
Lisp and Symbolic Computation1 , 8(3), 209–227 (1995)
c© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

The Essence of Eta-Expansion

in Partial Evaluation

OLIVIER DANVY, KAROLINE MALMKJÆR, AND JENS PALSBERG

{danvy,karoline,palsberg}@daimi.aau.dk

Computer Science Department, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark

Received ; Revised

Editor: Peter Sestoft and Harald Søndergaard

Abstract. Selective eta-expansion is a powerful “binding-time improvement”, i.e., a source-
program modification that makes a partial evaluator yield better results. But like most binding-
time improvements, the exact problem it solves and the reason why have not been formalized and
are only understood by few.
In this paper, we describe the problem and the effect of eta-redexes in terms of monovariant
binding-time propagation: eta-redexes preserve the static data flow of a source program by inter-
facing static higher-order values in dynamic contexts and dynamic higher-order values in static

contexts. They contribute to two distinct binding-time improvements.
We present two extensions of Gomard’s monovariant binding-time analysis for the pure λ-calculus.
Our extensions annotate and eta-expand λ-terms. The first one eta-expands static higher-order
values in dynamic contexts. The second also eta-expands dynamic higher-order values in static
contexts.
As a significant application, we show that our first binding-time analysis suffices to reformulate the
traditional formulation of a CPS transformation into a modern one-pass CPS transformer. This
binding-time improvement is known, but it is still left unexplained in contemporary literature,
e.g., about “cps-based” partial evaluation.
We also outline the counterpart of eta-expansion for partially static data structures.

Keywords: 2-level λ-calculus, binding-time analysis, coercions.

1. Introduction

Partial evaluation is a program-transformation technique for specializing programs
[10], [15]. In the last decade it has been described using the notion of binding times

[18]. Essentially the computations in a source program are divided into “static”
or specialization-time computations (performed by the partial evaluator) and “dy-
namic” or run-time computations (to be performed in the specialized program).
Partial evaluation amounts to performing the static computations and construct-
ing the specialized program so that running it performs the dynamic computations.
Thus a partial evaluator evaluates static expressions (i.e., expressions that only de-
pend on partial-evaluation time data) and reconstructs dynamic expressions (i.e.,
expressions that depend on run-time data). For this to work, the binding-time

210

division must be congruent (also called consistent) [14], [21], [22], i.e., no static
computation may depend on the result of a dynamic computation.

In this setting, two sorts of expressible values coexist: static values and dynamic
values (i.e., residual expressions); correspondingly two sorts of contexts coexist:
static contexts and dynamic contexts. Recall that a context is an expression with
one hole [1]. A higher-order (resp. partially static) context is an expression with
a higher-order (resp. partially static) hole. A static (resp. dynamic) context is an
expression with a static (resp. dynamic) hole. A hole is static (resp. higher-order,
partially static, and dynamic) whenever the expression fitting this hole is static
(resp. higher-order, partially static, and dynamic).

To obtain consistency, Mix-style partial evaluators [15] coerce static values and
contexts to be respectively dynamic values and dynamic contexts, when they en-
counter a clash. This is acceptable if source programs are first-order and values
are either fully static or fully dynamic. However these coercions are excessive for
higher-order programs with partially static values and contexts.

Lacking better interface between higher-order and dynamic, source programs must
often be modified “to improve their binding times” and thus “to make them spe-
cialize better”. In Section 12.4 of their textbook [15], Jones, Gomard, and Sestoft
list eta-expansion as an effective binding-time improvement but give only a brief
idea of why it works.

In the following section, we use the term dynamize, with the meaning “make
dynamic”, to characterize the effect of eta-expansion. We explain how eta-redexes
prevent a binding-time analysis from

• dynamizing static values in dynamic contexts, and

• dynamizing static contexts around dynamic values

when the values are higher-order. Preventing static values and contexts from being
dynamized improves the annotation in case the static values are used elsewhere or
in case other static values may also occur in the same context. In Section 3 we
present two binding-time analyses that insert eta-redexes automatically, and we
illustrate them with two continuation-based program transformations. Section 4
outlines the counterpart of eta-expansion for partially static data structures. After
a comparison with related work, we conclude.

2. The essence of eta-expansion

We show three examples, where

• a number occurs both in a static and in a dynamic context,

• a higher-order value occurs both in a static and in a dynamic context, and

• a function is applied to both a static and a dynamic higher-order argument.

211

After the examples, we summarize why eta-expansion improves binding times,
given a monovariant binding-time analysis.2 We use “@” (pronounced “apply”) to
denote applications, and we abbreviate (e0@e1)@e2 by e0@e1@e2 and e0@(λx.e) by
e0@λx.e.

Reminder: eta-expanding a higher-order expression e yields the expression

λv.e@v

where v does not occur free in e [1].

2.1. First-order static values in dynamic contexts

The following expression is partially evaluated in a context with y dynamic.

(λx.(x + y) × (x − 1))@42

Assume that this β-redex will be reduced. The addition depends on the dynamic
operand y, so it should be reconstructed (in other words, x occurs in a dynamic
context, [·] + y). Both subtraction operands are static, so the subtraction can be
performed (in other words, x occurs in a static context, [·]− 1). The multiplication
should be reconstructed since its first operand is dynamic. Overall, binding-time
analysis yields the following two-level term.

(λx.(x+y)×(x−1))@42

(Consistently with Nielson and Nielson [21], overlined means static and underlined
means dynamic.)

We can summarize some of the binding-time information by giving the binding-
time types of variables, as in Lambda-Mix [12], [15]. Here, x has type s (static) and
y has type d (dynamic). After specialization (i.e., two-level reduction), the residual
term reads as follows.

(42 + y) × 41

Lambda-Mix’s binding-time analysis is able to give an appropriate annotation of
the above program because the argument to λx.(x + y) × (x − 1) is a first-order

value. Inserting the static value in the dynamic context ([·] + y) poses no problem.
We now move on to the case where the inserted value is higher-order.

2.2. Higher-order static values in dynamic contexts

The following expression is partially evaluated in a context with g dynamic.

(λf.f@g@f)@λa.a

212

Again, assume that this β-redex is to be reduced. f occurs twice: once as the
function part of an application (which here is a static context), and once as the
argument of f@g (which here is a dynamic context). The latter occurrence forces
the binding-time analysis to classify f , and thus the rightmost λ-abstraction, to
be dynamic (see Section 5 for a detailed motivation of this classification). Overall,
binding-time analysis yields the following two-level term.

(λf.f@g@f)@λa.a

Here, f has type d, and g has also type d. After specialization, the residual term
reads as follows.

(λa.a)@g@λa.a

So unlike the first-order case, the fact that f , the static value, occurs in the dynamic
context f@g@[·] “pollutes” its occurrence in the static context [·]@g@f , so that
neither is reduced statically.

NB: Since f is dynamic and occurs twice, a cautious binding-time analysis would
reclassify the outer application to be dynamic: there is usually no point in dupli-
cating residual code. In that case, the expression is totally dynamic and so is not
simplified at all.

In this situation, a binding-time improvement is possible since λa.a will occur in
a dynamic context. We can coerce this occurrence by eta-expanding the occurrence
of f in the dynamic context (the eta-redex is boxed).

(λf.f@g@ λy.f@y)@λa.a

Binding-time analysis now yields the following two-level term.

(λf.f@g@λy.f@y)@λa.a

Here, f has type d → d, and both g and y have type d. Specialization yields the
residual term

g@λy.y

which is more reduced statically.
In this case, the eta-redex effectively protects the static higher-order expression

λa.a from being dynamized in the remainder of the computation. Instead, only the
occurrence in the dynamic context is affected.

2.3. Higher-order dynamic values in static contexts

The following expression is partially evaluated in a context with d0 and d1 dynamic.

(λf.f@d0@(f@(λx1.x1)@d1))@λa.a

213

f is applied twice: once to d0 and something else, and once to λx1.x1 and d1. In
a monovariant higher-order binding-time analysis, d0 dynamizes λx1.x1, since the
first parameter of f can only have one binding time. Overall, binding-time analysis
yields the following two-level term.

(λf.f@d0@(f@(λx1.x1)@d1))@λa.a

Here, f has type d → d, x1 has type d, and a has type d (corresponding to the type
of d0). Specialization yields the following residual term.

d0@((λx1.x1)@d1)

The context f@[·] occurs twice in the source term. The dynamic value d0 appears
in the first occurrence, and the static value λx1.x1 appears in the second occurrence.
Since the context can only have one binding time (since it is the same f), d0 pollutes
f@[·], which in turn pollutes λx1.x1. Since f is in fact λa.a, the result of the
application becomes dynamic. So the two potentially static applications of this
result, respectively [·]@(f@(λx1.x1)@d1) and [·]@d1, become dynamic.

In this situation, a binding-time improvement is possible since both d0 and λx1.x1

occur (as results) in a potentially static context. We coerce d0 by eta-expanding it
(the eta-redex is boxed).

(λf.f@ (λx0.d0@x0) @(f@(λx1.x1)@d1))@λa.a

Binding-time analysis now yields the following two-level term.

(λf.f@(λx0.d0@x0)@(f@(λx1.x1)@d1))@λa.a

Here, f has type (d → d) → (d → d), corresponding to statically applying f to
both arguments. x0 and x1 both have type d, and a has type d → d (corresponding
to the type of λx1.x1). Specialization yields the residual term

d0@d1

which is more reduced statically.
In this case, the eta-redex effectively prevents the dynamic expression d0 from

being propagated to f and dynamizing λx1.x1 in the remainder of the computation.
Instead, only the occurrence in the static context is affected.

2.4. Summary

In a monovariant binding-time analysis, each time a higher-order static value occurs
both in a potentially static context and in a dynamic context, the dynamic context
dynamizes the higher-order value, which in turn dynamizes the potentially static
context.

214

Conversely, each time a higher-order static value and a dynamic value occur in the
same potentially static context, the dynamic value dynamizes the context, which
in turn dynamizes the higher-order value.

Both problems can be circumvented by inserting eta-redexes in source programs.
The eta-redex serves as “padding” around a value and inside a context, keeping one
from dynamizing or from being dynamized by the other.

Eta-expanding a higher-order static expression f (when it occurs in a dynamic
context) into

λv.f@v

creates a value that can be used for replacement. This prevents the original expres-
sion from being dynamized by a dynamic context. Instead, the new abstraction is
dynamized.

Eta-expanding a higher-order dynamic expression g (when it occurs in a poten-
tially static context) into

λv.g@v

creates a value that can be used for replacement. This prevents a potentially static
context from being dynamized by g. Instead, the new application is dynamized.

Informally, eta-expansion changes the two-level type [21] of a term as follows.
Assume that f and g have type t1 → t2, where t1 and t2 are ground types. The
first eta-expansion coerces the type t1→t2 to be t1→t2. The second eta-expansion
coerces the type t1→t2 to be t1→t2. Note that inside the redexes, the type of f is
still t1→t2 and the type of g is still t1→t2.

Further eta-expansion is necessary if t1 or t2 are not ground types. In fact, both
kinds of eta-redex synergize. For example, if a higher-order static expression h has
type (t1→t2)→t3 then its associated eta-redex reads as follows.

λv.h@λw.v@w

In this example, the outer eta-expansion (of a static value in a dynamic context)
creates the occurrence of a dynamic expression in a static context — hence the
inner eta-redex.

To make our approach applicable to untyped languages, we will in the rest of the
paper give dynamic entities the ground type d, as in Lambda-Mix [12], [15], rather
than a two-level type such as t1→t2.

Information to guide the insertion of eta-redexes can not be obtained directly
from the output of a binding-time analysis: at that point all conflicts have been
resolved. Moreover, it would be näıve to insert, say, one eta-redex around every
subterm: sometimes more than one is needed for good results, as in the last example
and in the CPS-transformation example in Section 3.3.2. Alternatively, programs
could be required to be simply typed. Then the type of each subterm determines the
maximal number of eta-redexes that might be necessary for that subterm. However
this type-driven eta-redex insertion yields many unnecessary eta-redexes.

215

A
old

` x : A(x) . x

A[x 7→ t1]
old

` e : t2 . w

A
old

` λx.e : t1 → t2 . λx.w

A[x 7→ d]
old

` e : d . w

A
old

` λx.e : d . λx.w

A
old

` e0 : t1 → t2 . w0 A
old

` e1 : t1 . w1

A
old

` e0@e1 : t2 . w0@w1

A
old

` e0 : d . w0 A
old

` e1 : d . w1

A
old

` e0@e1 : d . w0@w1

Figure 1. Gomard’s binding-time analysis for the pure λ-calculus

In the following section we demonstrate how to insert a small and appropriate
number of eta-redexes automatically. Our approach does not require programs to be
typed and both for the example in Section 2.2 and for Plotkin’s CPS transformation
we show that it gives a good result.

3. Automatic insertion of eta-redexes

3.1. Binding-time analysis for the pure λ-calculus

Our starting point is the binding-time analysis in Figure 1. The analysis is that
of Gomard [12], restricted to the pure λ-calculus. Types are finite and generated
from the following grammar.

t ::= d | t1 → t2

The type d denotes the type of dynamic entities. The judgement A
old

` e : t . w
means that under hypothesis A, the λ-term e can be assigned type t with annotated
term w.

3.2. Eta-expansion of static values in dynamic contexts

Figure 2 presents the first of our new binding-time analyses. It both inserts eta-
redexes and binding-time annotates λ-terms. The judgement A ` e : t . w means

216

A ` x : A(x) . x (1)

A[x 7→ t1] ` e : t2 . w

A ` λx.e : t1 → t2 . λx.w
(2)

A[x 7→ d] ` e : t2 . w t2 ` z ⇒ m ∅[z 7→ t2]
old

` m : d . w′

A ` λx.e : d . λx.w′[w/z]
(3)

A ` e0 : t1 → t2 . w0 A ` e1 : t1 . w1

A ` e0@e1 : t2 . w0@w1

(4)

A ` e0 : d . w0 A ` e1 : t1 . w1 t1 ` z ⇒ m ∅[z 7→ t1]
old

` m : d . w′
1

A ` e0@e1 : d . w0@(w′
1
[w1/z])

(5)

z is always a fresh variable.

Figure 2. Binding-time analysis with eta-expansion of static values in dynamic contexts

d ` e ⇒ e
t1 ` x ⇒ x′ t2 ` e@x′ ⇒ e′

t1 → t2 ` e ⇒ λx.e′

Figure 3. Full eta-redex expansion

that under hypothesis A, the λ-term e can be assigned type t with annotated term
w, where eta-redexes may have been inserted into w.

We use the judgement t ` e ⇒ m to insert eta-redexes (see Figure 3). Intuitively,
eta-redexes are inserted when the analysis meets a dynamic abstraction with a static
body (Rule 3), and a dynamic application with a static argument (Rule 5). Only
when the value is higher-order does eta-expansion takes place — see the first rule
of Figure 3. When the value is first-order, eta-expansion is of course not possible.
In the case of static values occurring in static contexts, it is not necessary.

Note that our analysis generalizes Gomard’s analysis: if in Rule 3 we always
choose t2 = d, and in Rule 5 we always choose t1 = d, then we obtain Gomard’s
analysis.

If w is an annotated term, then ŵ denotes the underlying λ-term. If A
old

` ŵ : t .w
for some A and t, then w is said to be well-annotated. A well-annotated term has

217

a consistent binding-time division [22]. To prove that our analysis produces only
well-annotated terms, we need the following lemma about Gomard’s analysis.

Lemma 1 Suppose z is the only free variable of e2.

If A
old

` e1 : t . w1 and ∅[z 7→ t]
old

` e2 : t′ . w2 ,

then A
old

` e2[e1/z] : t′ . w2[w1/z] .

Proof: Consider the following more general property.

If A
old

` e1 : t . w1 and A′
old

` e2 : t′ . w2 ,

then A′′
old

` e2[e1/z] : t′ . w2[w1/z] ,

where A can be obtained from A′′ by removing the binding for the free variables of e2

except the one for z, and where A′ can be obtained from A′′ removing the bindings
in A and adding the binding z 7→ t. From this property the lemma immediately
follows. The general property is proved by induction on the structure of the proof

of A′
old

` e2 : t′ . w2.

We can then prove correctness: our analysis produces only well-annotated terms.

Theorem 1 If A ` e : t . w, then A
old

` ŵ : t . w.

Proof: By induction on the structure of the proof of A ` e : t .w, using Lemma 1
for Rules 3 and 5.

As a corollary we get that even though eta-expansion allows more static reductions
to take place, specialization will terminate since types are finite. In another setting,
eta-expansion and generalization are used both to improve binding times and to
ensure termination [6], [19], [20].

Future work includes finding an efficient implementation of our binding-time anal-
ysis.

3.3. Examples

3.3.1. Higher-order static values in dynamic contexts

We now demonstrate that the new binding-time analysis inserts the expected eta-
redex in the example program (λf.f@g@f)@λa.a from Section 2.2. We derive

∅[g 7→ d] ` (λf.f@g@f)@λa.a : d . (λf.f@g@λy.f@y)@λa.a.

Consider the following fragment of the derivation, using Rules 2 and 4.

218

A ` f@g@f : d . f@g@λy.f@y

∅[g 7→ d] ` λf.f@g@f : t → d . λf.f@g@λy.f@y

∅[g 7→ d][x 7→ d] ` x : d . x

∅[g 7→ d] ` λa.a : t . λa.a

∅[g 7→ d] ` (λf.f@g@f)@λa.a : d . (λf.f@g@λy.f@y)@λa.a

where t abbreviates d → d and A abbreviates ∅[g 7→ d][f 7→ t]. We need to derive
A ` f@g@f : d . f@g@λy.f@y. Here follows the last step of the derivation, using
Rule 5.

A ` f@g : d . f@g A ` f : t . f t ` z ⇒ λy.z@y A′
old

` λy.z@y : d . λy.z@y

A ` (f@g)@f : d . f@g@λy.f@y

where A′ abbreviates ∅[z 7→ t]. The last of the four assumptions is derived as follows.

A′[y 7→ d]
old

` z : t . z A′[y 7→ d]
old

` y : d . y

A′[y 7→ d]
old

` z@y : d . z@y

A′
old

` λy.z@y : d . λy.z@y

Thus, our analysis inserts exactly the same eta-redex that we inserted by hand in
Section 2.2.

3.3.2. The CPS transformation

Let us now turn to the transformation of λ-terms into continuation-passing style
(CPS). This example is significant because historically, the virtue of eta-redexes
became apparent in connection with partial evaluation of CPS interpreters and
with CPS transformers [2], [11]. It also has practical interest since the pattern
of construction and use of higher-order values in the CPS transform is prototypi-
cal. Figure 4 displays Plotkin’s original CPS transformation for the call-by-value
lambda-calculus [23], written as a two-level term.

[[.]] : syntax→CPSsyntax→CPSsyntax

[[x]] = λk.k@x

[[λx.e]] = λk.k@λx.[[e]]

[[e0@e1]] = λk.[[e0]]@λv0.[[e1]]@λv1.v0@v1@k

[[e]] is the CPS counterpart of the expression e.

Figure 4. Two-level formulation of Plotkin’s CPS transformation

Since the transformation is a syntax constructor, all occurrences of @ and λ are
dynamic. And in fact, Gomard’s binding-time analysis does classify all occurrences
to be dynamic.

219

[[.]] : syntax→(CPSsyntax→CPSsyntax)→CPSsyntax

[[x]] = λk.k@x

[[λx.e]] = λk.k@λx.λk.[[e]]@λv.k@v

[[e0@e1]] = λk.[[e0]]@λv0.[[e1]]@λv1.v0@v1@λv2.k@v2

λk.[[e]]@λv.k@v is the CPS counterpart of the expression e.

Figure 5. Two-level formulation of Plotkin’s CPS transformation after eta-expansion

But CPS terms resulting from this transformation contain redundant “admin-
istrative” beta-redexes, which have to be post-reduced [26]. These beta-redexes
can be avoided by inserting eta-redexes in the CPS transformation, allowing some
beta-redexes in the transformation to become static.3

Figure 5 shows the revised transformation containing three extra eta-redexes: one
for the CPS transformation of applications, and two for the CPS transformation of
abstractions.

As analyzed elsewhere [11], the eta-redex λk.[[e]]@k prevents the outer λk.... from
being dynamized. The two other eta-redexes λv.k@v and λv2.k@v2 enable k to be
kept static. The types of the transformations (shown in the figures) summarize the
binding-time improvement.

Our new analysis inserts exactly these three eta-redexes, given Plotkin’s original
specification. We now show the derivation for the case of abstraction.

Consider the following fragment of the derivation, using Rules 2 and 4 and ab-
breviating ∅[[[e]] 7→ (d → d) → d][k 7→ d → d] by A.

A ` k : d → d . k A ` λx.[[e]] : d . λx.λk.[[e]]@λv.k@v

A ` k@λx.[[e]] : d . k@λx.λk.[[e]]@λv.k@v

∅[[[e]] 7→ (d → d) → d] ` λk.k@λx.[[e]] : (d → d) → d . λk.k@λx.λk.[[e]]@λv.k@v

We need to derive A ` λx.[[e]] : d . λx.λk.[[e]]@λv.k@v. Let us abbreviate (d →
d) → d by t and λk.z@(λv.k@v) by E. Here follows the last step of the derivation,
using Rule 3.

A[x 7→ d] ` [[e]] : t . [[e]] t ` z ⇒ E ∅[z 7→ t]
old

` E : d . λk.z@λv.k@v

A ` λx.[[e]] : d . λx.λk.[[e]]@λv.k@v

The other two cases are left to the reader.

Thus the two-level λ-calculus proves particularly useful for specifying CPS trans-
formations — something that was done so far by sheer insight [27] or by hand [11].
This mode of specification has direct applications to continuation-based program
transformation [5], [16], [17].

220

3.3.3. Improved “cps-based” cogen

Bondorf and Dussart’s new work [5] relies on two key eta-expansions that are analo-
gous to those of Section 3.3.2. These eta-expansions come for free with the binding-
time analysis of Figure 2.

3.4. Eta-expansion of dynamic values in static contexts

Figure 6 presents the second of our new binding-time analyses. It is an extension
of the binding-time analysis in Figure 2. Again, the judgement A ` e : t .w means
that under hypothesis A, the λ-term e can be assigned type t with annotated term
w, where eta-redexes may have been inserted into w.

Intuitively, eta-redexes are inserted when the analysis meets a static abstraction
with a dynamic body (Rule 8), a dynamic abstraction with a static body (Rule 9),
a static application with a dynamic argument (Rule 11), and a dynamic application
with a static argument (Rule 12).

Again, the analysis generalizes Gomard’s analysis: if we never use Rule 8 and
Rule 11, and in Rule 9 we always choose t2 = d, and in Rule 12 we always choose
t1 = d, then we obtain Gomard’s analysis.

Theorem 1 holds also for this analysis, so the analysis produces only well-
annotated terms.

Again, future work includes finding an efficient implementation of the binding-
time analysis.

4. Partially static data structures

For data structures, we present a technique similar to eta-redexes that maintains
the static data flow of source programs. As a prototypical example, we consider
pairing. The ideas extend to other data structures in a straightforward manner.

Essentially, we delta-expand a pair-type expression p into the following
expression.4

Pair(Fst p,Snd p)

4.1. Partially static values in dynamic contexts

The following expression is partially evaluated in a context with g and d dynamic.

(λp.g@(10 + Fst p)@p)@Pair(1, d)

Again, let us assume that this β-redex is to be reduced. p occurs twice: once as
the argument of the first projection Fst (a static context), and once as the argu-
ment part of an application (a dynamic context). The latter occurrence forces the

221

A ` x : A(x) . x (6)

A[x 7→ t1] ` e : t2 . w

A ` λx.e : t1 → t2 . λx.w
(7)

A[x 7→ t1] ` e : d . w t2 ` z ⇒ m ∅[z 7→ d]
old

` m : t2 . w′

A ` λx.e : t1 → t2 . λx.w′[w/z]
(8)

A[x 7→ d] ` e : t2 . w t2 ` z ⇒ m ∅[z 7→ t2]
old

` m : d . w′

A ` λx.e : d . λx.w′[w/z]
(9)

A ` e0 : t1 → t2 . w0 A ` e1 : t1 . w1

A ` e0@e1 : t2 . w0@w1

(10)

A ` e0 : t1 → t2 . w0 A ` e1 : d . w1 t1 ` z ⇒ m A′
old

` m : t1 . w′
1

A ` e0@e1 : t2 . w0@(w′
1
[w1/z])

(11)

where A′ = ∅[z 7→ d].

A ` e0 : d . w0 A ` e1 : t1 . w1 t1 ` z ⇒ m ∅[z 7→ t1]
old

` m : d . w′
1

A ` e0@e1 : d . w0@(w′
1
[w1/z])

(12)

z is always a fresh variable.

Figure 6. Binding-time analysis with both eta-expansion of static values in dynamic contexts and
eta-expansion of dynamic values in static contexts

binding-time analysis to classify p, and thus the occurrence of Fst, to be dynamic.
Overall, binding-time analysis yields the following two-level term.

(λp.g@(10 +Fst p)@p)@Pair(1, d)

After specialization, the residual term reads as follows.

g@(10 + Fst (Pair(1, d)))@Pair(1, d)

The fact that p, the partially static value, occurs in a dynamic context “pollutes”
its occurrence in the partially static context, so that neither is reduced statically.

222

NB: Since p occurs twice, a cautious binding-time analysis would reclassify the
outer application to be dynamic: there is usually no point in duplicating residual
code. In that case, the expression is totally dynamic and so is not simplified at all.

In this situation, a binding-time improvement is possible since Pair(1, d) will occur
in a dynamic context. We can coerce this occurrence by inserting a delta-redex in
the dynamic context (the redex is boxed).

(λp.g@(10 + Fst p)@ Pair(Fst p,Snd p))@Pair(1, d)

Binding-time analysis now yields the following two-level term.

(λp.g@(10 +Fst p)@Pair(Fst p,Snd p))@Pair(1, d)

Specialization yields the residual term

g@11@Pair(1, d)

which is more reduced statically.
In this case, the delta-redex effectively prevents the partially static expression

from being dynamized in the remainder of the computation. Instead, only the
occurrence in the dynamic context is affected.

4.2. Dynamic values in partially static contexts

It is simple to construct an example analogous to Section 2.3. Just have a par-
tially static value and a dynamic value coexist in a context: the dynamic value
dynamizes the context, which in turn, dynamizes the partially static value. Delta-
expanding the corresponding dynamic expression in the source program prevents
this approximation for the same (monovariant) binding-time analysis.

5. Related work

Our work is concerned with binding-time improvements and thus off-line partial
evaluation of procedural programs. Eta-expansion is specific to the λ-calculus. We
are not aware of any counterpart in partial evaluation of logic programs.

5.1. Mix-style partial evaluation

Mix-style partial evaluators developed at DIKU, such as Similix and Lambda-Mix
[2], [12], [15], process procedural programs. When the first-order version of Similix
[4] was extended to process higher-order programs [2], it was observed that näıve
syntax reconstruction led to the occurrence of Scheme closures in residual programs.
Two solutions were possible:

223

• lifting closures into syntax to construct the residual program (at specialization
time); and

• dynamizing closures occurring in dynamic contexts (at binding-time analysis
time).

The latter solution — coercing static values and contexts to be respectively dy-
namic values and dynamic contexts, in case of binding-time clash — was chosen
in Similix-2, to avoid potential code duplication.5 Thus one is forced to state this
code duplication explicitly by garnishing one’s source programs with eta-redexes
(see Section 10.1.4, Item (2) and Section 12.4 of Jones, Gomard, and Sestoft’s
textbook [15] for two separate explanations). This solution has been consistently
maintained in the later versions of Similix [3], [5], and adopted in Lambda-Mix
[12], [15].

It seems that this decision, together with the forward nature of binding-time
analysis [9], have created the need for binding-time improvements:

• Eta-expansion prevents the dynamization of higher-order values and contexts.
Delta-expansion prevents the dynamization of partially static values and con-
texts. Thus they both improve the binding times of source programs.

• Tail-recursive style in general (typically CPS) prevents the dynamization of in-
termediate results [9]. Thus it improves the static data flow of source programs.

5.2. Schism

Schism [8] does not dynamize static values whenever they occur in dynamic con-
texts. Instead, it inserts a “freeze” annotation coercing their result to be dynamic.
For example, the term of Section 2.2 would be annotated as follows

(λf.f@g@(freeze f))@λa.a

and its specialization would yield the same good result as in Section 2.2. The
freeze operator acts like eta-expansion, and enables Schism to deal with higher-
order and partially static values in dynamic contexts without dynamizing them.
Independently, Schism’s polyvariant binding-time analysis [7] deals with dynamic
values in static contexts, though currently, higher-order parameters are treated in
a monovariant way.

Thus Schism’s extra power makes it possible to interface partially static and
higher-order values and contexts smoothly, without loss of static information. Eta-
expansion enables such a smooth interface for Mix-style partial evaluators.

5.3. Polyvariance and duplication

As explained in Footnote 1, a monovariant binding-time analysis maintains one
binding-time description for each source expression whereas a polyvariant analysis

224

[[.]] : syntax→CPSsyntax→CPSsyntax

[[x]] = λk.k@x

[[λx.e]] = λk.k@λx.[[e]]

[[e0@e1]] = λk.[[e0]]
′@λv0.[[e1]]

′@λv1.v0@v1@k

[[.]]′ : syntax→(CPSsyntax→CPSsyntax)→CPSsyntax

[[x]]′ = λk.k@x

[[λx.e]]′ = λk.k@λx.[[e]]

[[e0@e1]]
′ = λk.[[e0]]

′@λv0.[[e1]]
′@λv1.v0@v1@k

[[e]] is the CPS counterpart of the expression e.

Figure 7. Two-level formulation of Plotkin’s CPS transformation with duplication

may maintain several binding-time descriptions for each source expression. Given
a monovariant analysis, duplicating source expressions simulates some polyvari-
ance. The effect is the same if the target language of the analyses is the two-level
λ-calculus, since the analyzed program contains duplicated parts of the source pro-
gram, with different annotations.6

Figure 7 illustrates the effect of polyvariance and duplication. It can be obtained
either by the monovariant analysis of a source program where the definition of [[.]] has
been hand-duplicated, or by a polyvariant binding-time analysis (that duplicates
the definition of [[.]]). As testified by their types, the first variant approximates the
second.

In this example, polyvariance does not give the same effect as eta-expansion. This
of course suggests to mix both — a future work.

5.4. Online partial evaluation

An online partial evaluator such as FUSE [28] is inherently polyvariant over binding
times [24] and thus meets no problem when dynamic values reach static contexts.
The converse situation can be handled in specializers that carry two representations
of each closure. Such systems include FUSE and Schism.

6. Conclusion

Inserting eta-redexes in source programs has until now been listed as black magic
in the literature on Mix-style partial evaluation [15]. We have described the effect
of eta-redexes in terms of binding-time coercions: eta-redexes offer a syntactic

225

representation of coercions and thus they prevent the binding-time analysis from
approximating higher-order values and higher-order contexts to be dynamic. This
effect is of prime importance for contemporary monovariant binding-time analyses
since it enables one to carry out specialization as two-level β-reduction. It is also
useful for contemporary polyvariant binding-time analyses, since eta-redexes can
reduce the multiplication of variants. We also demonstrated how to integrate eta-
expansion in an offline partial evaluator, by extending an existing binding-time
analysis. Finally, we have outlined the counterpart of eta-expansion for partially
static data structures.

Future work naturally includes developing a partial evaluator with better coer-
cions, to eliminate the need of binding-time improvements by eta-expansion.

Acknowledgments

We are grateful to Lars Birkedal, Andrzej Filinski, Neil Jones, Julia Lawall, Torben
Mogensen, Peter Sestoft, and the referees for insightful comments. The first author
also thanks Charles Consel for fundamental discussions about the nature of partial
evaluation.

The two first authors are supported by the DART project (Design, Analysis and
Reasoning about Tools) of the Danish Research Councils. The third author is sup-
ported by the Danish Natural Science Research Council and hosted by the BRICS
Centre (Basic Research In Computer Science) of the Danish National Research
Foundation.

Notes

1. Also in Proc. PEPM’94, pages 11-20.

2. A binding-time analysis is “monovariant” if it associates one binding-time description to any
source expression. (It is “polyvariant” if it may associate several binding-time descriptions to
any expression.) For consistency [14], [21], [22], in case of clash, a monovariant binding-time
analysis approximates the clashing descriptions with an encompassing dynamic description, as
illustrated in the following table.

binding-time binding-time least encompassing
description description dynamic description

x y of x and y

static dynamic dynamic

dynamic dynamic → dynamic dynamic

(static, static) dynamic dynamic

(static, static) (static, dynamic) (static, dynamic)
(static, dynamic) (dynamic, static) (dynamic, dynamic)

226

3. In fact, in the particular case of the call-by-value CPS transformation, these static beta-
redexes precisely coincide with Plotkin’s administrative redexes [11]. However, this coincidence
only happens for call-by-value and not, e.g., for the call-by-name CPS transformation — an
observation independently made by John Hatcliff at Kansas State University and by Ray
McDowell at the University of Pennsylvania in fall 1993 (personal communication to the first
author).

4. Primitive operations are known as “delta rules” in the lambda-calculus [1].

5. For example, Similix specializes the source program

(define (main1 d)

((lambda (f) (cons f (f 2)))

(lambda (a) (- (* 3 (- a d)) 1))))

into the following residual program.

(define (main1-0 d 0)

(let ([f 2 (lambda (a 1) (- (* 3 (- a 1 d 0)) 1))])

(cons f 2 (f 2 2))))

The decision to residualize is symptomatic of the tension inherent in partial evaluation: unfold-
ing calls exposes opportunities for static computation, but if there are not many opportunities,
or if they do not amount to much, unfolding just leads to code duplication. For example,
Similix transforms the source program

(define (main2 d)

((lambda (f) (cons (f 1) (f 2)))

(lambda (a) (- (* 3 (- a d)) 1))))

into the following residual program.

(define (main2-0 d 0)

(cons (- (* 3 (- 1 d 0)) 1) (- (* 3 (- 2 d 0)) 1)))

6. As pointed out by one of the referees, this duplication may be criticized but it happens only
at BTA-time.

References

1. Henk Barendregt. The Lambda Calculus — Its Syntax and Semantics. North-Holland, 1984.

2. Anders Bondorf. Automatic autoprojection of higher-order recursive equations. Science of

Computer Programming, 17(1-3):3–34, 1991. Special issue on ESOP’90, the Third European
Symposium on Programming, Copenhagen, May 15-18, 1990.

3. Anders Bondorf. Improving binding times without explicit CPS-conversion. In William
Clinger, editor, Proceedings of the 1992 ACM Conference on Lisp and Functional Program-

ming, LISP Pointers, Vol. V, No. 1, pages 1–10, San Francisco, California, June 1992. ACM
Press.

4. Anders Bondorf and Olivier Danvy. Automatic autoprojection of recursive equations with
global variables and abstract data types. Science of Computer Programming, 16:151–195,
1991.

5. Anders Bondorf and Dirk Dussart. Improving CPS-based partial evaluation: Writing cogen
by hand. In Peter Sestoft and Harald Søndergaard, editors, ACM SIGPLAN Workshop on

Partial Evaluation and Semantics-Based Program Manipulation, Technical Report, Univer-
sity of Melbourne, Australia, pages 1–10, Orlando, Florida, June 1994.

6. Anders Bondorf and Jens Palsberg. Compiling actions by partial evaluation. In Arvind,
editor, Proceedings of the Sixth ACM Conference on Functional Programming and Computer

Architecture, pages 308–317, Copenhagen, Denmark, June 1993. ACM Press.
7. Charles Consel. Polyvariant binding-time analysis for applicative languages. In Schmidt [25],

pages 66–77.

227

8. Charles Consel. A tour of Schism: A partial evaluation system for higher-order applicative
languages. In Schmidt [25], pages 145–154.

9. Charles Consel and Olivier Danvy. For a better support of static data flow. In Hughes [13],
pages 496–519.

10. Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation. In Susan L. Graham,
editor, Proceedings of the Twentieth Annual ACM Symposium on Principles of Programming

Languages, pages 493–501, Charleston, South Carolina, January 1993. ACM Press.
11. Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS transformation.

Mathematical Structures in Computer Science, 2(4):361–391, December 1992.
12. Carsten K. Gomard. Program Analysis Matters. PhD thesis, DIKU, Computer Science

Department, University of Copenhagen, Copenhagen, Denmark, November 1990. DIKU
Report 91-17.

13. John Hughes, editor. Proceedings of the Fifth ACM Conference on Functional Programming

and Computer Architecture, number 523 in Lecture Notes in Computer Science, Cambridge,
Massachusetts, August 1991.

14. Neil D. Jones. Automatic program specialization: A re-examination from basic principles.
In Partial Evaluation and Mixed Computation, pages 225–282. North-Holland, 1988.

15. Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Automatic

Program Generation. Prentice-Hall International, 1993.
16. Julia L. Lawall. Continuation Introduction and Elimination in Higher-Order Programming

Languages. PhD thesis, Computer Science Department, Indiana University, Bloomington,
Indiana, USA, July 1994.

17. Julia L. Lawall and Olivier Danvy. Continuation-based partial evaluation. In Carolyn L.
Talcott, editor, Proceedings of the 1994 ACM Conference on Lisp and Functional Program-

ming, LISP Pointers, Vol. VII, No. 3, pages 227–238, Orlando, Florida, June 1994. ACM
Press.

18. Torben Æ. Mogensen. Binding Time Aspects of Partial Evaluation. PhD thesis, DIKU,
Computer Science Department, University of Copenhagen, Copenhagen, Denmark, March
1989.

19. Torben Æ. Mogensen. Constructor specialization. In Schmidt [25], pages 22–32.
20. Christian Mossin. Partial evaluation of general parsers. In Schmidt [25], pages 13–21.
21. Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Languages, volume 34 of

Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1992.
22. Jens Palsberg. Correctness of binding-time analysis. Journal of Functional Programming,

3(32):347–363, 1993.
23. Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer

Science, 1:125–159, 1975.
24. Erik Ruf. Topics in Online Partial Evaluation. PhD thesis, Stanford University, Stanford,

California, February 1993. Technical report CSL-TR-93-563.
25. David A. Schmidt, editor. Proceedings of the Second ACM SIGPLAN Symposium on Partial

Evaluation and Semantics-Based Program Manipulation, Copenhagen, Denmark, June 1993.
ACM Press.

26. Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report AI-TR-474, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts,
May 1978.

27. Mitchell Wand. Correctness of procedure representations in higher-order assembly language.
In Stephen Brookes, Michael Main, Austin Melton, Michael Mislove, and David Schmidt, ed-
itors, Mathematical Foundations of Programming Semantics, volume 598 of Lecture Notes in

Computer Science, pages 294–311, Pittsburgh, Pennsylvania, March 1991. 7th International
Conference.

28. Daniel Weise, Roland Conybeare, Erik Ruf, and Scott Seligman. Automatic online partial
evaluation. In Hughes [13], pages 165–191.

