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ABSTRACT
Long analysis times are a key bottleneck for the widespread adop-
tion of whole-program static analysis tools. Fortunately, however,
a user is often only interested in !nding errors in the application
code, which constitutes a small fraction of the whole program. Cur-
rent application-focused analysis tools overapproximate the e"ect
of the library and hence reduce the precision of the analysis results.
However, empirical studies have shown that users have high ex-
pectations on precision and will ignore tool results that don’t meet
these expectations.

In this paper, we introduce the !rst tool QueryMax that signi!-
cantly speeds up an application code analysis without dropping any
precision. QueryMax acts as a pre-processor to an existing analysis
tool to select a partial library that is most relevant to the analysis
queries in the application code. The selected partial library plus
the application is given as input to the existing static analysis tool,
with the remaining library pointers treated as the bottom element
in the abstract domain. This achieves a signi!cant speedup over a
whole-program analysis, at the cost of a few lost errors, and with no
loss in precision. We instantiate and run experiments on QueryMax
for a cast-check analysis and a null-pointer analysis. For a particular
con!guration, QueryMax enables these two analyses to achieve,
relative to a whole-program analysis, an average recall of 87%, a
precision of 100% and a geometric mean speedup of 10x.
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1 INTRODUCTION
Motivation. Long analysis times are a key bottleneck for the

widespread adoption of whole-program static analysis tools. Several
recent papers for both Java [3, 10, 15] and C/C++ [8, 22, 23] report
that a whole-program analysis on their largest benchmarks can
take several hours. Analyzing a large collection of benchmarks like
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an app-store takes even longer, with a total compute time of many
years for the largest app-stores. Hence, a speedup in analysis time
can save signi!cant compute time and energy, and enable us to use
more precise and expensive algorithms.

Whole-program analyses may be slow, but a user is often only
interested in !nding errors in the application code [34], which
constitutes a small fraction of the whole program. In the NJR-1
dataset [31], application code (excluding third-party libraries) con-
stitutes less than 1% of the whole program on average. Hence, an
application-focused analysis has the potential for a large speedup.

Ideally, an application-focused analysis should compute the same
set of errors for the application-code as a whole-program analysis.
However, this is hard to achieve because errors can both originate
in or propagate through the library. We use the singular library to
refer to the aggregate of the third-party libraries and the standard
library. The quality of an application-focused analysis tool’s results
can be quanti!ed using precision and recall. Precision is the ratio of
true-positives in the tool’s results, with the whole-program analysis
results serving as the ground-truth. Recall is the ratio of whole-
program analysis errors caught by the tool. Thus, any application-
focused analysis tool can be judged by its performance on the three
metrics of precision, recall and speedup.

The current best tool for an application-focused analysis is Aver-
roes [1]. Averroes overapproximates the e"ect of the library with a
compact summary. The overapproximation ensures high recall and
the small size of the summary compared to the whole library gives
a large speedup. However, this summary is created by merging the
analysis information from all the library pointers into a single set,
resulting in signi!cantly worse precision than the whole program
analysis. In our experiments, Averroes gets an average precision of
59% relative to the whole-program analysis. This precision drop is
problematic because empirical studies show that users have a very
high bar for precision.

For example, Christakis and Bird [6] !nd that, in practice, static
analysis users care much more about precision than recall. They
conclude that practical analysis tools must aim for a minimum of
80% user-perceived precision. Failing to meet this value results in
users ignoring the tool output entirely. Other empirical studies [4,
13] also arrive at similar conclusions. Whole-program analyses
themselves often get much less than 80% user-perceived precision
[3, 5, 18]. Hence, an application-focused analysis that gets less than
100% precision relative to a whole-program analysis will almost
certainly fail to meet the 80% user-perceived precision target. This
de!nes the goal of our paper.

Our goal in this paper is to capture the speedup potential of an
application-focused analysis, while maintaining 100% precision

relative to the whole-program analysis.
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Figure 1: Overview of the QueryMax work!ow

Our technique. In this paper, we introduce a new application-
focused analysis tool called QueryMax, that achieves our goal of
100% precision and gets both good speedup and good recall. Fig-
ure 1 gives an overview of the work#ow. QueryMax acts as a pre-
processor to an existing static analysis by selecting a small subset
of the library (i.e. partial library) which is relevant to the set of anal-
ysis queries in the application. To decide which part of the library
is most relevant, QueryMax uses a new static analysis called the
external source analysis. Once QueryMax picks the partial library,
the existing static analysis tool is run on the application code plus
the partial library, with all external library pointers treated as the
bottom element in the abstract domain.

The analysis queries used in Figure 1 are exactly like the queries
in a demand-driven analysis [28] and they represent all the in-
structions of interest in the application code. For example, in a
cast-check analysis, the analysis queries would be all the down-cast
instructions in the application code.

The complexity of QueryMax is O(a3 + p2) where a is the size
of the application-code and p is the size of the (application-code +
partial-library). This is much less than the complexity of a whole-
program analysis like 0CFA, which has complexity O(n3) where
n is the size of the whole program. Here we assume (n > p) and
(n >> a), both of which are true for our benchmarks.

Our experiments focus on Java bytecode programs from the NJR-
1 dataset [31], but our approach applies to other object-oriented
languages as well. We implemented QueryMax in Wala [33] and
ran experiments on it with an existing cast-check analysis and null
pointer analysis.

Our contributions.

• We introduce a new static analysis, the external source anal-
ysis, which computes the set of external library pointers
a"ecting each pointer in the application code.

• We describe the QueryMax tool which uses the external
source analysis and picks a partial library which is small yet
su$cient to yield a good recall.

• We show experimentally that QueryMax successfully speeds
up two di"erent analyses. In a particular con!guration,Query-
Max achieves a 97% recall (on average, relative to a whole-
program) and an 8.7x geometric-mean speedup for a cast-
check analysis, and a (79% recall, 11.2x speedup) for a null
pointer analysis. Both analyses get 100% precision.
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Figure 2: Schematic of a cast-check analysis on application-
code

Signi!cance. The impact of this research contribution is that the
10x analysis speedup without any loss in precision will help us
meet user expectations on both speedup and precision. Further,
the speedup will enable us to use expensive and precise analysis
algorithms as well as analyze large programs or large collections of
programs (like an app-store) that previously couldn’t be analyzed
in a reasonable amount of time.

2 EXAMPLE
In this section, we show an example of how QueryMax picks a par-
tial library to analyze, and compare this with Averroes’ approach.
We also discuss two other baselines which can be adapted to pro-
vide a speedup over a whole-program analysis: a demand-driven
analysis [24, 28] and an application-only analysis.

Figure 2 shows the schematic of a program we wish to analyze
for cast-errors. The application code, represented by the circle, is
the part in which we wish to catch the cast errors, and everything
outside is the library. The grey boxes (labeled A,B,C) on the edge
of the circle show library methods with pointers that in#uence the
value of cast instructions in the application code. The accompanying
number in the grey box tells us how many cast instructions are
a"ected by that method. The application code has a total of 10 cast
instructions and each cast instruction is considered an analysis
query. We say that an application-focused analysis covers a cast-
query if it overapproximates the result of that query. In other words,
a query covered by a tool is guaranteed to mark it as a cast-error if
the whole-program analysis does.

The !rst baseline technique is to run a demand-driven analy-
sis for every analysis query in the application. The demand-driven
analysis exhaustively traces the backward slice of all 10 cast instruc-
tions. Casts numbered 7-10 at the bottom of the application circle
get their value from inside the application, and hence are answered
quickly. The casts a"ected by B andC (casts numbered 3-6) are also
answered quickly because the backward slices have only 2 and 0
caller-methods respectively. However, the demand-driven analysis
faces a signi!cant slowdown when answering the two cast queries
in#uenced by A (Cast1 and Cast2). Their backward trace involves
the 10 callers of A, each of which could result in a long trail, making
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this approach expensive because of these two queries. In total, the
demand-driven analysis analyzes all the 15 library methods in the
!gure. It gets 100% precision and covers all 10 cast instructions
since its output is identical to the whole-program analysis. Note
that the demand-driven analysis is the only one which requires a
new demand-driven design of an existing inter-procedural analysis;
the others use the existing interprocedural analysis as is.

The second baseline is an application-only analysis. Such an
analysis analyzes the code inside the application circle in isolation
and assumes the bottom element of the abstract domain for all
library pointers outside. Hence it analyzes zero library methods
and only covers the 4 casts that get their values from inside the
application (that is, the casts numbered 7-10). The application-only
analysis gets 100% precision because its errors are the subset of the
whole-program errors that do not involve the library.

Averroes [1] improves upon the application-only analysis by
modeling the whole library with a small summary. In Figure 2,
everything outside the application circle is represented using this
summary. The summary primarily consists of a single summary-
pointer to represent all library pointers, and a single summary-node
to perform all the object initializations and application call-backs. A
usual inter-procedural cast-analysis is performed on the application-
code plus this summary. Averroes’s summary is sound for some
analyses, the cast check being one them. Hence, it covers all 10
cast instructions while only analyzing the summary. However, the
analysis information merged in the common summary-pointer
and summary-node drops precision relative to the whole-program
analysis.

QueryMax’s approach di"ers from Averroes primarily in that
it selects a small part of the library to fully analyze instead of
modeling the library using a summary. QueryMax keeps expanding
the partial library to be used until it reaches some stopping criterion.
Let us assume that we use QueryMax with a stopping criterion of
80% query coverage. This means that we will have to pick a fragment
consisting of the application-code plus a partial library, such that at
least 8 of the 10 queries (i.e. casts) are covered within this fragment.

QueryMax starts out by performing an external source analysis
on the application code to !nd out which library pointers a"ect
the 10 cast instructions. This information is marked by the arrows
inside the application circle. QueryMax then assigns priorities to
each external library method based on the number of casts it a"ects.
In Figure 2, this is denoted by the numbers in the grey boxes. Next,
QueryMax expands on themethodwith the highest priority (method
B) to look at its callers, callees and !eld-reads. Method B has 2
callers, D and E. We estimate that each of D and E a"ects half as
many casts as B, and hence each of them get half its priority (i.e.
1.5 each). Now, the method with the highest priority is A, which
on expansion leads to 10 di"erent caller methods, and we assign
a priority of (2 / 10) to each of them. The next methods with the
highest priority are D and E, followed by method C . Each of these
methods are expanded in turn.

At this point, our fragment consists of the application code plus
a partial library consisting of methods (A,B,C,D, E). Performing
another external source analysis on this fragment shows that now 8
of the casts (casts numbered 3-10) are covered within this fragment.
Recall that we started QueryMax with a stopping criterion of 80%
query coverage, or in other words, we would like to terminate when

Analysis Tool Casts
covered

Lib Methods
analyzed

Precision

Application-only 4 0 100%
QueryMax 8 5 100%
Demand-driven 10 15 100%
Averroes 10 Summary Low

Figure 3: Number of casts covered, librarymethods analyzed,
and Precision (relative to the whole program analysis) for
each of the competing tools

8 of the 10 casts (i.e. queries) are covered. Hence, QueryMax stops
expanding at this point, and an existing inter-procedural cast-check
analysis is now performed on this fragment. By terminating the ex-
pansion early,QueryMax avoided exploring the 10 callers of method
A, and their subsequent callers which could potentially expand large
sections of the program, while only answering the queries forCast1
and Cast2. In total, by using QueryMax, we analyzed only 5 library
methods and covered 8 casts. QueryMax, just like an application-
only analysis, reports a subset of the whole-program errors, thereby
getting 100% precision.

Figure 3 summarizes the number of library methods analyzed
(less is better), the cast-instructions covered (more is better), and
precision (more is better) for each of the four techniques.QueryMax,
the demand-driven analysis and the application-only analysis each
get 100% precision. For the other two metrics, QueryMax obtains
a useful trade-o" point in between the application-only analysis
and the demand-driven analysis. Note that the di"erences in li-
brary methods analyzed is rather small for this example, but the
di"erences are much larger in real programs. Averroes covers all
casts and analyzes just the small summary, but gets low precision,
thereby falling short of our 100% precision goal.

This example illustrates the core insight underlying QueryMax’s
speedup: few queries in the application code require large sections
of the library for their analysis (like Cast1 and Cast2), whereas
the remaining queries need a much smaller subset of the library.
By identifying these expensive queries and assigning them a low
priority, QueryMax can pick a small partial library that is su$cient
to cover all the remaining queries. The downstream client can now
use this partial library in its analysis, which is a fraction of the size
of the whole library. The trade-o" is that the few expensive queries
(like Cast1 and Cast2 in the example) are not fully covered by the
partial library, resulting in a few missed errors.

3 APPROACH
In this section, we describe in detail how QueryMax works to pick
the partial library to analyze.

3.1 Overview
QueryMax picks its partial library by !nding the library classes
mostly likely relevant to the queries in the application code. Query-
Max accomplishes this by using a new static analysis called an
external source analysis. QueryMax expands its partial library in
a greedy fashion to maximize the number of queries answered in
the application code until some stopping criterion is reached. We
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No Stmt Condition Constraint
1 x = y x is not an array ext(y) ⊆ ext(x)
2 x = y x is an array ext(y) ⊆ ext(x) and

ext(x) ⊆ ext(y)
3 x = y.f !eld f is internal ext(f) ⊆ ext(x)
4 y.f = x !eld f is internal ext(x) ⊆ ext(f)
5 x = foo(z) target foo(p){.. ret q}

is internal
ext(q) ⊆ ext(x) and
ext(z) ⊆ set(p)

6 x = y.f !eld f is external {f} ⊆ ext(x)
7 y.f = x !eld f is external (No constraint)
8 x = foo(z) target foo(p){.. ret q}

is external
{q} ⊆ ext(x)

9 N/A foo(x) has an external
caller y.foo(z)

{z} ⊆ ext(x)

Figure 4: Constraints for the External Source Analysis

discuss two stopping criteria: a class-budget if the user wants to set
a limit on the number of classes analyzed (proxy for analysis time),
and a query-coverage if the user wants to set a goal for the number
of queries covered (proxy for recall).

3.2 External Source Analysis (ESA)
The external source analysis, or ESA for short, takes a program and
a subset of its classes called the fragment, and computes, for every
pointer in the fragment, the set of external pointers that pass values
to it. For example, de!ning the application code as the fragment
would make the library pointers the external pointers, and an ESA
would tell us which library pointers directly pass values to each
pointer in the application code. An example of applying the ESA
was illustrated in the example in Figure 2, where we computed the
library methods a"ecting cast-instructions in the application code.

The ESA is designed to be context-, #ow- and !eld-insensitive
because it’s primary application is partial-program analysis, which
is time-sensitive. Any overhead of performing an ESA during partial
program analysis eats into the speedup that we may get over a
whole-program analysis.

Figure 4 outlines the core constraints used for ESA. The second
column lists a statement, the third column lists an accompanying
condition, and the fourth column gives the corresponding con-
straint. The third column in the !gure uses the words internal and
external. A pointer is considered internal if it is within the fragment,
and external otherwise. The abstract domain for the ESA consists of
all possible subsets of external pointers. Hence, the notation ext(y)
in the fourth column represents the set of external pointers passing
values to the fragment pointer y. This is di"erent from the notation
{z} which is a singleton set consisting of the external pointer z.

Rows 1-5 in Figure 4 are identical to a standard context, #ow and
!eld-insensitive pointer analysis such as [29], and we assume that
the reader understands them well. Rows 6-9 deal with the di"erent
types of external pointers: external !elds, external return values,
and external function-arguments. The constraints for these rows
are similar to what one would expect for a new statement in a
pointer analysis. Row 6 says that for the read of an external !eld f ,
the external !eld f should be added to the ext set of the assigned
variable x . Row 7 says that writes to external !elds produce no

constraint. Row 8 says that for every external target of a method
call, the return pointer of the target should be added to the ext set of
the assigned variable x . There are no constraints for the arguments
in this case. Row 9 says that if a method in the fragment has a caller
outside the fragment, then the external caller’s argument should
be added to the ext set of the method’s parameter.

The generated constraints can be solved using standard static-
analysis constraint solving techniques. The complexity of solving
the ESA constraints on a fragment of sizep isO(p3). The complexity
calculations are very similar to that of a context-insensitive pointer
analysis.

In addition to the ESA, we de!ne a faster version of it called the
fast-ESA, with the primary change being to the abstract domain.
Instead ofmaintaining the set of external sources for every fragment
pointer, fast-ESA only maintains whether or not the set is non-
empty. Hence there are only two elements in the fast-ESA abstract-
domain: the top element is used when the fragment pointer may be
passed a value by an external source, and the bottom element is used
when the pointer is guaranteed to not get any values from external
sources. The constraints are the same as in Figure 4, except for Rows
6-9 using the Top element instead of the external pointer names.
Due to the smaller size of the abstract domain, the complexity of
fast-ESA on a fragment of size p is O(p2), which is lesser than the
cubic complexity of ESA. Hence, fast-ESA allows us to compute
whether a fragment pointer is a"ected by external sources much
quicker than an ESA.

3.3 QueryMax Algorithm
The QueryMax algorithm is used to pick a fragment to analyze,
consisting of the application and the partial library, with a best
e"ort to catch as many of the whole-program errors as possible. The
example in Section 2 showed howQueryMax runs for one particular
case. Here, we describe the algorithm (given in Figure. 5) in detail.
The !gure has three main procedures: the main algorithm, the
class-budget stopping criterion and the query-coverage stopping
criterion.

The main algorithm (line 1) takes as input the application classes,
set of all classes, and the queries to be answered. For internal book-
keeping, QueryMax uses the set f raдment to mark the classes
that are to be analyzed !nally, a visited set for the methods, and a
priority-queue pQueue to keep track of the priorities of the external
(library) methods to be explored. The intuition behind the priority
values is that they represent the estimated number of queries an-
swered by that method, and QueryMax will explore methods with
a higher priority earlier.

The main algorithm starts o" by performing an ESA (line 5),
with the application classes as the f raдment . The ESA computes
the set of external library pointers a"ecting each pointer in the
application classes. Using the ESA result, we compute its inverse
information: the number of queries a"ected by each of the external
library pointers (line 6). Now, the method of each of the external
library pointers is added to pQueue with a priority equal to the
number of queries it a"ects. For external !eld pointers, we add the
methods which write to that !eld. Each of the external library point-
ers’ methods are added to the visited set. After this initialization
phase, we move into the main algorithm loop.
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1: procedure%eryMax(appClasses, allClasses, queries)
2: fragment← appClasses
3: visited← new Set()
4: pQueue← new PriorityQueue()
5: esa ← ESA(allClasses, appClasses)
6: extLibPtrs ← computeA"ectedQueries(esa, queries)
7: for ExternalLibraryPointer e in extLibPtrs do
8: pQueue.setPriority(e.method, e.a"ectedQueries)
9: visited.add(e.method)
10: end for
11: while not (pQueue.empty() ∨ Criterion) do
12: Method m ← pQueue.poll()
13: analysisFragment.add(m.declaringClass)
14: methodSlice← getmethodSlice(m)
15: newPriority← m.priority / methodSlice.size
16: for Method n in methodSlice do
17: if visited.contains(n) then
18: pQueue.addToOldPriority(n, newPriority)
19: else
20: pQueue.setPriority(n, newPriority)
21: visited.add(e)
22: end if
23: end for
24: end while
25: return fragment
26: end procedure
27:
28: procedure BudgetCriterion(fragment)
29: percentAnalyzed← (fragment.size / allClasses.size)
30: return (percentAnalyzed ≥ budget)
31: end procedure
32:
33: procedure CoverageCriterion(fragment, queries)
34: coveredQueries ← fastESA(allClasses, fragment, queries)
35: coverageRatio← coveredQueries / fragment.totalQueries
36: return (coverageRatio ≥ goal)
37: end procedure

Figure 5: QueryMax algorithm

The main algorithm loop starts at line 11. It keeps looping until
either pQueue is empty or we satisfy the stopping criterion (de-
scribed below). Inside the loop, we remove the methodm with the
maximum priority in pQueue , and add its class to the f raдment .
This step is a greedy move to expand the class that is expected to
a"ect the largest number of queries. The next step is to !nd the
method-slice ofm (line 14). This is similar to computing one step in
the backward slice of a pointer, but is performed at the granularity
of methods instead of pointers to reduce the overhead. Themethod-
slice consists of callers and callees ofm, as well as methods which
write to !elds that are read inm. Each method in the method-slice
gets a new priority which is the priority ofm divided by the size
of its method-slice. The intuition behind this priority assignment
is that if m a"ects k queries and has t callers/callees, then each
caller/callee is expected to a"ect k/t queries. If a method from the
method-slice is already in pQueue we add the new priority to its old

priority, else we add the method topQueue with the new priority. Fi-
nally, once the loop has terminated, the f raдment , which has the set
of classes to be analyzed, is returned. An existing inter-procedural
static analysis is performed on the set of classes returned, with all
external pointers assumed to be the bottom element.

QueryMax uses a stopping criterion to know when to stop ex-
panding the fragment and return, and we experiment with two
such criteria: class-budget and query-coverage goal.

Class budget. The class budget stopping criterion (line 28) is
used when the user wants a handle on the analysis time. The class
budget is a proxy for a time budget, and we prefer to use the number
of classes instead of analysis time because it can be accurately
computed in advance without running the actual analysis. This
criterion simply checks if the percentage of classes used in the
fragment is greater than a certain budget. The budget is assumed to
be speci!ed as a global variable for readability. For this paper, we
experiment with a 3%, 10% and 30% class-budget. A budget of under
2% will have no space for library methods in some programs, and a
budget of over 40% will analyze a large partial library, resulting in
only a small speedup.

Query-coverage goal. The query-coverage criterion (line 33) is
used when the user wants a handle on the recall. Query-coverage is
a proxy for recall, because the number of errors found is expected
to be proportional to the number of queries covered. The query-
coverage criterion uses a fast-ESA (line 34) to !nd the number of
queries covered by the fragment classes, and computes a coverage-
Ratio which is the percentage of queries covered. Finally, if the
coverage-Ratio exceeds the query-coverage goal, then we return
true. The goal is assumed to be speci!ed as a global variable for
readability. The coverage criterion is not used at every iteration
of the main loop because the fast-ESA adds signi!cant overhead.
Instead, we only evaluate this criterion at some set checkpoints. For
this paper, we experiment with 70% and 90% query-coverage goals.
A goal of less than 60% gives recall close to that of a application-
only analysis, and a goal of greater than 95% requires too many
classes to be added to the partial library, thereby resulting in too
small a speedup.

The overall complexity for QueryMax isO(a3+p2)where a is the
size of the application-code and p is the size of the (application-code
+ partial-library). The O(a3) term comes from the ESA performed
on the application-code on line 5, and the O(p2) term comes from
the fast-ESA performed for the coverage-criterion on line 34.

3.4 Applicability of QueryMax to Client Static
Analyses

Now that we understand how QueryMax works as a preprocessor to
select a partial library, we can discuss what kind of client analyses
QueryMax can be applied to.

Firstly, since QueryMax trades o" recall for analysis speedup,
its client analysis should be able to a"ord to lose some recall. For
example, compiler optimization clients that prefer the static anal-
ysis be sound (or soundy [16]), will not use QueryMax. Secondly,
QueryMax is restricted to client analyses that only care about errors
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Client Analysis Analysis Queries
Cast-check analysis [29] Cast instructions
Null-pointer analysis [12] Method calls and !eld accesses
Taint Analysis [17] Taint sink instructions
Type-state analysis [9] State-change instructions
Pointer analysis [14] Client analysis queries

Figure 6: Analaysis Queries for di"erent Client Analyses

manifesting in the application code. It cannot speed up a client anal-
ysis that aims to catch errors manifesting in both the application
code and the library.

On the plus side, QueryMax makes no assumptions about the
#ow-, context- and !eld-sensitivity of the client analysis that it is
preprocessing for. Hence it can be applied regardless of the client
analysis’ sensitivities. Further, unlike [1], it makes no assumptions
about the demarkation between application and library code. Hence,
the user can choose any subset of classes as the application code
to focus on and get everything outside the subset treated as the
library.

Figure 6 lists some analysis clients that QueryMax could be
applied to and shows the corresponding analysis queries for such a
client analysis. This is not an exhaustive list of client analyses, and
its main purpose is to give examples of what the analysis queries
would be for di"erent kinds of client analyses. Typically, an analysis
query would be any instruction in the application code where a
particular kind of error could potentially manifest. For example,
for a cast-check analysis the queries are cast instructions. For a
null-pointer analysis they are all dereference instructions, including
method calls and !eld accesses. For a taint-analysis which is de!ned
in terms of vulnerable source-sink pairs, the analysis queries would
be all the sinks. For a type-state analysis, like one that checks for
the correctness of !le-operations, all the state-change operations
(like !le-open, !le-close, etc.) will be the analysis queries. A pointer
analysis itself does not have any statements or variables of interest,
and hence cannot de!ne analysis queries for itself. However, if the
pointer analysis is used by a particular client (like cast-check or
taint analysis), we can de!ne its analysis queries as the queries of
that client.

4 IMPLEMENTATION
The WALA [33] framework for Java bytecode analysis is used to
implement QueryMax and the ESA analysis. The actual analysis is
performed on the WALA IR, which is in SSA form and hence auto-
matically grants partial #ow-sensitivity. We use the CHA-callgraph
for all the analyses, since computing a whole-program 0-CFA call-
graph would defeat the purpose of doing a partial library analysis.
We ignore call-graph edges involving a single call-site with more
than 10 targets, since the likely root cause of this is severe impreci-
sion, and it results in mostly false-positives. We also exclude the
java/util package since it is well known for introducing too many
false-positives unless one uses high context-sensitivity [30].

Client Analyses. QueryMax accepts any inter-procedural anal-
ysis to run with as long as the analysis can be run on a subset of
the classes in the program. We experiment with two such analyses:

a cast-check analysis and a null-pointer analysis. The cast-check
analysis is based on the VTA algorithm [29] for pointer analysis.
The null-pointer analysis (based on [12]), focuses on catching null-
pointer exceptions resulting from uninitialized instance !elds. The
two analyses vary signi!cantly in their constraints, abstract do-
mains, design decisions, number of analysis queries, and number
of errors per program. Hence, the two analyses o"er considerable
diversity for experimentation. We leave to future work to experi-
ment with other client analysis, including other implementations
of cast-check and null-pointer analysis, such as NullAway [2].

For the analysis sensitivities, we choose to be context-, #ow-
and !eld-insensitive as far as possible. The cast-check analysis is
insensitive on all three axes. The null-pointer analysis is context-
and !eld-insensitive but #ow-sensitive because a #ow-insensitive
version of the analysis trivially marks all !elds as null. Our choice
of sensitivities are di"erent from other papers such as [24–26], be-
cause their task is to improve precision, whereas ours is to improve
analysis speed. For the task of improving precision, a #ow-, context-
and !eld-sensitive analysis is the hardest baseline because it is the
most precise. In contrast, for our task of improving analysis speed, a
context-, !eld- and #ow-insensitive analysis is the hardest baseline
because it is the fastest.

Demand-driven analysis. We choose to write our own demand-
driven cast-check instead of using an existing tool like [24] or [28].
This ensures that the whole-program analysis and demand-driven
analysis are identical in their various sensitivities, analysis design
decisions, constraint solvers and errors generated. This normaliza-
tion helps to make a fair timing comparison between the demand-
driven analysis, and other techniques like QueryMax, Averroes and
the application-only analysis. For the demand-driven cast check,
we implement caching across queries to reuse computations done
for a previous query.

Most prior research on demand-driven analysis deals with pointer
analysis which can be used to implement the cast-check. However,
a design of the demand-driven version of the null-pointer analy-
sis [12] is not publicly available and is non-trivial to design from
scratch. Hence, for the demand-driven analysis, we only report
experiments for the cast-check analysis.

Averroes. Averroes takes as input the original Jar !le and the
set of application classes, and produces modi!ed Jar !les consist-
ing of the application classes and the library summary. We do not
count the time taken to produce the modi!ed Jar !les since it is
a one-time cost which is amortized across all client analyses. The
Averroes library summary also has the java/util package excluded
from it. Finally, the same null-pointer and cast-check analyses de-
scribed above are run on the modi!ed Jar !les, thereby making a
fair comparison between Averroes and the other techniques.

Re"ection. We do not use WALA’s inbuilt re#ection support for
the client analyses because this would worsen the analysis time of
the baseline, thereby making QueryMax look better. Further, we
also do not use re#ection support for the ESA. While re#ection
support may help the ESA !nd external sources reachable through
re#ection, its overhead is too high and this reduces the e"ective
speedup provided by QueryMax.

���



Fast and Precise Application Code Analysis using a Partial Library ICSE ’22, May 21–29, 2022, Pi!sburgh, PA, USA

Statistic Mean Std-dev
Lines of application code 9911 12689
Number of application classes 97 91
Number of 3rd party library classes 2608 5220
Percentage of application classes 0.33% 0.33%

Figure 7: Statistics about the benchmark programs

Statistic Cast-check Null-pointer
Total number of programs 221 221
Mean Errors per program 4.4 37
Std-dev Errors per program 27 56
Programs with non-zero errors 58 177
Mean Analysis time 27 sec 293 sec
Std-dev Analysis time 41 sec 142 sec

Figure 8: Statistics about the whole-program cast-check and
null-pointer analysis on the benchmark set

Precision, Recall and Speedup. To measure the quality of an analy-
sis using QueryMax or any of the baseline techniques like Averroes,
demand-driven analysis, etc., we evaluate it on the three axes of
speedup, precision, and recall. Here are the standard formulae for
computing these metrics:

Speedup =
Whole-program analysis time

Application-focused analysis time

Precision =
|A ∩W |

|A| Recall =
|A ∩W |
|W |

where A is the set of errors given by QueryMax andW is the set of
errors given by the whole-program analysis (which we consider as
the ground-truth).

5 DATASET DESCRIPTION
We use the NJR-1 dataset (available here [31]), as our benchmark-
set. We chose NJR-1 because its 293 Java bytecode programs run
successfully with WALA, and each program explicitly lists its set of
application and third-party library classes. Out of the 293 programs
we remove 68 programs that crash the Averroes tool. The crash
reports have been !led with the developers. Another 4 programs
which run out of memory for the whole-program null-pointer anal-
ysis are removed, leaving us with a total of 221 programs.

Figure 7 lists some statistics about the benchmark programs.
On average, each benchmark program has almost 10k lines of Java
source code in the application, with an average of almost 100 classes
each. The third-party library classes are much larger, with an av-
erage of 2608 classes per benchmark, and these correspond to an
estimated 250,000 lines of Java source code. The application classes
constitute just 0.33% of the program, with the remaining being
the Java standard library and third party library classes. The large
standard deviation for all these metrics implies that they vary sig-
ni!cantly across benchmarks. Among the 221 benchmarks, 63 use
re#ection in the application code and 130 use re#ection in the third-
party libraries.

Figure 8 lists some statistics about the benchmarks when an-
alyzed with a whole-program null-pointer analysis and the cast-
check analysis. The cast check analysis gets 4.4 errors per program
on average, whereas the null pointer analysis gets 37. This large
di"erence is expected, since down-casting is rare, whereas method
calls and !eld accesses are common.

The table also shows that only 58 of the 221 programs have non-
zero cast errors and only 177 of them have non-zero null-pointer
errors. The programswith zero errors in thewhole program analysis
are a problem for the evaluation because their recall is unde!ned for
all of the techniques. Hence, the experimental results are reported
in two parts: those with zero errors and those with non-zero errors.
We report the recall and speedup for the non-zero error cases and
only speedup for the zero error cases.

The analysis times for the two analyses also vary widely, with
the cast-check taking 27 seconds per program and the null-pointer
analysis taking 293 seconds per program. The standard deviation
for analysis times is large, especially for the cast-check analysis,
implying that a few outliers have large analysis times.

6 EXPERIMENTAL RESULTS
In this section, we discuss our experimental results which validate
the following claims.

(1) C1: QueryMax gets a signi!cant speedup, full precision and
reasonable recall as compared to thewhole-program analysis,
with trade-o" points that none of the existing techniques
can achieve.

(2) C2: The distribution of speedups and recall-scores are uni-
form across the benchmarks.

The experiments were carried out on a machine with 24 Intel(R)
Xeon(R) Silver 4116 CPU cores at 2.10GHz and 188 GB RAM. For
the JVM, the default heap size of 32GB, and default stack size of
1MB, was used. The artifact for the paper is available here [32].

The !rst two sub-sections validate the claims made, and these
experiments focus on the programs with non-zero errors. The third
subsection evaluates the programs with zero errors, the fourth
examines the QueryMax analysis time split-up, the !fth compares
the correlation between class-budget and analysis time, and the
sixth subsection outlines the threats to validity.

6.1 C1: Main Result
Figures 9 and 10 show the various recall and speedup trade-o"
points for the cast-check analysis and null-pointer analysis respec-
tively. The X-axis gives the recall plotted on a linear scale and the
Y-axis gives the speedup plotted on a logarithmic scale. There is
actually a third axis for precision, but we do not show it because all
the techniques except for Averroes, get a 100% precision. We mark
Averroes’ precision directly in the !gure.

Whole-program analysis. The whole-program analysis (marked
by the black circle) is considered as the ground-truth and the refer-
ence for all speedup calculations. Hence it trivially gets 100% recall
and 1x speedup.

Demand-driven analysis. The demand-driven analysis (marked
by the green triangle) computes the same result as a whole-program
analysis and hence gets 100% recall, but it manages a 5.1x geometric

���



ICSE ’22, May 21–29, 2022, Pi!sburgh, PA, USA Akshay U!ure and Jens Palsberg

Figure 9: Recall and Speedup for the various techniques for
the cast-check analysis

Figure 10: Recall and Speedup for the various techniques
for the null-pointer analysis

mean speedup for the cast-check analysis because it avoids analyz-
ing the whole program. This mean speedup is not representative of
the average benchmark. One portion of the benchmarks get a large
speedup because they analyze a small part of the program, while
others experience a slowdown because they analyze a large section
of the program and the demand-driven analysis adds some overhead.
The reason for this di"erence in speedups is that some programs
either have expensive queries like the example in Section 2, or a
larger number of queries, and others don’t. This observation is in
line with previous experiments on demand-driven analyses [11]. A
demand-driven version of the null-pointer analysis does not exist
(see why in Section 4), but we expect it to perform worse than in
the cast-check analysis because there are signi!cantly more queries
in the null-pointer analysis and the demand-driven analysis works
on a per-query basis.

Application-only analysis. At the other end of the spectrum is the
application-only analysis (marked by a grey star), which is orders
of magnitude faster, but gets a signi!cantly lower recall. For the
cast-check analysis it gets a 254x speedup and a 56% recall, whereas
for the null-pointer analysis it gets 1222x speedup and 58% recall.
The large speed-up is attributed to the fact that the application
constitutes only 0.33% of the whole program on average (Figure 7 ).
An application-only analysis is a good option for use-cases where
analysis speed is signi!cantly more important than recall, but when
both are important, it doesn’t strike as good of a balance between
the two.

Averroes. The point closest to this is Averroes (marked by a red
plus), which gets a (179x speedup, 60% recall, 71% precision) for the
cast check analysis, and a (913x speedup, 53% recall, 47% precision)
for the null-pointer analysis. This is the only tool for which we
report the precision because the other tools get 100% precision.

The massive speedup of Averroes is attributed to the fact that its
summary is tiny compared to the size of the library. However, the
tiny size is also what causes analysis information to be merged and
precision to drop. The 47% and 71% precision values are signi!cantly
lower than our target of 100% precision.

Averroes should theoretically get 100% recall for the cast-check,
but not for the null-pointer analysis because its library summary
includes information about object-initialization but not about !eld-
initialization. The observed recall is lower than expected because
of a bug in its dealing of inner-classes which causes any error
propagating through a Java inner-class to be dropped. The bug has
been reported to the developers.

QueryMax. Finally, QueryMax gives some points in between
these two extremes. The points marked with crosses are for the
class-budgets and the points marked with with squares are for the
query-coverage goals.

For the cast-check analysis (Figure 9) QueryMax performs very
well. The 3% budget (purple cross) gets a 24x speedup and 92% recall,
and this strikes a really useful balance between the two metrics.
The 10% budget (blue cross) gets an 8.7x speedup and a 97% recall,
thereby favoring the recall a little more than the speedup, but still
a great trade-o" between the two metrics. The 30% budget (pink
cross) gets 3.9x speedup and a 99.6% recall.

The query-coverage stopping criterion (represented by the squares)
for the cast-check analysis gets similarly good results. The 70% goal
(brown square) gets (12x speedup, 94% recall) and the 90% goal
(yellow square) gets (6.7x speedup, 97% recall). The speedups for
the coverage goals are slightly lower than the class budgets. For
example, the yellow square in Figure 9 is directly below the blue
cross. This happens because calculating the query-coverage in-
volves the overhead of at least one fast-ESA, which the class-budget
version avoids. However, the coverage-goal gives a guarantee on
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the number of queries covered, which could be more valuable than
a guarantee on the number of classes analyzed.

For the null-pointer analysis (Figure 10), we see a similar speedup
vs recall trade-o" for QueryMax. The 3% class-budget, marked by
the purple cross gets (34x speedup, 69% recall), the 10% class budget
marked by the blue cross gets (11x speedup, 77% recall), and the
30% class-budget, marked by the pink cross gets (5.2x speedup,
91% recall). The query-coverage points (marked by squares) lie in
between these three points. Unlike the cast-check analysis, the
coverage-goal variants are not much worse than the class-budget
variants for the null pointer analysis. We discuss the reason for this
observation in Section 6.4

Comparing !gures 9 and 10 shows that QueryMax gets much
better recall for the cast-check than the null-pointer analysis. The
main reason for this is that some dereference instructions get a
high-priority from QueryMax, but are often never null-pointer
exceptions. For example, in any given program, the println() call
occurs many times, and in all cases gets its value from the !eld
java/lang/System.out. Since this !eld a"ects several dereference
instructions, it ends up getting a high-priority and that part of
the library gets added to our partial library !rst, even though the
println() calls never cause null-pointer exceptions. A similar case
happens to some other common dereference instructions.

To sum up, QueryMax with either stopping criterion provides a
useful analysis design point in-between the application-only analy-
sis and the demand-driven analysis, just like in the example from
Section 2. Further, unlike Averroes, it achieves this speedup without
sacri!cing precision, and thus continues to meet the high-precision
expectation of its users.

6.2 C2: Distribution of Recall and Speedup
We now understand the recall and speedup trade-o" points for
QueryMax, but we would also like to know their distribution across
the benchmark programs. Figures 11 and 12 use a histogram to show
the distribution of the recall and speedup for QueryMax with a 70%
query coverage. The X-axis gives the speedup or recall, with the
values split into bins, and the Y-axis gives the number of programs
in each bin. Just like !gures 9 and 10, we use a logarithmic scaling
for speedup here. The recall is still plotted on a linear scale.

The recall for QueryMax with the cast-check analysis (Figure 11)
is close to 100% for most of the programs, with only a couple of
programs getting lower scores. Two programs get a 0 recall. These
programs had just 1 and 2 errors each and missing those errors
meant a recall of 0. The null-pointer analysis (Figure 12) has a
similar story for recall, but it has a larger number of programs with
0 recall. In most of these cases, the null-errors are very few and
highly related, and hence missing one library method could cause
all the null-errors to be missed.

The speedups for both analyses are consistent, with most pro-
grams getting close to the mean speedup value. The cast-check has
2 programs that get less than a 1x speedup. This happens because
if QueryMax cannot guarantee that 70% coverage has been reached
by the time its chosen fragment expands to 30% of the program, it
simply falls back to picking the whole program, thereby resulting
in no speedup.

6.3 Zero-Error Benchmarks
The results so far focused on the programswith non-zero errors. Fig-
ure 13 lists the speedup for programs with zero errors in the whole-
program analysis. The speedups for QueryMax are on average twice
as much as the non-zero error benchmarks. The demand-driven
cast-check however, gets a 42x speedup here as compared to the
5.1x speedup on the non-zero error benchmarks. This high speedup
for the demand-driven analysis on these benchmarks stems from
the fact that these programs have much fewer down-cast instruc-
tions than the non-zero error benchmarks. Thus, when there are
very few analysis queries, a demand-driven analysis gets a higher
speedup.

6.4 Split-up of Analysis Time
Recall the work#ow of QueryMax from Figure 1. We !rst run Query-
Max with either a query-coverage goal or a class-budget. For query-
coverage, QueryMax includes the additional overhead of the fast-
ESA. Finally, we run the existing analysis. Figure 14 gives a split-up
of the time between QueryMax (minus the fast-ESA), the fast-ESA,
and the existing static analysis, for the query coverage goal.

For the cast-check, the fast-ESA takes 51% of the time, whereas
the other QueryMax part takes just 4%. This explains why the
query-coverage criterion from Figure. 9 is slower than the class-
budget one; computing the query-coverage needs the fast-ESA, but
computing the class-budget does not.

For the null-pointer analysis, both the fast-ESA and the other
part ofQueryMax take up a small percentage of the time (8% totally).
The contribution of QueryMax and fast-ESA to the total analysis
time is larger for the cast-check than the null-pointer analysis. The
reason for this is that existing null-pointer analysis has a longer
absolute analysis time than the cast-check, but the absolute fast-ESA
time is similar in both cases.

6.5 Analysis-time vs Number of Classes
As a minor result, we show the relationship between the class-
budget and the analysis time, to justify our use of the former as
a proxy for the latter. Figure 15 compares the number of classes
analyzed on the X-axis with the analysis time on the Y-axis for
both analyses. Each point represents one analysis of QueryMax
with a class-budget. For both analyses, the analysis time is almost
linear, but the cast check has more outliers, which explains the
high-standard deviation for its analysis time (see Figure 8). The
!gure also plots a regression line, and the equation of this line can
be used to convert time-budgets into class-budgets.

6.6 Threats to Validity
There are two main threats to validity. The !rst is that out of the
application, third party libraries and standard library, the standard
library forms the largest part. Even though di"erent programs
interact with di"erent parts of the standard library, it still means that
the benchmarks are not perfectly independent for a static analysis.
However, this issue occurs with any static-analysis benchmark-set
where the programs access the standard library.

The second is that analysis time measurements for all the pro-
grams were performed using a single run, even though execution
times can vary across runs. However, since the speedups are large
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Figure 11: Speedup and Recall histograms for QueryMax
(70% query coverage) on the cast-check analysis

Figure 12: Speedup and Recall histograms for QueryMax
(70% query coverage) on the null-pointer analysis

Analysis Cast-check Null-pointer
Application-only 395x 2196x
Averroes 230x 1744x
QueryMax 3% class-budget 30x 84x
QueryMax 10% class-budget 13x 33x
QueryMax 30% class-budget 6.4x 18x
QueryMax 70% query coverage 16x 20x
QueryMax 90% query coverage 12x 10x
Demand-driven 42x N/A

Figure 13: Speedup for the various analysis techniques for
the Zero-error benchmarks
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Figure 14: Split up of the time taken by each component for
an analysis using QueryMax with the query-coverage goal

(an order of magnitude) and the benchmarks are numerous, these
variations matter less. Further, since the total experiment-time is
already ten days, performing multiple runs is infeasible.

Figure 15: Class-budget and analysis time relationship.

7 RELATEDWORK
The three research directions that focus on speeding up static anal-
ysis by avoiding the analysis of the entire program are library-
summary based analysis, demand-driven analysis, and the analysis
of program fragments. We discuss each of these in turn.

Library-summary based analysis. The main idea behind the re-
search in this area is to create an analysis summary for the library
and use this library summary instead of the actual library code to
analyze the application.
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Averroes [1] heavily compresses the library into a small sum-
mary. This summary consists of a single summary-pointer to rep-
resent all library pointers, stubs for methods called directly from
the application, and a single summary-method to perform all the
object initializations and application call-backs. Since this summary
is quite small compared to the library, using it in place of the li-
brary results in a massive speedup. However, the small size of the
summary has two downsides: precision drops because information
is merged in the single summary-pointer, and some kinds of in-
formation (like !eld initialization information for the null-pointer
analysis) get left out out of the summary. QueryMax, in contrast,
leaves out no information in the partial library that it chooses, and
more importantly, preserves the precision.

The component-level analysis by Rountev et. al [19, 21] di"ers
from Averroes in that its library summary contains all the informa-
tion necessary to get the same result as a whole program analysis.
The !rst time an analysis is run, the library is separately analyzed
and summarized, and the summary is integrated with the applica-
tion analysis. This saves no time in the initial run (the overhead
causes a slowdown). However, it saves time in subsequent runs
when the same library summary is reused across di"erent pro-
grams or future versions of the program. QueryMax on the other
hand never uses the whole library and it speeds up the analysis of
each program independently. Further, unlike the component-level
analysis which needs a separate design for each type of analysis,
QueryMax can be used o"-the-shelf with any analysis.

Demand-driven analysis. Demand-driven analyses [11, 24, 27, 28]
are well-accepted as the most e$cient option for single analysis
queries, and work best for resource-constrained environments like
IDEs and JIT compilers. They also performwell when the number of
queries is small [28]. However, when analyzing entire applications
in which the number of queries is large, the demand-driven analysis
could end up analyzing large parts of the program and cause a slow-
down because of their overhead [11]. We also see this observation
in our benchmarks, where some programs get huge speedups over
a whole-program analysis, but some experience slowdowns.

Unlike the demand-driven approach,QueryMax avoids expensive
queries by assigning them a low priority, like in the example from
Section 2. It also avoids the demand-driven overhead since it still
runs a batch analysis, thereby performing better when there are
many queries to be answered. Further, since QueryMax is only
a preprocessor to an existing whole-program analysis, it can be
used with an existing analysis, without requiring a design of a
demand-driven version of it.

Analysis of Program Fragments. There has been past research
on analyzing program fragments in isolation. In our use-case, the
program fragment is the application-code. Cousot and Cousot [7]
describe four techniques for this general approach. The !rst is a
simpli!cation-based separate analysis, which analyzes the various
fragments of a program separately and then combines their infor-
mation. This idea is similar to the library-summary based analysis
by [19], and has the drawbacks as discussed above. The second tech-
nique is a worst-case analysis, which means running an application-
only analysis, but using the top element of the abstract domain
for library pointers. This introduces additional false-positives. Our

experiments on this technique show that it gets a precision (aver-
aged over both analyses) of 22% which is far below our 100% target
precision. The third technique is to ask a user to provide stubs
for the library (i.e. information about the library interface) and
then perform an application-only analysis that incorporates these
stubs instead of the library. This can give high recall, precision and
speedup, but it requires a static-analysis expert to manually write
and update the stubs for each library. The fourth technique uses
a relational abstract domain and analyzes a program fragment by
giving symbolic names to external pointers and lazily evaluating
the values they pass. To the best of our knowledge, there are no
recent implementations or experimental results to compare the
e"ectiveness of this technique in practice.

Rountev et. al [20] introduce a technique to improve the perfor-
mance of a whole-program #ow-sensitive analysis. They perform
a #ow-sensitive analysis for the application code and then use a
whole-program #ow-insensitive analysis to overapproximate the
e"ect of the library pointers. The two limitations of this technique
are that it drops precision as compared to the original #ow-sensitive
analysis, and it cannot be used to speed up a #ow-insensitive anal-
ysis. QueryMax on the other hand maintains the same precision
as the original analysis tool and works with any level of context-,
#ow- or !eld-sensitivity.

8 CONCLUSION AND FUTUREWORK
In this paper, we introduce a new application-focused analysis tool
QueryMax, which achieves a large speedup over a whole-program
analysis, without losing any precision. QueryMax acts as a prepro-
cessor to an existing static analysis to select a partial library that is
small but su$cient to answer most of the analysis queries. Query-
Max provides the user with two stopping criteria: a class-budget
or a query-coverage goal, depending on whether the user wants a
handle on the analysis time or the recall. Our experiments on the
NJR-1 dataset show that QueryMax provides a signi!cant speedup
at the cost of a small and controlled drop in recall, and with no loss
in precision.

A possible future research direction could be to evaluate Query-
Max and the other baseline techniques with other client analyses
such as taint analysis or type-state analysis. Additionally, one could
also extend the approach to the Android platform, with the help of
frameworks such as WALA that support Android analysis. Finally,
a third direction could be to study how the QueryMax approach
translates to benchmarks in other popular languages such as C/C++
and Javascript.
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