, l2) if we can derive (L 7→ R)�(l1, l2) with the following
rules:

(L, σ) I l1 (R, σ) I l2
(L 7→ R)� (l1, l2)

(∗, σ) I l

(st(x), σ) I st(σ(x))

(ld(x), σ) I ld(σ(x))

(fany, σ) I fany

The first rule says that we can instantiate (L 7→ R) to (l1, l2)
if we can find a substitution σ such that L guided by σ in-
stantiates to l1 (written ((L, σ) I l1)), and R guided by σ
instantiates to l2 (written ((R, σ) I l2)). The other four rules
define the cases where a rule component, guided by a sub-
stitution, instantiates to a label. Specifically, ∗ instantiates to
any label, st(x) instantiates to st(σ(x)), ld(x) instantiates to
ld(σ(x)), and fany instantiates to fany.

Declared execution orders. For a graph G = (V,E, `),
the declared execution orders is a set O ⊆ (V × V).

Correctness criterion. We will now define a correctness
criterion G,A |= O. Intuitively, G,A |= O says that the
combination of G and A enforces all the declared execution
orders O. The goal of our approach is to produce an output
graph G that satifies G,A |= O.

We define the correctness criterion in two steps. First we
define a judgment p,A ` i1 → i2. For a path p = (V,E, `),
architecture rules A, and nodes i1, i2 on p, we define that
p,A ` i1 → i2 holds if it can be derived by these rules:

p,A ` i1 → i2 (where i1 can reach i2 in p ∧
(L 7→ R) ∈ A ∧
(L 7→ R)� (`(i1), `(i2)))

p,A ` i1 → j p,A ` j → i2
p,A ` i1 → i2

The first rule instantiates an architecture rule in A, and the
second rule is transitivity.

Now we are ready to define the overall correctness crite-
rion. For a graph G = (V,E, `), architecture rules A, and
declared execution orders O ⊆ (V × V), define:

G,A |= O ⇐⇒
∀(i1, i2) ∈ O : ∀p ∈ paths(G, i1, i2) : p,A ` i1 → i2

Notice that the definition considers all paths between i1 and
i2. This ensures that the declared execution order will be
enforced, irrespective of the control flow.

Algorithm overview. Our algorithm Insert composes
three functions Elim, Cut, and Refine. Intuitively, Insert pro-
ceeds in three steps:

1. Elim determines a subset of the declared execution orders
that are enforced by the architecture.

2. Cut determines where to insert fences that will enforce
the rest of the declared execution orders.

3. Refine inserts the fences.

We now describe Elim, Cut, Refine, and Insert. After those
descriptions, we will give an example.

The Elim function. Our approach uses a function Elim
that determines a subset of the declared execution orders
for which we need no fences. We rely on the fact that Elim
satisfies the following property:

Elim(G,A,O) ⊆ O and G,A |= Elim(G,A,O). (1)

Programmers can implement Elim(G,A,O) in many ways,
including the trivial approach that always returns the empty
set. Our implementation, as a default, uses a straightforward
exponential-time algorithm that for each (i1, i2) ∈ O enu-
merates all p ∈ paths(G, i1, i2), and for each such p uses
brute-force to determine whether p,A ` i1 → i2. The result
is that Elim(G,A,O) returns a maximal subset of O. The
maximal size helps us insert few fences.

In addition we have implemented a linear time approx-
imation algorithm which works by finding enough nodes i
with the property, {(i1, i), (i, i2)}, A ` i1 → i2 such that,
when every i is removed paths(G, i1, i2) = ∅.

In either case, we need no modifications to G to enforce
the orders in Elim(G,A,O) so now let us focus on where to
insert fences to enforce the orders in O \ Elim(G,A,O).

The Cut function. Our approach uses a function Cut
that determines where to insert fences. We rely on that Cut
satisfies the following property:

Cut(G,O) is a multi-cut for G,O. (2)

The multi-cut specifies where to insert fences. Let us re-
call the standard notion of a multi-cut [7]: given a graph
G = (V,E, `) and a set O ⊆ (V × V), a multi-cut for
G,O is a set K, where K ⊆ E, such that ∀i1, i2 ∈ O :
paths((V,E \ K, `), i1, i2) = ∅. Programmers can imple-
ment Cut(G,O) in many ways, such as the trivial approach
that always returns E, an approximation algorithm [5], and
an integer linear program [5]. We experimented with those
and chose an ILP with a polynomial number of constraints in
the size of the graph [5]. We use SAGE [31] and the default
solver GLPK [16] to solve the ILP, which returns a multi-cut
of minimal size, which in turn helps us insert few fences.
Given G,O and an integer n, the problem to decide whether
there exists a multi-cut for G,O with at most n elements is
NP-complete for |O| > 2 [7]. Now let us consider how to
use a multi-cut to insert fences.

u

v w

st(a)

st(b) ld(b)

u

v v'

st(a)

st(b) fany

w

ld(b)

Figure 6. An example graph and its refinement.

The Refine function. Our approach uses a function
Refine that inserts fences. We will give the definition of
Refine in detail and later we will prove that the definition
satisfies four lemmas. For a graph G = (V,E, `) and a cut-
set K, where K ⊆ E, the function Refine(G,K) creates
a set WK of additional nodes (fences!), and replaces each
(j1, j2) ∈ K with two new edges that, intuitively, insert a
fence between j1 and j2. The new nodes form a set WK :

WK ::= {vj1,j2 | (j1, j2) ∈ K}

where each vj1,j2 is a fresh node. The output graph is:

Refine(G,K) = (V ∪WK , (E \K) ∪ EK , `K)

EK = {(j1, vj1,j2), (vj1,j2 , j2) | vj1,j2 ∈WK}
`K = ` ∪ {(vj1,j2 , fany) | (j1, j2) ∈ K}

Notice that Refine(G, ∅) = G.
The Insert function. We can now define Insert:

Insert(G,A,O) = Refine(G,Cut(G,O \ Elim(G,A,O)))

The definition calls three functions as outlined above: first
Elim, then Cut, and finally Refine. Both Elim and Cut run in
worst-case exponential time, while set difference and Refine
run in polynomial time, so we conclude that Insert runs in
worst-case exponential time.

Example. Consider the graph G = (V,E, `), which is
illustrated in Figure 6 (left graph). We have

V = {u, v, w} `(u) = st(a)
E = {(u, v), (u,w)} `(v) = st(b)

`(w) = ld(b)

where a, b are distinct addresses. Consider also the set of
architecture rules:

A = {(∗ 7→ fany), (fany 7→ ∗),
(st(x) 7→ st(y)), (st(x) 7→ ld(x))}

Consider finally the specified execution orders

O = {(u, v), (u,w)}

A run of Insert(G,A,O) will proceed as follows.
The first step is to call Elim(G,A,O). This call to Elim

will find that G,A |= {(u, v)} because we have a single-
edge path from u to v, and a rule (st(x) 7→ st(y)) ∈ A that
instantiates to (`(u), `(v)), which is equal to (st(a), st(b)).
Thus, if p is the single-edge path from u to v, we can
derive p,A ` u → v. The call to Elim will also find that
G,A 6|= {(u,w)} because we have no rule in A that for
the single-edge path p′ from u to w enables us to derive
p′, A ` u→ w. Note here that the rule (st(x) 7→ ld(x)) ∈ A
requires the two instructions (store and load) work with the
same address, while the two labels st(a) and st(b) operate on
distinct addresses. In summary, we have Elim(G,A,O) =
{(u, v)}. We can calculate O \ {(u, v)} = {(u,w)}.

The second step is to call Cut(G,O \ Elim(G,A,O) =
Cut(G,O \ {(u, v)} = Cut(G, {(u,w)}). In this case we
have Cut(G, {(u,w)}) = {(u,w)}. The reason is that the
one path from u to w has a single edge so we must have that
edge in the multi-cut.

The third step is to call

Insert(G,A,O) = Refine(G,Cut(G,O \ Elim(G,A,O)))

= Refine(G, {(u,w)})

The result is illustrated in Figure 6 (right graph). Compared
to G, the graph Insert(G,A,O) has an additional node v′,
no edge {(u,w)}, but instead two edges (u, v′) and (v′, w).
We have `(v′) = fany, that is, the new node is a fence. We
can instantiate the rule (∗ 7→ fany) ∈ A to (st(a), fany), and
we can instantiate the rule (fany 7→ ∗) ∈ A to (fany, ld(b)).
So for the path p′′ with the two edges (u, v′) and (v′, w), we
have that we can derive p′′, A |= (u,w).

In summary, the example has two specified execution or-
ders, and one of them is enforced by the architecture without
insertion of any fences, while for the other, we inserted a
single fence.

Theorem 1. If {(∗ 7→ fany), (fany 7→ ∗)} ⊆ A, then
Insert(G,A,O), A |= O.

We prove Theorem 1 in Appendix B.

3.2 Multiple Kinds of Fences
Let us now relax the assumption that the only fence avail-
able is fany. For example, Figure 3 gives rules for the two
fences on ARMv7, namely the weaker fence dmb st and the
stronger fence dmb. When multiple fences are available, the
Refine function can choose as weak a fence as possible. The
idea is that a weaker fence executes faster than a stronger
fence, which is true for the architectures we have consid-
ered. Intuitively, we let Refine choose the weakest fence that
enforces the relevant declared executions orders.

We will explain how to make the choice in two steps. First
let us consider a simple case, which happens to be the one
we encountered exclusively in our experiments. For an edge
(j1, j2) in a cut set K, suppose we have a single element

(i1, i2) ∈ O \ Elim(G,A,O) for which (j1, j2) is on a path
from i1 to i2. We must chose a fence that is strong enough
to enforce the order (i1, i2). Specifically, we need a fence f
such that A contains the rules (L 7→ f) and (f 7→ R) such
that

(L 7→ f)� (i1, f) ∧ (f 7→ R)� (f, i2)

We will choose as weak a fence as possible. For the archic-
tectures we have considered, we can always find a fence that
is the weakest among all those that satisfy the above require-
ment.

Now let us consider the general case. For an edge (j1, j2)
in a cut set K, suppose we have multiple elements (i1, i2) ∈
O \ Elim(G,A,O) for which (j1, j2) is on a path from i1 to
i2. Here we want the least expensive fence that will enforce
all of the involved orders. For each such (i1, i2) we chose
a fence f(i1,i2) as described above. Now we need a fence
that is at least as strong as those fences f(i1,i2). Again, for
the archictectures we have considered, we can always find a
weakest fence that is at least as strong as each f(i1,i2).

Optimality. The optimality of our approach to fence se-
lection depends on the assumption that any two fences will
always execute more slowly than any single fence. Consider
the case of an architecture like IA64 in Figure 3 and some
procedure where we have a load-load order and a store-store
order overlapping on a single simple path. Individually the
orders can be enforced with an lfence and an sfence but
the optimal multi-cut will include an edge shared by both or-
ders. Then to satisfy both orders with a single fence we must
select an mfence.

4. Implementation
We have implemented our approach in a tool called Parry [4]
that as input takes a concurrent algorithm written in C/C++,
declared execution orders, and a memory model, and as out-
put produces C/C++ with fences. Parry uses Python to or-
chestrate the three major tasks in fence insertion: control-
flow graph generation, order elimination, and fence inser-
tion. We will now explain some details of Parry, particularly
a few points that go beyond the fence insertion algorithm
that we described in Section 3.

Graph Generation Parry is based on LLVM. First Parry
compiles the input source code to LLVM’s static-single-
assignment (SSA) intermediate representation (IR) along
with debugging information. Then Parry generates a control-
flow graph of the target procedure using LLVM’s opt tool.
Next, Parry simplifies the control-flow graph by replacing
each standard block with a path of instructions. We manipu-
late the resulting graphs with the graph-tool library [11].

We construct a graph in which the only nodes are for load,
store, call, and cmpxchg instructions. Note that compared to
the algorithm in Section 3, we add call instructions to safely
account for methods which do not get inlined, and we add
the cmpxchg instructions because they are frequently used

by authors to enforce orders. Indeed, the cmpxchg instruc-
tion provides compare-and-swap semantics at the LLVM IR
level and can act as a full memory fence (like mfence on
x86 or dmb on ARMv7) [30].

Compiler Assumptions Parry uses Clang to translate C/C++
into LLVM’s intermediate representation and we assume
that this translation preserves some key aspects of the code
that are of interest to Parry.

We assume that the semantics of a line of C/C++ used to
specify an order will be preserved in the intermediate repre-
sentation generated by Clang. For example, if the program-
mer expects a store to a certain memory address at a line in
the code then we assume that Clang will generate a store to
that address for that line. We safely account for the possibil-
ity of more than one instruction per line matching the event
types of an order by including all matching instructions dur-
ing the analysis.

We also assume that our fence placements will remain
valid after a compiler optimizes the C/C++ code that Parry
outputs. That is, we require that the ordered instructions will
not be moved past the fences by the compiler. To that end we
ensure that all inline assembly instructions inserted by Parry
are marked as volatile operations.

Architecture Rules As detailed in Section 3 we have cre-
ated a set of rules for each architecture that describe the
which instructions won’t “move” during execution. These
rules are necessary for order elimination.

We have included three architectures in Figure 3, x86,
ARMv7 and IA64. The last is for clarity and comparison
since our evaluation does not include benchmarks for IA64.

We compiled these rules based on our interpretation of
the processor documentation available for each architecture.
They are intended to be an over-approximation of the ac-
tual architecture behavior. During order elimination they are
used to establish preexisting orders without consideration
for other types of instructions aside from stores, loads, and
fences.

Not included in Figure 3 are instructions that exist in the
LLVM IR, like cmpxchg, which result in hardware instruc-
tions with fence-like semantics. We do account for LLVM’s
cmpxchg as detailed in Section 5.7.

Edge Elimination Parry has an initial step that takes place
before the main algorithm in Section 3: edge elimination.
The idea is to eliminate all edges that are irrelevant to the
fence insertion problem. We keep an edge only if for at least
one declared execution order, the edge is on a path from the
source to the sink of the order and the instructions on that
path don’t enforce the order. After edge elimination, we can
implement order elimination for an order (i1, i2) simply by
checking whether the set of paths from i1 to i2 is empty.

Address Equality In some cases, an architecture rule uses
a variable twice, such as the rule (st(x) → ld(x)). Our tool
only instantiates the rule in case x can be replaced with a

variable in LLVM’s internal static-single-assignment form.
The SSA form guarantees that the value of that variable is
the same at both program points. For example, in Figure 5,
tmp is a variable, so we can instantiate (st(x) → ld(x)) to
(st(tmp), ld(tmp)).

Fence Insertion Since our analysis is static and we want
to minimize the execution of fence instructions, we avoid
placing fences in loops unless absolutely necessary. Parry
achieves this by finding cycles in the control flow graph.
Then it assigns an edge weight to the cycle edges that is
one more than twice the incoming edge weight as illustrated
earlier in Figure 5. This ensures that even if many orders
from outside the loop overlap inside the loop the linear
program will prefer edges outside the loop. This heuristic
has value if a loop is executed more than once.

Alternate Fence Placements In many cases there are mul-
tiple fence placements that are equivalent according to the
multi-cut model. That is, there may be edges with weights on
similar paths resulting in the same objective function value
from the multi-cut linear program. Our implementation se-
lects the edge closest to the source. Our tool is also able to
select alternate cuts where necessary and we discuss our ex-
perimental evaluation of equivalent alternative fence place-
ments in Section 5.7.

5. Experimental Results
We have evaluated Parry with four classic concurrent algo-
rithms (Dekker, Lamport, Parker, and Peterson) and three
transactional memory algorithms (TL2 [12], TL2 Eager, and
TLRW [13]). We downloaded implementations of the clas-
sic algorithms from the Musketeer project [2]), TL2 and TL2
Eager are from the STAMP project [28], and TLRW from
the Rochester Software Transactional Memory library [26].
TL2 Eager is a variant of TL2. The TLRW implementation
is named ByteEager. The three TM algorithms have proce-
dures that are significantly more complex than those of the
classic algorithms. For example, TL2 has nearly 400 nodes
and more than 250 lines of code in one procedure.

We evaluate all of the algorithms on the x86 and ARMv7
architectures. We chose to work with ARMv7 due to its in-
creasing relevance in all types of computing and its particu-
larly weak memory model, compared to x86.

5.1 Declaration of Execution Orders
We declared execution orders for each of the seven algo-
rithms to benchmark our approach against the author sup-
plied memory fences. We also removed existing fences from
the algorithms.

Classic Algorithms Figure 7 shows the orders for the
four classic algorithms. We got the orders for Dekker from
Lesani’s dissertation [23] and the orders for Peterson are
similar. We got the single order for Parker from a blog post
by Dave Dice. Dice wrote that the Parker implementation

in the Java Virtual Machine was found to have a bug due
to store buffering [14]. We defined an order according to
the description of the bug to ensure that the store to the
shared variable counter is flushed. We defined the orders
for Lamport based on an analysis that we detail in an ap-
pendix.

TL2 and TL2 Eager Figure 11 shows the orders for TL2
and TL2 Eager which we got from Lesani’s dissertation [23].
The source code for both algorithms can be found at [10].

RSTM ByteEager Figure 14 shows the orders for ByteEa-
ger. The source code for RSTM ByteEager algorithm can
be found at [29]. The orders stem from the work on TLRW
by Dice et. al [13]. They give a detailed account of critical
orders which we use here.

During the process of defining orders for each algorithm
we also had to find and remove existing fences to prevent
duplication. On closer inspection of the code for the store-
store order in the rollback procedure of ByteEager we
were unable to find any mechanism that might enforce the
order.

We contacted the original authors to verify our findings. It
became clear that they had built the algorithm for architec-
tures where the order was automatically enforced, namely
TSO, and they agreed a fence was necessary. We placed
a dmb st fence after the source of the order to establish
a baseline for comparison, noting that an order definition
would have made our communication unnecessary.

Difficulty The only algorithm without orders already de-
fined in some form was Lamport’s mutex. Every other algo-
rithm had research, implementation notes, or existing fences
from which orders could be derived. We think this means
execution order definition is already implicitly taking place
during algorithm design but the information is lost as fence
placements during implementation.

Further, in the case of ByteEager’s rollback procedure,
we believe that the speed with which the ByteEager authors
were able to diagnose the issue suggests that authors and
designers will have relatively little difficulty in defining ex-
ecution orders during algorithm design.

5.2 Parry’s Execution Time
Figures 9 and 10 show the wall clock time that Parry’s top-
level run procedure takes to insert fences for the TL2 and
ByteEager TM algorithms. Figure 9 shows results where the
exponential order elimination algorithm was used and Figure
10 shows results for the linear order elimination algorithm.
Notably, the elimination results from the exponential time
and linear time order elimination algorithms are identical for
all of the evaluated code.

The times were recorded from each stage of Parry’s ex-
ecution, averaged across 100 runs on an Intel Core i5 at
2.4 Ghz with 6GB of RAM with a fully updated version of
Ubuntu 14.04 Server.

x86 ARM7
Dekker 8

st,ld−−→ 9 8:mfence 8:dmb st

13
st,ld−−→ 9 13:mfence 13:dmb st

25
st,ld−−→ 26 25:mfence 25:dmb st

30
st,ld−−→ 26 30:mfence 30:dmb st

Lamport 8
st,ld−−→ 9 8:mfence 8:dmb st

14
st,ld−−→ 15 14:mfence 14:dmb st

31
st,ld−−→ 32 31:mfence 31:dmb st

37
st,ld−−→ 38 37:mfence 37:dmb st

Parker 44
st,∗−−→ 46 44:mfence 44:dmb st

Peterson 5
st,ld−−→ 7 5:mfence 5:dmb st

14
st,ld−−→ 16 14:mfence 14:dmb st

Figure 7. Orders and fences for four classic algorithms

TL2 LOC Nodes
TxLoad 75 171

TxStore 121 236
TxCommit 277 398

ByteEager LOC Nodes
read ro 30 64
read rw 32 73
write ro 31 93
write rw 36 122
rollback 25 93

Figure 8. Algorithm Procedure Size

We include only the TM algorithms here because they
are the most complex examples in our evaluation. The size
of each procedure for both algorithms in lines of code and
control flow graph notes is included in Figure 8. The lines
of code are recorded without account for inlining except
in the case of TL2:TxCommit where the majority of the
instructions are inlined from a procedure call. The largest
case is TL2:TxCommit procedure where the control-flow
graph has 398 nodes. We have not included TL2 Eager since
the size and times were similar to those of regular TL2.

The control-flow graph generation and order elimination
account for the majority of the execution time. In the cases
where the linear order elimination algorithm is used the
graph generation dominates the other parts of our approach.
The long execution times for graph generation are caused by
a large amount of string manipulation and scanning while
working with the LLVM IR in Python. The fence insertion

which uses GLPK to run our integer linear program takes
little time.

When executing on TL2 for x86 no time is spent on
the ILP and a small amount on order elimination. Parry
can forgo running the linear program entirely because all
of the orders are eliminated. The order elimination only
requires a small amount of time because it is immediate
for orders where the source and sink instructions exist in an
architecture enforced relationship.

5.3 Experiments with the Four Classic Algorithms
For the four classic algorithms, Parry inserted the fences
shown in Figure 7. Notice that each order led to one fence. In
each case, the fence is correctly placed and is the best fence
possible. We note that Lamport’s mutex has two “loops” due
to jumps to the start of the algorithm; Parry places a fence
directly after the first branch, which is a good choice.

5.4 Transactional Memory Algorithms
For the three TM algorithms, Parry inserted the fences
shown in Figure 11 and Figure 14. We have an opportunity to
compare those fences with a baseline. The original authors
of the transactional memory algorithms inserted fences or
fence macros for particular architectures, which we assume
are correct for the intended architectures. From those fence
placements, the literature, and in some cases consultation
with the original authors, we constructed a baseline for each
of x86 and ARMv7. Effectively, we acted as an implementer
who selects fences; for example, for TL2 we defined an ex-
isting fence macro called MEMBARSTLD as mfence on x86.
Similarly, ByteEager uses a memory fence macro WBR and
the implicit memory barrier defined by the semantics of the
sync * compiler built-ins [1]. One goal of our experi-

ments is to evaluate whether our order definitions and Parry
can match the baseline. In the following subsections, we
will give a detailed comparison of both the fence placements
and of the resulting performance of the TM algorithms on
standard benchmarks.

5.5 Impact of Order Elimination
Figure 11 shows that for TL2 on x86, Parry eliminated all
7 orders and inserted no fences at all, while on ARMv7,
Parry eliminated no orders. Additionally, Figure 11 shows
that for TL2 Eager on x86, Parry eliminated all 4 orders and
inserted no fences at all, while on ARMv7, Parry eliminated
one order. Finally, Figure 14 shows that for ByteEager on
x86, Parry eliminated one order, while on ARMv7, Parry
eliminated no orders.

Now let us compare with the baseline. We ask: (1) are
there cases where order elimination is necessary to approxi-
mate the fence placements from a knowledgeable implemen-
tor and (2) can we avoid adding fences altogether using in-
formation from the compiler? Our comparison suggests the
answer is yes in both cases, as we will detail now.

Order elimination prevents the addition of extra fences
where the architecture directly enforces an order and an im-
plementer will never insert a fence. For example, load-load
orders are automatically enforced on x86. In such cases we
can establish a derivation by instantiating an architecture
axiom directly and then eliminate the corresponding order.
There are also situations like the write procedure for ByteEa-
ger where accounting for the cmpxchg instruction prevents
the insertion of an additional fence.

Additionally, we have exhibited two instances where
fences would likely be inserted by an implementer but
which actually require no fence. If TL2 is compiled with
the TL2 EAGER flag, one fence in TxCommit can be elimi-
nated on architectures like ARMv7 since the source of the
order will not appear in the control flow graph. If TL2 is
compiled by Clang on x86, another fence can be eliminated
in TxCommit due to generated instructions which allow for a
transitive order derivation. In these cases a detailed account-
ing of the control flow graph is important in determining
whether an order is already enforced.

5.6 Performance Benchmarks
We compare the performance of Parry’s output with the
baseline using six of the benchmarks from the STAMP
benchmark suite v0.9.10 [28] which is designed for testing
transactional memory algorithms. We ran the x86 bench-
marks on an Intel Core i5 at 2.4 Ghz with 6GB of RAM with
a fully updated version of Ubuntu 14.04 Server. The ARMv7
benchmarks were run on an Exynos 5 Dual at 1.7Ghz with
2GB of RAM with the same operating system.

We compiled the results of each benchmark by taking the
arithmetic mean of each over 100 runs and then recording
the percentage difference between the baseline version and
the Parry version.

Importantly everything was compiled with Clang version
3.3. This is the same version used in Parry to generate IR,
control flow graphs. Using the same version of Clang to gen-
erate the control flow graphs and to compile the algorithms
ensures that the assertions we make about the graphs remain
valid for the final compiled output.

5.7 TL2 and TL2 Eager Measurements
Figure 11 shows the fences inserted by Parry alongside the
fences placed in the baseline. We associate them by the or-
ders we defined for TL2. For example the last two orders for
TL2 correspond with the orders from our running example,
TxCommit. All of the orders were accounted for by fence
macros. This is not surprising given that the authors would
have a deep understanding of the algorithm’s behavior under
weak memory models.

The orders are defined using line numbers which can
be referenced in the code which accompanies our project
[4]. We have included annotations for the instruction types
that should be ordered when they appear in the intermediate
representation. For example the order between lines 760 and

Figure 9. Parry Execution Times, Full Order Elimination

Figure 10. Parry Execution Times, Linear Elimination

TL2 x86 ARM7
TxLoad baseline ours baseline ours

2078
ld,ld−−→ 2080 — — 2078:dmb 2078:dmb

2080
ld,ld−−→ 2082 — — 2080:dmb 2080:dmb

TxStore baseline ours baseline ours

1886
ld,ld−−→ 1923 — — 1920:dmb 1886:dmb

TxCommit baseline ours baseline ours

1555
st,st−−→ 1625 — — 1555: ldrex/strex 1555:ldrex/strex

1596
st,st−−→ 1625 — — 1596: ldrex/strex 1596:ldrex/strex

760
st,st−−→ 1413 — — 1669:dmb st 1669:dmb st

1413
st,ld−−→ 1679 1679:mfence — 1679:dmb st 1416:dmb st

TL2 Eager x86 ARM7
TxLoad baseline ours baseline ours

1991
ld,ld−−→ 1993 — — 2078:dmb 2078:dmb

1993
ld,ld−−→ 1995 — — 2080:dmb 2080:dmb

TxCommit baseline ours baseline ours

760
st,st−−→ 1413 — — 1669:dmb st —

1413
st,ld−−→ 1679 1679:mfence — 1679:dmb st 1679:dmb st

Figure 11. Orders and fences for TL2 and TL2 Eager

lines orders
TxCommit 760

st,st−−→ 1413 st(addr)→ st(lock)

1413
st,ld−−→ 1679 st(lock)→ ld(x)

Figure 12. TL2 Lines to Orders

1413 in TxCommit is a store-store order between the store
of a value in the write-set and a store to release the lock
for the write-set’s address. In this case the line numbers
appear to be abnormally distant from one another but, due
to procedure inlining, they both appear in the control flow
graph for TxCommit. We have also included a mapping from
the orders in our running example to the line number orders
in Figure 12.

TL2 x86 The load-load orders in TxLoad and TxStore

and the store-store orders in TxCommit should be defined
without a fence by an implementer since those instructions
can never be seen to move past one another. Parry makes
the same determination. As noted earlier we were able to
eliminate the final store-load order in TxCommit entirely
due to Clang’s IR output and the transitive order as derived
in Figure 4. It’s unlikely that an implementer would have
enough information to make the same determination without
the help of our tool.

TL2 ARMv7 For both orders in TxLoad, the order in
TxStore, and for the last two orders in TxCommit, Parry
inserted the same fence as the authors. Parry also matched
the authors for the first two orders in TxCommit. They be-
gin with cmpxchg instructions which compile to a paired
ldrex/strex on ARMv7 and require no additional fence.

Note, that the result for the last order in TxCommit and the
only order in TxStore are at different line numbers. Both
orders have a path with many edges of the same capacity
that can all serve to separate the source from the sink in a
minimal cut. The algorithm simply chooses the edge closest
to the source in this case. Also, the line number where
Parry placed the fence for the second order of TxCommit

is seemingly before the source of the order. This is due to
procedure inlining.

TL2 Eager The eager version of TL2 requires fewer exe-
cution orders than the full TL2. The orders in TxLoad corre-
spond with the same orders for the full TL2. Otherwise, the
difference is the first order in TxCommit. As noted in Section
2, when the algorithm is compiled as eager the source of the
first order is removed from the control flow graph by the first
ifndef in Figure 2. This makes the order unnecessary since
it does not appear in that procedure’s control flow graph.

Performance Let us consider the performance of the TL2
algorithm; the results for TL2 Eager are similar and we omit
them here. The performance results in Figure 13 for TL2
follow intuition quite closely. In the case of x86 we saw a
small improvement since we were able to eliminate a fence

Figure 13. TL2 Performance Benchmarks

in TxCommit. The improvement is small because TxCommit
is called infrequently when compared with TxLoad and
TxStore which are the most heavily used procedures in any
transactional memory algorithm. Similarly, the results for
ARMv7 for the baseline and Parry are nearly identical since
the number and placement of fences are nearly identical.

Alternate Fence Placements To test whether different
fence placements that are considered equivalent by the
multi-cut model might produce real performance differences
we considered five alternate fence placements for the TL2 al-
gorithm on ARMv7. We chose this benchmark because TL2
on ARMv7 has the largest number of alternate placements.
This is due to the large control flow graphs for the proce-
dures of TL2 and the weaker memory model of ARMv7.

Our results showed that, for every alternate placement,
for all six of the STAMP performance benchmark results,
the difference between the default fence placement provided
by Parry and the alternate was within ±4%. Further only
three benchmarks of a total thirty showed greater than a 3%
change and two showed greater than 2% change. This sug-
gests that choosing the default is reasonable where perfor-
mance is concerned.

5.8 RSTM ByteEager Measurements
The table in Figure 14 contains the fence placements for the
RSTM ByteEager implementation along with the memory
fences already present in the implementation. Again we note
that all orders except the last in rollback are accounted
for in the implementation of the algorithm. We believe this
is due to the author’s intimate knowledge of the intended
behavior and the detailed account of the fence placements
for TLRW in [13].

ByteEager x86 ARM7
read ro baseline ours baseline ours

125
st,ld−−→ 128 125:xchg 125:mfence 125:ldrex/strex 125:dmb st

read rw baseline ours baseline ours

163
st,ld−−→ 165 163:xchg 163:mfence 163:ldrex/strex 163:dmb st

write ro baseline ours baseline ours

186
st,ld−−→ 196 186:xchg 186:xchg 186:ldrex/strex 186:ldrex/strex

write rw baseline ours baseline ours

228
st,ld−−→ 238 228:xchg 228:xchg 228:ldrex/strex 228:ldrex/strex

rollback baseline ours baseline ours

261
st,st−−→ 265 — — 266:dmb st 266:dmb st

Figure 14. Orders and fences for RSTM ByteEager

1658 void set_read_byte(uint32_t id) {

1659 #if defined(BASELINE)

1660 __sync_lock_test_and_set (&r[id], 1u)

1661 #else

1662 // NOTE: no WBR macro

1663 r[id] = 1;

1664 #endif

1665 }

Figure 15. RSTM

x86 The placements here are noteworthy due to the xchg

instructions present in the baseline version of read ro,
read rw, write ro, and write rw. The source for the or-
ders in the read ro and read rw procedures are calls to
another procedure which is not inlined and which uses the
sync lock test and set compiler built-in. When tar-

geting x86 this built-in compiles to the xchg instruction
which includes an implicit lock prefix. This prevents other
stores and loads from moving past the xchg [6, p. 160]. As
a result it can do the same job as the mfence that Parry in-
serts. For our benchmarks we compared the version using
the compiler built-in and a modified version which relies on
Parry to insert the proper fence as illustrated in Figure 15.
This accurately reflects how an author might rely on an order
definition to enforce the correct behavior without the com-
piler built-in. It also mirrors the definition for SPARC in the
original source (not depicted in Figure 15) which is identical
to the version we use to test Parry, except that it includes an
explicit WBR fence macro.

For write ro and write rw the author’s implementation
uses the sync bool compare and swap built-in at the
source of the orders. This built-in translates to a cmpxchg

LLVM IR instruction with a sequential consistency ordering
qualifier which in turn compiles to the xchg instruction.
Parry accounts for the cmpxchg by treating it as a fence per
the LLVM documentation [30], and consequently it does not
add an additional fence to these procedures.

ARMv7 The placements are the same for read ro and
read rw as they are for x86 but here the compiler built-in re-
sults in a paired ldrex/strex. Since we have implemented

Figure 16. RSTM ByteEager Performance Benchmarks

our own simple read, Parry again inserts a qualified dmb st.
As with x86, when considering the write ro and write rw

procedures Parry accounts for the cmpxchg instruction and
does not add an additional fence.

In the rollback procedure a store-store order is required
to preserve the expected TLRW behavior when aborting a
transaction. We were unable to find anything that would en-
force a store-store order in the original implementation. As
discussed we contacted the original authors and determined
that they did not consider store-store orders when building
the algorithm. We placed an appropriate fence for the base-
line which Parry matched.

Performance On x86 we expected to see similar results
for both Parry and the baseline across benchmarks but in
some cases Parry’s compiled output was almost 1.5 times
slower. Upon further inspection the overhead is due to the
modifications we made in Figure 15. Both the mfence and
xchg instructions can act as an appropriate memory fence
for the orders in read ro and read rw and they have similar
execution costs to the best of our knowledge. They differ,
in that xchg also handles the store to memory where our
modifications perform the store using a separate instruction.

To test this, we removed the mfence from the version
which relies on a store and fence. The benchmark results
with just a store instruction were comparable to the original
using the xchg. This suggests that, in these benchmarks,
the xchg is only marginally more expensive than the store.
In future work we could address this by using the xchg to
enforce orders by replacing the store entirely.

On ARMv7 we see a smaller difference though clearly
the same issue exists here: the store and the dmb st fence
are more expensive than the paired ldrex/strex.

For both architectures the fence inserted by Parry is only
subtly different from the code generated by the compiler
built-in but the performance impact is significant. We believe
this highlights the importance of finding optimal placements
and fences types wherever possible.

6. Related Work
We divide the related work into three groups: sequential
consistency, inference, and other related works. The papers
solve problems that are somewhat different than our prob-
lem, yet we will discuss how their techniques may be rele-
vant to solve our problem.

Sequential consistency. Many authors have presented
approaches to insert fences that enforce sequential consis-
tency, including Lee et al. [22], Fang et al. [15], and Alglave
et al. [2].

Inference. An alternative to specification of execution
orders is inference of execution orders. The idea of inference
is somewhat different from type inference, which can be
understood as articulating program invariants. In the case of
inference of execution orders, the challenge is to articulate
assumptions needed to prove a correctness property.

Kuperstein, Vechev, and Yahav [20], presented promising
work on inference; they infer execution orders from a pro-
gram, a correctness property, and a memory model. Their
approach first runs a whole-program state-space exploration
algorithm that produces a logical formula, then solves the
formula to get a set of execution orders, and finally uses
those orders to insert fences. Their approach to enforce an
order (i1, i2) is to insert a fence right after i1 or right be-
fore i2. The whole-program nature of their approach means
that while the inserted fences are sound in the given con-
text, they may be unsound in a different context. Still, their
approach can give worthwhile feedback to an algorithm de-
signer who tries to specify a set of orders that are sufficient
to prove correctness. We note that our choice of correct-
ness property (opacity) of transactional transactional mem-
ory algorithms is currently beyond the capabilities of the
Kuperstein-Vechev-Yahav approach. What is needed here is
a more powerful language for specifying correctness prop-
erties along with a suitable generalization of the approach.
This can be an exciting direction for future work.

Kuperstein et al. [21], Meshman et al. [27], and Dan
et al. [9] have presented approaches to a related inference
problem, allowing degrees of infinite-state programs, but
seemingly without execution orders as an intermediate step
towards fences. Their approaches can likely be recast as
inference of execution orders. Again, a direction for future
work is to make their specification languages more powerful
to enable specification of correctness of TM algorithms.

Liu et al. [25] presented an execution-based approach
to inference, in which they run the program on a memory
model and then use the traces to infer fences. This technique
can likely be recast to infer execution orders instead.

Other. Execution orders can also be seen as restrictions
on the possible executions of a program. In this way declared
orders are similar to previous work on using annotations to
restrict scheduling for correctness [8] and for testing [19].
Our work differs in its focus on the restriction of the possible
executions due to instruction reordering (or the appearance
thereof) as opposed to the restriction of the possible execu-
tions due to thread scheduling.

7. Conclusion
We have presented a declarative approach to specifying and
enforcing the assumptions made by concurrent algorithms.
For three TM algorithms, our tool inserted fences that are
competitive with those inserted by the original authors. We
believe execution orders are a natural abstraction that can
help algorithm designers reason about their algorithms inde-
pendently of memory models.

Acknowledgments
We thank the Michael Scott, Mike Spear, Luke D’Alessandro
for answering questions about their ByteEager TLRW algo-
rithm implementation. We thank Todd Millstein and Matt
Brown for their feedback on drafts of this paper. We were
partially supported by the NSF Expeditions in Computing
Award CCF-0926127.

References
[1] GNU GCC 4.8.2. Built-in functions for atomic memory

access. https://gcc.gnu.org/onlinedocs/gcc-4.8.

0/gcc/_005f_005fsync-Builtins.html#g_t_005f_

005fsync-Builtins, 2013. [Online, accessed Feb 2015].

[2] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel
Poetzl. Don’t sit on the fence: A static analysis approach to
automatic fence insertion. In CAV, 2014.

[3] ARM. Arm compiler toolchain assembler reference.
http://infocenter.arm.com/help/index.jsp?

topic=/com.arm.doc.dui0489c/CIHGHHIE.html,
2011. [Online, accessed Feb 2015].

[4] John Bender. Parry. https://bitbucket.org/ucla-pls/
parry, 2015.

[5] Joseph Cheriyan, Howard Karloff, and Yuval Rabani. Approx-
imating directed multicuts. In FOCS, pages 320–328, 2001.

[6] Intel Corp. Intel 64 and ia-32 architectures software de-
velopers manual. http://www.intel.com/content/

dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-software-developer-

manual-325462.pdf, 2015. [Online, accessed Feb 2015].

[7] Marie-Christine Costa, Lucas Létocart, and Frédéric Roupin.
Minimal Multicut and Maximal Integer Multiflow: A Survey.
European Journal of Operational Research, 162:55–69, 2005.

[8] Heming Cui, Jiri Simsa, Yi-Hong Lin, Hao Li, Ben Blum,
Xinan Xu, Junfeng Yang, Garth A. Gibson, and Randal E.
Bryant. Parrot: A practical runtime for deterministic, stable,
and reliable threads. In Proceedings of the Twenty-Fourth

https://gcc.gnu.org/onlinedocs/gcc-4.8.0/gcc/_005f_005fsync-Builtins.html#g_t_005f_005fsync-Builtins
https://gcc.gnu.org/onlinedocs/gcc-4.8.0/gcc/_005f_005fsync-Builtins.html#g_t_005f_005fsync-Builtins
https://gcc.gnu.org/onlinedocs/gcc-4.8.0/gcc/_005f_005fsync-Builtins.html#g_t_005f_005fsync-Builtins
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489c/CIHGHHIE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489c/CIHGHHIE.html
https://bitbucket.org/ucla-pls/parry
https://bitbucket.org/ucla-pls/parry
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-
manual-325462.pdf

ACM Symposium on Operating Systems Principles, SOSP ’13,
pages 388–405, New York, NY, USA, 2013. ACM.

[9] Andrei Dan, Yuri Meshman, Martin Vechev, and Eran Yahav.
Predicate abstraction for relaxed memory models. In SAS,
2013.

[10] Chi Cao Minh Dave Dice, Nir Shavit. Tl2 and tl2 eager.
https://bitbucket.org/ucla-pls/stamp-tl2-x86/

src/master/tl2.c, 2015. [Online, accessed Feb 2015].

[11] Tiago de Paula Peixoto. Graph-tool, efficient network anal-
ysis. https://graph-tool.skewed.de/, 2015. [Online,
accessed Feb 2015].

[12] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking
II. In Distributed Computing, pages 194–208. Springer, 2006.

[13] Dave Dice and Nir Shavit. Tlrw: Return of the read-write lock.
In SPAA, pages 284–293, New York, NY, USA, 2010. ACM.

[14] David Dice. A race in locksupport park() arising from
weak memory models. https://blogs.oracle.com/

dave/entry/a_race_in_locksupport_park, 2009. [On-
line, accessed Feb 2015].

[15] Xing Fang, Jaejin Lee, and Samuel Midkiff. Automatic fence
insertion for shared memory multiprocessing. In ICS, 2003.

[16] GNU. Glpk (gnu linear programming kit). https://www.

gnu.org/software/glpk/, 2015. [Online, accessed Feb
2015].

[17] Richard Grisenthwaite. Barrier litmus tests and cook-
book. http://infocenter.arm.com/help/topic/com.

arm.doc.genc007826/Barrier_Litmus_Tests_and_

Cookbook_A08.pd, 2009. [Online, accessed Feb 2015].

[18] Maurice Herlihy and J. Eliot B. Moss. Transactional memory:
Architectural support for lock-free data structures. SIGARCH
Comput. Archit. News, 21(2):289–300, May 1993.

[19] Vilas Jagannath, Milos Gligoric, Dongyun Jin, Qingzhou Luo,
Grigore Rosu, and Darko Marinov. Improved multithreaded
unit testing. In Proceedings of the 19th ACM SIGSOFT Sym-
posium and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE ’11, pages 223–233, New
York, NY, USA, 2011. ACM.

[20] Michael Kuperstein, Martin Vechev, and Eran Yahav. Auto-
matic inference of memory fences. In Proceedings of the 2010
Conference on Formal Methods in Computer-Aided Design,
FMCAD ’10, pages 111–120, Austin, TX, 2010.

[21] Michael Kuperstein, Martin Vechev, and Eran Yahav. Partial-
coherence abstractions for relaxed memory models. In PLDI,
2011.

[22] Jaejin Lee and David Padua. Hiding relaxed memory con-
sistency with a compiler. IEEE Transactions on Computers,
50(8), August 2001.

[23] Mohsen Lesani. On the Correctness of Transactional Memory
Algorithms. PhD thesis, UCLA, 2014.

[24] Mohsen Lesani and Jens Palsberg. Decomposing opacity. In
Proceedings of DISC’14, International Symposium on Dis-
tributed Computing, Austin, Texas, October 2014.

[25] Feng Liu, Nayden Nedeve, Nedyalko Prisadnikov, Martin
Vechev, and Eran Yahav. Dynamic synthesis for relaxed mem-
ory models. In PLDI, 2012.

[26] Virendra J Marathe, Michael F Spear, Christopher Heriot,
Athul Acharya, David Eisenstat, William N Scherer III, and
Michael L Scott. Lowering the overhead of nonblocking soft-
ware transactional memory. Technical Report 893, University
of Rochester, 2006.

[27] Yuri Meshman, Andrei Dan, Martin Vechev, and Eran Yahav.
Synthesis of memory fences via refinement propagation. In
Proceedings on Static Analysis Symposium, Lecture Notes in
Computer Science Volume 8723, pages 237–252, 2014.

[28] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and
Kunle Olukotun. Stamp: Stanford transactional applications
for multi-processing. In Workload Characterization, 2008.
IISWC 2008. IEEE International Symposium on, pages 35–
46. IEEE, 2008. [http://stamp.stanford.edu, online,
accessed Nov 2014].

[29] University of Rochester and Lehigh University De-
partments of Computer Science. Rstm byteeager.
https://code.google.com/p/rstm/source/browse/

trunk/libstm/algs/byteeager.cpp, 2015. [Online,
accessed Feb 2015].

[30] LLVM Project. Llvm language reference manual. http://

llvm.org/docs/LangRef.html, 2015. [Online, accessed
Feb 2015].

[31] Sage Project. Sagemath. http://www.sagemath.org/,
2015. [Online, accessed Feb 2015].

[32] Dennis Shasha and Marc Snir. Efficient and correct execution
of parallel programs that share memory. ACM Trans. Pro-
gram. Lang. Syst., 10(2):282–312, April 1988.

[33] Nir Shavit and Dan Touitou. Software transactional memory.
In Proceedings of the Fourteenth Annual ACM Symposium on
Principles of Distributed Computing, PODC ’95, pages 204–
213, New York, NY, USA, 1995. ACM.

https://bitbucket.org/ucla-pls/stamp-tl2-x86/src/master/tl2.c
https://bitbucket.org/ucla-pls/stamp-tl2-x86/src/master/tl2.c
https://graph-tool.skewed.de/
https://blogs.oracle.com/dave/entry/a_race_in_locksupport_park
https://blogs.oracle.com/dave/entry/a_race_in_locksupport_park
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookbook_A08.pd
http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookbook_A08.pd
http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookbook_A08.pd
http://stamp.stanford.edu
https://code.google.com/p/rstm/source/browse/trunk/libstm/algs/byteeager.cpp
https://code.google.com/p/rstm/source/browse/trunk/libstm/algs/byteeager.cpp
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
http://www.sagemath.org/

7 void* thr1(void * arg) {

8 flag1 = 1;

9 while (flag2 >= 1) {

10 if (turn != 0) {

11 flag1 = 0;

12 while (turn != 0) {};

13 flag1 = 1;

14 }

15 }

16 // begin: critical section

17 //x = 0;

18 // assert(x<=0);

19 // end: critical section

20 turn = 1;

21 flag1 = 0;

22 }

23
24 void* thr2(void * arg) {

25 flag2 = 1;

26 while (flag1 >= 1) {

27 if (turn != 1) {

28 flag2 = 0;

29 while (turn != 1) {};

30 flag2 = 1;

31 }

32 }

33 // begin: critical section

34 //x = 1;

35 // assert(x>=1);

36 // end: critical section

37 turn = 1;

38 flag2 = 0;

39 }

ODekker = { st(flag1)→ ld(flag2),

st(flag2)→ ld(flag1) }

Figure 17. Dekker’s Mutex

Appendix A: Classic Concurrent Algorithms
In this appendix we include the source code for each of the
“classic” algorithms that was used in our experiments. Each
implementation comes from the Musketeer benchmarks and
is reproduced here line-for-line. This is intended to serve
as a reference for the line numbers detailed in the fence
placement results tables in the main paper.

Dekker’s Mutex
In Figure 17 we have the two procedures used to simulate
process interaction in the Musketeer Dekker implementa-
tion. Note that flag1, flag2 and turn are shared. Recall
that the orders we have defined are store-load orders between
lines 8 and 9, 13 and 9, 25 and 26, and 30 and 26. Note that
the orders along back edges from the stores to flag1 and
flag2 at the end of the while loops are required for the
same reason as the order between the first stores to flag1

and flag2 and the loads just below them.

42 void park() {

43 if (_counter > 0) {

44 _counter = 0;

45 // mfence needed here

46 return;

47 }

48 if (mutex_trylock (& __unbuffered_mutex) !=

0) return;

49 if (_counter > 0) { // no wait needed

50 _counter = 0;

51 mutex_unlock(__unbuffered_mutex);

52 return;

53 }

54 __unbuffered_did_park =1;

55 cond_wait(__unbuffered_cond ,

__unbuffered_mutex);

56 _counter = 0;

57 mutex_unlock(__unbuffered_mutex);

58 }

OParker = { st(counter)→ ∗}

Figure 18. Parker

4 void* thr1(void * arg) {

5 flag1 = 1;

6 turn = 1;

7 do {} while (flag2 ==1 && turn ==1);

8 // begin: critical section

9 // end: critical section

10 flag1 = 0;

11 }

12
13 void* thr2(void * arg) {

14 flag2 = 1;

15 turn = 0;

16 do {} while (flag1 ==1 && turn ==0);

17 // begin: critical section

18 // end: critical section

19 flag2 = 0;

20 }

OPeterson = { st(flag1)→ ld(flag2),

st(flag2)→ ld(flag1) }

Figure 19. Peterson’s Mutex

Parker
In Figure 18 we have the procedure which contains the
bug in the Parker implementation in the JVM. Note that
counter is shared. Recall that the order we have defined

is a store-any order between lines 44 and 46.

Peterson’s Mutex
In Figure 19 we have the two procedures used to simulate
process interaction in the Musketeer Peterson implementa-
tion. Note that flag1, flag2 and turn are shared. Recall
that the orders we have defined are both store-load orders
between lines 5 and 7 and also between lines 14 and 16.

5 void thr1() {

6 L0:

7 b1 = 1;

8 x = 1;

9 if (y != 0) {

10 b1 = 0;

11 goto L0;

12 }

13
14 y = 1;

15 if (x != 1) {

16 b1 = 0;

17
18 if (y != 1) {

19 goto L0;

20 }

21 }

22 // begin

23 // end

24 y = 0;

25 b1 = 0;

26 }

28 void thr2() {

29 L1:

30 b2 = 1;

31 x = 2;

32 if (y != 0) {

33 b2 = 0;

34 goto L1;

35 }

36
37 y = 2;

38 if (x != 2) {

39 b2 = 0;

40
41 if (y != 2) {

42 goto L1;

43 }

44 }

45 // begin

46 // end

47 y = 0;

48 b2 = 0;

49 }

OLamport = { st(x)→ ld(y), st(y)→ ld(x) }

Figure 20. Lamport’s Mutex

Lamport’s Mutex
Here we detail two example executions for Lamport’s mu-
tual exclusion algorithm. They illustrate the need for at least
two orders in the implementation included in Musketeer’s
“classic” benchmarks. The relevant source code appears in
Figure 20. Note that x and y are shared. The first order is
between the stores to x on line 8 and the loads of y on line
9. The second order is between the stores to y on line 14 and
the loads of x on line 15.

For the example executions in Figures 21 and 22 we use
ld(y) : 0 to denote a 0 valued result loaded from the address
represented by y, st(y, 1) to denote a store of the value 1 to
the same address, and enter to denote the point at which a
process enters the critical section. On the right margin we
note where the loads correspond with if statements.

To see that the first order is necessary consider the execu-
tion in Figure 21, where only the stores to x move past the
guards that check if y is equal to 0.

Separately, if the stores to y are allowed to pass the if

statements that check that value of x, the execution in Figure
22 is possible.

Appendix B: Correctness Proof
The lift function. We first define the helper function lift that
later will enable us to state some properties succinctly. Let
G = (V,E, `) and let K ⊆ E, and suppose we have i1, i2
such that p ∈ paths(Refine(G,K), i1, i2). We define lift(p)
to be the corresponding path in G, that is, the path that for
each pair of edges (j1, vj1,j2), (vj1,j2 , j2) in p instead has the
edge (j1, j2) ∈ K. Notice that lift(p) ∈ paths(G, i1, i2).

thr1 thr2 :

ld(y) : 0 if : y 6= 0

ld(y) : 0 if : y 6= 0

st(x, 1)

st(y, 1)

ld(x) : 1 if : x 6= 1

enter

st(x, 2)

st(y, 2)

ld(x) : 2 if : x 6= 2

enter

Figure 21. Lamport’s Mutex, Bad Execution 1

thr1 thr2 :

st(x, 1)

ld(y) : 0 if : y 6= 0

ld(x) : 1 if : x 6= 1

st(x, 2)

ld(y) : 0 if : y 6= 0

st(y, 2)

ld(x) : 2 if : x 6= 2

enter

st(y, 1)

enter

Figure 22. Lamport’s Mutex, Bad Execution 2

We prove the correctness of Insert in five steps. First we
present four lemmas and then the main result (Theorem 1).
Each of the four lemmas states a key property of the Refine
function. Before each lemma we will give an informal ex-
planation that uses the following terminology. For a call
Refine(G,A,O), we will refer to G as the original graph
and we will refer to Refine(G,A,O) as the refined graph.
Now let us move on to the four lemmas.

Intuitively, Lemma 2 says that reasoning about a path in
the original graph carries over to the corresponding path in
the refined graph.

Lemma 2. Suppose G = (V,E, `) and K ⊆ E and
(i1, i2) ∈ (V × V) and p ∈ paths(Refine(G,K), i1, i2).
If lift(p), A ` i1 → i2, then p,A ` i1 → i2.

Proof. We proceed by induction on the derivation of

lift(p), A ` i1 → i2.

We have two cases based on the last rule used in the deriva-
tion.

If the last rule used is the instantiation rule, then we
have that i1 can reach i2 in lift(p), and we have (L 7→
R) ∈ A, and (L 7→ R) � (`(i1), `(i2)). From p ∈
paths(Refine(G,K), i1, i2), we have that i1 can reach i2
in p, so we can use the instantiation rule to derive p,A `
i1 → i2.

If the last rule is the transitivity rule, then we can find j
such that we can derive lift(p), A ` i1 → j and lift(p), A `
j → i2. From the induction hypothesis, we have p,A `
i1 → j and p,A ` j → i2. Now we use the transivity rule to
derive p,A ` i1 → i2. 2

Intuitively, Lemma 3 says that reasoning about the origi-
nal graph carries over to the refined graph.

Lemma 3. Suppose G = (V,E, `) and K ⊆ E. If G,A |=
O, then Refine(G,K), A |= O.

Proof. Suppose (i1, i2) ∈ O, and let

p ∈ paths(Refine(G,K), i1, i2).

We have lift(p) ∈ paths(G, i1, i2), so from G,A |= O,
we have lift(p), A ` i1 → i2, so from Lemma 2, we have
p,A ` i1 → i2. 2

Intuitively, Lemma 4 says that certain paths in the refined
graph must contain a fence.

Lemma 4. ∀(i1, i2) ∈ O :
∀p ∈ paths(Refine(G,Cut(G,O)), i1, i2) : ∃j ∈WCut(G,O) :
j is on p.

Proof. Let K = Cut(G,O) and suppose also that p ∈
paths(Refine(G,K), i1, i2). Notice lift(p) ∈ paths(G, i1, i2).
From the displayed Formula (2), we have paths((V,E \
K, `), i1, i2) = ∅, so lift(p) contains at least one edge that
is also an element of K. Let (j1, j2) be such an edge. The
call Refine(G,Cut(G,O)) returns a graph that, among other
things, adds a node vj1,j2 and replaces (j1, j2) with two
edges. Notice that the node vj1,j2 is on p. Additionally, from
the definition of WK we have vj1,j2 ∈ WK . So, we can
choose j = vj1,j2 . 2

Intuitively, Lemma 5 says that, with an appropriate as-
sumption about the fence fany, the refined graph contains
sufficient fences to enforce O.

Lemma 5. If {(∗ 7→ fany), (fany 7→ ∗)} ⊆ A, then
Refine(G,Cut(G,O)), A |= O.
Proof. Suppose (i1, i2) ∈ O and let furthermore p ∈
paths(Refine(G,Cut(G,O)), i1, i2). From Lemma 4, we
have that we can find j ∈ WCut(G,O) such that j is on
p. In particular, i1 can reach j in p, and j can reach
i2 in p, and `(j) = fany. From `(j) = fany we have
(∗ 7→ fany) � (`(i1), `(j)) and (fany 7→ ∗) � (`(j), `(i2)).
From {(∗ 7→ fany), (fany 7→ ∗)} ⊆ A, we have that
we can use the instantiation rule to get p,A ` i1 → j
and p,A ` j → i2. Now we use transitivity to conclude
p,A ` i1 → i2. 2

Now we are ready to prove the main result. Like Lemma 5,
also Theorem 1 says that with an appropriate assumption
about the fence fany, the refined graph contains sufficient
fences to enforce O. The difference is that Lemma 5 is only
about Cut and Refine, while Theorem 1 is about the entire
definition of Insert, which also uses Elim.

Theorem 1. If {(∗ 7→ fany), (fany 7→ ∗)} ⊆ A, then
Insert(G,A,O), A |= O.

Proof. Suppose {(∗ 7→ fany), (fany 7→ ∗)} ⊆ A and let
G = (V,E, `). From the displayed Formula (1), we have
G,A |= Elim(G,A,O), and from the displayed Formula (2),
we have Cut(G,O \ Elim(G,A,O)) ⊆ E. When we apply
Lemma 3 to those two properties, we get

Insert(G,A,O), A |= Elim(G,A,O). (3)

From Lemma 5, we have:

Insert(G,A,O), A |= O \ Elim(G,A,O). (4)

From the displayed Property (1), we have Elim(G,A,O) ⊆
O, so:

Elim(G,A,O) ∪ (O \ Elim(G,A,O)) = O. (5)

From the displayed Formulas (3)–(5), we can conclude that
Insert(G,A,O), A |= O. 2

	Introduction
	Examples
	Dekker's Mutex
	TL2 Commit
	Our Approach
	Orders, Not Fences

	The Fence Insertion Algorithm
	The Core Algorithm
	Multiple Kinds of Fences

	Implementation
	Experimental Results
	Declaration of Execution Orders
	Parry's Execution Time
	Experiments with the Four Classic Algorithms
	Transactional Memory Algorithms
	Impact of Order Elimination
	Performance Benchmarks
	TL2 and TL2 Eager Measurements
	RSTM ByteEager Measurements

	Related Work
	Conclusion

