UC COMPUTER SCIENCE DEPARTMENT

From OO to FPGA:

Fitting Round Objects
into Square Hardware?

Stephen Kou
=2 Jens Palsberg

UCLA Computer Science Department
University of California, Los Angeles [/

Presented at OOPSLA 2010

Our tool: from OO0 to FPGA; big energy savings

+ 00 = object oriented language

¢ FPGA = field programmable gate array

UC
COMPUTER SCIENCE DEPARTMENT

CPU vs. FPGA vs. ASIC

energy use flexibility = programmability
+ CPU: high high easy
¢ FPGA: medium medium hard

+ ASIC: low low extremely hard

+ So: use ASICs to increase battery lifetime

= Example: cell phones

¢ But: use FPGAs if you predict lots of modifications

UC
COMPUTER SCIENCE DEPARTMENT

ASIC and FPGA cheat sheet

¢ Finished ASIC designs: 3,408 in 2006; 3,275 in 2007; then
fell 9.5% in 2008 and fell again about 22% in 2009

+ Now: 30x more design starts in FPGA over ASIC

¢ Projected market for FPGAs in 2016: $9.6 billion

¢ Feature sizes: 2002 Virtex-2 90 nm
2008 Virtex-5 65 nm
2009 Virtex-6 40 nm

2010 Virtex-7 28 nm

UC
COMPUTER SCIENCE DEPARTMENT

The Challenge

+ Compile a bare object-oriented program to an FPGA with
significant energy savings compared to a CPU, while still
maintaining acceptable performance and space usage.

UC
COMPUTER SCIENCE DEPARTMENT

How people traditionally program FPGAs

¢ Write in a hardware description language

= VHDL
= Verilog

¢ Compile with a synthesis tool: VDHL — FPGA

1. Mapping
2. Clustering
3. Placement

4. Routing

UC
COMPUTER SCIENCE DEPARTMENT

How some people program FPGAs nowadays

¢ Program in a small subset of C

+ Compile to VHDL or Verilog with a high-level synthesis tool
= AutoESL: AutoPilot (based on xPilot [Cong et al., UCLA])
= Synopsys: Synphony C Compiler
= Mentor Graphics: Catapult

+ Ponder whether writing directly in VHDL is better
= Fine-tune speed?
= Fine-tune energy use?
* Fine-tune area

= Really?

UC
COMPUTER SCIENCE DEPARTMENT

From OO to FPGA: a JVM on an FPGA
+ Schoeberl [2004]: execute bytecodes on a FPGA

+ No comparisons with a CPU

UC
COMPUTER SCIENCE DEPARTMENT

From OO to FPGA: state of the art

¢ Liquid Metal (Auerbach, Bacon, Cheng, Rabbah, IBM)
+ Goal: one language for all platforms

¢ Approach: careful language design

+ Key papers: ECOOP 2008 (DES)
OOPSLA 2010 (DES + JPEG decoder)

UC
COMPUTER SCIENCE DEPARTMENT

From OO to FPGA: state of the art

¢ Liquid Metal (Auerbach, Bacon, Cheng, Rabbah, IBM)
+ Goal: one language for all platforms

¢ Approach: careful language design

+ Key papers: ECOOP 2008 (DES)

PSLA 2010 (DES + JPE
Our goals: OOPSLA 2010 (DES + JPEG decoder)

e work with an existing language

 low energy use, good performance, small area

UC
COMPUTER SCIENCE DEPARTMENT

A match made in heaven?

¢ Virgil is an object-oriented language developed at UCLA
[Titzer, OOPSLA 2006; Titzer & P., CASES 2007],
targeted to programming small devices, e.g., sensor nodes

¢ The Virgil compiler translates to C
¢ AutoPilot is a C to FPGA synthesizer

¢ Canwe do

77 AutoPilot
Virgil >c — > FPGA

UC
COMPUTER SCIENCE DEPARTMENT

Heap-specific
optimization:
static analysis

initialization &

lllllllllllllllllllllllllllllll

&Compilg’;

optimization

Prograrﬁ Initialization phase

run

UC
COMPUTER SCIENCE DEPARTMENT

The AutoPilot subset of C

+ Places severe limitations on many C constructs

= Pointers
= Struct casting

= Contents of structs

+ Rules out the traditional way of compiling OO languages

= Cannot represent objects with method tables

= Cannot use structs

UC
COMPUTER SCIENCE DEPARTMENT

Our technique
¢ 00 to FPGA = type case for method dispatch +

grouped arrays +

hybrid object layout

UC
COMPUTER SCIENCE DEPARTMENT

Key features of OO

¢ Classes, extends, fields, constructors, methods

class Point { class ColorPoint extends Point {
int x,y; int color;
Point(int a, int b) { ColorPoint(int a, int b, int c) {
x=a; y=b; super(a,b); color=c;
} }
void move(int d) { void bump(int c) {
Xx=x+d; y=y+d; color=c;
} this.move(1);
} }
}

UC
COMPUTER SCIENCE DEPARTMENT

Key features of OO

¢ Classes, extends, fields, constructors, methods

class Point { class ColorPoint extends Point {
int x,y; int color;
Point(int a, int b) { ColorPoint(int a, int b, int c) {
x=a; y=b; super(a,b); color=c;
} }
void move(int d) { void bump(int c) {
Xx=x+d; y=y+d; color=c;
} this.move(1);
} }
}

UC
COMPUTER SCIENCE DEPARTMENT

Key features of OO

¢ Classes, extends, fields, constructors, methods

class Point { class ColorPoint extends Point {
int x,y; int color;
Point(int a, int b) { ColorPoint(int a, int b, int c) {
x=a; y=b; super(a,b); color=c;
} }
void move(int d) { void bump(int c) {
Xx=x+d; y=y+d; color=c;
} this.move(1);
} }
}

UC
COMPUTER SCIENCE DEPARTMENT

Key features of OO

¢ Classes, extends, fields, constructors, methods

class Point { class ColorPoint extends Point {
int x,y; int color;
Point(int a, int b) { ColorPoint(int a, int b, int c) {
x=a; y=b; super(a,b); color=c;
} }
void move(int d) { void bump(int c) {
Xx=x+d; y=y+d; color=c;
} this.move(1);
} }
}

UC
COMPUTER SCIENCE DEPARTMENT

Key features of OO

o Classes, extends, fields, constructors, methods

class Point { class ColorPoint extends Point {
int x,y; int color;
Point(int a, int b) { ColorPoint(int a, int b, int c) {
X=a; y=b; super(a,b); color=c;
} }
void move(int d) { void bump(int c) {
Xx=x+d; y=y+d; color=c;
} this.move(1);
} }
}

UC
COMPUTER SCIENCE DEPARTMENT

Key features of OO

o Classes, extends, fields, constructors, methods

class Point { class ColorPoint extends Point {
int x,y; int color;
Point(int a, int b) { ColorPoint(int a, int b, int c) {
x=a; y=b; super(a,b); color=c;
} }
void move(int d) { void bump(int c) {
X=x+d; y=y+d; color=c;
} this.move(1);
} }
}

UC
COMPUTER SCIENCE DEPARTMENT

Two objects, standard (horizontal) layout

¢ Point p = new Point(); ColorPoint cp = new ColorPoint();

l /

— Point_move =T Point_move

X=.. X=.. ColorPoint_bump

y=.. y=..

T) color=...
An object is a h@

Problem: pointers! Not supported by AutoPilot

UC
COMPUTER SCIENCE DEPARTMENT

Five objects, vertical layout [Titzer & P., 2007]

Row X :
Row._y:

Row color:

point1 point2 point3

colorpoint! colorpoint2

An object is an @

7 | 4 | 5 2 8
1 6 | 4 7 12
----- 10 5

UC

COMPUTER SCIENCE DEPARTMENT

Idea for saving space: an extra table (!! :-)

Row X :
Row._y:

Row color:

Row X :
Row._y:

Row color:

7 | 4 | 5 2 8

1 6 | 4 7 12

10 | S
point1 point2 point3 colorpoint! colorpoint2

0 | 1 2 3 4
0 | 1 2 3 4
----- 0 1

UC

COMPUTER SCIENCE DEPARTMENT

Improved idea: drop extra table, keep tuples

~ Anobjectisatuple

Row X :
Row._y:

Row color:

7 | 4 | 5 2 8
1 6 | 4 7 12
10 | S
point1 point2 point3 colorpoint! colorpoint2

O

&

2

\

[4

0

1
1

1

2
2

2

)

B

=

=

=

\Y

\t

COMPUTER SCIENCE DEPARTMENT

Ultimate idea: condensed rows

- Anobjectisatuple

Row Point: | 7 | 4 | 5 2 8

1 6 | 4 7 12

Row ColorPoint: | 10 | 5

TR]
Y T

UC
COMPUTER SCIENCE DEPARTMENT

Instead of function pointers: custom dispatcher

void move_dispatch(struct Tuple __this, int d) {
switch(Row_Point[__this.f0].Typeld) {
case 101: // Point, ColorPoint

return Point_move(__this, d);

}
We added a field Typeld to each entry of Row_Point

UC
COMPUTER SCIENCE DEPARTMENT

Experimental results: our platforms
+ CPU (xeon) 266GHz TDP=80W
+ CPU (atom) 16GHz TDP= 4 W
o FPGA (Xilinx Virtex-ll) 100 MHz ~ N/A

Auerbach et al. [previous paper] run on a Xilinx Virtex-5

¢ TDP = Thermal Design Power (can be viewed as a max)

= Excludes power for memory, storage drives, etc.

UC
COMPUTER SCIENCE DEPARTMENT

Experimental results: our benchmarks

Lines of code Similar!
Original Virgil
Originally in C:
AES 791 669

Blowfish 1,320 1,548
SHA 1,349 1,187

Originally in C++:
Richards 705 437

UC
COMPUTER SCIENCE DEPARTMENT

Experimental results: C vs. Virgil

SHA1 CPU (xeon) CPU (atom) FPGA
time | energy | time | energy | time | energy | area
(us) (mJ) (us) | (mJd) (us) | (mJ) |(slices)
C 319 2541 1,093| 4.37]| 1,565 207 5,715
Virgil 1,074 85.9| 2,630 10.52| 1,525| 2.04| 4,890

UC

COMPUTER SCIENCE DEPARTMENT

Experimental results: C++ vs. Virgil

Richards

CPU (xeon) CPU (atom) FPGA

time | energy | time | energy | time | energy | area

(us) (mJ) (us) | (mJd) (us) | (mJ) |(slices)
C++ 10,065| 805.2139,900| 159.60 N/A N/A N/A
Virgil | 29,135 2,330.8|61,622 | 246.49| 14,433 | 18.91| 4,317

UC

COMPUTER SCIENCE DEPARTMENT

Conclusion
¢ 00 to FPGA is possible

+ Energy savings!
= Virgil on an FPGA beats C++ on an Atom by 8x

¢ Faster OO code!
= Virgil on an FPGA beats C++ on an Atom by 3x

+ Competitive area

UC
COMPUTER SCIENCE DEPARTMENT

