
Under consideration for publication in J. Functional Programming 1

Type-based Confinement

Tian Zhao
University of Wisconsin–Milwaukee

Jens Palsberg
UCLA

Jan Vitek
Purdue University

Abstract

Confinement properties impose a structure on object graphs which can be used to enforce
encapsulation properties. From a practical point of view, encapsulation is essential for
building secure object-oriented systems as security requires that the interface between
trusted and untrusted components of a system be clearly delineated and restricted to the
smallest possible set of operations and data structures. This paper investigates the notion
of package-level confinement and proposes a type system that enforce this notion for a
call-by-value object calculus as well as a generic extension thereof. We give a proof of
soundness of this type system, and establish links between this work and related research
in language-based security.

1 Introduction

While object-oriented languages provide syntactic support for encapsulating fields
of object structures via access and visibility annotations, this form of encapsulation
is shallow as it protects variables and not values. The runtime behavior of programs
clearly shows that shallow protection mechanisms are not sufficient to protect an
object’s representation. Reference semantics allows creating dynamic aliases to an
object referred to from a protected variable, which may lead to unintended side-
effects. This has implications for software engineering and information security. The
software engineering drawbacks have been discussed by Leavens (1991): without
strong encapsulation it is difficult to reason about programs modularly. Information
security requires that boundaries between trusted and untrusted components be
established. Strong encapsulation is one way to define such boundaries and ensure
that some parts of a system not be exposed to untrusted components.

Research on strong encapsulation started in the early 1990’s. The work on Is-
lands (Hogg, 1991) stands out as one of the first attempts to propose a language
abstraction for enforcing strong encapsulation. A good summary of the early re-
search on aliasing appeared in Hogg et al. (1992). The original flexible alias protec-
tion paper (Noble et al., 1998) proposed an approach that relied on type qualifiers
and generic types to control aliasing. Many researchers extended this work, referred

2 Zhao, Palsberg, Vitek

to as ownership types: (Clarke et al., 1998) and (Clarke, 2001) formalized the type
system, Boyapatti et al. (2002; 2003c) extended the expressive power and defined
domain-specific variants. A complete list is given in the related work section.

We view strong encapsulation and aliasing control as a prerequisite for writing
secure systems out of components that are not necessarily trusted. In this paper
we investigate a programming language extension and programming discipline for
enforcing strong encapsulation, or confinement, in languages such as Java and C#.
What sets our work apart from previous results is that rather than aiming for
the most expressive confinement mechanism, we look for the least disruptive one:
an encapsulation mechanism which requires as few changes as possible to the tool
chain (compilers, verifiers, virtual machines, etc.) and the smallest possible changes
to the programming model. Ideally, it should simply codify best practice principles
already familiar to programmers. This paper shows that it is possible to obtain a
useful degree of encapsulation with very few changes to the semantics of an object-
oriented language and retain a natural programming model.

Confined types are a mechanism for strong encapsulation for the Java program-
ming language (Vitek & Bokowski, 2001). They are non-intrusive as they require
few changes to the source language and programming model and only two new pro-
gram annotations. Classes that must be encapsulated are marked as confined and
methods that can be safely inherited by confined classes are marked anonymous.
Confined types are a proper restriction of the language as programs written with
confinement annotation are valid Java programs if the annotations are erased. Vitek
and Bokowski (2001) showed that confined types can be checked independently of
other properties by inspection of the bytecode. They require no changes to com-
piler, verifier or virtual machine. The encapsulation guarantee afforded by confined
types is the following: an instance of an annotated class can be manipulated only
by objects defined in the same Java package. Java packages are software modules
bundling a number of classes. They have very little role in the language apart from
providing a scoping mechanism for class declarations. Confinement can be viewed
as strengthening visibility rules to ensure that instances of a package-scoped class
do not escape their defining package.

Confined types are type qualifiers in the sense of Foster et al. (1999), though their
work addresses a language without subtyping and inheritance. For confined types
it is necessary to restrict widening of types to prevent a confined type from being
cast to a plain reference. The confine keyword introduced in Foster et al. (Foster
et al., 1999) is unrelated to our notion of confinement.

The encapsulation property enforced by confined types is static and coarse grained.
There are a finite number of scopes, bounded by the number of distinct packages
in the program and objects within a package cannot be differentiated. This can be
contrasted with ownership type systems à la Clark (2001), where each object can
define its own scope and different instances of the same class can be protected from
on another. Extending confined types with generics achieves some of the flexibility
of ownership types, but the number of scopes remains bounded.

A significant drawback of ownership type systems is that they require an overhaul
of the language and force programmers to be aware of object ownership throughout

Type-based Confinement 3

their design. Without extensive empirical evaluation, it remains to be seen if the
benefits of such language extensions outweigh their costs. Confined types are simpler
in the sense that annotations are only needed for packages that require protection.
The rest of the system can be programmed in plain Java without even knowing
about confinement. Confinement checks are applied only to code of packages that
declared confined types. In related work we developed a whole-program confinement
inference algorithm (Grothoff et al., 2001). Analysis of a large body of Java code
reveals that many classes can be confined without any changes to the source code.
This supports our contention that confinement is a natural property of well-designed
Java programs. Recent work by Potanin et al. (2004b) provides an elegant account
of generic ownership and hints at ways to incorporate a more expressive ownership
system at little cost in simplicity.

The main contributions of the paper are the following.

• We present a straightforward formalization of the rules posited in Vitek and
Bokowski (2001) as a type system for a simple call-by-value object calculus.
Our calculus, ConfinedFJ, is based on the Featherweight Java (FJ) calcu-
lus (Igarashi et al., 2001). FJ is a class-based object calculus designed to model
the Java type system. We believe that the simplicity of the type rules and the
backwards compatibility with Java are encouraging signs for the prospect of
acceptance by practitioners.

• We prove the soundness of the type system, as well as a Confinement The-
orem stating that well-typed programs preserve heap confinement. This is
the first proof of confinement for a class-based calculus with a small-step
operational semantics. Previous results by Foster (2002) did not treat sub-
typing. Clarke’s ownership results are for a variant of Cardelli and Abadi’s
imperative object calculus (Abadi & Cardelli, 1996) with a big-step seman-
tics. Banerjee and Naumann adopted a denotational semantics in Banerjee
and Naumann (2002a). Finally, proving the soundness of the ownership type
system of Boyapati (2004) remains an open problem.

• We extend the original definition of confined types to support generics in a
language modeled on the Featherweight Generic Java. Significantly, support-
ing genericity requires adding a single rule to the constraints of Vitek and
Bokowski (2001). We show by way of examples that generics significantly in-
crease the expressive power of confined types. Our proof of the Confinement
Theorem is the first such proof for a generic type system that we are aware
of.

ConfinedFJ abstracts Java by omitting features which do not affect the Con-
finement Theorem, these include exceptions, interfaces, downcasts, and state. We
argue that these features can be easily incorporated in the formalization. Checked
exceptions can be modeled by enriching return values. As they appear in the type
signature of the method, the confinement rules for exceptions are exactly the same
as for other objects. Unchecked exceptions cannot be confined, as there is no simple
way to determine which unchecked exceptions may be thrown by a method. Inter-
faces are dealt with in the same way as with class definition. Downcasts, i.e. casts

4 Zhao, Palsberg, Vitek

from a supertype to a subtype, can introduce runtime failures which complicate
the formal treatment and proofs. As confinement is a downwards-closed property
of the type system, downcasts cannot violate encapsulation. Finally, it may appear
paradoxical that a stateless calculus is used to address issues linked to aliasing.
However, confinement, unlike other ownership type systems, treats all values of the
same type equally. The confinement rules partition the set of types and prevent
types belonging to different partition from being confused with one another.

ConfinedFJ departs from FJ by adopting a call-by-value semantics and by keeping
track of evaluation context in the dynamic semantics. These changes permit us to
precisely determine which objects are accessed during the evaluation of a method.
Another approach is to rely on an extended syntax to keep track of evaluation
contexts. This is in line with the syntactic type abstraction of Grossman et al. (2000)
or the box-π of Sewell and Vitek (2003). In a previous version of the calculus we
tried to follow Grossman et al., but with a lazy semantics, and found that the
dynamic semantics was cumbersome and the proof of the Confinement Theorem
was significantly more challenging.

Paper organization. Section 2 presents a motivating example and illustrates
the main idea behind confined types. Section 3 introduces confinement rules. Sec-
tion 4 gives a more detailed presentation of confined types. Section 5 introduces
Confined Featherweight Java and gives it an operational semantics and a static type
system. Section 6 presents our Confined Generic Featherweight Java. Section 7 dis-
cusses other work related to aliasing control.

The notion of confined types was first introduced by Bokowski and Vitek (2001).
The paper introduced a confinement checker for the full Java language and gave an
informal correctness argument. Grothoff et al. (2001) implemented a static analysis
tool for inferring confinement annotations.

This work extends our previously published paper (Zhao et al., 2003). The main
difference with the earlier papers is that the set of confinement and anonymity
rules has been simplified. The OOPSLA’03 version of this work did not include a
full proof of the Confinement Theorem. The present paper also includes an extended
discussion and examples.

2 Motivating Example: Information Security

The original motivation for confined types arose out of a security breach in the SUN
Java Virtual Machine. This section presents a simplified version of the program
discussed in Vitek and Bokowski (2001). The problem resulted from a combination
of two features of Java, namely, dynamic aliasing and side-effects. Figure 1 contains
the definition of class Class which, in Java, holds meta-information about a class
loaded by the virtual machine. Each class has an array of Identity objects that hold
the signatures of principals vouching for the class. This array is use to determine
the access rights of the class. The interface Class includes a method getSigners()

which returns the array of signatures. The array is declared private to ensure
that the field is visible only in the body of Class. Since, getSigners() is public

Type-based Confinement 5

class Class {
private Identity[] signers;

public Identity[] getSigners() {
return signers;

}
}

Fig. 1. Signatures without confined types. The signers field holds capabilities that are
managed by the security subsystem. By returning the object referenced by signers, the
class expose the array to updates by outside code.

untrusted code can obtain a dynamic alias to the object referred to by signers

and, since arrays are mutable the code can simply change its permissions.
Interestingly, signers was correctly identified as requiring protection, but the

implementation of the class failed to enforce the designer’s intention. In this par-
ticular example, what seems to be missing from the language is a way to express
that it is the contents of the field and not only its name that should be protected.

This kind of security flaw cannot be easily addressed by the mechanisms provided
by the Java language. There are at least three ways to try to address the problem.
Firstly, one may try to restrict the scope of the Identity class to its defining pack-
age using access modifier. But declaring the class to be package-scoped does not
guarantee that the array will not escape as it can be widened to a public super-
type. A second potential solution is to use stack inspection. This mechanism checks
dynamically whether an operation is permitted by reflectively inspecting the call
stack of the current thread. Execution proceeds past the check if the intersection
of the access rights of all methods on the stack allows it. There are two problems
with that solution: firstly, there is no convenient place to add access checks, secu-
rity is violated when the array is updated. Secondly, even if it was possible, the
performance cost of checking all array stores would be prohibitive. Finally, a prag-
matic solution is to copy the array, thus avoiding the sharing that is the root of
the problem. Unfortunately this is ad hoc and error-prone as the programmer must
manually identify all cases where a dynamic alias may reveal a protected object.

2.1 A Solution with Confined Types

Confined types provide a way for programmers to declare that some objects are
restricted to a scope. In the above example, the Identity class can be declared as
confined and an automated confinement checking procedure will validate that the
program does not expose instances of that class. Refactoring the original program
to use confined types is done in several steps. First Identity class is made con-
fined. This expresses the programmer’s intent that references to Identity instances
should not escape from the implementation of Class. The code that manipulates

6 Zhao, Palsberg, Vitek

confined class SecureIdentity {
... // original implementation

}

public class Identity {
SecureIdentity target;

Identity(SecureIdentity t) { target = t; }
... // public operations on identities;

}

public class Class {
private SecureIdentity[] signers;

public Identity[] getSigners() {
Identity[] pub = new Identity[signers.length];

for (int i = 0; i < signers.length; i++)

pub[i] = new Identity(signers[i]);

return pub;

}
}

Fig. 2. Signatures with confined types. The Identity class has been renamed
SecureIdentity and declared confined. A new Identity class has been added to allow un-
trusted code to get information about the signers of a class without allowing modifications
to the internal state.

objects of this class must belong to the current package. Since identities are ex-
ported through the getSigners() method, the checker will flag the method with
a confinement error. The second step of refactoring, which is needed in order to
preserve the interface of class Class, is to provide a public facade class, Identity,
that can be exported to clients and rename the original Identity class to Secure-

Identity. The getSigner() method is rewritten to create an array of Identity
instances. The resulting code typechecks and is given in Figure 2. The final result
of refactoring the program is not really surprising it follows the guidelines set for
Guard Objects (Gong, 1998). The difference is that it comes with a guarantee that
the guarded object (the instance of SecureIdentity) is not revealed by accident.

2.2 Related Approaches

It is interesting to contrast confined types with other work in language-based secu-
rity. Confined types are related to capability systems if one views object references
as capabilities and the type system as a reference monitor. There is a substantial
body of work on using facade or wrapper objects to interpose between trusted and
untrusted components (Levy, 1984; Gong, 1998; Hagimont et al., 1996; Wallach
et al., 1997; Vitek & Bryce, 2001). Discretionary access control checking can be

Type-based Confinement 7

added to these systems by stack introspection (Gong, 1999). Confined types are
complementary to these approaches as they give static guarantee of encapsulation.
A type-based approach to enforcing encapsulation of heap location was presented in
Leroy and Rouaix (1998) in the context of a functional language. The type system
considered there did not have subtyping nor runtime coercions.

3 Confined Types

In modern object-oriented programming languages, confinement can be achieved
by disciplined use of built-in static access control mechanisms combined with some
simple coding idioms. Confinement enforces the following informal soundness prop-
erty:

An object of confined type is encapsulated within its defining scope.

We assume the granularity of confinement to be a Java package to leverage existing
access control mechanisms and minimize the changes to the programming model.
In fact, as we show in Section 3.4, many existing Java programs require no changes.
Confined types establish a distinction between public types and, so called, confined
types. The intended programming model is to have systems in which classes defined
in the same packages form two distinct software layers: a package “interface” made
up of public classes and a package “core” consisting of confined classes. We use the
term interface loosely to refer to the classes that are exposed directly to clients of the
package. Confinement ensures that core classes will not be directly accessed outside
of the package by extending the existing Java visibility rules with restrictions on
subtyping and inheritance.

Consider the following simple example. A class Bucket is used to implement
a hash table class, p.Table. Hash table buckets are an example of internal data
structures which should not escape the context of the enclosing class. In Java, the
first step towards that goal is to declare class Bucket package scoped, thus ensuring
that its visibility is restricted to the class’s defining the package. (Or Bucket can be
a package-scoped inner class but there will be similar problems as described below.)

package p;

public class HTable {
private Bucket[] buckets;

public Object get(Object key) { ...}
}

confined class Bucket {
Bucket next;

Object key, val;

}

But what if one of Table’s public methods, such as get(), were to return a bucket
or store a reference in one of its public fields? One can view this as an escape analysis

8 Zhao, Palsberg, Vitek

problem: can references to the instances of a package-scoped class escape the scope
of their enclosing package? If not, then the objects of such a class are encapsulated.
Enforcing confinement implies tracking the spread of confined objects within a
package and preventing them from crossing package boundaries. Since confinement
is couched in terms of object types, widening a value from a confined type to a
non-confined type presents a risk and is thus treated as confinement violation.

Confinement can be enforced (or inferred) using two sets of constraints. The first
set of constraints, confinement rules, applies to the classes defined in the same
package as the confined class. These rules track values of confined types and ensure
that they are neither exposed in public members, nor widened to non-confined
types.

The second kind of constraints, anonymity rules, applies to methods inherited
by the confined classes, potentially including library code, and ensures that these
methods do not leak a reference to the distinguished variable this which may refer
to an object of confined type.

3.1 Confinement Rules

The following confinement rules must hold for all classes of a package containing
confined types.

C1 A confined type must not appear in the type of a public (or protected) field or the
return type of a public (or protected) method.

C2 A confined type must not be public.

C3 Methods invoked on an expression of confined type must either be defined in a con-
fined class or be anonymous methods.

C4 Subtypes of a confined type must be confined.

C5 Confined types can be widened only to other confined types.

C6 Overriding must preserve anonymity of methods.

Fig. 3. Confinement constraints.

Rule C1 prevents exposure of confined types in the public interface of the package
as client code could break confinement by accessing values of confined types through
a type’s public interface. Rule C2 is needed to ensure that client code cannot instan-
tiate a confined class. It also prevents client code from declaring field or variables of
confined types. The latter restriction is needed so that code in a confining package
will not mistakenly assign objects of confined types to the fields or variables outside
that package. Rule C3 ensures that methods invoked on an object enforce confine-
ment. In the case of methods defined in the confining package, this ensues from the
other confinement rules. Inherited methods defined in another package do not have
access to any confined fields, since those are package-scoped (Rule C1). However,

Type-based Confinement 9

an inherited method of confined class may leak the this reference, which is im-
plicitly widened to the method’s declaring class. To prevent this, Rule C3 requires
these methods to be anonymous (as explained below). Rule C4 prevents the decla-
ration of a public subclass of a confined type. This prevents spoofing leaks where
a public subtype defined outside of the confined package is used to access private
fields (Clarke et al., 2003), and it also necessary when considering generic classes in
Section 6. Rule C5 prevents code within confining packages from assigning values
of confined types to fields or variables of public types. Finally, Rule C6 allows us to
statically verify the anonymity of the methods that are invoked on expressions of
confined types.

3.2 Anonymity Rule

The anonymity rule applies to inherited methods which may reside in classes out-
side of the enclosing package. This rule prevents a method from leaking the this

reference. A method is anonymous if it has the following property.

A1 The this reference is used only to select fields and as the receiver in the invocation
of other anonymous methods.

Fig. 4. Anonymity constraint.

This prevents an inherited method from storing or returning this as well as
using it as an argument to a call. Selecting a field is always safe, as it cannot break
confinement because only the fields visible in the current class can be accessed.
Method invocation (on this) is restricted to other methods that are anonymous as
well. Note that we check this constraint assuming the static type of this and Rule
C6 ensures that the actual method invoked on this will also be anonymous.

Thus, Rule C6 ensures that the anonymity of a method is independent of the
result of method lookup. However, as explained in Grothoff et al. (2001), Rule C6
is not necessary if we infer the anonymity of a method relative to a specific type
(in which case we need to have Rule C4). We choose to keep Rule C6 because it is
also needed for confined generic class in Section 6.

Rule C6 could be weakened to apply only to methods inherited by confined classes.
For instance, if an anonymous method m of class A is overridden in both class B and
C, and B is extended by a confined class while C is not, then the method m in B

must be anonymous while m of C needs not be. The reason is that the method m of
C will never be invoked on confined objects and thus there is no need for it to be
anonymous.

3.3 Checking Confinement

Validation of these rules is modular. Classes can be verified independently. More-
over, the confinement invariant is backwards compatible in the sense that packages

10 Zhao, Palsberg, Vitek

that do not use confinement or contain classes extended by confined classes can
be checked by the normal Java type checker and do not require further processing.
The confinement rules outlined above place no constraints on clients of a confined
package (rule C1 is crucial in this respect). The only constraints that must be en-
forced are that all classes within the package of a confined class must be checked
and Rule A1 must be applied to methods inherited by confined classes if these
methods must be anonymous by Rule C3 or C6. As long as all classes in a package
are known, confinement annotations can trivially be checked as part of the source-
level type checking or by bytecode verification. Confined-type inference (as opposed
to type checking) can be performed on a per-package basis, with the exception of
anonymous methods which require analyzing parent classes (Grothoff et al., 2001).

3.4 Empirical evaluation

Grothoff implemented a tool to evaluate the practicality of confined types on real
programs (Grothoff et al., 2001). The tool infers confinement by a whole-program
static analysis. A study of over 100,000 Java classes of varying size, purpose and
origin, gives empirical evidence to support the claim that confinement constraints
are not too restrictive. The analysis focus on package-scoped classes, as public ones
cannot be confined. Approximately 7,000 confined classes were found in the bench-
mark suite. Manual inspection of the source code suggests that many other classes
could be confined with minimal effort. In another study Potanin et al. (2004a) used
dynamic analysis to get an upper bound on the number of objects that are actually
confined during program execution. They report that more than 30% of all objects
within their benchmark suite are effectively confined. Anonymity is also quite fre-
quent, holding in 40% of the methods in the benchmark suite. The results also
show that the single largest source of confinement violation, approximately 2,000
classes, comes from collection classes. This is because all arguments to a collection
type are widened to Object, which violates confinement. We surmise that most
of these violations could be avoided with generic classes and proper extensions of
confinement to handle genericity.

From a practical perspective, confined types can be criticized as they seem to
preclude code reuse. For a class to be confined it must be local to a particular pack-
age and, by definition, inaccessible to all other packages. Thus it is, for instance,
not possible to have the same confined vector class be used in several packages.
This can become unwieldy when dealing with programs that require the same logic
to be available in, and confined to, different packages. Any solution to this problem
should allow the definition of classes in a natural fashion, i.e. without imposing
coding conventions more restrictive than those presented above, and must permit
use of those classes as confined types in certain contexts and non-confined in other.
Previous work failed to provide a satisfactory solution to this problem. The exten-
sion of confinement to generic classes described in Section 6 addresses this issue by
allowing generic classes to have confined instantiations.

Type-based Confinement 11

4 Confined Featherweight Java

Confined Featherweight Java, which we refer to as ConfinedFJ, is a minimal core
calculus for modeling confinement for a Java-like object-oriented language. Con-
finedFJ extends Featherweight Java (FJ) which was designed by Igarashi, Pierce
and Wadler (2001) to model the Java type system. It is a core calculus as it limits
itself to a subset of the Java language with the following five basic expressions: ob-
ject construction, method invocation, field access, casts and local variable access.
This spartan setting has proved appealing to researchers. ConfinedFJ stay true to
the spirit of FJ. The surface differences lie in the presence of class and method level
visibility annotations. In ConfinedFJ, classes can be declared to be either public or
confined,and methods can optionally be declared as anonymous. One further dif-
ference is that ConfinedFJ class names are pairs of identifiers bundling a package
name and a class name just as in Java.

4.1 Syntax

Let metavariable L range over class declarations, C, D, E range over a denumerable set
of class identifiers, K, M range over constructor and method declarations respectively,
and f and x range over field names and variables (including parameters and the
pseudo-variable this) respectively. Let e, d range over expressions and u, v, w range
over values.

We adopt FJ notational idiosyncrasies and use an over-bar to represent a finite
(possibly empty) sequence. We write f to denote the sequence f1, . . . , fn and sim-
ilarly for e and v. We write C f to denote C1 f1, . . . Cn fn, C <: D to denote C1 <:
D1, . . . , Cn <: Dn and finally this.f = f to denote this.f1 = f1, . . . , this.fn = fn.

The syntax of ConfinedFJ is given in Figure 5. An expression e can be either
one of a variable x (including this), a field access e.f, a method invocation e.m(e),
a cast (C) e, an object new C(e). Since ConfinedFJ has a call-by-value semantics,
it is expedient to add a special syntactic form for fully evaluated objects, denoted
new C(v).

Class identifiers are pairs p.q such that p and q range over denumerable disjoint
sets of names. For ConfinedFJ class name p.q, p is interpreted as a package name
and q as a class name. In ConfinedFJ, class identifiers are fully qualified. For a
class identifier C, packof (C) denotes the identifier’s package prefix, so, for example,
the value of packof (p.O) is p.

Class declarations are annotated with a optional visibility modifier conf; a public
class is declared by class C / D {. . .} and a confined class is conf class C / D{. . .}.
Methods can be annotated with the optional anon modifier to denote anonymity.

4.2 Dynamic Semantics

The dynamic semantics of ConfinedFJ is given in Figure 7 in terms of a small-step
operational semantics. The main departures from FJ are the choice of a call-by-
value semantics and the addition of an explicit stack, both of which are required
for the proof of the Confinement Theorem of Section 5. Computation rules are of

12 Zhao, Palsberg, Vitek

C ::= p.q

L ::= [conf] class C / D { C f; K M }

K ::= C(C f) { super(f); this.f = f; }

M ::= [anon] C m(C x) { return e; }

e ::= x | e.f | e.m(e) | (C) e | new C(e)

v ::= new C(v)

Fig. 5. ConfinedFJ: Syntax.

the form P → P ′, where P is a possibly empty sequence of frames defined by the
grammar:

P ::= nil | P . v m e

A frame v m e denotes the invocation of some method m on a receiver object v where
e is the body of the method being evaluated. As usual, →∗ denotes transitive and
reflexive closure.

We define, in Figure 7, an evaluation context to be an expression E[◦] with a
hole and E[e] means E with the hole replaced by e. The syntax of method and
constructor contexts E[◦].m(e), v.m(v, E[◦], e), new C(v, E[◦],e) enforce left-to-right
evaluation order and call-by-value semantics. Evaluation context are deterministic.
For any expression e there is exactly one evaluation context. This formally stated
in Lemma 1.

Lemma 1 (Context determinacy.)
For all closed expression e, exactly one of the following holds:

1. e is a value;
2. e has the form E[v.f] for some E;
3. e has the form E[(C) v] for some E;
4. e has the form E[v.m(v)] for some E.

Proof
By induction on the structure of e.

We now detail the evaluation rules.

• Rules R-Field and R-Cast evaluate field access and type cast expressions.
The rules differ from FJ only in that subexpressions are fully evaluated.

• Rule R-Invk evaluates a method invocation of the form e = v′.m′(v′) in
some context P . v mE[◦]. A new frame is created with v′ as receiver, m′ as
method, and the body of m′ as the expression being evaluated. The resulting
configuration has the form P . v mE[e] . v′ m′ e′. This rule differs from FJ due
to the presence of frames.

Type-based Confinement 13

Subtyping:

C <: C
C <: D D <: E

C <: E

CT (C) = [conf] class C / D { . . . }
C <: D

Field look-up:

fields(Object) = ()

fields(D) = (D g) CT (C) = [conf] class C / D { C f; K M }
fields(C) = (D g, C f)

Method definition lookup:

CT (C) = [conf] class C / D { C f; K M }
methods(C) = M

[anon] B m(B x) { return e; } ∈ methods(C)

mdef (m, C) = C

CT (C) = [conf] class C / D { C f; K M } m is not defined in M

mdef (m, C) = mdef (m, D)

Fig. 6. ConfinedFJ: Types and Lookup.

Evaluation:

e = new C(v).fi fields(C) = (D f)

P . v m E[e] → P . v m E[vi]
(R-Field)

e = (C′) new C(v) C <: C′

P . v m E[e] → P . v m E[new C(v)]
(R-Cast)

e = v′.m′(v) v′ = new C(u) mbody(m′, C) = (x, e0)

P . v m E[e] → P . v m E[e] . v′ m′ [v/x, v′/this]e0
(R-Invk)

e = v′.m′(v)

P . v m E[e] . v′ m′ v′′ → P . v m E[v′′]
(R-Ret)

Evaluation contexts:

E[◦] ::= ◦ | (C) E[◦] | E[◦].fi | E[◦].m(e) | v.m(v, E[◦], e) | new C(v, E[◦], e)

Fig. 7. ConfinedFJ: Dynamic semantics

14 Zhao, Palsberg, Vitek

• Rule R-Ret describes how the result of a method invocation is returned to
its calling context. If the topmost frame is a value, and the configuration has
the form v mE[e] . v′ m′ v′′, then the top frame is popped off and expression e

is replaced the result v′′. The replacement is unambiguous since, by Lemma 1,
context E[◦] is unique. This rule has no correspondence in FJ.

Figure 6 gives some standard definitions. We assume a class table CT which stores
the definitions of all classes of ConfinedFJ program such that CT (C) is the definition
of class C. Following Igarashi et al. (2001), we leave the class table as an implicit
parameter to the semantics. The subtyping relation C <: D denotes that class C is
a subtype of class D. Every class is a subtype of l.Object. The function fields(C)
return the list of all fields of the class C including inherited ones; methods(C) returns
the list of all methods in the class C; mdef (m) returns the identifier of defining class
for the method m.

4.3 Static Semantics

Figure 8 defines relations used in the static semantics. The predicate conf (C) holds
if the class table maps C to a class declared as confined. Functions mtype(m, C) and
mbody(m, C) yield, respectively, the type signature and body of a method. Predicate
override(m, C, D) holds if a m is a valid, anonymity preserving, redefinition of an in-
herited method or if this is the method’s original definition. Class visibility, written
visible(C, D), states that a class C is visible from D if, either, C is public, or if both
classes are in the same package.

The safe subtyping relation, written C � D, is a confinement preserving restriction
of the subtyping relation <:. A class C is a safe subtype of D if C is a subtype of
D, and either C is public or D is confined. In other words, it is not allowed for the
subclass of confined class to be public. This relation is used in the typing rules to
prevent widening a confined type to a public type; confinement-preserving widening
requires safe subtyping to hold. The type system further constrains subtyping by
enforcing that all subclasses of a confined class must belong to the same package (see
the T-Class rule and the definition of visibility). This relation is also transitive.
To see that, suppose C � C′ and C′ � C′′. By definition, C <: C′, C′ <: C′′, and
if C is confined, then so is C′, and in which case C′′ must be confined as well. Since
subtyping relation is transitive, C <: C′′. Thus, C � C′′.

Figure 9 defines constraints imposed on anonymous methods. A method m is
anonymous in class C, written anon(m, C), if its declaration is annotated with the
anon modifier. The following syntactic restrictions are imposed on the body of an
anonymous method. An expression e is anonymous in class C, written anon(e, C),
if the pseudo-variable this is used solely for field selection and anonymous method
invocation. (C) e is anonymous if e is anonymous. new C(e) and e.m(e) are anony-
mous if e 6= this and e, e are anonymous. With the exception of this all variables
are anonymous. this.f is always anonymous, and this.m(e) is anonymous in C if
m is anonymous in C and e is anonymous. We write anon(e, C) to denote that all
expressions in e are anonymous.

Type-based Confinement 15

Confined types, type visibility, and safe subtyping:

CT (C) = conf class C / D {. . .}
conf (C)

¬conf (C)

visible(C, D)

packof (C) = packof (D)

visible(C, D)

C <: D conf (C) ⇒ conf (D)

C � D

Method type lookup:

mdef (m, C) = D [anon] B m(B x) { return e; } ∈ methods(D)

mtype(m, C) = B→ B

Method body look-up:

mdef (m, C) = D [anon] B m(B x) { return e; } ∈ methods(D)

mbody(m, C) = (x, e)

Valid method overriding:

either m is not defined in D or any of its parents, or

mtype(m, C) = C→ C0 mtype(m, D) = C→ C0 (anon(m, D) ⇒ anon(m, C))

override(m, C, D)

Fig. 8. ConfinedFJ: Auxiliary definitions.

Anonymous method:

mdef (m, C0) = C′0 anon C m (C x) {. . .} ∈ methods(C′0)

anon(m, C0)

Anonymity constraints:

anon(e, C)

anon((C′) e, C)

anon(e, C)

anon(new C′(e), C)

x 6= this

anon(x, C)

anon(e, C)

anon(e.f, C)

anon(e, C) anon(e, C)

anon(e.m(e), C)

anon(this.f, C)

anon(m, C) anon(e, C)

anon(this.m(e), C)

Fig. 9. ConfinedFJ: Syntactic Anonymity Constraints.

16 Zhao, Palsberg, Vitek

Expression typing:

Γ ` x : Γ(x) (T-Var)

Γ ` e : C fields(C) = (C f)

Γ ` e.fi : Ci
(T-Field)

Γ ` e : C0 Γ ` e : C mtype(m, C0) = D→ C C � D

mdef (m, C0) = D0 (C0 � D0 ∨ anon(m, D0))

Γ ` e.m(e) : C
(T-Invk)

fields(C) = (D f) Γ ` e : C C � D

Γ ` new C(e) : C
(T-New)

Γ ` e : D D � C

Γ ` (C) e : C
(T-UCast)

Method typing:

x : C, this : C0 ` e : D D � C override(m, C0, D0)

x : C, this : C0 ` visible(e, C0) (anon(m, C) ⇒ anon(e, C))

[anon] C m(C x) { return e; } OK IN C0 / D0

(T-Method)

Class typing:

fields(D) = (D g) K = C(D g, C f) {super(g); this.f = f; }
visible(D, C) (conf (D) ⇒ conf (C)) M OK IN C / D

[conf] class C / D { C f; K M } OK
(T-Class)

Static expression visibility:

visible(Γ(x), C)

Γ ` visible(x, C)

Γ ` e.fi : C′ visible(C′, C) Γ ` visible(e, C)

Γ ` visible(e.fi, C)

visible(C′, C) Γ ` visible(e, C)

Γ ` visible((C′) e, C)

visible(C′, C) ∀i, Γ ` visible(ei, C)

Γ ` visible(new C′(e), C)

Γ ` e.m(e) : C′ visible(C′, C) Γ ` visible(e, C) ∀i, Γ ` visible(ei, C)

Γ ` visible(e.m(e), C)

Fig. 10. ConfinedFJ: Typing rules.

Type-based Confinement 17

4.3.1 Expression typing rules

The typing rules for ConfinedFJ are given in Figure 10, where type judgments have
the form Γ ` e : C, in which Γ is an environment that maps variables to their types.
The main difference with FJ is that these rules disallow unsafe widening of types.
This is captured by conditions of the form C � D which enforce safe subtyping.

• Rules T-Var and T-Field are standard.
• Rule T-New prevents instantiating an object if any of the object’s fields with

a public type is given a confined argument. That is, for fields with declared
types D and argument types C, relation C � D must hold. By definition of
Ci � Di, if Ci is confined then Di is confined as well.

• Rule T-Invk prevents widening of confined arguments to public parameters
by enforcing safe subtyping of argument types with respect to parameter
types. In order to prevent implicit widening of the receiver, we consider two
cases. Assume that the receiver has type C0 and the method m is defined in
D0, then it must either be the case that C0 is a safe subtype of D0 or that m

has been declared anonymous in D0.
• Rule T-UCast prevents casting a confined type to a public type by enforcing

safe subtyping. The rule needs only cover upcasts as ConfinedFJ does not
allow downcasts. Downcasts are not relevant as they preserve confinement,
this comes the fact that by Rule T-Class a confined class cannot have a
public subclass. Casting an object of public class to confined type will thus
result in runtime exception.

4.3.2 Typing rules for methods and classes

Figure 10 also gives rules for typing methods and classes.

• Rule T-Method places the following constraints on a method m defined in
class C0 with body e. The type D of e must be a safe subtype of the method’s
declared type C. The method must preserves anonymity declarations. If m

is declared anonymous, e must comply with the corresponding restrictions.
The most interesting constraint is the visibility enforced on the body by
Γ ` visible(e, C), which is defined recursively over the structure of terms.
It ensures that the types of all subexpressions of e are visible from the defin-
ing class C0. Note that although argument types are not required to be visible,
Γ ` visible(e, C) ensures arguments that are not visible cannot have fields or
methods accessed in e.

• Rule T-Class requires that if class C extends D then D be visible in C and
if D is confined, then so is C. Rule T-Class allows the fields of a class C to
have types not visible in C, but the constraint of Γ ` visible(e, C) in Rule
T-Method prohibits the method of C from accessing such fields.

The class table CT is well-typed if all classes in CT are well-typed. For the rest
of this paper, we assume CT to be well-typed.

18 Zhao, Palsberg, Vitek

4.3.3 Relation to the Informal Rules

We now relate the rules given in Section 3 with the ConfinedFJ type system. The
effect of Rule C1, which limit the visibility of fields if their type is confined, is
obtained as a side effect of the visibility constraint as it prevents code defined in
another package from accessing a confined field. ConfinedFJ could be extended with
field and method access modifier without significantly changing the type system.
The expression typing rules enforce confinement rules C3 and C5 by ensuring that
methods invoked on an object of confined type are either anonymous or defined in
a confined class, and that widening is confinement preserving. Rule C2 uses access
modifiers to limit the use of confined types, the same effect is achieved by the
visibility constraint Γ ` visible(e, C) on expression part of T-Method. Rule C4,
which states that subclassing is confinement preserving, is enforced by T-Class.
Rule C6, which states that overriding is anonymity preserving, is enforced by T-

Method. Finally the anonymity constraint of Rule A1 is obtained by the anon
predicate in the antecedent of T-Method.

4.4 Two ConfinedFJ Examples

Consider the following stripped down version of a hash table class written in Con-
finedFJ. The hash table is represented by a class Table defined in some package p

which holds a single bucket of class Buck. The bucket can be obtained by calling
the method get() on a table, the bucket’s data can then be obtained by calling
getData(). In this example, buckets are confined but they extend a public class
Cell. The interface of Table.get() specifies that the method’s return type is Cell,
this is valid as that class is public. In this example a factory class, named Factory,
is needed to create instances of Table because the table’s constructor expects a
bucket and since buckets are confined, they cannot be instantiated outside of their
defining package.

This program does not preserve confinement as the body of the Table.get()

method returns an instance of a confined class in violation of the widening rule.
The breach can be exhibited by constructing a class Breach in package o which
creates a new table and retrieves its bucket.

class o.Breach / l.Object {
l.Object main () { return new p.Factory().table().get(); }

}

The expression new o.Breach().main() thus evaluates in three reduction steps
to new p.Buck() exposing the confined class to code defined in another package.
This example is not typable in the ConfinedFJ type system. Table.get() does not
type-check because Rule T-Method requires the type of the expression returned
by the method to be a safe subtype of the method’s declared return type. The
expression has the confined type p.Buck while the declared return type is the public
type Cell.

In another prototypical breach of confinement, consider the following situation

Type-based Confinement 19

class p.Table / l.Object {
p.Buck buck;

Table(p.Buck buck) { super(); this.buck = buck; }
Cell get() { return this.buck; }

}

class p.Cell / l.Object {
l.Object data;

l.Object getData() { return this.data; }
}

conf class p.Buck / p.Cell {
p.Buck() { super(); }

}

class p.Factory / l.Object {
p.Factory() { super(); } }
p.Table table() { return new p.Table(new p.Buck()); }

}

in which the confined class Self extends a Broken parent class which resides in
package o. Assume further that the class inherits its parent’s code for the reveal()
method.

conf class p.Self / o.Broken {
p.Self() { super(); }

}

class p.Main / l.Object {
p.Main() { super(); }
l.Object get() { return new p.Self().reveal(); }

}

Inspection of this code does not reveal any breach of confinement. But if we widen
the scope of our analysis to the Broken class, we may see:

class o.Broken / l.Object {
o.Broken() { super(); }
l.Object reveal() { return this; }

}

Invoking reveal() on an instance of Self will return a reference to the object itself.
This does not type-check because the invocation of reveal() in Main.get() vio-
lates the Rule T-Invk (due to that the non-anonymous method reveal(), inherited
from a public class o.broken, is invoked on an object of a confined type p.Self).
The method reveal() cannot be declared anonymous as the method returns this
directly.

20 Zhao, Palsberg, Vitek

5 Confinement Properties

In this section, we describe properties of ConfinedFJ and prove the Confinement
Theorem. During the execution of a well-typed program, a confined object can be
accessed only by the methods that it “trusts”. The trusted methods of an object
of the type C include the methods defined in the package of C and the anonymous
methods inherited by C. Thus, to satisfy the confinement properties, the evaluation
of a call to any method m may only contain accesses to either objects of public types,
objects of confined types defined in the package containing m, or the receiver object
of the call in case m is anonymous and the receiver object is confined. In ConfinedFJ,
we define access to an object to mean field selection and method invocation.

5.1 Runtime expression visibility

We check whether an expression satisfies the confinement properties using the recur-
sive predicate visibleC0(e, C) defined in Figure 11. Consider an expression e reduced
from a method call v.m(v), where v is the receiver that has type C0 and m is defined
in the class C, we say that if visibleC0(e, C) is true, then e satisfies confinement. We
write v e to denote a sequence of values followed by expressions.

∅ ` e.fi : C′ visible(C′, C) (e = new C0(u) ∨ visibleC0(e, C))

visibleC0(e.fi, C)

visible(C′, C) visibleC0(e, C)

visibleC0((C
′) e, C)

visible(C′, C) ∀i, visibleC0(ei, C)

visibleC0(new C′(v e), C)

∅ ` e.m(e) : C′ visible(C′, C) (e = new C0(u) ∨ visibleC0(e, C)) ∀i, ∅ ` visible(ei, C)

visibleC0(e.m(e), C)

Fig. 11. ConfinedFJ: Runtime expression visibility.

In order for visibleC0(e, C) to be true, the type of e has to be visible in C. In
addition, if e has the form (C′) e′, then visibleC0(e

′, C) must also hold; if e has the
form e′.f or e′.m(e), then either visibleC0(e

′, C) or e′ has the form new C0(u) for some
u. The latter is relevant for anonymous methods because if an anonymous method
is called on an object v of confined type C0 while the method is defined in a class C
outside the package of C0, then the variable this in the method body is substituted
by v but the type of v is not visible in C. The constraints allow this case as long as
v is only used as the receiver of method calls and for field selects.

We also observe that for a fully evaluated object, e = new C′(v), visibleC0(e, C)
only require C′ to be visible in C. This should be contrasted with the situation where
e = new C′(e), in which case we must also have ∀i, visibleC0(ei, C). The intuition is
that the syntax of the calculus does not differentiate between constructed objects
and the expressions that construct them. Confinement must be checked only be-
fore an object is constructed. Thus before a new expression of the form new C′(e) is

Type-based Confinement 21

reduced to a fully-evaluated object, we need to check e for any violations of confine-
ment properties within the context of the method that contains the new expression.
Since we have a by-value semantics, such a new expression may not be transfered
to another method before it is fully evaluated. However, a fully-evaluated object of
the form new C′(v) could sent to a method of a class C outside the package of C′.
This is only allowed in our system if the method that uses the C′ object is defined
in a parent class and the object is passed in as a result of substituting the this

variable.

5.2 Well-typed program and confinement

Recall that we model a program’s execution with a stack. Each frame in P consists
of a tuple v m e, that corresponds to an invocation of method m on the object v

and e is the expression reduced from the method call. Also recall that each method
invocation will create a new frame. We say that a program P is well-typed if the
expression e in each frame of P is well-typed and the type of e is a safe subtype of
the type of the expression e′, where E[e′] is in the previous frame.

Definition 1 (Well-typed)
A program P is well-typed iff ` P as defined below.

∅ ` e : C
` nil . v m e

` P . v m E[e] ∅ ` e : C ∅ ` e′ : C′ C′ � C

` P . v m E[e] . v′ m′ e′

We say that a program satisfies confinement if each frame v m e in the program
satisfies the runtime expression visibility constraint. That is, if the method m invoked
on v of type C is defined in the class C′, then the predicate visibleC(e, C′) is true.

Definition 2 (Confinement Satisfaction)
A program P = v1 m1 e1 . . . vn mn en satisfies confinement iff for all i ∈ [1, n] we
have visibleC(ei, C′), where vi = new C(v), mdef (mi, C) = C′.

We prove the properties of confined objects in Theorem 2. We show that if a well-
typed program initially satisfies confinement, then it will always satisfy confinement
during execution. We also prove the subject reduction lemmas for expressions and
programs, and state the progress lemma for programs. For the subject reduction
lemma, we show that an expression of non-confined type will not be reduced to an
expression of confined type. Theorem 1 states that a well-typed program will not
get stuck.

5.3 Subject reduction

Recall that, we assume the class table CT to be well-typed, which means that all
classes in CT are well-typed.

Lemma 2
If mtype(m, C0) = C → C, mbody(m, C0) = (x, e), and mdef (m, C0) = C′0, then there
exists some C′ � C such that x : C, this : C′0 ` e : C′.

22 Zhao, Palsberg, Vitek

The following two lemmas prove term substitution preserves typing for expres-
sions in non-anonymous and anonymous methods.

Lemma 3
If x : B ` e : C, ∅ ` v : A, A � B, then ∅ ` [v/x]e : C′ for some C′ � C.

Proof
If e = xi, then ∅ ` e : C, C = Bi, [v/x]e = vi, and ∅ ` [v/x]e : Ai, Ai = C′. By
assumption, we have Ai � Bi. For other cases where e is of the forms e0.m(e),
(C′) e0, e0.f, or new C(e), we can show that ∅ ` [v/x]e : C by applying the induction
hypothesis to the immediate subterms of e.

Lemma 4
If x : B, this : D0 ` e : C, ∅ ` v : A, A � B, ∅ ` new C0(u) : C0, C0 <: D0, and
anon(e, D0), then ∅ ` [v/x, new C0(u)/this]e : C′ for some C′ � C.

Proof
From anon(e, D0), we have e 6= this and if e is a variable, then e ∈ x and the proof
is similar to Lemma 3. If e = this.m(e), then from anon(e, D0) we have anon(e, D0)
and anon(m, D0). From Rule T-Invk and applying induction hypothesis to e, we can
show that if x : B, this : D0 ` e : D then ∅ ` [v/x, new C0(u)/this]e : C and C � D. Since
method-overriding preserves the anonymity of methods (from override(m, C0, D0) in
Rule T-Method) and from C0 <: D0, we have that anon(m, D0) implies anon(m, C0).
Thus, we can conclude from Rule T-Invk that ∅ ` [v/x, new C0(u)/this]e : C. For other
cases, we can show ∅ ` [v/x, new C0(u)/this]e : C by simple induction on e.

Lemma 5 (Subject reduction)
If P is well-typed and P → P ′ then P ′ is well-typed.

Proof
If P ′ = P ′′ . v m E[e] . v′ m′ e′′, then to prove P ′ is well-typed, we need to show
that P ′′ . v m E[e] is well-typed, e′′ is well-typed and its type is a safe subtype of
the type of e. In particular, if P = P ′′ . v m E[e] . v′ m′ e′ then it is sufficient to
show that ∅ ` e′′ : C′′ and C′′ � C′ where C′ is the type of e′. The reason is that if
C is the type of e, then from the assumption that P well-typed, we have C′ � C,
and thus C′′ � C′ would imply C′′ � C.

If P ′ = nil . v′ m′ e′′, then we only need to show that e′′ is well-typed.
There are four cases depending on the reduction rule used.
(1)If the reduction from P to P ′ is by Rule R-Field, then P has the form of

P ′′ . v m E[e], where e = new C0(v).fi, and P ′ = P ′′ . v m E[e′], where e′ = vi.
Since P is well-typed, if ∅ ` e : Ci, then from Rule T-Field, new C0(v) is well-
typed and if ∅ ` vi : C′i, then C′i � Ci by Rule T-New. By induction on the type
derivation of E[e], we can show that if ∅ ` E[e] : C, then ∃C′ such that ∅ ` E[e′] : C′

and C′ � C. Therefore, P ′ is well-typed.
(2) If the reduction is by Rule R-Cast, then P has the form P ′′ . v m E[e], where

e = (C) new C′(v), and P ′ = P ′′ . v m E[e′], where e′ = new C′(u), and from Rule
T-Ucast, ∅ ` e′ : C′ and C′ � C. Thus, similar to the previous case we can show
that P ′ is well-typed.

Type-based Confinement 23

(3) If the reduction is by Rule R-Invk, then P has the form P ′′ . v m E[e], where
e = v′.m′(v′), v′ = new C0(u), mbody(m, C0) = (x, e0), and P ′ = P ′′ . v m E[e] . v′ m′ e′,
where e′ = [v/x, v′

/this]e0. If mtype(m, C0) = C → C, mdef (m, C0) = C′0, x : C, this :
C′0 ` e0 : C′, and ∅ ` v : C′, then C′ � C, C′ � C, and either C0 � C′0 or anon(m, C′0).
From Lemma 2, 3, and 4, and Rule R-Invk, ∃C′′ such that ∅ ` e′ : C′′ and C′′ � C′.
Thus, C′′ � C and P ′ is well-typed.

(4) If the reduction is by Rule R-Ret, then P has the form of P ′′ . v m E[e] . v′ m′ v′′

and P ′ = P ′′ . v m E[v′′]. Since P is well-typed, if ∅ ` e : D and ∅ ` v′′ : D′, then
D′ � D. By the helper lemma below, if ∅ ` E[e] : C, then ∅ ` E[v′′] : C′ and C′ � C.
Therefore, P ′ is well-typed.

Lemma If ∅ ` E[e] : C, ∅ ` e : D, and ∅ ` e′ : D′, where D′ � D, then ∃C′ such
that ∅ ` E[e′] : C′ and C′ � C. The proof is straightforward by case analysis of the
form of E.

5.4 Progress

A terminating computation reduces to the form of nil . v m v′. An irreducible pro-
gram P is deemed stuck if it is not of the form nil . v m v′. We show that well-typed
programs do not get stuck.

Lemma 6
If P is well-typed and not in the form of nil . v m v′, then there exist P ′ such that
P → P ′.

Theorem 1 (Soundness)
A well-typed program will not get stuck.

Proof
Immediate from Lemma 5 and 6.

5.5 Confinement Theorem

The following lemma shows that the reduction of a well-typed program preserves
confinement.

Lemma 7
If P is well-typed and satisfies confinement, and P → P ′, then P ′ satisfies con-
finement.

Proof
(1) Suppose the reduction from P to P ′ is by Rule R-Field or R-Cast. If P =
P ′′ . v m E[e], e 6= v′.m′(u), and P ′ = P ′′ . v m E[e′], then by the assumption that P

is well-typed, ∃C such that ∅ ` e : C, and visibleC0(e, C
′
0), where v = new C0(u′) and

mdef (m, C0) = C′0. From Lemma 5, P ′ is well-typed and ∃C′ such that ∅ ` e′ : C′

where C′ � C. From visibleC0(e, C
′
0), we have visible(C, C′0). Since C′ � C, if C′ is

confined, then so is C. From C′ <: C and Rule T-Class, we have visible(C, C′), which
implies that if C is confined then packof (C) = packof (C′). From visible(C, C′0), if C

24 Zhao, Palsberg, Vitek

is confined, then packof (C) = packof (C′0). Thus, if C′ is confined, then packof (C′) =
packof (C) = packof (C′0). Therefore, we have visible(C′, C′0)

If the reduction from P to P ′ is by Rule R-Field, then e has the form of
new D(u).fi and e′ = ui. Thus, visibleC0(ui, C

′
0). If the reduction is by Rule R-Cast,

then e in the form of (C) u and e′ = u. Thus, visibleC0(u, C
′
0). Therefore, we conclude

that visibleC0(e
′, C′0). Since P is well-typed, we have visibleC0(E [e], C′0). By simple

induction, we can show that visibleC0(E [e′], C′0). Thus, P ′ satisfies confinement.
(2) Suppose the reduction is by Rule R-Invk. If P has the form P ′′ . v m E[e], e =

v′.m′(v), v′ = new C0(u), mbody(m′, C0) = (x, e0), then P ′ = P ′′ . v m E[e] . v′ m′ e′,
where e′ = [v/x, v′

/this]e0.
Suppose mtype(m′, C0) = C → C, mdef (m′, C0) = C′0, and ∅ ` v : C′. From Rule

T-Method, we have Γ ` visible(e0, C′0) and Γ ` e0 : C where Γ = x : C, this : C′0
and C′ � C.

If C0 � C′0, then from Lemma 3, we have that for each immediate subterm
e′0 of e0, if Γ ` e′0 : D, then ∅ ` [v/x, v′

/this]e′0 : D′, D′ � D, and visible(D, C′0)
implies visible(D′, C′0). Thus, from Γ ` visible(e0, C′0), we can show by induction
that visibleC0(e

′, C′0) is true.
If C0 6� C′0, then from Rule T-Invk, we have anon(m′, C′0), which implies that

the variable this can occur only in the subterms of e0 in the form of this.f or
this.m′(e) (where ei 6= this, ∀i). Thus, the object v′ can be only in the subterms
of e′ in the forms of v′.f or v′.m′(e) (where ei is not of the form new C0(u), ∀i). From
Lemma 4 and Γ ` visible(e0, C′0), we can prove visibleC0(e

′, C′0) by simple induction.
Thus, P ′ satisfies confinement.

(3) If the reduction is by Rule R-Ret, then P has the form of P ′′ . v m E[e] . v′ m′ v′′

and P ′ = P ′′ . v m E[v′′]. From Lemma 5, P ′ is well-typed. Thus, if ∅ ` e : C and
∅ ` v′′ : C′, then C′ � C. Suppose v = new C0(v) and mdef (m, C0) = C′0. Since P

satisfies confinement, we have visibleC0(E [e], C′0), which implies visibleC0(e, C
′
0) and

visible(C, C′0). Hence, we have visible(C′, C′0) and visibleC0(v
′′, C′0). It is clear that

visibleC0(E [v′′], C′0) is true; thus, P ′ satisfies confinement.

Theorem 2 (Confinement)

If P is well-typed and satisfies confinement, and P →∗ P ′ then P ′ satisfies con-
finement.

Proof

Immediate from Lemma 5 and Lemma 7

The Confinement Theorem states that a well-typed program that initially satisfies
confinement preserves confinement. Intuitively, this means that that during the
execution of a well-typed program, all the objects that are accessed within the body
of a method are visible from the method’s defining package. The only exception is
for anonymous methods, as they may have access to this which can evaluate to an
instance of a class confined in another package, and if this occurs the use of this
is restricted to the receiver position.

Type-based Confinement 25

6 Generics and Confinement

The lack of support for collections and reusable confined classes was identified
early on as a significant issue for practical adoption of confined types (Vitek &
Bokowski, 2001). In this section, we extend the confinement property to generic
types to allow writing generic classes which are, in and of themselves, not con-
fined, but become confined if instantiated with confined arguments. ConfinedFJ
is extended with support for generic types, following FGJ (Igarashi et al., 2001),
and renamed ConfinedFGJ. The main departure from ConfinedFJ is that a generic
type with confined type parameters is also treated as confined. We not only need to
prevent unsafe reference widening for confined types but also for generic types with
variable type parameters. Therefore, besides the first six confinement rules already
presented, we require the following:

C7 A generic type or type variable cannot be widened to a type containing a different
set of type variables.

C8 A method m invoked on an expression of type T must either be defined in a type with
the same set of type variables as T or be an anonymous method.

Fig. 12. Genericity confinement constraint.

Rules C5 and C7 combined enforces a subtyping relation that prevents unsafe ref-
erence widening. Recall that C5 prevents widening for non-generic confined types.
Since a generic class can be instantiated with confined type parameters, unsafe ref-
erence widening can happen after generic type instantiation. For example consider a
class Vector<X> and a method that assigns a Vector to a variable of l.Object type.
If the class Vector<X> is ever instantiated with a confined type, C, then the assign-
ment of a Vector<C> to an l.Object variable leads to unsafe reference widening.
Rule C7 prevents such unsafe widenings. For instance, widening a reference from
Vector<X> to Map<X> is safe if the class is defined as Vector<X> / Map<X>.

Rule C8 supplements C3 so that method calls on a receiver object of a generic
type with confined type parameters will not leak references to the receiver object
to untrusted code.

To see the advantage of confined generic classes, consider a generic linked list
class. If we desire to use the class to hold both confined and non-confined objects,
it should be defined as follows.

class p.List<X / l.Object> / l.Object {
X val;

p.List<X> next;

p.List(X val, p.List<X> next) {
super(); this.val=val; this.next=next;

}
}

26 Zhao, Palsberg, Vitek

With this definition, lists can be used in several contexts. For instance, it is possible
to use the same list class twice within the same package, once with a confined type,
thus turning that instantiation of the list type into a confined type, and once with a
non-confined type. The following example illustrates this. Classes A and B reside in
package q, the latter is confined. Class A further defines two variables: show holds
a list of A objects and hide holds a list of B objects. Since B is confined the type
List will be confined as well.

class q.A / l.Object {
p.List<A> show;

p.List hide;

...

}

conf class q.B / l.Object {
q.B() { super(); }

}

If a class needs to be reused across different packages and confined in each of these
packages one may simply give the class a dummy type variable. This type variable
need not be used in the body of the class, it will merely serve as a marker. Reuse
is thus obtained by instantiating the class in each of the packages with a confined
class as argument.

Consider the following scenario, a class Key is meant to provide functionality that
can be used in different confined settings.

class a.Key<X / l.Object> / l.Object {
...

}

The type variable X is not used by the implementation of Key, and the class
can be confined in any package as long as it is instantiated with a confined type,
e.g. new Key<p.B>(). Type parameters allow reusing several related classes at the
same time. For example, suppose the classes PublicKey<X> and PrivateKey<X>

both extend the class Key<X>. Then, we may instantiate the three classes with a
confined type such as p.B and make them confined in a single package. Also, the
widening of references from the type PublicKey<X> or PrivateKey<X> to Key<X>

is safe as it will not allow references to leak. This use of type variables is very close
to approaches based on ownership types.

The semantics of generic confined types is surprisingly simple. Any type variable
will be treated as a confined type by the type system so that unsafe reference
widening will be forbidden for expressions of this type. Even though a generic type
(a type that contains type variables) may not be confined in any package, unsafe
reference widening should not be allowed for expressions of the type either. For
example, consider a generic container class.

Type-based Confinement 27

class p.Container<X / l.Object> / l.Object {
X val;

p.Container(X val) { this.val = val }
l.Object get() { return this.val; }
l.Object get2() { return this; }

}

The Container class has a method get() that returns the value of field val and a
method get2() that returns the variable this. Both methods violate the confine-
ment properties because the types of the return expressions in get() and get2()

are widened from X and Container〈X〉 to l.Object respectively. The following ex-
ample illustrates the case where X is replaced by confined types when Container

is instantiated.

class q.A / l.Object {
p.Container<q.B> f = new p.Container<q.B>(new q.B());

l.Object reveal() { return f.get(); }
}

The class q.A is allowed to access q.B, but at runtime the method reveal() calls
get() and thus the type of the expression new q.B() is widened to l.Object.

Motivation for Rule C4. In a generic class, the fields of variable type and the
methods of variable return types should not be package-scoped, because otherwise,
these fields and methods would not be accessible to other code if this class is instan-
tiated outside its package, which would limit its reuse. If this class is instantiated
with confined type parameters, then its public methods may return confined values
and its public fields may reference confined values. However, this does not result in
any confinement violation because a generic type N with confined type parameters
is treated as a confined type and objects of this type are not accessible to code
outside the its defining package. Moreover, by Rule C4, the subtypes of N must
also be confined so that outside code cannot access these public methods through
inheritance either.

For example, if the generic class Vector<X> has a public method get that returns
elements of the type X stored in the Vector. However, if we instantiate the vector
class with a confined type C in the package P, then the object of the type Vector<C>
is also confined in P. Also, By Rule C4, any class D that extends Vector<C> must
be confined in P. Therefore, even if the method get is public and returns values of
a confined type, the code outside of P is not able to take advantage of this, since
the instances of the class Vector<C> and its subclasses are not accessible to code
outside of P except maybe to methods inherited by Vector<X>.

Even the methods inherited by Vector<X> cannot exploit the method get. If the
inherited methods are defined in a class such as Object then it cannot access get.
(The method get cannot override any methods in Object since method overriding
rule requires that overriding and overridden methods to have the same type sig-
natures while the return type of get is a variable type X not found in Object.) If
Vector<X> inherits a class such as Map<X>, then the method in Map<X> may have

28 Zhao, Palsberg, Vitek

access to the get method of Vector<X>. This is safe however, since there is not
unsafe reference widening of the variable this to call a method of Map<X> on an
object of the type Vector<X> (likewise, it is safe to call methods of Map<C> on
objects of the type Vector<C>).

Motivation for Rule C6. While the rule that ensures that method overriding
is anonymity preserving is not strictly necessary for ConfinedFJ as anonymity can
be inferred (Grothoff et al., 2001), it is however needed for ConfinedFGJ.

To illustrate the need, consider the following example, where the generic class
q.Naive has a type variable X with upper bound q.A, a field f of the type X, and a
method reveal() that calls method m() on f. Because m() in q.A is anonymous,
the method body this.f.m() in reveal() is typable even though the receiver
expression this.f is implicitly widened to the public type q.A in m().

In other words, it does not violate Rule C8 to call m on a receiver expression
this.f of type X with upper bound q.A because the method m in q.A is anonymous.

class q.Naive<X / q.A> / l.Object {
X f;

q.Naive (X f) { this.f = f; }
l.Object reveal() { return this.f.m(); }

}

class q.A / l.Object {
anon l.Object m() { return new l.Object(); }

}

class q.B / q.A {
l.Object m() { return this; }

}

conf class q.C / q.B { ... }

Suppose that overriding does not preserve the anonymity of methods. The method
m() in the class q.B overrides m() of q.A but the former is not anonymous since it
returns the self-reference this and widens it to l.Object type. Now consider the
expression new q.Naive<q.C>(new q.C()).reveal() which instantiates the class
q.Naive with the confined type q.C and calls its reveal() method. The expression
is typable and its type is l.Object. However, the reduction steps of the expression
show that it reduces to an object of the type C.

new q.Naive<q.C>(new q.C()).reveal()

→ new q.Naive<q.C>(new q.C()).f.m()

→ new q.C().m() → new q.C()

What went wrong is that while evaluating the call to reveal() on the object
new q.Naive<q.C>(new q.C()), the method m() of q.B is called on the confined

Type-based Confinement 29

object new q.C(). The method is not anonymous and it widens the reference to
the confined object new q.C() to the public type l.Object. In ConfinedFJ, we
could infer the anonymity of a method when it is invoked on a confined type. Here,
the anonymity of a method sometimes has to be decided on type variables with
concrete upper bounds. Without Rule C6, the fact that the method m is anonymous
relative to q.A does not implies it is anonymous relative to X which can be replaced
by the subtypes of q.A such as q.B or q.C, Therefore, Rule C6 is needed to ensure
the anonymity of methods that are called on confined or generic types even if the
methods are overridden in subclasses.

In ConfinedFJ, Rule C6 only needs to be applied to methods inherited by confined
types, in ConfinedFGJ, we also apply the rule to the methods inherited by the
generic types since generic types could become confined after instantiation.

6.1 Syntax

The syntax for ConfinedFGJ is shown in Figure 13. For simplicity, we omit generic
methods, thus only classes can have type parameters. Metavariables X, Y range over
type variables, N, W range over concrete types, and S, T range over both concrete
types and type variables. In a class definition [conf] class C〈X / N〉 / N { . . . }, the
upper bounds for the type variables X are N, which are always non-variable types.
The type variable X appearing in a generic class declaration can be instantiated
with either public or confined type.

N ::= C〈T〉

T ::= X | N

L ::= [conf] class C〈X / N〉 / N { T f; K M }

K ::= C(T f) { super(f); this.f = f; }

M ::= [anon] T m(T x) { return e; }

e ::= x | e.f | e.m(e) | (N) e | new N(e)

v ::= new N(v)

Fig. 13. ConfinedFGJ: Syntax.

6.2 Dynamic Semantics

The dynamic semantics of ConfinedFGJ in Figure 14 is mostly identical to the
ConfinedFJ rules presented in Figure 7.

30 Zhao, Palsberg, Vitek

6.3 Static Semantics

The structure of the ConfinedFGJ static semantics is similar to that of the Con-
finedFJ static semantics. Figure 15 gives subtyping rules, definitions for well-formed
types, and other miscellaneous definitions. The subtyping rules are the same as those
in Generic FJ. A generic type may contain type parameters that are confined in
different packages. The set confPack(C〈T〉) contains the set of packages that C and
T are confined in. The set Var(T) contains the set of type variables in T.

The partial order � on types represents the restricted subtyping relation that
does not allow unsafe reference widening. As in FGJ, ∆ denotes a type environment
that maps type variables to their concrete type upper bounds. To have ∆ ` S � T,
we must have ∆ ` S <: T and that confPack(S) is a subset of confPack(T); also, S,
T must contain the same set of type variables. With the last restriction, the partial
order on S, T still holds even if type variables in S, T are instantiated by confined
types. For example, if ∆ ` X � N then it must be the case that N = C〈T〉 with X

being the only type variable in T. In this case, if D is confined and N′ = [D/X]N, then
∆ ` D � N′.

A type T is visible in the class C〈T〉 if for any package p that T is confined in,
either C is defined in p or one of T is confined in p. If T is a concrete type that has
the form C′〈T′〉, then this definition implies that C′ is visible in C and the confined
types in T′ must be visible in C or come from T. Note that this definition gives the
appearance that a type variable is visible in any class, however since a type variable
is not accessible outside its defining class, visible(X, N) does not apply unless X is
defined in N.

Figure 16 contains the helper functions used in the typing rules and they are
similar to those in Generic FJ. Anonymous methods of a generic class C〈X〉 stay
anonymous even if the type parameters X in class C are instantiated by type ar-
guments. In the rest of the paper, anon(m, C〈T〉) is equivalent to anon(m, C) and
anon(e, C〈T〉) is equivalent to anon(e, C).

e = new N(v).fi fields(N) = (T f)

P . v m E[e] → P . v m E[vi]
(GR-Field)

e = (N′) new N(v) ∅ ` N <: N′

P . v m E[e] → P . v m E[new N(v)]
(GR-Cast)

e = e′.m′(v) e′ = new N(u) mbody(m′, N) = (x, e0)

P . v m E[e] → P . v m E[e] . new N(u) m′ [v/x, e′/this]e0
(GR-Invk)

e = v′.m′(v)

P . v m E[e] . v′ m′ v′′ → P . v m E[v′′]
(GR-Ret)

Fig. 14. ConfinedFGJ: Dynamic semantics.

Type-based Confinement 31

Subtyping:

∆ ` T <: T ∆ ` X <: ∆(X)

∆ ` S <: T ∆ ` T <: U

∆ ` S <: U

CT (C) = [conf] class C〈X / N〉 / N { . . . }
∆ ` C〈T〉 <: [T/X]N

Well-formed types:

∆ ` Object

X ∈ dom(∆)

∆ ` X

CT (C) = [conf] class C〈X / N〉 / N { . . . }
∆ ` T ∆ ` T <: [T/X]N

∆ ` C〈T〉

Type variables in type:

Var(X) = {X} Var(C〈T〉) =
⋃
∀T∈T

Var(T)

Confining packages:

confPack(X) = ∅

confPack(C) =

{
{packof (C)} if conf (C)
∅ otherwise

confPack(C〈T〉) = confPack(C) ∪
⋃

∀T∈T
confPack(T)

Safe subtyping:

∆ ` S <: T confPack(S) ⊆ confPack(T) Var(S) = Var(T)

∆ ` S � T

Visibility of types:

confPack(T) ⊆ {packof (C)} ∪
⋃

∀T∈T
confPack(T)

visible(T, C〈T〉)

Fig. 15. ConfinedFGJ: Subtyping rules, well-formed types, and miscellaneous definitions.

32 Zhao, Palsberg, Vitek

Bound of type:

bound∆(X) = ∆(X) bound∆(N) = N

Field look-up:

fields(Object) = ()

CT (C) = [conf] class C〈X / N〉 / N { S f; K M } fields([T/X]N) = (U g)

fields(C〈T〉) = (U g, [T/X]S f)

Method Definition Lookup:

CT (C) = [conf] class C〈X / N〉 / N { S f; K M }
methods(C) = M

[anon] U m(U x) { return e; } ∈ methods(C)

mdef (m, C〈T〉) = C〈T〉

CT (C) = [conf] class C〈X / N〉 / N { S f; K M } m is not defined in M

mdef (m, C〈T〉) = mdef (m, [T/X]N)

Method Type Lookup:

mdef (m, N) = C〈T〉 CT (C) = [conf] class C〈X / N〉 . . .
[anon] U m(U x) { return e; } ∈ methods(C)

mtype(m, N) = [T/X]U→ [T/X]U

Method body look-up:

mdef (m, N) = C〈T〉 CT (C) = [conf] class C〈X / N〉 . . .
[anon] U m(U x) { return e; } ∈ methods(C)

mbody(m, N) = (x, [T/X]e)

Valid method overriding:

either m is not defined in N′0 or any of its parents, or

mtype(m, N0) = T→ T mtype(m, N′0) = T→ T anon(m, N′0) ⇒ anon(m, N0)

override(m, N0, N′0)

Fig. 16. ConfinedFGJ: Auxiliary functions.

Type-based Confinement 33

6.3.1 Typing rules

Figure 17 contains typing rules for expressions, methods, and classes, and also
visibility rules for expressions. The expression typing rules are similar to those in
Generic FJ with some additional constraints to prevent unsafe reference widening.

• Rules GT-Var, GT-New, and GT-UCast are similar to those in Con-
finedFJ.

• By Rule GT-Field, an expression e.fi is well-typed given the environments
∆,Γ only if fi is a field declared in the type bound∆(T), where T is the type
of e and bound∆(T) refers to the type upper bound of T in ∆ if it is a variable
or T itself if it is a non-variable type.

• By Rule (GT-method), if a method call e.m(e) is well-typed, then the types
of the arguments e are safe subtypes of the corresponding parameter types of
the method m in order to prevent unsafe reference widening through parameter
passing; and moreover, either m is defined in a type N so that the type of e is a
safe subtype of N or m is an anonymous method. The latter requirement, which
corresponds to Rules C3 and C8, prevents a receiver object of confined type
from being stored in fields or variables of non-confined types. The defining
type of m is determined by searching the type hierarchy upward from the type
bound∆(T), where T is the type of e.

In the method typing rule, we require that the return expression of a method
in class C be visible in C. The visibility rules of expressions in a generic class are
similar to those of non-generic classes. As in the case of ConfinedFJ, the visibility
constraint on method bodies model confinement rules C2 and C1. That is, a confined
type cannot be used in the classes outside the package of the confined type, and
fields of confined types and methods that return values of confined types are not
accessible outside the defining packages of the confined types. The class typing rule
GT-Class is similar to the one in ConfinedFJ and it models Rule C4 so that if a
class C extends a confined type N, then C must be confined as well.

6.4 Properties

In this section, we prove some results similar to those for ConfinedFJ. In Confined
FGJ, a program without free type variables should have the same confinement
properties as a program in ConfinedFJ. Theorem 3 shows that the execution of a
well-typed generic program always preserves confinement.

The definition of well-typed programs states that all frames be well-typed under
the assumption that return values have the proper type. Confinement satisfaction
is defined to mean that every the expression being evaluated must be visible from
the enclosing method’s class.

Definition 3 (Well-typed)
A program P is well-typed iff ` P as defined below.

∅; ∅ ` e : N
` nil . v m e

` P . v m E[e] ∅; ∅ ` e : N ∅; ∅ ` e′ : N′ N′ � N

` P . v m E[e] . v′ m′ e′

34 Zhao, Palsberg, Vitek

Expression typing:

∆;Γ ` x : Γ(x)
(GT-Var)

∆; Γ ` e : T fields(bound∆(T)) = (T f)

∆; Γ ` e.fi : Ti
(GT-Field)

∆; Γ ` e : T ∆;Γ ` e : V
mdef (m, bound∆(T)) = N mtype(m, N) = U→ U

∆ ` V � U (∆ ` T � N) ∨ anon(m, N)

∆; Γ ` e.m(e) : U
(GT-Invk)

∆ ` N fields(N) = (T f) ∆; Γ ` e : S ∆ ` S � T

∆;Γ ` new N(e) : N
(GT-New)

∆; Γ ` e : T ∆ ` N T � N

∆;Γ ` (N) e : N
(GT-UCast)

Method typing:

∆ = X <: N Γ = x : T, this : C〈X〉 ∆ ` T, T

∆;Γ ` e : S ∆ ` S � T ∆;Γ ` visible(e, C〈X〉)
override(m, C〈X〉, N) (anon(m, C) ⇒ anon(e, C))

[anon] T m(T x) { return e; } OK IN C〈X / N〉 / N
(GT-Method)

Class typing:

X <: N ` N, N, T M OK IN C〈X / N〉 / N fields(N) = (U g)

K = C(U g, T f) {super(g); this.f = f;}
visible(N, C〈X〉) (packof (C) ∈ confPack(N)) implies conf (C)

[conf] class C〈X / N〉 / N { T f; K M } OK
(GT-Class)

Expression visibility:

visible(Γ(x), N)

∆; Γ ` visible(x, N)

∆; Γ ` e.fi : N′ visible(N′, N) ∆; Γ ` visible(e, N)

∆; Γ ` visible(e.fi, N)

visible(N′, N) ∆; Γ ` visible(e, N)

∆; Γ ` visible((N′) e, N)

visible(N′, N) ∀i, ∆;Γ ` visible(ei, N)

∆; Γ ` visible(new N′(e), N)

∆; Γ ` e.m(e) : N′ visible(N′, N) ∆; Γ ` visible(e, N) ∀i, ∆;Γ ` visible(ei, N)

∆; Γ ` visible(e.m(e), N)

Fig. 17. ConfinedFGJ: Typing rules.

Type-based Confinement 35

Definition 4 (Confinement Satisfaction)
A program P = v1 m1 e1 . . . vn mn en satisfies confinement iff for all i ∈ [1, n], we
have visibleNi(ei, N

′
i), where vi = new Ni(u) and mdef (mi, Ni) = N′i.

The definition of visibleN0(e, N) is similar to that of visibleC0(e, C). The difference
is that if the type of e is N′, then visibleN0(e, N) implies visible(N′, N). The latter
means that if N′ is a type confined in the package P, and N = C〈N〉, then either C is
defined in P or there exists N′′ ∈ N such that N′′ is confined in P.

∅; ∅ ` e.fi : N′ visible(N′, N) (e = new N0(u) ∨ visibleN0(e, N))

visibleN0(e.fi, N)

visible(N′, N) visibleN0(e, N)

visibleN0((N
′) e, N)

visible(N′, N) ∀i, visibleN0(ei, N)

visibleN0(new N′(v e), N)

∅; ∅ ` e.m(e) : N′ visible(N′, N) (e = new N0(u) ∨ visibleN0(e, N)) ∀i, visibleN0(ei, N)

visibleN0(e.m(e), N)

Fig. 18. ConfinedFGJ: Runtime expression visibility.

Next, we prove some helper lemmas used in proving that subject reduction pre-
serves typing (Lemma 17) and confinement (Lemma 19).

In particular, the proof of Lemma 17 depends on Lemma 14, which shows that the
body of a method invoked on a well-formed type is well-typed. To prove Lemma 14,
we need to show that type variable substitution preserves safe subtyping, well-
formed types, and expression typing,

Also, the proof of Lemma 19 depends on Lemma 13, which shows that type
variable substitution preserves static expression visibility. To prove Lemma 13, we
need to show that type variable substitution preserves type visibility and expression
typing.

Suppose CT (C) = . . . class C〈X / N′〉 . . ., ∅ ` C〈N〉, and ∆ = X <: N′. We show
that the substitution of type variables X by N preserves subtyping.

Lemma 8
If ∆ ` S <: T, then ∅ ` [N/X]S <: [N/X]T.

Proof
The proof follows that of FGJ (Igarashi et al., 2001).

The lemma below is related to Rule C7, which imposes additional restriction on
safe subtyping for generic types so that safe-subtyping still holds when there is
type-variable substitution.

Suppose CT (C) = . . . class C〈X / N′〉 . . ., ∅ ` C〈N〉, and ∆ = X <: N′. We show
that the substitution of type variables X by N preserves safe subtyping.

Lemma 9

36 Zhao, Palsberg, Vitek

If ∆ ` S, T and ∆ ` S � T, then ∅ ` [N/X]S � [N/X]T.

Proof
From ∆ ` S � T, we have ∆ ` S <: T, Var(S) = Var(T), and confPack(S) ⊆
confPack(T). By Lemma 8, we have ∅ ` [N/X]S <: [N/X]T. From ∆ ` S, T and
dom(∆) = X, all type variables in S, T are replaced by types in the substitution [N/X],
which implies Var([N/X]S) = Var([N/X]T) = ∅. Since Var(S) = Var(T), the same set
of types replace variables in S and T. Thus, confPack([N/X]S) ⊆ confPack([N/X]T).

Suppose CT (C) = . . . class C〈X / N′〉 . . ., ∅ ` C〈N〉, and ∆ = X <: N′. We show
that the substitution of type variables X by N preserves well-formed types.

Lemma 10
If ∆ ` T, then ∅ ` [N/X]T.

Proof
The proof follows that of FGJ (Igarashi et al., 2001).

Suppose CT (C) = . . . class C〈X / N′〉 . . ., ∅ ` C〈N〉, and ∆ = X <: N′. We show
that the substitution of type variables X by N preserves expression typing.

Lemma 11
If ∆; Γ ` e : T then ∅; [N/X]Γ ` [N/X]e : [N/X]T.

Proof
We prove by induction on the derivation of ∆; Γ ` e : T. There are five cases
depending on the last rule used in the type derivation.

(1) Suppose e = x. In this case, ∆; Γ ` x : Γ(x) and ∅; [N/X]Γ ` x : [N/X]Γ(x).
(2) Suppose e = e0.fi. In this case, if ∆; Γ ` e0 : T0 and fields(bound∆(T0)) = (T f),

then ∆; Γ ` e0.fi : Ti. By induction hypothesis, we have that ∅; [N/X]Γ ` [N/X]e0 :
[N/X]T0; and by the definition of fields, ∃S g such that fields([N/X]T0) = (S g, [N/X]T f).
Therefore, by Rule GT-Field, we have ∅; [N/X]Γ ` [N/X](e0.fi) : [N/X]Ti.

(3) Suppose e = e0.m(e), In this case, ∆; Γ ` e : U if ∆; Γ ` e0 : T0, ∆; Γ `
e : V, mdef (m, bound∆(T0)) = N0, mtype(m, N0) = U → U, ∆ ` V � U, and ∆ `
T0 � N0 ∨ anon(m, N0). By induction hypothesis, we have ∅; [N/X]Γ ` [N/X]e0 :
[N/X]T0, ∅; [N/X]Γ ` [N/X]e : [N/X]V, and by Lemma 9, we have ∅ ` [N/X]V � [N/X]U.
From ∅ ` [N/X]T0 <: [N/X](bound∆(T0)), and by induction on the recursive definition
of mdef , it can be shown that mdef (m, [N/X]T0) = N′0, where ∅ ` N′0 <: [N/X]N0, and
mtype(m, [N/X]N0) = [N/X]U → [N/X]U. In particular, if T0 is a non-variable type, then
N′0 = [N/X]N0 (from the definition of mdef). If T0 is a variable, then [N/X]T0 <: ∆(T0)
and by the definition of mdef , m has to be defined in [N/X]N0 or a subclass of [N/X]N0.
If ∆ ` T0 � N0, then from Lemma 9, we have ∅ ` [N/X]T0 � [N/X]N0. Since
Var([N/X]T0) = ∅, we have confPack([N/X]T0) ⊆ confPack([N/X]N0). From ∅ ` N′0 <:
[N/X]N0 and Rule GT-Class, we have confPack(N′0) ⊆ confPack([N/X]N0). Thus,
∅ ` [N/X]T0 � N′0. By definition, anon(m, N0) implies anon(m, [N/X]N0). By Rule GT-

Method and ∅ ` N′0 <: [N/X]N0, we have that anon(m, [N/X]N0) implies anon(m, N′0).
Thus, we have ∅ ` [N/X]T0 � N′0 ∨ anon(m, N′0). From Rule GT-Invk, we conclude
that ∅; [N/X]Γ ` [N/X](e0.m(e)) : [N/X]U.

Type-based Confinement 37

(4) Suppose e = new N(e). In this case, if ∆ ` N, fields(N) = (T f), ∆; Γ ` e : S,
and ∆ ` S � T, then ∆; Γ ` e : N. By Lemma 10, we have ∅ ` [N/X]N. It can be
shown that fields([N/X]N) = ([N/X]T f). By induction hypothesis, we have ∅; [N/X]Γ `
[N/X]e : [N/X]S. By Lemma 9, we have ∅ ` [N/X]S � [N/X]T. Thus, by Rule GT-New,
we have ∅; [N/X]Γ ` [N/X](new N(e)) : [N/X]N.

(5) Suppose e = (N) e′. In this case, ∆; Γ ` e : N, if ∆; Γ ` e′ : T, ∆ ` N, and
∆ ` T � N. By Lemma 10, we have ∅ ` [N/X]N. By induction hypothesis, we have
∅; [N/X]Γ ` [N/X]e : [N/X]T. By Lemma 9, we have ∅ ` [N/X]T � [N/X]N. Therefore, by
Rule GT-Cast, we have ∅; [N/X]Γ ` [N/X]((N) e

′) : [N/X]N.

Suppose CT (C) = . . . class C〈X / N′〉 . . ., ∅ ` C〈N〉, and ∆ = X <: N′. We show
that the substitution of type variables X by N preserves type visibility.

Lemma 12
If ∆ ` T, visible(T, C〈X〉) then visible([N/X]T, C〈N〉).

Proof
Since confPack(T) ⊆ {packof (C)}, we have confPack([N/X]T) ⊆ confPack(C〈N〉).
Thus, visible([N/X]T, C〈N〉).

Suppose CT (C) = . . . class C〈X / N′〉 . . ., ∅ ` C〈N〉, and ∆ = X <: N′. We show
that the substitution of type variables X by N preserves static expression visibility.

Lemma 13
If ∆; Γ ` visible(e, C〈X〉), then ∅; Γ ` visible([N/X]e, C〈N〉).

Proof
The proof is straightforward by induction on the derivation of ∆; Γ ` visible(e, C)
and by Lemma 11 and 12.

We now show that the return expression of a well-typed method is well-typed
after type variable substitution.

Lemma 14
If ∅ ` N0, mtype(m, N0) = N′ → N′, mbody(m, N0) = (x, e), and mdef (m, N0) = N′0,
then ∃N such that ∅; x : N′, this : N′0 ` e : N and ∅ ` N � N′.

Proof
Since ∅ ` N0, from the definition of mdef (m, N0) = N′0, Rule T-Class, and Lemma 10,
we can show by induction ∅ ` N′0.

If N′0 = C〈N〉, CT (C) = . . . class C〈X / W〉 . . ., mtype(m, C〈X〉) = U → U, and
mbody(m, C〈X〉) = (x, e0), then there exists U′ such that ∆; x : U, this : C〈X〉 `
e0 : U′ and ∆ ` U′ � U, where ∆ = X <: W.

By Lemma 11 and ∅ ` N′0, we have ∅; x : [N/X]U, this : [N/X]C〈X〉 ` [N/X]e0 : [N/X]U
′.

By Lemma 9 and ∅ ` N′0, we have ∅ ` [N/X]U
′ � [N/X]U.

Since mtype(m, N0) = N′ → N′, we have N′ = [N/X]U, N′ = [N/X]U. Also, since
mbody(m, N0) = (x, e) we have e = [N/X]e0. Since N′0 = C〈N〉 = [N/X]C〈X〉, we have
∅; x : N′, this : N′0 ` e : [N/X]U

′ and ∅ ` [N/X]U
′ � N′. Let N = [N/X]U

′. Then, we have
∅; x : N′, this : N′0 ` e : N and ∅ ` N � N′.

38 Zhao, Palsberg, Vitek

Lemmas 15 and 16 show that term substitution preserves typing and the latter
applies to the bodies of anonymous methods.

Lemma 15 (Term Substitution)
If ∅; x : N′ ` e : N′, ∅ ` v : N, and ∅ ` N � N′, then ∅ ` [v/x]e : N where ∅ ` N � N′.

Proof
The proof is similar to that of Lemma 3.

Lemma 16 (Substitution)
If ∅; x : N′, this : N′0 ` e : N′, ∅; ∅ ` v : N, ∅ ` N � N′, ∅; ∅ ` new N0(u) : N0,
∅ ` N0 <: N′0, and anon(e, N′0), then ∅; ∅ ` [v/x, new N0(u)/this]e : N where ∅ ` N � N′.

Proof
The proof is similar to that of Lemma 4.

We now show that subject reduction preserves typing and well-typed program
can make progress.

Lemma 17 (Subject reduction)
If P is well-typed and P → P ′, then P ′ is well-typed.

Proof
Similar to Lemma 5, we prove by a case analysis of the reduction rule used.

If P ′ = P ′′ . v m E[e] . v′ m′ e′′, then to prove P ′ is well-typed, we need to show
that P ′′ . v m E[e] is well-typed, e′′ is well-typed and its type is a safe subtype of
the type of e. In particular, if P = P ′′ . v m E[e] . v′ m′ e′ then it is sufficient to
show that ∅; ∅ ` e′′ : N′′ and ∅ ` N′′ � N′, where N′ is the type of e′.

(1)If the reduction from P to P ′ is by Rule GR-Field, then P has the form of
P ′′ . v m E[e], where e = new N0(v).fi, and P ′ = P ′′ . v m E[e′], where e′ = vi.
Since P is well-typed, if ∅; ∅ ` e : Ni, then from Rule GT-Field, new N0(v) is
well-typed and if ∅; ∅ ` vi : C′i, then N′i � Ni by Rule GT-New. By induction on
the type derivation of E[e], we can show that if ∅; ∅ ` E[e] : N, then ∃N′ such that
∅; ∅ ` E[e′] : N′ and ∅ ` N′ � N. Therefore, P ′ is well-typed.

(2) If the reduction is by Rule GR-Cast, then P has the form of P ′′ . v m E[e],
where e = (N) new N′(v), and P ′ = P ′′ . v m E[e′], where e′ = new N′(u), and from
Rule GT-Ucast, ∅; ∅ ` e′ : N′ and ∅ ` N′ � N. Thus, similar to the previous case
we can show that P ′ is well-typed.

(3) If the reduction is by Rule R-Invk, then P has the form of P ′′ . v m E[e],
where e = v′.m′(v′), v′ = new N0(u), mbody(m, N0) = (x, e0), and P ′ = P ′′ . v m E[e] . v′ m′ e′,
where e′ = [v/x, v′

/this]e0. If mtype(m, N0) = N → N, mdef (m, N0) = N′0, ∅; x :
N, this : N′0 ` e0 : N′, and ∅; ∅ ` v : N′, then ∅ ` N′ � N, ∅ ` N′ � N, and either
∅ ` N0 � N′0 or anon(m, N0). From Lemma 14, 15, and 16, and Rule R-Invk, ∃N′′
such that ∅; ∅ ` e′ : N′′ and ∅ ` N′′ � N′. Thus, ∅ ` N′′ � N and P ′ is well-typed.

(4) If the reduction is by Rule GR-Ret, then P is of the form P ′′ . v m E[e] . v′ m′ v′′

and P ′ = P ′′ . v m E[v′′]. Since P is well-typed, if ∅; ∅ ` e : W and ∅ ` v′′ : W′, then
∅ ` W′ � W. We can show by induction that if ∅; ∅ ` E[e] : N, then ∅ ` E[v′′] : N′

and ∅ ` N′ � N. Therefore, P ′ is well-typed.

Type-based Confinement 39

Lemma 18 (Progress)
If P is well-typed and not in the form of nil . v m v′ then ∃P ′ such that P → P ′.

6.4.1 Confinement property

The following lemma shows that subject reduction of a well-typed program pre-
serves confinement.

Lemma 19
If P is well-typed, satisfies confinement, and P → P ′, then P ′ satisfies confinement.

Proof
If the reduction from P to P ′ is by Rule GR-Field, GR-Cast, or GR-Ret, the
proof is similar to the that of Lemma 7.

If the reduction is by Rule GR-Invk, P = P ′′ . v m E[e], e = v′.m′(v), and
v′ = new N0(u). mbody(m′, N0) = (x, e0), then P ′ = P ′′ . v m E[e] . v′ m′ e′, where
e′ = [v/x, v′

/this]e0.
Suppose mtype(m′, N0) = N → N, mdef (m′, N0) = N′0, and ∅ ` v : N′. From Rule

GT-Method and Lemma 13, we have ∅; Γ ` visible(e0, N′0) and from Lemma 14,
we have ∅; Γ ` e0 : N′ where Γ = x : N, this : N′0 and ∅ ` N′ � N. Since P is
well-typed, by Rule GT-Invk we have ∅ ` N′ � N.

If ∅ ` N0 � N′0, then from Lemma 15, we have that for each subterm e′0 of e0,
if ∅; Γ ` e′0 : W, then ∅; ∅ ` [v/x, v′

/this]e′0 : W′, ∅ ` W′ � W, and consequently
visible(W, N′0) implies visible(W′, N′0). Thus, from ∅; Γ ` visible(e0, N′0), we can show
visibleN0(e

′, N′0) by induction.
If ∅ ` N0 6� N′0, then by Rule GT-Invk, anon(m′, N0), which means that the vari-

able this can occur only in the subterms of e0 in the form of this.f or this.m′(e)
(where ei 6= this, ∀i). Thus, the object v′ can be only in the subterms of e′ in the
form of v′.f or v′.m′(e) (where ei is not of the form new N0(u), ∀i). From Lemma 16
and ∅; Γ ` visible(e0, N′0), we can prove visibleN0(e

′, N′0) by simple induction. Thus,
P ′ satisfies confinement.

Lastly, we show that the execution of a well-typed generic program always pre-
serves confinement.

Theorem 3 (Confinement)
If P = v m e is well-typed, satisfies confinement, and P →∗ P ′, then P ′ satisfies
confinement.

Proof
Immediate from Lemma 17 and 19.

6.5 Example: Public-Key Cryptography

We demonstrate the use of generic confined types with an example (Figure 19
and 20) adapted from Vitek and Bokowski (2001). The implementation of a public-
key cryptography package needs to ensure that the random number object used in

40 Zhao, Palsberg, Vitek

class rsa.Key / l.Object {
l.BigDecimal mod;

l.BigDecimal exp;

anon l.String crypt(l.String msg) {...}
anon void setValues(l.BigDecimal m, l.BigDecimal e) {

mod = m; exp = e;

}
}

conf class rsa.ConfinedRandom / l.Random { }

class rsa.KeyFactory <X / rsa.Key> / l.Object {
void genKeyPair(rsa.Key pub, X priv) {. . .}

}

Fig. 19. Package containing RSA algorithm.

conf class secure.PrivKey / rsa.Key { }

class secure.Main / l.Object {
private secure.PrivKey privk = new secure.PrivKey();

rsa.Key pubk = new rsa.Key();

void main() {
(new rsa.KeyFactory<secure.PrivKey>()).genKeyPair(pubk, privk);

...

}
}

Fig. 20. Confining a type in a different package.

the generation of key pairs cannot be accessed by clients of the package. Also, the
references to the private key object generated for a client of the RSA implementation
should not escape the client package. The following examples are written in pseudo-
ConfinedFGJ using access modifiers for fields, assignment, default initializers, and
a type void.

In this example, the implementation of public-key cryptography is divided into
two parts: a package rsa containing reusable classes and a package secure contain-
ing code for one particular client of the rsa package. The class rsa.ConfinedRandom
is used to hold the random number generator confined in the package rsa. The pri-
vate key object instantiated from the class secure.PrivKey is confined in the pack-
age secure. The class rsa.Key implements public-private key pairs. The confined
class PrivKey extends the class Key. Since the methods crypt() and setValues()

in Key are anonymous, they can be reused in the confined subclass. KeyFactory
is a generic class that generates public-private key pairs using a ConfinedRandom

object. The type parameter X with type upper bound rsa.Key can be instantiated
with type secure.PrivKey. Class secure.Main calls the genKeyPair() method of
the object new rsa.KeyFactory<secure.PrivKey>() to get a public-private key
pair. The PrivKey object can be passed to the method genKeyPair() because

Type-based Confinement 41

the object new rsa.KeyFactory<secure.PrivKey>() is confined in the package
secure and the argument privk now has type PrivKey.

In comparison to the original example in Vitek and Bokowski (2001), generic
classes allow more reuse and avoid code redundancy. Without generic class, the
KeyFactory class cannot be used directly in the package secure since there is
no way for KeyFactory to access the private key objects confined in the package
secure.

The level of object confinement in Figure 19 and 20 can be improved even further.
For example, the fields mod and exp of rsa.Key refer to objects of public type which
may be accessible to outside code. Even though direct access to the exp and mod

fields of a PrivKey object requires a reference to the object, outside code may still
obtain references to the values indirectly. For instance, exp and mod are generated by
rsa.KeyFactory, which may pass the references to these objects to code outside the
package secure. Also, the classes in the package secure may inadvertently copy the
internal values of secure.PrivKey objects to outside code. To solve this problem,
we can define a generic class rsa.Num<X> to hold mod and exp. Key is redefined
as a generic class rsa.Key<X> where the type variable X is used to instantiate the
type of the fields. We also define a dummy confined class secure.C solely for the
purpose of instantiating generic classes so that their instances are confined within
secure. The modified code is shown in Figure 21.

class rsa.Num<X / l.Object> / l.BigDecimal { }

class secure.Key<X / l.Object> / l.Object {
rsa.Num<X> mod, exp;

anon void setValues(rsa.Num<X> m, rsa.Num<X> e) {
this.mod = m; this.exp = e;

}
}

class rsa.KeyFactory<X / l.Object> / l.Object {
void genKeyPair(rsa.Key<l.Object> pub, rsa.Key<X> priv) { ...} }

conf class secure.C / l.Object { }

class secure.Main / l.Object {
private rsa.Key<secure.C> privk = new rsa.Key<secure.C>();

rsa.Key<l.Object> pubk = new rsa.Key<l.Object>();

void main() {
(new rsa.KeyFactory<secure.C>()).genKeyPair(pubk, privk);

...

}
}

Fig. 21. Confining the internal values of the private key object.

Since public key objects can come from anywhere, they are instances of the type

42 Zhao, Palsberg, Vitek

Key<l.Object>. Private key objects of the secure package are instantiated from
Key<secure.C> class so that they are confined in the package. Correspondingly, mod
and exp of the private key objects are instances of the type rsa.Num<secure.C>

which are confined within secure as well.
Using generic confined types, we can create objects confined in the package

secure by calling the method genKeyPair of the class KeyFactory located in
the package rsa. Thus, both the private key object and its internal values can
be confined. This would be otherwise difficult to do since the class KeyFactory

must be located in rsa in order to access a random number object of the type
ConfinedRandom.

7 Related Work

Reference semantics permeate object-oriented programming languages, and the is-
sue of controlling aliasing has been the focus of numerous papers in the recent years
(Hogg, 1991; Hogg et al., 1992; Kent & Maung, 1995; Detlefs et al., 1998; Almeida,
1997; Noble et al., 1998; Genius et al., 1998; Clarke et al., 1998; Müller & Poetzsch-
Heffter, 1999; Clarke et al., 2001; Aldrich et al., 2002; Banerjee & Naumann, 2002a;
Clarke & Drossopoulou, 2002; Boyapati et al., 2003b). Noble et al. (1998) proposed
flexible alias protection to control potential aliasing amongst components of an ag-
gregate object (or owner). Aliasing mode declarations specify constraints on shar-
ing of references. The mode rep protects representation objects from exposure. In
essence, rep objects belong to a single owner object and the model guarantees that
all paths that lead to a representation object go through that object’s owner. The
mode arg marks argument objects which do not belong to the current owner, and
therefore may be aliased from the outside. Argument objects can have different
roles, and the model guarantees that an owner cannot introduce aliasing between
roles. Clarke et al. (1998) first proposed ownership types for representation contain-
ment and investigated the properties of object graphs based on dominator trees.
Their ownership model enforces strict object encapsulation with arguably limited
expressiveness. Later the same authors (Clarke et al., 2001) formalized the own-
ership model with a simple object calculus and fixed ownership context. Clarke
and Drossopoulou (2002) extended the ownership model with dynamic aliases to
allow temporary access to the representation objects. They also extended the own-
ership types with computational effects to support reasoning about object-oriented
programs.

Hogg’s Islands and Almeida’s Balloons have similar aims (Hogg, 1991; Almeida,
1997). An Island or Balloon is an owner object that protects its internal repre-
sentation from aliasing. The main difference from Noble et al. (1998) is that both
proposals strive for full encapsulation, that is, all objects reachable from an owner
are protected from aliasing. Boyland et al. (2001) introduced capabilities as a uni-
form system to describe restrictions imposed on references.

The universe types (Müller & Poetzsch-Heffter, 1999) uses read-only types to
handle temporary access to the representation objects of an abstraction. Later,
Muelleri and Poetzsch-Heffter (2000a; 2000b) extend the universe model with an

Type-based Confinement 43

notion of type universe such that all objects of the types declared in one module
can own a common representation. The objects in a universe are fully contained
and to transfer objects between universes requires cloning operations.

Boyapati et al. (2003b) use ownership types for object encapsulation and local
reasoning about program correctness. They use inner classes to represent interface
object that shares the representation of an owner. Each inner class instance is owned
by its outer class instance and thus they can be reasoned together as a module.
They also applied ownership types to detect race conditions (Boyapati et al., 2002;
Boyapati & Rinard, 2001), to scoped memory in the Real-time Specification for
Java (Boyapati et al., 2003c), and to lazy modular upgrades in object-oriented
database (Boyapati et al., 2003a).

Banerjee and Naumann (2002a) demonstrated the use of object confinement to
achieve representation independence. Their notation of confinement is instance-
based and it can be used to prove equivalence of class implementations such that if
an implementation is confined, then it may be replaced by semantically equivalent
ones without affecting the behavior of the whole program. Their work has signifi-
cance in proving the equivalence of programs and the correctness of static analysis
such as secure information flow (Banerjee & Naumann, 2002b).

Clarke et al. (2003) define a clever variant of confined types for the purpose
of ensuring the integrity of components in the Enterprise JavaBeans framework.
There are several interesting aspects to their work. They allow confinement to be
specified in so called deployment descriptors. Thus the same set classes can be
confined in one application and public in another. This is related to our use of
generics for confining classes, with the difference that with generics the same class
can be confined in several packages within the same application. On the other hand,
their approach does not require additional syntax or changes to the existing code
provided it already meets confinement invariants. Another interesting aspect of
the work is that the unit of confinement is different. Rather than confining types
within a package, the authors confine them within a Bean using the following rules
(CB1-6): CB1 declares which types are confined (C2 in our case), CB2 prevents
confined types from appearing at the Bean boundary or in static variables (roughly
equivalent to C1), CB3 prevents widening of confined types (identical to C2), CB4
prevents unconfined types to be cast to confined types, CB5 prevents confined code
from accessing unconfined classes which have confined types in their signature, and
finally CB6 states that confined classes may extend only one another or Object (a
stronger version of C4). Rule CB6 precludes confined classes from inheriting code
from non-confined classes and thus sidesteps the issue of anonymous methods. The
drawback is that a confined class may not inherit from an unconfined one. The
paper observes that this has not been a problem in practice. The systems also
differ in rules CB2 and CB5 which conspire to prevent the use of static variables to
communicate across beans. Rule CB4 is essential as it prevents a form of spoofing
in which an unconfined public subclass is used to leak reference to confined fields
of the parent.

Type annotations have applications other than restricting object aliases. The
work of Foster et al. (2002) extends standard type system with flow-sensitive type-

44 Zhao, Palsberg, Vitek

qualifiers, which can be used for verifying a class of flow-sensitive properties. They
implemented an efficient type-inference algorithm with practical applications such
as analyzing locking behavior in the Linux kernel.

8 Conclusion

This paper has formalized the notion of confined type (Vitek & Bokowski, 2001) in
the context of a minimal object calculus modeled on Featherweight Java. We also
illustrated the application of confined types to security. A static type system that
mirrors the informal rules of confinement was proposed and proven sound. The con-
finement invariant was shown to hold for well-typed programs. In the second part
of the paper, definition of confined types was extended to confined instantiation of
generic classes. This allows for confined collection types in Java and for classes that
can be confined post hoc. Confinement type rules are given for Generic Feather-
weight Java, and proven sound. A generic confinement invariant is established and
proven for well-typed programs.

References

Abadi, Mart́ın, & Cardelli, Luca. (1996). A Theory of Objects. Springer-Verlag.

Aldrich, Jonathan, Kostadinov, Valentin, & Chambers, Craig. (2002). Alias annotations
for program understanding. Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages, and Appplications (OOPSLA).

Almeida, Paulo Sérgio. (1997). Balloon types: Controlling sharing of state in data types.
Proceedings of the European Conference on Object-Oriented Programming (ECOOP).

Banerjee, Anindya, & Naumann, David A. (2002a). Representation independence, con-
finement and access control. Proceedings of the ACM Symposium on Principles of Pro-
gramming Languages (POPL).

Banerjee, Anindya, & Naumann, David A. (2002b). Secure information flow and pointer
confinement in a Java-like language. Proceedings of the IEEE Computer Security Foun-
dations Workshop.

Boyapati, Chandrasekhar. (2004). SafeJava: A Unified Type System for Safe Programming.
Ph.D. thesis, MIT.

Boyapati, Chandrasekhar, & Rinard, Martin. (2001). A parameterized type system for
race-free Java programs. Proceedings of the ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Appplications (OOPSLA).

Boyapati, Chandrasekhar, Lee, Robert, & Rinard, Martin. (2002). Ownership types for safe
programming: Preventing data races and deadlocks. Proceedings of the ACM Conference
on Object-Oriented Programming, Systems, Languages, and Appplications (OOPSLA).

Boyapati, Chandrasekhar, Liskov, Barbara, Shrira, Liuba, Moh, Chuang-Hue, & Richman,
Steven. (2003a). Lazy modular upgrades in persistent object store. Proceedings of the
ACM Conference on Object-Oriented Programming, Systems, Languages, and Apppli-
cations (OOPSLA).

Boyapati, Chandrasekhar, Liskov, Barbara, & Shrira, Liuba. (2003b). Ownership types for
object encapsulation. Proceedings of the ACM Symposium on Principles of Programming
Languages (POPL).

Boyapati, Chandrasekhar, Salcianu, Alexandru, Beebee, William, & Rinard, Martin.
(2003c). Ownership types for safe region-based memory management in real-time Java.

Type-based Confinement 45

Proceedings of the ACM Conference on Programming Language Design and Implemen-
tation.

Boyland, John, Noble, James, & Retert, William. (2001). Capabilities for aliasing: A
generalisation of uniqueness and read-only. Proceedings of the European Conference on
Object-Oriented Programming (ECOOP).

Clarke, Dave, Richmond, Michael, & Noble, James. (2003). Saving the world from bad
Beans: Deployment-time confinement checking. Proceedings of the ACM Conference on
Object-Oriented Programming, Systems, Languages, and Appplications (OOPSLA).

Clarke, David. (2001). Object ownership and containment. Ph.D. thesis, School of Com-
puter Science and Engineering, University of New South Wales, Sydney, Australia.

Clarke, David, & Drossopoulou, Sophia. (2002). Ownership, encapsulation and the dis-
jointness of type and effect. Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages, and Appplications (OOPSLA).

Clarke, David, Potter, John, & Noble, James. (1998). Ownership types for flexible alias
protection. Proceedings of the ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Appplications (OOPSLA).

Clarke, David, Noble, James, & Potter, John M. (2001). Simple ownership types for object
containment. Proceedings of the European Conference on Object-Oriented Programming
(ECOOP).

Detlefs, David L., Leino, K. Rustan M., & Nelson, Greg. (1998). Wrestling with rep
exposure. Tech. rept. SRC-RR-156. Digital Equipment Corporation Systems Research
Center.

Foster, Jeffrey S., Fähndrich, Manuel, & Aiken, Alexander. (1999). A theory of type
qualifiers. Proceedings of the ACM Conference on Programming Language Design and
Implementation.

Foster, Jeffrey S., Terauchi, Tachio, & Aiken, Alex. (2002). Flow-sensitive type qualifiers.
Proceedings of the ACM Conference on Programming Language Design and Implemen-
tation.

Foster, Jeffrey Scott. (2002). Type Qualifiers: Lightweight Specifications to Improve Soft-
ware Quality. Ph.D. thesis, University of California, Berkeley.

Genius, Daniela, Trapp, Martin, & Zimmermann, Wolf. (1998). An approach to improve
locality using Sandwich Types. Proceedings of the 2nd Types in Compilation Workshop.

Gong, Li. (1998). Guarding objects. Pages 1–23 of: Vigna, G. (ed), Mobile Agents and
Security. LNCS, vol. 576. Berlin, Germany: Springer-Verlag.

Gong, Li. (1999). Inside Java 2 Platform Security: Architecture, API Design, and Imple-
mentation. Reading, MA: Addison-Wesley.

Grossman, Dan, Morrisett, Greg, & Zdancewic, Steve. (2000). Syntactic type abstraction.
ACM Transactions on Programming Languages and Systems, 22(6), 1037–1080.

Grothoff, Christian, Palsberg, Jens, & Vitek, Jan. (2001). Encapsulating objects with
confined types. Proceedings of the ACM Conference on Object-Oriented Programming,
Systems, Languages, and Appplications (OOPSLA).

Hagimont, Daniel, Mossière, J., de Pina, Xavier Rousset, & Saunier, F. (1996). Hidden
software capabilities. Proceedings of the 16th International Conference on Distributed
Computing System.

Hogg, John. (1991). Islands: Aliasing protection in object-oriented languages. Proceedings
of the ACM Conference on Object-Oriented Programming, Systems, Languages, and
Appplications (OOPSLA).

Hogg, John, Lea, Doug, Wills, Alan, de Champeaux, Dennis, & Holt, Richard. (1992).
The Geneva convention on the treatment of object aliasing. OOPS Messenger, 3(2).

46 Zhao, Palsberg, Vitek

Igarashi, Atsushi, Pierce, Benjamin C., & Wadler, Philip. (2001). Featherweight Java: a
minimal core calculus for Java and GJ. ACM Transactions on Programming Languages
and Systems, 23(3), 396–450.

Kent, S.J.H., & Maung, I. (1995). Encapsulation and Aggregation. Proceedings of TOOLS
Pacific 1995 – Technology of Object-Oriented Languages and Systems. Prentice Hall.

Leavens, Gary. (1991). Modular specification and verification of object-oriented programs.
IEEE Software, November, 72–80.

Leroy, Xavier, & Rouaix, François. (1998). Security properties of typed applets. Proceed-
ings of the ACM Symposium on Principles of Programming Languages (POPL).

Levy, H. (ed). (1984). Capability Based Computer Systems. Digital Press.

Müller, P., & Poetzsch-Heffter, A. (1999). Universes: A type system for controlling rep-
resentation exposure. Poetzsch-Heffter, A., & Meyer, J. (eds), Programming languages
and fundamentals of programming. Fernuniversität Hagen.

Müller, P., & Poetzsch-Heffter, A. (2000a). Modular specification and verification tech-
niques for object-oriented software components. Foundations of Component-Based Sys-
tems, 137–159.

Müller, P., & Poetzsch-Heffter, A. (2000b). A type system for controlling representation
exposure in Java. Drossopoulou, S., Eisenbach, S., Jacobs, B., Leavens, G. T., Müller,
P., & Poetzsch-Heffter, A. (eds), Formal Techniques for Java Programs.

Noble, James, Vitek, Jan, & Potter, John. (1998). Flexible alias protection. Proceedings
of the European Conference on Object-Oriented Programming (ECOOP).

Potanin, Alex, Noble, James, & Biddle, Robert. (2004a). Checking ownership and con-
finement. Concurrency and Computation: Practice and Experience, 16(7), 671 – 687.

Potanin, Alex, Noble, James, Clarke, Dave, & Biddle, Robert. (2004b). Featherweight
generic confinement. International workshop on foundations of object-oriented languages
(fool).

Sewell, Peter, & Vitek, Jan. (2003). Secure composition of untrusted code: Box π, wrap-
pers, and causality types. Journal of Computer Security, 11(2), 135–187.

Vitek, Jan, & Bokowski, Boris. (2001). Confined types in Java. Software Practice and
Experience, 31(6), 507–532.

Vitek, Jan, & Bryce, Ciaran. (2001). The JavaSeal mobile agent kernel. Autonomous
Agents and Multi-Agent Systems, 4.

Wallach, D., Balfanz, D., Dean, D., & Felton, E. (1997). Extensible Security Architectures
for Java. Proceedings of the 16th Symposium on Operating System Principles.

Zhao, Tian, Palsberg, Jens, & Vitek, Jan. (2003). Lightweight confinement for Java. Pro-
ceedings of the ACM Conference on Object-Oriented Programming, Systems, Languages,
and Appplications (OOPSLA).

