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ABSTRACT
Researchers have reported that static analysis tools rarely achieve
a false-positive rate that would make them attractive to developers.
We overcome this problem by a technique that leads to reporting
fewer bugs but also much fewer false positives. Our technique
prunes the static call graph that sits at the core of many static
analyses. Speci!cally, static call-graph construction proceeds as
usual, after which a call-graph pruner removes many false-positive
edges but few true edges. The challenge is to strike a balance be-
tween being aggressive in removing false-positive edges but not
so aggressive that no true edges remain. We achieve this goal by
automatically producing a call-graph pruner through an automatic,
ahead-of-time learning process. We added such a call-graph pruner
to a software tool for null-pointer analysis and found that the false-
positive rate decreased from 73% to 23%. This improvement makes
the tool more useful to developers.

CCS CONCEPTS
• Software and its engineering→ Automated static analysis;
• Computing methodologies→ Supervised learning by classi!-
cation.
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1 INTRODUCTION
The Problem. Christakis and Bird [14] interviewed developers

about program analysis tools and they concluded:
Program analysis design should aim for a false-
positive rate no higher than 15–20%.
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Other empirical studies have found similar results [6, 25, 40]. Un-
til now, this goal has been particularly hard to achieve for static
analyses, which are tools that analyze programs without executing
them.

As a motivating experiment, we tried Wala [47], which is one of
the best tools for static analysis of Java bytecode, on a subset of the
NJR-1 benchmark suite [35]. For each benchmark, we compared
the edges in the static call graph with the edges found by executing
the benchmark. With a context-insensitive analysis, Wala has a
false-positive rate of 76%, while with a better but also much slower
context-sensitive analysis, the false-positive rate is 70%. Those re-
sults are disappointing though we must emphasize that call graphs
are usually fed to client tools rather than directly to developers. So,
we did a second experiment to see how the high false-positive rate
of call-graphs a"ects client tools. Speci!cally, we implemented a
version of a static analysis for warning about null-pointer problems
[21] that is a client of the context-insensitive call graphs produced
by Wala. We ran this tool on the same subset of NJR-1 and again
had disappointing results: 60 bugs among 223 warnings, on aver-
age, so a false-positive rate of 73%. We can easily imagine how a
developer will tire of investigating warnings that in nearly three
of every four cases are false alarms. The false alarms have several
causes, but an important cause is the high false-positive rate in the
underlying static call graph. Hence, we can also see a glimmer of
hope: if we can reduce the false-positive rate of static call-graph
constructors, we may be able to move client tools closer to the goal
of a false-positive rate of 15–20%.

Our Idea. Our approach stems from another conclusion by Chris-
takis and Bird [14] who reported a preference of developers:

When forced to choose between more bugs or
fewer false positives, they typically choose the
latter.

This quote inspired our idea for how to improve the false-positive
rate: we will report fewer bugs but also much fewer false positives.
Indirect support for this idea comes frompreviouswork that showed
that practical static analyses aren’t totally sound [31, 43] and there-
fore may miss bugs. Thus, developers expect bug reports to be
incomplete so reporting fewer bugs seems acceptable.

We want to reduce the false-positive rate in a modular way that
leaves existing call-graph constructors unchanged. This brings us
to our idea of a call-graph pruner that statically post-processes a
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static call graph by removing many false-positive edges but few
true edges. The challenge is to strike a balance between being
aggressive in removing false-positive edges but no so aggressive
that no true edges remain. Additionally, we have to do better than
removing edges at random because random removals will leave the
false-positive rate unchanged.

How can we design a call-graph pruner?

Our Approach. We execute an automatic, ahead-of-time learning
process on results from both a static and a dynamic call-graph
constructor. The outcome is a call-graph pruner that works as
follows. The call-graph pruner determines the probability that an
edge in the call graph is a false positive, and if this probability is
above a threshold, then the call-graph pruner removes the edge.
We can vary this threshold and thereby tune the call-graph pruner.

In contrast to previous work on using a dynamic analysis to
improve a static analysis [3, 13, 16], we use the dynamic call-graph
constructor only in an ahead-of-time training phase and only on a
training set of programs. Once the training phase has produced a
call-graph pruner, the combination of the call-graph constructor
and the call-graph pruner is itself a static analysis, as illustrated in
Figure 1.

Our Contributions and the Rest of the Paper. We begin with an
example of how a call-graph pruner works (Section 2) and then we
detail our contributions:

• We present the design (Section 3) and implementation (Sec-
tion 4) of a tool that produces call-graph pruners.

• We show experimentally (Section 5) that adding a call-graph
pruner to a client tool can signi!cantly decrease the false-
positive rate, in one case from 73% to 23%. Speci!cally, we
added a call-graph pruner to the tool for warning about
null-pointer problems, after which we got 15 bugs among
20 warnings, on average. Thus we reported 45 fewer bugs
but also 158 fewer false positives.

• We show experimentally (Section 5) that the overhead of
adding a call-graph pruner is 18% of the original call-graph
analysis time.

We end with a discussion of related work (Section 6) and our con-
clusion (Section 7).

Signi!cance. Call-graph pruners improve static call-graphs sig-
ni!cantly and thereby make client tools more useful to developers.

2 EXAMPLE
Now we give an example of a call-graph pruner, how it works
on a example call graph, and how it a"ects a client analysis for
warning about null-pointer problems. Our example program in
Figure 2, shown in full in the Appendix, has three classes A, B, C,
each of which has a method foo, and a main method that contains
a method call x.foo(x.f). The call to getObjC() returns an object
of type C, which is then assigned to the variable x. On the next
line, the access x.f happens, but the !eld A.f may be uninitialized
hence null. Thus the call x.foo(x.f)may pass null as an argument
to C.foo, which, in turn, at the call c.toString(), may throw a
NullPointerException. The program has two additional methods,
including getObjC, that we omitted from Figure 2.
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Figure 1: Overview of our technique
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Figure 2: Example call graph and call-graph pruner

Null-Pointer Warnings. As we mentioned in Section 1, we im-
plemented a version of a static analysis for warning about null-
pointer problems. This analysis !nds null-pointer problems that
stem from uninitialized !elds, like the problem with c.toString()
that is caused by the uninitialized !eld A.f. If we run this tool on
the example program, we get three warnings, one for each call of
toString in the foo methods. One of them is a true warning but
the other two are false alarms. Let us investigate how that could
happen and what a call-graph pruner can do about it.

Call Graph. The null-pointer tool uses a static call-graph con-
structor that built the call graph shown in Figure 2. In a call graph,
each node is a method, and each edge is a directed edge from one
method to another. Such an edge represents a call that may happen
during the execution of the program.

The call-graph constructor uses a data-#ow analaysis to analyze
the entire program, including the methods that we omitted from
Figure 2. We skip the details of how this works and instead we focus
on the constructed call graph. Speci!cally, in Figure 2 we focus on
the four nodes for the main method, A.foo, B.foo, and C.foo. The
call graph has an edge from the main method to each of A.foo,
B.foo, and C.foo, as well as an edge some other method to B.foo
and a couple of edges from some other methods to A.foo. The edge
from main to C.foo is a true edge, while the edges from main to
A.foo and from main to B.foo are false positives.

The false call-graph edges frommain to each of A.foo and B.foo
can arise from di$cult-to-analyze methods, one of which is part of
the full example program in the appendix.
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The Null-Pointer Analysis in more Detail. Based on the call graph
in Figure 2, the null-pointer analysis derives that x.foo(x.f) may
call any of A.foo, B.foo, and C.foo. Then the null-pointer analysis
uses the rule that

if a !eld is not initialized by the end of a con-
structor, it is marked as Uninitialized; and if an
Uninitialized !eld is dereferenced, the analysis
gives a null-pointer warning.

Thus, the analysis concludes that each of the foo methods may be
passed null as an argument, and thus it issues a warning for every
one of those methods.

Call-Graph Pruner. The goal of a call-graph pruner is to remove
edges from the call-graph, preferably many false-positive edges
and few true edges. The key component of a call-graph pruner is
a classi!er that computes the probability that a call-graph edge is
a true-positive. Based on that probability, a call-graph pruner will
decide whether to keep or to remove the edge. Figure 2 shows a
classi!er that is represented as a decision tree. Each internal node of
the decision tree asks a true-false question about a call-graph edge.
The recursive decision process begins in the root of the decision
tree; if the answer to the question at the root is false, we move to
the left subtree, while if the answer is true, we move to the right
subtree. When we reach a leaf, we !nd the probability that the
call-graph edge is a true-positive. The probabilities computed for
each call-graph edge in this fashion are marked on the call graph
in Figure 2. Based on these probabilities, we will decide whether to
keep or remove the call-graph edge.

The decision tree in Figure 2 has three internal nodes that are la-
beled with questions about dest-node-in-deg, which is the in-degree
of the destination node of the edge, and about src-node-out-deg,
which is the out-degree of the source node of the edge. For exam-
ple, the edge from main to C.foo has destination-node in-degree
1 and source-node out-degree 3. This gives us the path false-true-
false, which assigns the edge the probability 70%. Similarly, the
edges from main to A.foo and B.foo get probabilities 10% and
40%, respectively. The call graph in Figure 2 shows those three
probabilities.

Let us set a threshold of 50% for when we deem an edge to be
a false-positive: if the probability of being a true-positive is below
50%, we remove the edge. Then the call-graph pruner will remove
the edges from main to A.foo and B.foo. Hence, the null-pointer
analysis will issue just a single warning, and indeed a true warning,
namely for the call of toString in C.foo.

3 CALL-GRAPH PRUNERS
Now we describe how we use machine learning to produce a call-
graph pruner.

3.1 Overview
We will use Program to denote the set of Java bytecode programs.

A call graphG ∈ CallGraph is a multi-graph in which each node
represents a method and each edge represents a potential transfer
of control at a method call. Two nodes can have multiple edges
between them because of multiple method calls. Each edge has a
label that identi!es the method call site.

We distinguish between two kinds of call-graph constructors
that have the same type:

StaticCallGraphConstructor = Program → CallGraph
DynamicCallGraphConstructor = Program → CallGraph

Here, an element of StaticCallGraphConstructor constructs a call
graph without running the program, while, in contrast, an element
of DynamicCallGraphConstructor runs an instrumented version
of the program on one or more inputs and examines the output
from the instrumentation.

The key component of each call-graph pruner is a classi!er. A
classi!er C ∈ Classifier is a function that maps a vector of feature
values for an edge to a probability that the edge is a true-positive.
In our case, such a vector has 11 elements that we will de!ne in
Section 3.3.

Our tool for generating classi!ers implements a function of this
type:
classifier generator : (StaticCallGraphConstructor ×

DynamicCallGraphConstructor ×
Set[Program])
→ Classifier

Our classifier generator executes an automatic, ahead-of-time learn-
ing process on results from running both a static and a dynamic
call-graph constructor on a training set of programs. The dynamic
call graphs serve as ground-truth for the learning process. We will
detail this learning process in Section 3.2.

Once we have a classi!er, we can use it in a call-graph pruner of
this type:

call-graph pruner :
(CallGraph × Classifier × Threshold) → CallGraph

Algorithm 1 shows how a call-graph pruner works. Intuitively, a
call-graph pruner uses a classi!er to determine the probability that
an edge in a static call graph is a true-positive. If that probability
is below a given threshold T ∈ Threshold, the call-graph pruner
removes the edge.

Algorithm 1: Call-graph Pruner
1 Inputs: CallGraph G, Classifier C , Threshold T
2 let G ′ be a copy of G
3 for every edge e in G do
4 v = the feature values for e
5 if C(v) < T then
6 remove e from G ′

7 Output G ′

The threshold parameter enables us to explore di"erent levels of
aggressiveness in removing edges. For our example in Figure 2, we
discussed a threshold of 50% in Section 2, which led to the removal of
two edges. We could also use a lower threshold of 20%, which would
lead to the removal of a single edge, namely the one from main
to A.foo. The challenge is to strike a balance between removing
many false-positive edges and keeping many true-positive edges. In
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Figure 3: Classi!er Generator work"ow

Section 5 we will show results from an experimental investigation
of how to choose a good threshold.

Notice that we use a static call graph constructor, a dynamic call
graph constructor, and the training set of programs for the sole
purpose of generating a classi!er, while those items are no longer
needed when we use the call-graph pruner.

3.2 Our Classi!er Generator
We cast the edge-pruning problem as a classi!cation problem for
which learning a classi!er can be done with machine learning. We
proceed in three steps.

In the !rst step, we run existing static and dynamic call-graph
constructor tools on every program in the training set (the dataset
of programs is described in Section 4). The result is a set of pairs of
call graphs: each pair consists of a static call graph and a dynamic
call graph. We use the dynamic call graph as an approximation of
the ground truth: if a static call-graph edge is also present in the
dynamic call graph, we view it as a true-positive, and otherwise as
a false-positive.

In the second step, for each program, we construct a table in
which each row represents a static-call-graph edge. Figure 3 il-
lustrates this table. The last column in each row (titled Label in
Figure 3) contains a label of 1 or 0, based on whether the edge
exists in the dynamic call graph. The remaining columns (titled
f1 to fk ) represent the set of features of the static call-graph edge.
The example in Figure 2 uses two features: dest-node-in-deg and
src-node-out-deg; we will discuss other features below. We can view
each row in the table as a vector of feature-values. Concatenating
the tables of each individual program gives us a single large training
dataset of call-graph edges with ground truth labels. This training
dataset consists of a large number of pairs (xe ,ye ), where xe is a
vector of feature values corresponding to a static call-graph edge,

and ye is a prediction of whether it is a false-positive or not. Our
problem is now expressed in a format where it can be cast as a
machine-learning classi!cation problem [28].

In the third step we run an o"-the-shelf machine-learning tool
on the table constructed in second step. The result is a classi!er
that for any edge assigns a probability that it is a true-positive.
We picked random forests [19] (ensembles of Decision Trees). One
might try other approaches, which we leave to future work. Our
goal with this step is to show that an o"-the-shelf machine-learning
tool is su$cient to get good results.

Our classi!er generator can take any static call-graph constructor
as input. For example, we have used the call-graph constructors
WALA [47], Doop [9], and Petablox [33] as inputs and generated a
call-graph pruner for each one.

The complexity of generating a classi!er based on a training set
with n edges is O(n logn) [19].

3.3 Our Feature set
Now we describe how we designed the feature set that both our
classi!er generator and our generated call-graph pruners use.

A feature is information about a static-call-graph edge that may
help predict whether the edge is a true-positive. We would like our
feature set to capture important context and semantic information
about a call-graph edge. Encoding important semantic information
as features is a commonmachine learning practice for incorporating
domain knowledge into the learning process. For example, since
dynamic dispatch is likely to a"ect the false-positive probability of
a call-graph edge, we should add features that capture information
about the targets of a method call. Using the context information of
a graph edge has been useful for the related task of selective context
and heap sensitivity in pointer-analysis [23], and we consider it a
good criteria for picking features. Context information can be local
by describing the neighborhood of the edge, or global by describing
the call graph that the edge is a part of. In addition to capturing
context and semantic features, we identify three criteria that we
want our feature set to satisfy:

(1) linear-time computation complexity,
(2) interpretable and generalizable, and
(3) black-box.

The time-complexity guideline is particularly important given that
some of our benchmarks can have several hundred thousand call-
graph edges. Interpretability gives us an understanding of which
call-graph edges are being dropped, and generalizability ensures
that what is learned for the training edges also applies to call-graph
edges of unseen programs. The black-box criterion implies that the
features should only be designed on the output call graph, and not
on some internal state or representation of a tool. This allows us
to post-process the results without being speci!c to a particular
algorithm or tool. Using these criteria, we arrived at the following
features for an edge.

Figure 4 presents our feature set for an edge in a static call graph
G , where the edge is from a caller method caller to a callee method
callee. The node for the main method in G is main. The !rst seven
features describe local information while the last four describe
global information. Note that the L-fanout of an edge is the number
of outgoing edges at the call-site of that particular edge, whereas
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Feature Description
src-node-in-deg number of edges ending in caller
src-node-out-deg number of edges out of caller
dest-node-in-deg number of edges ending in callee
dest-node-out-deg number of edges out of callee
depth length of shortest path from main to caller
repeated-edges number of edges from caller to callee
L-fanout number of edges from the same call-site
node-count number of nodes in G
edge-count number of edges in G
avg-degree average src-node-out-deg in G
avg-L-fanout average L-fanout value in G

Figure 4: Our feature set

src-node-out-deg is the number of outgoing edges from all the
call-sites of an entire source method.

Our selection process started with a much longer list of features
that all satisfy the three criteria listed above. We picked from that
list the ones that helped the most with removing false-positives.
Our process used the training set as case studies to !nd the main
reasons why tools give false positives. The result was the eleven
features in Figure 4.

4 IMPLEMENTATION AND DATASET
Static Call-Graph Constructors. We used the static call-graph

constructors WALA [47], Doop [9], and Petablox [33]. In each case
we used the default setting, which implements 0-CFA for meth-
ods that are estimated to be reachable from the main method and
without any special handling of re#ection. Those tools produce
signi!cantly di"erent call graphs and so we generate a separate
call-graph pruner for each tool.

Re"ection. In preliminary experiments, we found that enabling
special handling of re#ection in the static call-graph constructors
introduces many false-positive edges in the call graphs. Our gener-
ated classi!ers tend to assign each of those edges a low probability
of being a true-positive, and therefore our call-graph pruners will
correctly remove most of them. Therefore, special handling of re-
#ection presents no additional challenge for call-graph pruning and
we decided to go with the default setting of each static call-graph
constructor.

Dynamic Call-Graph Constructor. We used the open-source tool
Wiretap [26] to instrument the Java bytecode and thereby enable
dynamic call-graph construction. Next, we ran the instrumented
bytecode and collected data about the run, particularly about the
method calls.

Standard Library. The Java standard library is large and has the
potential to dominate the measurements for every benchmark,
which is counterproductive. So, when we do our measurements and
training, we omit nodes from the standard library as well as edges
between standard library nodes. We preserve aspects of the edges
to and from the standard library in the following way. For every
path of the form

v → 〈. . . standard library nodes . . . 〉 → w

Figure 5: Histogram of Edge-counts in the 100 Training Pro-
grams.

wherev,w are nodes outside the standard library, we create a single
edge from v tow .

Random Forest Classi!er. Our classi!er generator uses the Ran-
dom Forest algorithm [19] implemented with the Scikit-Learn [36]
library (v0.21.3). The Random Forest algorithm works as follows: it
trains several decision-trees using Bagging [10], and makes predic-
tions by a “majority vote” across the decision trees. The training
took 4 minutes. We tuned the hyper-parameters using Random
Hyper-Parameter Search [5] with 4-fold cross-validation on the
training set. We list the chosen hyper-parameters in the appendix.

Dataset. Our dataset consists of 141 programs from the NJR-1
benchmark suite [35], of which we used 100 programs for gener-
ating three call-graph pruners and the remaining 41 programs for
our evaluation. We selected those 141 programs from the 293 NJR-1
programs according to the following criteria:

• consists at least 1,000 methods and at least 2,000 static call-
graph edges according to Wala,

• executes at least 100 distinct methods at runtime, and
• has high coverage: executes a large percentage of the meth-
ods that are reachable from the main method according to
Wala; for our benchmarks, the coverage is 68%, on average.

Each program consists of 560,000 lines of code, on average (not
counting the standard library). Inmore detail, each program consists
of the main application, which is 8,000 lines of code, on average,
in addition to third-party libraries which account for an estimated
552,000 lines of code, on average.

The total number of static-call-graph edges (not counting the
standard library) that are reachable from the main methods of the
141 programs is 1.3 million. For our classi!er generator, each edge
from 100 of those programs is a data point, which is 860,000 edges.
Note that manual creation of ground truth about those 860,000
edges infeasible.

Large Benchmarks. The histogram in Figure 5 gives the distri-
bution of the edge counts in the training programs. The X-axis is
plotted on a logarithmic scale due to the skew in the distribution.
Among the 100 training programs, 7 of them have a very large num-
ber of call-graph edges (> 20,000). This gives them the potential to
dominate how the classi!ers work. To overcome this, we randomly
sample 20,000 edges from the edge-sets of these 7 programs. Notice
that this sampling is done only during generation of call-graph
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pruners, while we use all the edges from the 41 programs that we
use for evaluation.

Analysis Time. Running the three static call-graph constructors
and the dynamic call-graph constructor on all the programs takes
four days of compute time.

Precision and Recall. We estimate the quality of a static call graph
using the standard notions of precision and recall. In our setting, if
S is the edge set produced by a static call-graph constructor, and
W is the edge set produced by Wiretap, then:

Precision =
|S ∩W |

|S | Recall =
|S ∩W |
|W |

The rate of false-positives is (1−Precision). We compute the average
precision and recall values for the entire test-set by taking the
arithmetic mean over the precision and recall values of individual
programs.

Figure 6 shows a histogram of the original precision and recall
scores for WALA on the 41 individual programs of the test set. Note
that the precision values vary signi!cantly, but almost all programs
get below 40% precision. Hence, there is a lot of scope for improving
the precision. The recall is close to 100% for most programs, but
low for some due to heavy use of re#ection, dynamic class-loading
or native code.

5 EXPERIMENTAL RESULTS
In this section, we discuss our experimental results that validate
the following claims.

(1) Our generated call-graph pruners for WALA, Doop, and
Petablox produce call graphs with balanced 66% precision
and 66% recall.

(2) For precision-sensitive clients, our generated call-graph pruners
are signi!cantly better at boosting precision than context-
sensitive analyses, and have a much smaller overhead.

(3) The precision improvement is consistent across the test set.
(4) The call-graph pruner enables a monomorphic call-site client

to balance its skewed 52% precision and 93% recall to a more
balanced 68% precision and 68% recall.

(5) The call-graph pruner enables a null-pointer analysis to re-
duce its average warning count from 223 to 20, while increas-
ing precision from 27% to 77%.

All experiments are run on a separate test set of 41 programs
which were not used during training. The experiments were carried
out on a machine with 24 Intel(R) Xeon(R) Silver 4116 CPU cores
at 2.10GHz and 188 Gb RAM. A minimum RAM size of 32Gb is
essential for ensuring that the static analyses run in reasonable
time. The artifact for the paper is available here [46] and the NJR-1
dataset can be downloaded from [45].

5.1 Main Result
Figure 8 gives the main result of the paper: a call-graph pruner can
be successfully used to boost precision and to balance the goals of
precision and recall for the 0-CFA call-graph analysis of WALA,
Doop and Petablox. The plot is used to represent the precision
and recall values of various tools, wherein all precision and recall
values are reported as averages over the test-set programs. The

black triangle marks the WALA 0-CFA analysis (23.8% Precision,
95.3% Recall), the green triangle marks the Doop 0-CFA analysis
(23.1% Precision, 92.6% Recall) and the blue triangle marks the
Petablox 0-CFA analysis (29.8% Precision, 88.8% Recall). They all
have close to perfect recall, but poor precision. The red plus sign
marks the WALA 1-CFA analysis (29.6%. 95.4%). The black curve
represents the precision-recall trade-o" points obtained when a call-
graph pruner is applied to the WALA 0-CFA output. The original
WALA-0CFA output is a single point on the precision-recall graph,
but the call-graph pruner gives a curve instead. This is because the
call-graph pruner gives a probability score for each edge being in
the ground-truth call-graph, and by setting di"erent thresholds (i.e.
cuto"s below which an edge is removed), we can obtain di"erent
points on the precision-recall curve. Joining all these di"erent points
gives us the black curve in the !gure. Setting a low-probability
threshold for accepting an edge, gives us points near the left end
of the black curve, because we accept a large percentage of edges,
thereby giving us higher recall but lower precision. Setting a high-
probability threshold gives us points near the right end of the curve
because we accept only very few edges which are very likely to be
in the ground-truth call-graph, and this gives us high-precision and
low recall. The green and blue curves represent the precision-recall
trade-o" obtained by applying the call-graph pruner to the Doop
and Petablox call-graphs respectively, and the case is very similar
to the black WALA curve.

These curves which trade-o" recall for precision show that the
classi!er has assigned probabilities meaningfully. In contrast, a
tool that randomly assigns probabilities to edges would result in
a curve that goes straight down to zero recall without improving
any precision. This is because it results in a random removal of
edges, which keeps the ratio of true-positives (i.e. precision) the
same. Boosting precision requires the ratio of false-positive edges
in the removed edge set to be higher than the rest of the edges.

There are 2 particularly interesting points on the black (WALA)
curve in Figure 8. The !rst is the one marked by the black (WALA)
square (66.0% Precision, 66.0% Recall), which represents the point
with balanced precision and recall. Such a point will be useful to
a precision-sensitive client analysis. As compared to the original
WALA 0-CFA (black-triangle), this point has over 72% of the edges
from the original call-graph removed, and out of the removed edges,
less than 10% are true positives. This point is at a 0.45 probability
threshold. Similar points for Doop and Petablox, marked by a green
square (hidden behind the black square) and blue square (also hid-
den behind the black square) respectively, are at (66.2% Precision,
66.2% Recall) and (66.4% Precision, 66.4% Recall) respectively. A
second interesting point is the right-most point on the curve after
which recall starts dropping faster, represented by a black circle
(50% Precision, 92% Recall). Such a point would be useful for a
client analysis that needs to increase a little precision, without los-
ing much recall. Similar points for Doop and Petablox are marked
by the green circle (50% Precision, 88% Recall) and blue circle (50%
Precision, 87% Recall) respectively.

Both these points give larger precision boosts than the 1-CFA
analysis. However, in general, the best precision-recall trade-o"
point is decided by the needs of the client of the call graph. Precision-
sensitive clients would bene!t more from our call-graph pruner
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Figure 6: Precision and recall for 41 test programs.
Figure 7: Precision and recall after call-graph pruning.

Figure 8: Main Result for the WALA, Doop and Petablox
static analysis tools. The baseline precision-recall values for
the 3 tools, alongwith the precision-recall curve obtained af-
ter applying a call-graph pruner (averaged over all test pro-
grams)

since it gives a larger precision boost, but clients that need high
recall may prefer the 1-CFA call graph.

Our call-graph pruner adds an overhead of 18% to the WALA
0-CFA analysis, whereas moving to a 1-CFA analysis adds 292%
overhead. Prior research also !nds that context-sensitivity increases
analysis time by many folds [30].

For completeness, we also ran this experiment for WALA’s RTA
implementation and it gets similar results (that we show in the
supplementary material). Since the three tools show similar charac-
teristics, we only present numbers for the WALA 0-CFA call graph
in the rest of this section. The corresponding graphs for Doop and
Petablox are available in the supplementary material.

Picking a Cuto# value. We picked the balanced precision-recall
point because it gave good results for a null-pointer analysis client,
but di"erent precision-recall trade-o" points may be suitable for
di"erent client analyses. Figure 9 helps a user pick the right trade-o"
point for their client. It plots the probability cuto" values on the X-
axis, and the Precision, Recall and F-score on the Y-axis. The graph
shows what values each of these metrics takes at every probability
cuto" value, as well as what the expected cuto" would be for a
given target Precision, Recall or F-score. For example, by looking at
the !gure, we can say that to obtain an expected Precision of 60%,
we can set a cuto" value of 0.4. At this point we would get a Recall
of approximately 75% and F-score of around 65%. This graph also
shows that the balanced precision-recall point is also very close to
the point with maximum F-score.

Feature Importance. Figure 10 gives the impurity-based impor-
tance [42] for each feature used in the random-forest in descending
order. The L-fanout and dest-node-in-deg are the most important fea-
tures and the four global features are the least important. Dropping
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Figure 9: Probability cuto# plotted vs Precision, Recall and
F-score curves for WALA

Feature Importance
L-fanout 0.182
dest-node-in-deg 0.114
src-node-out-deg 0.094
repeated-edges 0.092
src-node-out-deg 0.090
depth 0.084
dest-node-out-deg 0.079
node-count 0.071
edge-count 0.067
avg-L-fanout 0.036
avg-degree 0.028

Figure 10: Importance of each feature in the Random Forest
Classi!er in descending order.

the four global features decreases the area under the precision-recall
curve from Figure 8 by 6%.

Human-Interpretable Explanation of the Classi!ers. We can give
a human-interpretable explanation of the main aspects of the Ran-
dom Forest classi!ers that were learned in the experiment. In each
case, the top-level decisions center around the following generic
classi!er:

if ((L-fanout > m) ∧ (dest-node-in-deg > n)) then 0 else 1
The above expression says that if an edge has L-fanout greater than
m and destination-node in-degree greater thann, then the probability

Figure 11: Historgram of Percentage Improvement in Preci-
sion scores for individual programs.

that it is a true edge is 0, and otherwise 1. For each of the static
call-graph constructors, we can identify the constantsm and n:
WALA:
if ((L-fanout > 3.5) ∧ (dest-node-in-deg > 9.5)) then 0 else 1

Doop:
if ((L-fanout > 3.5) ∧ (dest-node-in-deg > 16.5)) then 0 else 1

Petablox:
if ((L-fanout > 3.5) ∧ (dest-node-in-deg > 20.5)) then 0 else 1
The orange cross (49% precision, 92% recall) in Figure 8 gives

the precision-recall trade-o" when using the generic classi!er for
WALA. This generic classi!er has a slightly worse trade-o" and
is much less tunable than the black line (WALA with call-graph
pruner). However, its pruning rules are also much simpler and
easily understandable. The use of L-fanout and dest-node-in-deg in
the generic classi!er aligns with the fact that these are the most
important features according to Figure 10.

5.2 Distribution of Precision and Recall for
individual programs

Figure 7 gives a histogram of the precision and recall scores of
individual programs when a call-graph pruner is used to prune the
WALA call graph at the balanced precision-recall point (marked by
the black square in Figure 8). Most of the programs get at least 50%
precision, and a several even reach the 70% precision goal. Contrast
this to the precision in Figure 6 where almost all programs fail to
cross the 40% precision point.

As expected, the recall scores from Figure 7 dropped as compared
to Figure 6. However, most programs still get at least 50% recall,
implying that they retain a good portion of their true edges. Note
that it is impossible to improve recall using a call-graph pruner
since it cannot !nd new edges that WALA did not !nd.

The histogram from Figure 11 illustrates the percentage improve-
ment in precision scores. The X-axis is plotted on a logarithmic scale.
By using a call-graph pruner, 30 out of the 41 programs have their
precision score boosted by at least 2 times their original precision
score. All but 2 programs have their precision score boosted by at
least 20%. No benchmark gets a worse precision. Thus, a signi!cant
majority of the individual programs consistently get a large pre-
cision improvement without loosing too much recall, and achieve
a better precision-recall balance. The Doop and Petablox graphs
have similar characteristics and are shown in the supplementary
material.
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Call-graph tool Precision Recall
WALA 0-CFA 51.8% 92.6%
WALA 0-CFA + call-graph pruner 67.7% 68.4%

Figure 12: Impact of improved call-graph precision on a
monomorphic call-sites client

ID Warnings True-Positives in a sample of 10
Before After Before After

B1 137 12 2 10
B2 365 31 4 5
B3 190 15 2 8
B4 308 44 7 10
B5 204 16 0 10
B6 429 42 0 7
B7 404 136 7 10
B8 70 10 0 0
B9 231 10 0 9
B10 102 34 5 8

Average 2.7 7.7

Figure 13: Total warning counts and a manual classi!cation
of a sample of 10 warnings for the null-pointer analysis be-
fore and after applying a call-graph pruner

5.3 E#ect on Client Analyses
Next, we look at the e"ect of improved call-graph precision on the
monomorphic call-site detection and null-pointer analysis clients.

Monomorphic call-site client. This client is based on the WALA-
generated 0-CFA call graph, and it uses the dynamic analysis as the
ground-truth. Figure 12 give the precision and recall of a monomor-
phic call-site client with and without the call-graph pruner. The
call-graph pruner helps the client boost precision from 52% to 68%
and balance its goals of precision and recall.

Applications of the monomorphic call-sites client include devir-
tualization and inlining. Since the call-graph analysis is never sound
in practice [31], these applications require some safety checks, re-
sulting in overheads. For example, if devirtualization is used for
optimization, run-time checks need to be inserted to ensure correct-
ness [22]. Higher precision for the monomorphic call-sites client
implies that more of the call-sites declared monomorphic by the
static analysis actually turn out monomorphic in the ground-truth.
This in turn implies that whenever we incur the overhead of inlining
or devirtualization, we are also more likely to realize its bene!ts.

Null pointer analysis. This analysis is based on the paper by Hu-
bert et al. [21]. It is implemented in WALA, and is used to !nd null-
pointer errors originating from uninitialized instance !elds. The
analysis is context-insensitive, !eld-insensitive and #ow-sensitive.
It only reports potential null-pointer dereferences in application
code, and not for the standard library.

The original WALA call graph gives us, on average, 223 null
pointer warnings per program. The high volume of warnings makes
it cumbersome for developers to manually inspect and in practice
this results in developers ignoring the tool output entirely [6, 25].

Using the call graphs produced after pruning gives us much fewer
(on average 20 per program) warnings.

Two of the authors manually inspected a random sample of
10 null-pointer warnings from 10 of the 41 test programs when
used with and without the call-graph pruner. The 10 programs were
chosen with the criteria that they had at least 10 warnings both with
and without the call-graph pruner, and the ratio of warnings with
and without the call-graph pruner was close to (20/223). Figure 13
gives the total warning counts as well as the true-positive counts
(from a sample of 10 warnings) for each of these 10 programs. The
use of a call-graph pruner helped the null-pointer analysis improve
its precision from 27% to 77%

The criteria for marking a warning as a true-positive was that
the author could trace the backward slice of a dereference to an
instance !eld which was uninitialized by the end of a constructor.
Warnings that either could not be veri!ed in 10 minutes, ran into
another exception before triggering the null exception, or other-
wise unveri!able by the authors, were considered as false-positives.
Reachability from the main method was not considered because it
is hard to verify manually.

We leave to future work to try other clients, including other
approaches to null-pointer analysis such as NullAway [4].

5.4 Threats to Validity
The !rst threat is the use of a dynamic analysis as a proxy for
the call-graph ground truth. It assumes good coverage of the true
ground-truth call-graph and a"ects the precision-recall calculations.
If the dynamic analysis had higher coverage, more of the static anal-
ysis edges would be in the dynamic call-graph. As a consequence,
both the baseline precision scores as well as the pruned-call-graph
precision scores would be higher. In contrast, we expect the recall
scores to remain similar. However, improving dynamic analysis cov-
erage is a non-trivial and orthogonal problem and any techniques
improving coverage will automatically improve our technique and
evaluation. Symbolic execution [27] is one option to improve cover-
age, but it doesn’t scale to the size of our programs. Instead, we use a
subset of the NJR-1 benchmark set which gets good coverage. Note
that this threat does not a"ect the evaluation of the null-pointer
analysis.

The second threat is the manual inspection of the null-pointer
warnings, which are vulnerable to human errors. The authors in-
specting the errors have a limited familiarity with the code-bases
of the examined program. This could lead to misclassi!cation of
both true and false errors, and a"ect the precision score accord-
ingly. Further, the precision scores are reported for a sample of 10
programs.

The third threat to validity is the generalizability of the results
to programs outside the NJR dataset. Our assumption is that our
learning and evaluation results generalize to other programs outside
the dataset.

The fourth threat to validity is that programs in the training
set and evaluation set share some third-party libraries. On average
(geometric mean), 3.6 percent of the methods of a program in the
evaluation set also occur in some training program. We believe that
this overlap is low enough to not signi!cantly a"ect the conclusions
of our evaluation.
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6 RELATEDWORK
Our technique is the !rst to apply machine learning to boost call-
graph precision. In our discussion of related work, we focus on three
areas: combining static and dynamic analyses, applying machine
learning to remove static-analysis false-positives, and improving
the precision of call-graph construction.

Combining static and dynamic analysis. Prior research has used
a dynamic analysis to improve the precision of a static analysis.
Grech et. al [16] generate dynamic heap information and use this
as a drop-in replacement for the heap modeling part in an existing
static analysis tool to improve its precision. Artzi et. al [3] use a
dynamic analysis to con!rm the mutability information computed
by a static analysis. Chen et. al [13] use the information from test-
executions to prioritize the alarms given by a static analysis. The
main drawback that these tools face is that they need the dynamic
analysis to be run every single time the tool is run. In contrast, our
technique needs the dynamic analysis only for generating a call-
graph pruner. After that, a call-graph pruner is purely a static tool,
and hence does not su"er from the usual drawbacks of a dynamic
analysis like long execution times or !nding good inputs.

Applying machine learning to improve static-analysis by remov-
ing false-positives. The technique of !ltering static-analysis false-
positives by casting it to a classi!cation problem with hand-picked
features has been used for static bug-analysis tools [15, 18, 39, 44,
49]. Each of these works follows the same work#ow: collect static
analysis error-reports, get a programmer to label them as true or
false-positives, design a feature-set for the error reports, and then
train a classi!er on these labeled error-reports to identify false-
positives. However, they have minor di"erences among themselves
in terms of the feature-set chosen, the bug-reporting tool used and
the benchmarks used for the training data. Ruthru" et. al [39] use
the FindBugs [20] bug-reporting tool and the set of Java programs
at Google as their dataset. Heckman and Williams [18] also use
FindBugs reported bugs on 2 open-source Java projects. Yuksel
and Sozer [49] classify bug-alerts for a digital TV software. Flynn
et al. [15] combine the bug-alerts from multiple tools, in addition
to using the hand-picked features. Tripp et. al [44] work with a
JavaScript security checker’s warnings from popular Web sites as
its dataset.

Our work di"ers in three ways: it uses an estimate of ground-
truth produced by dynamic analysis, it has a generalizable approach
to picking a feature set, and it has a tunable precision-recall trade-
o", as we discuss next.

The key bottleneck faced by each of these prior works was that
they relied on the collection of human-labeled ground-truth, which
does not scale. This restricted their dataset to a handful of projects
and a couple of thousand data-points (bug reports) at best. In fact,
for each type of error, there is typically less than a few hundred bugs
in each of the datasets. In contrast, our technique uses an estimate
of ground-truth produced by dynamic analysis, which allows it to
scale to a much larger number of programs with a million data
points (call-graph edges).

The second major di"erence is in the choice of the feature-set.
This is partly a consequence of the fact that the previous work
focuses on static-analysis error report data, which is di"erent from

the graph output generated by call-graph construction tools. Hence
some of the common features used in these works are the bug-
priority level, !le-modi!cation-frequency, coding-style metrics,
and lexical features (like method or package names). These fea-
tures, though appropriate, violate generalizability and black-box
guiding principles listed in Section 3.3. Non-black-box features like
bug-priority level will not generalize across di"erent tools or al-
gorithms, and non-generalizable features like lexical features are
unlikely to generalize to programs outside the dataset. In contrast,
we use a systematic approach to selecting features, as described in
Section 3.3, and as a consequence, our approach generalizes eas-
ily across multiple programs and multiple call-graph construction
tools.

The third di"erence is that these prior works, except for [44],
provide a single precision-recall point. [44] provide eight di"er-
ent precision-recall points, by varying the classi!er used. Instead,
our approach has a tunable precision-recall trade-o" by predict-
ing edge-probabilities and pruning edges with probability lower
than a threshold. Further, we only use a single classi!er (Random
Forests) since it achieves superior precision-recall trade-o"s than
the classi!ers used in [44].

Another area that uses machine learning for !ltering false pos-
itive is the work by Raghothaman et al. [37]. They predict the
probabilities of static-analysis alarms using Bayesian inference and
update these as the user resolves alarms as true or false positives.
This paradigm of online learning, where the model is learned and
improved as the user gives feedback, is quite di"erent from our
fully-automated o%ine learning paradigm, where we do a one-time
training on a large dataset of static and dynamic analysis outputs
and require no user input.

Recently data-driven techniques have also been used to selec-
tively apply context- and #ow-sensitivity [12, 24] to methods that
will bene!t it the most. These techniques can potentially provide
the precision improvement of a 1-CFA at a lower overhead, but as
seen in Figure 8, this improvement is still much lower than what is
achieved by our call-graph pruner.

Improving the precision of call-graph construction. Lhotak [29]
designed an interactive tool to qualitatively understand the root
cause of di"erences between di"erent static and dynamic analysis
tools. This is then used in a case study to understand the main
cause of imprecision in a static analysis tool as compared to its
corresponding dynamic analysis output. In contrast, our classi!er
generator is fully automated, using machine learning, and doesn’t
require a skilled programmer to use an interactive tool to !gure
out the cause of the imprecision.

Sawin and Rountev [41] propose certain heuristics to deal with
dynamic features like re#ection, dynamic class loading and native
method-calls in Java, which helps to improve call-graph precision
of the CHA algorithm without sacri!cing much recall. Similarly,
a call-graph pruner trades of a little recall for a large boost in
precision, but it achieves this through automated machine learning
on a dataset of call graphs instead, and is able to boost precision
by a much larger amount. Additionally, we work with a 0-CFA
baseline (with no handling of dynamic features like re#ection),
which already has a large precision gain over a CHA algorithm
with re#ection handling.
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Zhang and Ryder [50] create precise application-only call graphs
by identifying which edges from the standard library to the applica-
tion are really false-positive. This is similar to the precision boost
we gain for the edges that go via the standard library. However,
we generate a classi!er that learns this on its own from data, and
we use the classi!er in a call-graph pruner that is able to boost
precision even further.

The patent by Reif et. al [32] uses probabilities to quantify anal-
ysis imprecision. Each analysis constraint is assigned a probability
heuristically or via user con!guration, and the probabilities for
call-graph edges are derived from these using a type-propagation
graph. In contrast, our call-graph pruner learns all its edge prob-
abilities from data about static and dynamic call-graphs. Further,
while their technique calls for a new static analysis, our call-graph
pruner works as a black-box post-processor for existing call-graph
construction tools.

More distantly related is the work by Blackshear et. al [8], which
prunes control-#ow edges representing interleavings between events
in an event-driven system. This pruning task is di"erent from our
task which focuses on pruning call-graphs edges for sequential
code.

There has also been prior work that uses a dynamic analysis to
evaluate call-graph related static analysis tools [1, 11, 16, 38, 43].
Our tool additionally uses the dynamic analysis results as training
labels to prune the result from a static call-graph construction tool.

7 CONCLUSION AND FUTUREWORK
Our approach to generating a high-precision call graph !rst runs
an existing black-box call-graph constructor and then prunes the
resulting call graph. A call-graph pruner uses a classi!er, which is
trained on a large number of static and dynamic call graphs, to pre-
dict the probability of an edge being a true-positive. Using di"erent
thresholds for the edge probabilities we can tune the precision-
recall trade-o" of the call graph. We empirically showed how a
call-graph pruner can be used to boost precision and balance the
recall and precision of call graphs produced by WALA, Doop and
Petablox, which are otherwise skewed towards high recall and low
precision. We also ran a null-pointer analysis and a monomorphic
call-sites analysis with these pruned call graphs, and we showed
that they got much closer to the high-precision expectations of
their users.

Future work includes automatically learning a feature-set for use
by our pruner generator and our generated call-graph pruners. A
particularly promising avenue for future work is to explore graph
neural networks for automatic feature-learning. Recent work has
used graph neural networks [17] for program analysis tasks like
program similarity [34], variable misuse prediction [2, 48] variable
name prediction [2], and method name prediction [48]. The features
that are discovered in those papers are not features of call graphs
and hence this remains an open problem.

A second future direction could be to replace dynamic-analysis
ground-truth labeling with developer-labeling for call-graph edges.
The challenge here is that the cumulative number of edges in the
training dataset is nearly a million, and developer-labeling doesn’t
scale to such a large dataset.

A third future direction could be to adapt our technique to heap-
reachability queries [7].
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APPENDIX
The example in Figure 2 is an excerpt of from the program that
Figure 14 shows in full.

Our classi!er generator uses the Random Forest algorithm [19]
implemented with the Scikit-Learn [36] library (v0.21.3). We tuned
the hyper-parameters using Random Hyper-Parameter Search [5].
The score for which we optimized was the area under the precision-
recall curve and Figure 15 lists the chosen hyper-parameters.

class A{
A f;
void foo(A a){

a.toString();
}

}

class B extends A{
void foo(A b){

b.toString();
}

}

class C extends B{
void foo(A c){

c.toString();
}

}

public class Main{
static A id(A a){

new A().foo(a);
return a;

}
static A getObjC(){

new A().foo(new A());
new B().foo(new A());
A p = id(new A());
A q = id(new B());
A r = id(new C());
return r;

}
public static void main(

String[] args){
A x = getObjC();
x.foo(x.f);
x.f = new A();

}
}

Figure 14: Program for the example in Section 2

Hyperparameter Value
Number of Trees 1000
Maximum Depth 10
Bootstrapping False
Minimum samples for split 2
Maximum features for split sqrt(feature count)
Minimum samples for leaf 1
Split quality criterion Entropy
Other hyper-parameters Library default

Figure 15: Hyper-parameters for Random-Forests
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