Typed Self-Interpretation by Pattern Matching

Barry Jay

University of Technology, Sydney
Barry.Jay@uts.edu.au

Abstract

Self-interpreters can be roughly divided into two sorts: self-recog-
nisers that recover the input program from a canonical represen-
tation, and self-enactors that execute the input program. Major
progress for statically-typed languages was achieved in 2009 by
Rendel, Ostermann, and Hofer who presented the first typed self-
recogniser that allows representations of different terms to have dif-
ferent types. A key feature of their type system is a type:type rule
that renders the kind system of their language inconsistent.

In this paper we present the first statically-typed language that
not only allows representations of different terms to have differ-
ent types, and supports a self-recogniser, but also supports a self-
enactor. Our language is a factorisation calculus in the style of
Jay and Given-Wilson, a combinatory calculus with a factorisation
operator that is powerful enough to support the pattern-matching
functions necessary for a self-interpreter. This allows us to avoid
a type:type rule. Indeed, the types of System F are sufficient. We
have implemented our approach and our experiments support the
theory.

Categories and Subject Descriptors D.3.4 [Processors]. Inter-
preters; D.2.4 [Program Verification]: Correctness proofs, formal
methods; F.3.2 [Semantics of Programming Languages]: Opera-
tional semantics

General Terms Languages, Theory

Keywords self-interpretation, pattern matching

1. Introduction

An interpreter implements a programming language, and a self-
interpreter is an interpreter written in the language that it imple-
ments. Self-interpreters are popular and available for Standard ML
[34], Haskell [28], Scheme [1], JavaScript [12], Python [33], Ruby
[41], A-calculus [2, 4, 5, 21, 25, 26, 32, 35], and many other lan-
guages [23, 38, 42]. A self-interpreter enables programmers to eas-
ily modify, extend, and grow a language [31], do other forms of
meta-programming [8], and even derive an algorithm for normali-
sation by evaluation [6].

These self-interpreters can be roughly divided into two sorts:
self-recognisers that recover the input program from a canonical
representation, and self-enactors that execute the input program.
While we will review the rich literature on self-interpretation in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’11, September 19-21, 2011, Tokyo, Japan.

Copyright © 2011 ACM 978-1-4503-0865-6/11/09. .. $10.00

Jens Palsberg

University of California, Los Angeles
palsberg@ucla.edu

Sections 2 and 9, two highlights are papers by Mogensen [25], and
by Berarducci and Bohm [5], that each defined a single program
representation for an untyped language that supports both a self-
recogniser and a self-enactor, with proofs of correctness.

Now consider statically typed languages. Most previous work
on self-interpreters for these give all program representations the
same, universal type. The use of a universal type ignores the type
of the input program and thereby misses an important opportunity
for static type checking of self-interpreters. Major progress was
achieved in 2009 when Rendel, Ostermann, and Hofer [31] pre-
sented the first self-recognizer for a statically-typed language in
which representations of different terms can have different types.

The challenge Rendel, Ostermann, and Hofer left open the prob-
lem of typing a self-enactor. Additionally, their type system has a
type:type rule that renders the kind system of their language incon-
sistent.

Our results In this paper we present the first statically-typed lan-
guage in which representations of different terms can have different
types and in which we can program and statically type both a self-
recogniser and a self-enactor. Our language uses System F types
and so has no rule asserting type:type. Our approach differs from
previous work by adopting a pattern-matching perspective that we
summarize next.

The representation of a term ¢ is a data structure "¢ so it is natural
to consider an interpreter as a pattern-matching function in which
each evaluation rule left — right of the source language can be
represented by a case, with a pattern derived from left and a body
derived from right.

So the fundamental question becomes how to represent pattern-
matching. Berarducci and Bohm achieved this by considering how
to solve equations inside lambda calculus but now there is a more
direct and powerful method, in the pattern calculus of Jay and
Kesner [16, 18, 19]. Although it may be possible to achieve our
main goals in pure pattern calculus (or even static pattern calculus),
this paper adopts a simpler and more direct approach.

Recent work on factorisation calculus by Jay and Given-Wilson
[17] supports combinatory calculi that are more expressive than
traditional combinatory calculi (based on S and K), in being able
to analyse the internal structure of any normal form, e.g. to recover
X from SK X. More generally, they can define pattern-matching
functions that are powerful enough to interpret themselves. This
compares well with previous approaches in which functions at one
level are analysed by functions at the next higher level, as in the
higher-order polymorphic A-calculus F,, and even F; which adds
the rule type:type.

The pure factorisation calculus [17] is a combinator calculus
with just two operators, S and F', where S is known from SK-
combinators, and F' is a factorization operator that is able to de-
compose compounds (e.g. closed normal forms) into their compo-
nents. In this paper we add a constructor B to block evaluation,

and together S, F', and B are sufficient to represent programs in
an untyped manner and to define an untyped self-recogniser and an
untyped self-enactor. An additional benefit of this approach is that
there is a term that decides equality of representations of combi-
nators (closed terms). By comparison, such a term is not known to
exist for higher-order abstract syntax of untyped A-calculus when
the meta-language is the untyped A-calculus itself.

We meet the goals of static type checking by adding three more
operators, the traditional operator kK, a fixpoint operator Y and an
operator F that tests for equality of operators. Although the types
are relatively simple, being those of System F, they are used in two
unusual ways. First, the F' operator cannot be typed with Hindley-
Milner types alone. Rather, it takes an argument of polymorphic
type, since the types of components are not determined by the type
of their compound. Second, the operator EX doesn’t have a princi-
pal type scheme, for reasons that can be traced back to the typing
of pattern-matching functions in pattern calculus. This creates diffi-
culties when interpreting E itself, which are overcome by replacing
explicit references to £ in patterns by binding symbols which are
shown to match with £ only.

We have implemented the entire approach and performed exper-
iments that support our theory.

The rest of this paper. We will discuss the nature of self-
interpretation and closely related work (Section 2), and we will
define our language (Section 3), syntactic sugar (Section 4), self-
recogniser (Section 5), self-enactor (Section 6), type system (Sec-
tion 7), including proofs that our self-interpreters type check, and
experimental results (Section 8). We also discuss additional related
work (Section 9).

2. The Nature of Self-Interpretation

This section fixes the terminology for the various sorts of self-
interpreters to be considered. Definitions have been chosen so that
they apply as widely as possible, i.e. both to A-calculi and other
rewriting systems, and to programming languages with their eval-
uation strategies. Since the calculi emphasise static interpreters,
while the programming language community emphasise dynamic
ones, we propose new names for the various special cases.

Self-interpretation involves two steps. The first is a process of
quotation that transforms the syntax of a term ¢ into a value or nor-
mal form 't (pronounced “quote ¢”) ready for interpretation. The
second is the application of a self-interpreter to ‘¢ to produce some-
thing that has the same meaning as ¢. Researchers have identified
two sorts of meaning here: a static approach that focuses on pro-
gram structure, and a dynamic approach that focuses on program
behaviour. Let us examine each of them in turn.

A self-recogniser is a self-interpreter unquote that can recog-
nise a term from its quotation, by reversing the quotation process:

Self-Recogniser: unquote('t) ~ ¢)

where ~ denotes behavioural equivalence. For example, quotation
may add tags that block evaluation, which are then removed by
unquote. The first self-recogniser is due to Kleene [21] who in-
troduced a notion of quotation and unquote for pure A-calculus,
and established (1) as a consequence of 3-equality. Barendregt [2]
cited Kleene’s paper and used the term self-interpreter for any \-
term unquote that satisfies unquote('t) =g t. Barendregt [2],
Mogensen [25, 26], Berarducci and Béhm [5], and Bel [4] all pre-
sented A-terms unquote that satisty Equation (1). The name self-
recognisers seems apt because the interpretation can recover, or
recognise, (something equivalent to) the original term.

The process of quotation tends to cause code expansion, with
unquote('t) being a much larger program than ¢. This problem is

mitigated if the self-recogniser is strong in the sense that:

Strong Self-Recogniser: unquote('t) —" ¢

where —™ denotes reduction in a calculus, or a small-step oper-
ational semantics of a programing language. Among the examples
above, those of Mogensen [25, 26] and Berarducci and Béhm [5]
are strong.

A self-enactor is a self-interpreter enact that mimics evalua-
tion:
t="v enact('t) =~ ‘v. (2)

Self-Enactor: implies

That is, if ¢ evaluates to a value v then enact('t) is behaviourally
equivalent to ‘v. Note that this account requires knowledge of the
values v and the evaluation process =". Also, a self-enactor cannot
be a self-recogniser unless ‘v =~ v which usually fails. That is,
preservation of meaning by a self-enactor is different to that of a
self-recogniser. That said, a self-enactor enact can be combined
with a self-recogniser unquote to produce a self-interpreter that
maps t to unquote(enact('t)).

The first use of self-enactors is due to Mogensen [25] who
proved the existence of such a term in pure A-calculus. He used the
term self-reducer for any A-term enact that satisfies Equation (2).
Mogensen [25], Berarducci and B6hm [5] (who preferred the term
reductor), and Song, Xu, and Qian [35] presented A-terms enact
that satisfy Equation (2). The name self-enactor seems apt because
Equation (2) implies that enact must do work to turn a quotation
into action. The technical details of Mogensen’s paper [25] strongly
suggest that a self-enactor is more complex than a self-recogniser.
This makes sense since, unlike a self-recogniser, a self-enactor
must do actual evaluation.

A strong self-enactor satisfies the following stronger require-
ment:

* /

Strong Self-Enactor: ¢ =" v implies enact('t) =" "v.
Among the examples already mentioned, only that of Berarducci
and Bohm is a strong self-enactor.

The self-interpreters for Standard ML [34], Haskell [28], Scheme
[1], JavaScript [12], Python [40], and Ruby [41] all do evaluation.
The documentations suggest that the programmers intended them
to be self-enactors or, in some case, a self-enactor followed by
an application of a self-recognizer to print a value rather than a
representation of a value.

A desirable quality of program representation is that we can
decide equality of program representations by a term equal, as in:

Equality of Representations:
‘true if's= 't

! !
equal(’s, t) = { 'false otherwise.

Some quotation mechanisms support that; some don’t. Even the
presence of unquote doesn’t guarantee the existence of equal.
For example, many of the above papers represent A-terms by
higher-order abstract syntax with a meta-language that itself is
the untyped A-calculus. For such representations, no term equal is
known to exist. Binding operations complicate the issues because
in A-calculus, closed terms are built from open terms. Kleene [21]
avoided the problems with open terms by representing programs
with only closed terms that are built from combinators, that is,
small, closed A-terms. In general, combinatory calculi present an
easier equality-checking problem.

3. Blocking Factorisation Calculus
3.1 Overview

Our language is a combinatory calculus called the blocking factori-
sation calculus which has all the properties above: decidable equal-

ity of quotations, a self-recogniser and a self-enactor. It is a factori-
sation calculus in the sense of Jay and Given-Wilson [17]. Factori-
sation calculi are more expressive than traditional S K -combinators
[17], which may seem surprising since SK-calculus is combina-
torially complete [20]. However, its factorisation operator F' can
decompose an identity function SK X to recover the value of the
combinator X, something that cannot be done using S and K
alone. Note that the corresponding logic would be unsound if F'
could decompose an arbitrary application, e.g. to recover X from
KK X. To ensure soundness, the reduction rules for F' require its
first argument to be factorable, that is, a partial application of an op-
erator. As aresult, the factorisation calculus is confluent, which im-
plies soundness of the corresponding logic. This expressive power
supports analysis of normal forms such as quotations, including
decidable equality of program representations. More generally, it
supports pattern matching that is expressive enough to support self-
interpreters.

3.2 Syntax

We assume a countable set of variables (meta-variables w, x, y, z).
The operators (meta-variable O) of our language are given by:

(Operator) O == Y |K|S|F|E|B.

Each operator has an arity, given by 1,2, 3, 3,4 and oo, respec-
tively, that helps us define the intended semantics. .S and K take
their usual meanings from combinatory logic. Y is a fixed-point
operator. In a pure setting it could be defined from S and K but this
interpretation will not support the typing. F' is the factorisation op-
erator used to decompose compounds, as described later. Perhaps
surprisingly, it cannot be defined in terms of S and K [17]. E is an
equality operator that takes four arguments; two to compare, and
two alternative results, chosen according to whether the compared
arguments are the same operator or not. B is used to block evalua-
tion.

The terms (meta-variables p, q,r, s, t,u) of our term calculus
are given by:

(Term) ¢t == z|O|tt.

Terms are generated by the variables and operators and they are
closed under application.

The free variables of a term are all the variables that occur in
the term, since there are no binding operations. A term ¢ avoids a
variable z if « is not a free variable of . Term substitutions o are
defined and applied in the usual manner. The substitution of the
term wu; for the variable z; for 1 < ¢ < n in the term ¢ may be
denoted [u1/x1,u2/T2,. .., Un/Tn].

A combinator is a term built without any variables, the collec-
tion of which forms the corresponding combinatory calculus [15].
Conceptually, the combinatory calculus is more fundamental than
the term calculus, but to define operations such as pattern-matching
on combinators requires the larger, term calculus, so that our efforts
will focus there.

A term is factorable if it is a partial application of an operator, as
determined by its arity. Thatis, O ¢1 ... tj is a partial application
of operator O if k is strictly less than the arity of O. In particular, all
operators are factorable. A compound is a factorable application.

r— 1 u— u’

ru—r1u ru—rau

Figure 1. The Reduction Relation

3.3 Reduction Semantics

The reduction rules are:

Yt — t(Yt)
Kst — s
Sstu — su(tu)
FOst — s if O is an operator
F(pg st — tpgq if p g is a compound
EOOst — s if O is an operator
Epgst — t otherwise, if p and g are factorable.

That is, Y is the fixed-point operator, K eliminates its second
argument, and S duplicates its third argument, all as usual. The
factorisation operator F' branches according to the value of its first
argument. If this is a compound then apply the third argument to the
components, else return the second argument. The equality operator
E decides equality of operators. If the first two arguments are the
same operator then return the third argument, else if the first two
arguments are both factorable (whether equal or not) then return
the fourth argument. Note that there are no reduction rules for B,
which may thus be thought of as a constructor.

The reduction relation — is obtained by applying the reduc-
tion rules to arbitrary sub-terms, as described in Figure 1. As usual
in rewriting, the transitive closure of a relation is denoted by (—)™"
as in — ™ and the reflexive, transitive closure by (—)* asin —*.
If t —* t' then t reduces to t'.

The basic properties of the calculus are easily established.

THEOREM 3.1. Reduction is confluent.

Proof. If p q is a compound then, by inspecting the arities, it is
clear that it is not an instance of any reduction rule. Hence, any
reduction of p ¢ is a reduction of p or of ¢ which implies that there
are no critical pairs [37] involving F' (p q) s t. Similarly, there are
no other critical pairs. |

THEOREM 3.2. Every combinator in normal form is factorable.

Proof. The proof is by induction on the structure of the combinator.
For example, if it is of the form F' p s ¢ then induction implies p is
a factorable form, so that a reduction rule applies. Similar remarks
apply to combinators of the form E p g s t. The other cases are
straightforward. O

This theorem provides a form of progress property, in that eval-
uation of the operators, especially F' and F, cannot get blocked.
Note, however, that if € does not have a normal form then
F Q K K cannot become an instance of a rule.

4. Syntactic Sugar

For the purpose of practical programming, particularly of our two
self-interpreters, we use five forms of syntactic sugar:

e identity operator, written I,

e \-abstraction, written A*x.s and, in typewriter font, x -> s,
e let binding, written let x = s in t,

e let rec binding, written let rec x = tand

e extensions, writtenp -> s | t.

We de-sugar terms with such constructs before executing them.
De-sugaring maps closed terms to closed terms. The type-writer

font is used when the emphasis is on programming, rather than the
calculus.

4.1 Identity, \-abstraction, let, and let rec

We de-sugar I to the combinator SK K.

One of the oldest results on computability is that A-abstraction
can be defined by S K -terms (e.g. [15]). The definition of *z.¢ is
as follows.

Nreax = T
Naot = Kt if t avoids x
Nrter = t if t avoids x
Nz (ru) = SOAz.r) (Az.au) otherwise .

The use of n-contraction in the third line above is not theoretically
necessary but makes a big difference in the size of the resulting
term.

LEMMA 4.1. For all terms s and u and variable x there is a
reduction

N'z.s)u —" [u/z]s

Proof. The proof is by induction on the structure of the term s. If
sis z then (A*z.s)u = I u —" u = [u/z]s. If s avoids = then
(Nz.s)u = K su — s = [u/x]s. If s is of the form ¢ x where
t avoids then (A" z.s)u = t u = [u/z]s. Otherwise, if s is of the
form s1s2 then

Nzs)u = SA\z.s1)(N'z.52)u
— (Wzs)u((V'z.s2)u)
—" [u/z]Sl [u/z]s2)
= [u/a]s
by two applications of induction. m|

We de-sugar the syntax let x = u in tto (A"z.t)u and we
de-sugar let rec £ = ttoY (*f.t), as usual.

4.2 Extensions

A pattern-matching function of the form

p1 — s1
| p2 — s2
| pn — sn
|z — s
can be built as a sequence of extensions of the formp -> s | t
by declaring the vertical bar to be right-associative, and replacing
the final case by A*z.s. In such an extension, the first subterm p
is a pattern, which is a term in normal form. While generalisa-
tions are possible, our notion of extension is sufficient for typed
self-interpretation, and already generalises the usual approaches
to pattern matching in functional programming. Traditionally, pat-
tern matching is a technique for destructing values of a given al-
gebraic data type, each pattern being headed by one of the type’s
constructors. In contrast, we allow patterns such as (y x) that is
not headed by any constructor, but rather denotes an arbitrary com-
pound data structure. Our notion of pattern matching is widely ap-
plicable; for example, it is easy to program an equality checker for
normal forms.
We use the following recursive function to de-sugar extensions:

z—s|r = XNuzs
O—s|r = XNzEOzs(rz)=S(S(EO)K s))r
pg—s|lr = Xuz.Fz(rax)

Nylp—=(g—=s|ry)lr)y)

|
(where v’ = Ny X z.r (y2) = S(K 1))

where z is chosen fresh. The first two rules are clear enough. The
third defines matching against an applicative pattern p ¢ by match-
ing the components of the argument against p and then against q.
The complexity of the term is caused by the need to handle the
various sorts of match failure.

The intended semantics is given by defining matching. A match
is either a successful match given by Some o where o is a substi-
tution, or a match failure None. The disjoint union & of successful
matches is the successful match obtained from the disjoint union of
their substitutions, if this exists. All other disjoint unions are None.
The matching {u/p} of a pattern p against a term w is defined by
the rules

{u/x} = Some [u/z]

{0/0O} = Some []
{uruza/p1p2} = {ui/p1} W {uz/p2} if us us is factorable
{u/p} = None otherwise, if u is factorable
{u/p} = undefined otherwise

corresponding to those of static pattern calculus [16].
LEMMA 4.2. Extensions satisfy the following derived reduction
rules:
(p—s|r)u —* os (if{u/p}=Someo)
(p—slr)u —" ru (if{u/p}=DNone).
Proof. The proof is a routine induction on the structure of the
pattern, given Lemma 4.1. O

This style of pattern matching, also known as path polymor-
phism [16, 18, 19], cannot be expressed in pure A-calculus or even
in a combinator calculus with the operators Y, S, K, B. So, our
calculus has the operator F' and the novel operator £, and we make
them play key roles when we de-sugar pattern matching.

For example, to unblock reduction we will use unblock defined
by

Bx —>x
| x > x
which de-sugars to the combinator
Br—z|z—=x
Nz Fax
= Nz.Fux
= ANuzFuz B—1TI|r"
= NaFux S(S(E B)(K I)r')
S(S FI)(K(S(S(E B)(K I)(S(K I))))
where r’ = S(K I).

(I2) Ny(B— (z—z|r'y) |r)y)
(Iz) Ny(B—1I|r")y)

() (
(L) (

x
x
x
x

5. Self-Recognisers
5.1 Quotation

Quotation for both our self-interpreters is given by

/

T = =
'O = BO
"(st) = 's't

Clearly, quoted terms are always normal forms, whose internal
structure can be examined by factorising.

THEOREM 5.1. There is a decidable equality of quotations of
closed terms.

Proof. The booleans are given by K (true) and K I (false) as usual.
The required equality term is

t—t r=r p=7p
t=t ru=1u Fp=Fyp
p=7p q=4q
Ep:>Ep/ qu:>qu/

Figure 2. Call-by-Name Evaluation

let rec equal =

x1 x2 -> (

y1l y2 -> (equal x1 y1) (equal x2 y2) (K I)

| y > K I
| x>y ->ExyK (KI)
It decides equality of arbitrary closed normal forms, be they quo-
tations or not. If applied to two compounds then it checks equality
of both components (by applying the boolean (equal x1 y1) to
(equal x2 y2) and (K I) to represent the conditional for con-
junction). Alternatively, if the first argument is an operator then F
is applied. a

5.2 A Self-Recogniser
Define unquote by

let rec unquote =

Bx —>x
| vy x => (unquote y) (unquote x)
| x -> x

THEOREM 5.2. unquote is a strong self-recogniser with respect
to —".

Proof. The proof is a straightforward induction on the struc-
ture of t. If ¢ is a variable or operator then unquote('t) —*
t. If ¢ is an application t; to, then 't is a compound 't; to
(since all quotations are headed by B). Hence unquote('t) =
unquote('t; ‘t2) —* ’t1 "t2 by two applications of induction.

O

6. Self-Enactors
6.1 Evaluation

We choose a call-by-name semantics, given by an evaluation rela-
tion = as defined in Figure 2. There is not much scope for variation
here; the operator F' behaves like other branching constructs, such
as conditionals, being eager in its first argument but deferring eval-
uation of the other two; and E' evaluates its first two arguments to
factorable forms, as required to support its reduction.

To define behavioural equivalence requires a notion of value
and of context. Define a value to be a term that is irreducible with
respect to =>. A term ¢ has a value if there is a value v such that
t=" .

Usually, a context is described as a term with a hole in it but
our terms contain free variables that cannot be bound, so a context
C'[—] here must also allow a term substitution o that is to be applied
to the term that fills the hole.

Now, two terms ¢1 and to are behaviourally equivalent (written
t1 = t2) if, for any context C'[—], the term C|[¢1] has a value if and
only if C[t2] does. The following lemma will be our main tool in
establishing behavioural equivalence.

LEMMA 6.1. Ift1 — ta then t1 = ta.

Proof. The proof is by case analysis on the reduction rules. a

Before giving the self-enactor for the blocking factorisation
calculus that we will type, the approach can be illustrated by a pair
of simpler examples.

6.2 A Self-Enactor for S K -calculus

Consider the interpretation of S K -calculus in the blocking factori-
sation calculus. There are two natural approaches to the represen-
tation of a rule left — right as a case, namely the reduction
approach and the meta-circular approach (pace [32]). The reduc-
tion approach represents the rule by the case

| 'left — enact 'right

where the left- and right-hand sides of the rule have been quoted.
For the reduction rule for .S, this yields

| BS x3 x2 x1 -> enact (x3 x1 (x2 x1))

The meta-circular approach replaces ‘right above by an applica-
tion of the operator that is the subject of the rule. For S this yields

| B S x3 x2 x1 -> enact (S x3 x2 x1)

Although the meta-circular approach is sometimes more concise,
and so will be preferred, it won’t always be applicable.

The interpretation of S K -calculus is thus given by the combi-
nator enactSK defined by

let rec enactSK =
let enactl =
B K x2 x1 -> enactSK (K x2 x1)
| B S x3 x2 x1 -> enactSK (S x3 x2 x1)

| x1 > x1
in

x2 x1 -> enactl (enactSK x2 x1)
| x1 > x1

The function enact1 tries to perform one step of the evaluation. It
is a pattern-matching function with one case for each reduction rule
of the calculus, which then performs a recursive call to enactSK.
This stops if no reduction rule can be applied, as indicated by the
default identity function. This handles partially applied operators.
The pattern-matching function for enactSK itself has two cases:
that for a compound enacts the left-hand component and then
reduces the whole by enact1.
For example,

enactSK (K S K)
= enactSK (B K (B S) (B K))
—* enactl (enactSK (B K (B S)) (B K))
—* enactl (B K (B S) (B K))
——* enactSK (B S)
—* B S="'S

Note that the evaluation is lazy. To make it eager the special case
for enactSK must be changed to

x2 x1 -> enactl (enactSK x2 (enactSK x1))

6.3 An Explicit Self-Enactor

Figure 3 displays a self-enactor for the blocking factorisation cal-
culus that mentions E explicitly, but will resist typing later on. The
case for Y uses the reduction approach, as the meta-circular ap-
proach as the term Y x1 reduces to x1 (Y x1) instead of the in-
tended x1 (B Y x1). The operators K and S are handled using the
meta-circular approach, as before. The rules for F and E are also
meta-circular, which proves to be more concise than writing out all
of the alternative elaborations of the rules. The role of evalop can

let rec enactexp =
let unblock =B x -> x | x -> x in
let evalop = x -> unblock (enactexp x) in
let enactl =

B Y x1 -> enactexp (x1 (B Y x1))
| B K x2 x1 -> enactexp (K x2 x1)
| B S x3 x2 x1 -> enactexp (S x3 x2 x1)
| B F x3 x2 x1 -> enactexp (F (evalop x3) x2 x1)
| BE x4 x3 x2 x1 —>

enactexp (E (evalop x4) (evalop x3) x2 x1)

| x1 -> x1
in

x2 x1 -> enactl (enactexp x2 x1)
| x1 -> x1

Figure 3. A Self-Enactor that Handles E Explicitly

be illustrated by an example. Consider

enactexp ’(F K S K)
= enactexp (B F (B K) (B S) (BK))
—* enactl (BF (BXK) (BS) (BK))
—" enactexp (F (evalop (B K)) (B S) (B K)

If evalop (B K) were replaced by enact (B K) then F would be
applied to B K when it should be applied to K. So evalop is used
to “unquote” operators while leaving everything else unchanged.
Similar remarks apply to the interpretation of E. Note that there is
no case for B in enact1 as it has no reduction rules.

6.4 An Implicit Self-Enactor

The type machinery developed in Section 7 is not able to type
patterns that contain E. Even though this has only arisen once, in
the self-enactor in Figure 3. it creates a major technical challenge:
we want the self-enactor to use a pattern-matching function with
one case per construct in the language, but at the same time we
aren’t allowed to use F in a pattern! We overcome this difficulty by
applying the dictum of Sherlock Holmes:

“Eliminate all other factors, and the one which remains
must be the truth.” Sherlock Holmes [11].

That is, by first giving cases for all the other five operators (includ-
ing a “dummy” case for B) we can infer the presence of £ without
naming it explicitly in a pattern. The resulting self-enactor in which
E is handled implicitly is in Figure 4.

6.5 Correctness

* /

LEMMA 6.2. If v is a factorable form then enact('v) —* 'v.

Proof. The proof is by a straightforward case analysis on the nature
of factorable forms, since none of the special cases of enactl

apply.]

LEMMA 6.3. Ift; — to then enact('t1) and enact('t2) have a
common reduct.

Proof. The proof is by induction on the length of the reduction. If
t1 — t2 then routine case analysis shows that there is a reduction
enact 't; — T enact ’t,. For example, if ¢; is E O O s r and
to is s then 'ty is the term B E (B O) (B O)’s 'r and
evalop (BO) —" unblock (enact (B O))
—™ unblock (B O) (by Lemma 6.2)
—t 0

and so enact 't; —* enact (E O O's’'r) — enact ’s.

let rec enact =
let unblock =B x -> x | x -> x in
let evalop = x -> unblock (enact x) in
let enactl =

B Y x1 -> enact (x1 (B Y x1))
| B X x2 x1 -> enact (K x2 x1)
| B S x3 x2 x1 -> enact (S x3 x2 x1)
| B F x3 x2 x1 -> enact (F (evalop x3) x2 x1)
| BB x4 x3 x2 x1 -> B B x4 x3 x2 x1
| B x5 x4 x3 x2 x1 ->

enact (x5 (evalop x4) (evalop x3) x2 x1)

| x1 -> x1
in

x2 x1 -> enactl (enact x2 x1)
| x1 > x1

Figure 4. A Self-Enactor that Handles E' Implicitly

Again, if t; is £ O u s r where u is a factorable form other
than O and ¢ is r then 't1 is the term B E (B O) 'u's 'r. If u is
an operator O; (other than O) then evalop (B O1) —™ O as
before, and so B E (BO) 'u’'s'r —* EO Oy 's'r — 'r
as required. Similarly, if u is some compound then evalop ‘u
reduces to a compound q and so B E (B O) 'u's 'r —*
EOq's'r — 'r as required.

If t1 is an application r1 u; and 1y — r2 then, by induc-
tion, enact ‘1 and enact 'r» have a common reduct 3. Hence
enact 't; reduces to the term enactl (enact ‘r1 ‘ui) which has
a common reduct with enactl (enact ‘r2 ‘u1) which is a reduct
of enact '(r2 u1). A similar argument applies if u1 — ua.

If t1 is some F' p s r and p1 — p2 then, by induc-
tion, enact 'p; and enact 'p, have a common reduct ps. Thus
enact('t1) and enact(’t2) both reduce to

enact (F (unblock p3) ‘s 'r) .

Similar arguments apply if ¢; is of the form E'p s r q. O

LEMMA 6.4. Let t be a term. If enact 't reduces to a factorable
form v then v is a quotation of some t1 such that t —™ t;.

Proof. The proof is by induction upon the length of the reduction
to v.

If ¢ is an operator O then the only factorable form enact 't can
reduce to is 'O as required.

If ¢ is an application 7 u then any reduction of enact 't produces
the term enactl (enact 'r ‘u). Now if enact ‘¢ is to produce a
factorable form then enact 'r must reduce to a factorable form
which, by induction, is some 'v; where vy is factorable. Now
consider the cases of enactl in turn. If v; is Y then the whole
reduces to enact ("u (B Y ‘u)) which is enact ‘t; where t; =
u (Y u) arises from the reduction of ¢. Now apply induction to ¢;.

Similar arguments apply if v; is of the form K z2 or S z3 2.

Suppose that vy is of the form F' x3 x2. If the whole is to
produce a factorable form then enact ‘x3 must produce a fac-
torable form which, by induction, must be a quotation 'p; where
x3 —" pi1. If p1 is an operator O then evalop 'p1 reduces to
O and the whole reduces to enact 'z so induction applies as
F x3 x9 x1 — x2. Alternatively, if p1 is a compound p2 p3 then
the whole reduces to enact (“u “p2 'ps) to which induction can be
applied.

Suppose that v; is of the form B x4 x3 x2. Then the whole
produces ' (v1 u) which is a quotation of a reduct of ¢.

Suppose that v is of the form x5 x4 x3 x2. Then it must be that
x5 is E. Now proceed as before.

Otherwise, v1 wu is a factorable form and the whole reduces to
"(v1 u) as required. o

THEOREM 6.5. If t is a term such that enact 't reduces to some
factorable form n then t reduces to some factorable form v. Con-
versely, if t reduces to some factorable form v then enact 't re-
duces to’v. Hence enact is a self-enactor for the blocking factori-
sation calculus.

Proof. If enact 't has a factorable form, then apply Lemma 6.4.
Conversely, suppose that ¢t —™ v where v is factorable. By
Lemma 6.3, enact 't and enact v have a common reduct and
Lemma 6.2 implies that the latter term evaluates to ‘v which is
normal, as required. m|

7. Static Type System
7.1 Overview

We approach typing from a Curry-style perspective, in that the
terms are fixed in advance, with types merely used to describe
terms. This has several consequences, which will be noted when
appropriate. Our type system uses the types of System F [13], given
by
T:=X|T-—-T|vVX.T

where X,Y Z, ... are meta-variables for type variables, and U and
T are meta-variables for fypes. These are much simpler than those
of F¥. The key enabler is the ability to factorise functions in situ,
without rising a level in the type hierarchy.

Each operator O other than E has a principal type Ty[O] of the
form

X-X)—-X

X—=Y—-X
X-=>Y—-2)-(X->Y)-X—>Z
X—=Y—->NVMZ(Z—-X)>Z—-Y)—>Y
X—=X.

Wy R

For later convenience, these types are not quantified, but the type
variables are typically assumed fresh.

The types for Y, .S and K are all standard. Indeed, there is an
embedding of Curry-style System F [3] into the blocking factori-
sation calculus. Hence, the undecidability of type inference for
System F [39] carries over to here. However, we have designed
and implemented a partial type inference algorithm that can type
check our self-interpreters and also catch some mistakes in self-
interpreters.

The operator B has type X — X. A consequence of the type
of B is that our notion of quotation is type-preserving: if a program
has type 7', then its representation has type 7', too. This shows that
different quotations may have different types. An alternative would
be to follow Rendel, Ostermann, and Hofer and introduce a new
type Expr T of program representations so that terms cannot be
confused with their representations; we leave this for future work.

Following Jay and Given-Wilson [17], the type for F' contains a
quantified argument type

VZ(Z - X)—>Z—>Y.

The variable Z is used to represent the unknown type of the second
component of a compound. This is unnecessary when every pattern
is headed by a constructor that determines the types, but knowing
that the pattern x z has type X conveys no information about the
type Z of z.

It is easy to specify a type scheme for E, namely

X—-X—-Y—->Y->Y

but this is not sufficiently general to type the pattern-matching
functions of interest, as each case may have a type that specialises
the default type with respect to its pattern. For example, consider
an extension of the form

O—s|r
where r : U — T and s : S. Its de-sugared form is
Nz.EOzs(rz)=S(S(EO)(K s))r.

Now this should have type U — T so take = : U. Then E must
have type

TyO] - U —-S—-T—-T.

Of course, this is type-safe if S = T but, following the approach
developed in pattern calculus [16], it is enough that any solution of
Ty[O] = U also solves S = T..

Define {11 = 7>} to be the most general unifier of Ti and
T5. This is computed in the obvious manner, using a-conversion to
align quantified type variables.

Returning to our example, S = {Ty[O] = U}T and so E must
have the type

E:Ty[0] - U - {Ty[O]=U}}T - T —>T

for any operator O other than E. It is clear from this that £/ cannot
have a principal type, and so is excluded from this analysis.

This is good enough for the Curry-style, but from the perspec-
tive of the Church-style, or types-as-propositions, this is all very
ad hoc, and yet it is not clear how the situation might be better
managed. The typing suggests that £ be replaced by a family of
operators Eo for each operator O. Yet each of these would in turn
require an equality operator, even though they would not have prin-
cipal types. We leave such considerations to future work.

There remains the challenge of typing patterns involving E
itself. To date, we have not found a technique that works, and so
will confine attention to the self-enactor in Figure 4 in which F
does not appear explicitly.

A final issue concerns the typing of lambda-abstractions. When
type-level operations are explicit in System F then the standard
approach to instantiating a quantified type asserts that if ¢ : V.X.T
then ¢t : {U/X}T for any type U. However, given f : S — VX.T
then the instantiation of X is achieved by first applying f to some
fresh variable « : S then instantiating at U and finally abstracting
with respect to = to get Az.f « U : S — {U/X}T. In the
Curry-style, this becomes A\x.f = : S — {U/X }T. Mitchell [24],
and later Remy [30], considered the consequences of adding n-
contraction to System F. For us, the situation is not quite the same,
as A\"x.f x is defined to be f. So we require a type-derivation rule
of the form

t: S —-VXT
t:S—-{U/X}T
More generally, we need a subsumption rule with respect to a type

instantiation relation < which generalises the usual type manipula-
tions.

7.2 Typing Rules

A context is given by a sequence A of type variables, so that the
judgments take the form A = T3 < T% which asserts that 75 is
an instance of 7% in context A. For example, A - T < VX.T
whenever X is not free in A.

The rules for the type instantiation order < are given in Fig-
ure 5, where FV/(S) is the free type variables of S.

A type context I is a sequence of distinct, typed term variables
21 : T1,...,2n : Ty as usual. The free type variables FV(T') of
I" is the union of the free type variables of each type T; appearing
within it. The type derivation rules are given in Figure 6.

AFT VXT Xea

AF Sy <5
AFS T <S5 —-T

AFVXT < [U/X|T
AFV(S) Ty < Ty
AFS—-T1<S—1T,

Figure 5. Type Instantiation

THEOREM 7.1. IfT'Ht: T andt — uthen 't u : T.

Proof. Consider the reduction £ O O st — s. Since U is a type
for O and v = {U = Ty[O]} exists it follows that the domain
of v can be limited to the free type variables of Ty[O] so that
t : {Ty[O] = U}T = T as required. That the other reduction
rules preserve typing is routine. a

7.3 Derived Typing Rules
LEMMA 7.2. The following rule can be derived for abstractions

Txa:UFt:T
T'EXNzt:U—T

Proof. The proof is by induction on the structure of the type deriva-
tion for ¢. If the last step in the derivation uses a type instanti-
ation FV(I',z : U) b T1 < T then it follows that FV(T')
U — T1 < U — T so induction applies. The remaining pos-
sibilities follow the structure of ¢. If ¢ is « then 7" is U and so
Nzax=1:YVX.X - X <U — U =U — T as required.
If x isnot free in ¢ then A"zt = K tandT' - Kt : U — T as
required. If ¢ is of the form r = where z is not free in r then *z.r
is 7. Now the type derivation for ¢ ends with some

Le:UFr:Us —-T Tx:Ukx:U
Tx:UkFbrax:T

It follows that FV(I',z : U) - U < Uy andso FV(I',z : U)
Ui — T < U — T by contravariance of the order with respect to
argument types, which yields the desired typing for r. Otherwise,
if ¢ is an application ¢ t2 then there are types 717 and 7> such
that I' = ¢1 : 7o — T and I' - t2 : T5. By two applications
of induction, it follows that ' - *z.t;y : U — T> — T and
I'E ANz.te : U — To whence X'zt = S(A"x.t1) (A z.t2) has
type U — T as required.

O

The intended typing rules for extensions depend upon patterns
taking their most general types, as described by type judgments of
the form A; B - p : P where A is as before and B (big beta)
is a type context in which each term takes a mono-type. The rules
are presented in Figure 7. In the last rule it is implicit that the type
variables in A1, Ao and X are distinct. Note that £/ does not have
a principal type, and so cannot appear in patterns.

THEOREM 7.3. The following rule can be derived for extensions

'tr:U—T A;Bbp:P o(,B)Fs:ouT
ANFVD)UFV(U —T)) ={} v={U =P}
Pkp—s|r:U—T

Proof. The proof is by induction upon the structure of p.

If p is a variable then apply Lemma 7.2.

If p is an operator O other than FE then p — s | r =
Nz EOxzs(rz): U — T as required.

If p is an application pip2 thenp — s |r = AN'z.F z (r z)
(Ny.(p1 — (p2 — s| 7" y) | ") y) where v’ = S(K r). This has
type U — T if there is derivation of

Dy:Z—-UkFk(p—@—s|ry|r)y:Z2—-T

z:Tel
I'tx:T

T'kO:Ty[O]
FV(Ty[O) NFV(U — T) = {}
'E:Ty[0] - U - {Ty[0|=U}T - T —-T
I'tt:U—-T Tku:U
'Ftu:T

THt:Ty FVI)FTy < Ty
F}_tiTg

Figure 6. Type Rules for Terms

or, equivalently
Ly:Z—-Ukp— (p2—s|ry|r:(Z—-U)—2Z—T.
Now the typing of the pattern p; ps is of the form
Ai;BibEpr: Pt Ay;Baobpe: Py
A1, A;v(B1,B2) F p1p2 i vX
Hence, it is enough to prove that
vil,y: Z—=UBi)Fp2—s|ry:vi(Z—T)

where v1 = {P = Z — U}. Since r’ y has the desired type, this
hold s if

’U:{P1:P2—>X}.

UQ(Ul(F,Bl,Bz)) Fs: 'L)Q('UlT)
where vo = {P» = v1Z}. Further, we have the premise

{U =vX}(v(l,B1,B2)) F s: {U=vX}v(T)) .

Hence, it is enough to show that the restrictions of the compositions
v ovy and {U = vX}owvtoD, B1, By and T are the same.
Now the former is the most general solution of P, = Z — U
and Z = P, or, equivalently, of P, = P, — U and Z = P».
Similarly, the latter is the most general solution of P, = P, — X
and X = U or, equivalently, of P, = P, — U and X = U. As
neither restriction involves X or Z it follows that both are simply
{Pp=P, - U}. a

COROLLARY 7.4. The following rule can be derived for extensions

TFr:VX.X X A;BFp:X T,Bbks:X
FV(l)NnA={}
Pkp—s|r:VX.X - X

Proof. Instantiate the type of r to be Y — Y for some fresh
variable Y and apply the theorem with {Y = X} mapping Y to
X.]

Note that although the corollary above will be sufficient to
type our self-interpreters, it is not clear how to prove the corollary
without first proving the more general theorem, since the typing of
an extension with a compound pattern requires unification to handle
the quantified type of the third argument of F'.

7.4 Type Checking the Self-Interpreters

THEOREM 7.5. We have T' =t : T ifand only if T' -+ 't : T.
Proof. Each direction is straightforward by induction on ¢. O

THEOREM 7.6. The function equal defined in Section 5 has typing
0+ equal : VX.VY.X — Y — Bool

Xiz: XkFao: X FV(Ty[O]) F O : Ty[O]

Ai;BibEpr:Pr Ay;Babpe: Py
A17A27X;’U(B1732) |—p1 P2 : ’UX

U:{P1:P2—>X}

Figure 7. Type Rules for Patterns

where Bool =VZ.7 — 7 — Z.

Proof. This is a consequence of derived type inference rule for
extensions. The calculations are relatively straightforward since the
body of each case has the same type Bool. a

THEOREM 7.7. The self-recogniser unquote defined in Section 5
has typing
0 F unquote : VX.X — X .

Proof. Apply Corollary 7.4. m|

THEOREM 7.8. The self-enactor defined in Figure 4 has type
0+ enact : VX.X — X .

Proof. The proof is by repeated applications of Corollary 7.4. O

Notice that we can easily type check self-applications of
unquote and enact, such as enact(’enact).

7.5 Adequacy

A weakness of our approach is that the type system does not
distinguish terms from their quotations. A more refined approach
associates to each type 1" a new type form Expr T to type its
quoted expressions. Then quotation is said to be adequate [31] if
each closed normal form of type Expr T is the quotation of some
term.

Future work may well adapt the self-interpreters given here to
make them adequate. In the meantime, observe that there is not
much scope for confusion, as there is a simple test for being a
quotation, given by

let rec isquote =
B (x y) -> false

| B x -> true
| x y -> isquote x && (isquote y)
| x -> false

where && is conjunction. Similarly, given an interpretation of
strings there is a pretty printer for quotations given by

let rec pretty_print =

BY -> "y

| BK -> "K"

| B S -> llSll

| BF -> "F"

| BE -> "E"

| BB -> "B"

| x y -> pretty_print x ~ "(" ~ pretty_print y ~ ")"
| x => "<not a quotation>"

8. Experimental Results

We have two implementations of both reduction and desugaring,
one in bondi [7] and one in Scheme.

Type inference in the bondi interpreter confirms that all exam-
ples have the expected types. For example, enact in Figure 4 has
the same type as the polymorphic identity function. The inference

algorithm adapts the standard techniques by adding a rule for typ-
ing extensions. This is delicate as it is not obvious how any type
substitutions required to infer a type for the body of the exten-
sion can be incorporated into the result without forcing the default
to take the type of the special case. For our purposes, it is suffi-
cient to merely check the type of the body, without propagating
any changes.

In converting the (well-typed) extensions into combinators, it
is worth adopting some optimisations when de-sugaring extensions
with compound patterns.

A common situation concerns

pr—s|r
which, when de-sugared, reduces to
S(SFr)(K(p— Xzs|(S(KT))) .

Otherwise, when desugaring [p ¢ — s | r the default term r appears
three times. When this is inefficient, the extension p — s | r will
be interpreted by its 3-expansion

Nz.(p—s|x))r

to avoid the copying.
After de-sugaring, unquote is:

Y(S(K(S(S(K S)(S F)) (S(K K) (S(K(S(S(E B) (K(S K K)))))
(S(K S) K))))) (S(K(S(S8 F(S K K))))(S(K K)(S(S(K S)
(8(K(S(K 8)))(8(K K)))IK))))

which is built from 50 operators. The combinator for enact is
shown in Figure 8; it uses 1185 operators. Both work fine in all our
experiments, which have tested all of the cases in the extensions
used in defining enact.

9. Related Work on Typed Self-Interpretation

A major source of difficulties for static type checking is that pro-
grams must be of function type, while their quotations must be data
structures, amenable to analysis. The issues are well illustrated by
Naylor’s [28] self-interpreter for Haskell that has type:

[(FunId, Exp)] — Exp.

The input is a list of function definitions that each pairs a function
identifier with an expression, and the output is also an expression.
The key thing to note is that the type Exp is a tagged union of
integers, variables, abstractions, applications, etc:

data Exp = App Exp Exp | Lambda VarId Exp
| Fun FunId | Var VarId
| Int Int | Lam (Exp -> Exp)

This type supports pattern-matching of the traditional kind (driven
by the structure of an algebraic data type) but also brings some
disadvantages too. Note that, although it is straightforward to de-
cide equality of the five forms of expression that are used to rep-
resent input programs, the presence of arbitrary Haskell functions
(tagged by the constructor Lam) within expressions will complicate
any analysis of interpretations. More significant for the typing is
that the resulting quotation process gives all program representa-
tions the same type Exp, which severely limits the usefulness of
static type checking. The self-interpreter uses tagging and untag-
ging operations at every step of computation, which amounts to
little more than dynamic type checking.

Others have used tags in a similar manner, including Rossberg in
his self-interpreter [34] for Standard ML, and Laufer and Odersky
[22] in their self-interpreter for a typed version of the SK combi-
nator calculus. Taha, Makholm, and Hughes [36], and also Danvy
and Lépez [10], showed how to eliminate superfluous tags.

Y(S(S(S(KS) (S(KK) (S(S(KS) (S(KK) (S(K(S(K(S(SF(SKK)))))) (S(K(S(KK))) (S(K(S(S(KS) (S(KK) (S(KS)K)))))IK))))) (S(S(KS) (S(KK) (8
(K(S(8(KS) (SF)))) (S(K(S(KK))) (S(S(KS) (S(KK) (S(K(S(S(KS) (S8F)))) (S(K(S(KK))) (S(S(KS) (S(K(S(KS))) (S(S(KS) (S(K(S(KS))) (S(K
(8(K(5(K8))))) (S(K(S(K(S(K(S(EB))))))) (S(K(S(K(S(KK))))) (S(S(KS) (S(KK) (S(KS) (S(KK) (S(KS) (S(K(S(EY))) (S(KK) (S(S(KS)K) (K
(S(SKK) (BY))))))))))) (K(S(KS)K)))))))) (K(S(KK) (S(KSIK) D)D) (K(K(SKK)))))))) (K(S(KSIK))))))) (S(S(KS) (S(KK) (S(K(S(S(KS) (
SF)))) (S(K(S(KK))) (S(K(S(S(KS) (S(K(SF)) (S(KS)K))))) (S(K(S(KK))) (S(S(KS) (S(KK) (S(K(S(S(KS) (SF)))) (S(K(S(KK))) (S(S(KS) (8
(K(S(KS))) (S(S(KS) (S(K(S(KS))) (S(K(S(K(S(KS))))) (S(K(S(K(S(K(S(EB))))))) (S(K(S(K(S(KK))))) (S(S(XS) (S(KK) (S(KS) (S(KK) (S
(KS) (S(K(S(EK))) (S(KK) (S(S(KS) (S(KK) (S(KS)K))) (KK))))))))) (K(S(KSIK)))))))) (K(S(KK) (S(KSIK)))))) (K(K(SKK)))I)I)II)I) (K(S(K
S) (S(KK) (S(KS)K))))1)))))) (S(S(KS) (S(KK) (S(K(S(S(KS) (SF)))) (S(K(S(KK))) (S(K(S(S(KS) (S(K(SF)) (S(KS)K))))) (S(K(S(KK))) (8
(K(S(S(KS) (S(K(SF)) (8(KS) (S(KK) (8(KS)K))))))) (S(K(S(KK))) (S(S(KS) (S(KK) (S(K(S(S(KS) (SF)))) (S(K(S(KK))) (S(S(KS) (S(K(S(K
$))) (8(5(KS) (S(K(S(KS))) (S(K(S(K(S(KS))))) (S(K(S(K(S(K(S(EB))))))) (S(K(S(K(S(KK)))I)) (S(S(KS) (S(KK) (S(KS) (S(KK) (S(KS) (S
(K(S(ES))) (S(KK) (S(S(KS) (S(KK) (S(KS) (S(KK) (S(KS)K))))) (KS))))))))) (K(S(KSIK)))))))I) (K(S(KK) (S(KS)K)))))) (K(K(SKK))))))
)) (K(S(KS) (S(KK) (S(KS) (S(KK) (S(KS)K))))))))))))))) (S(S(KS) (S(K(S(K(S(S(KS) (SF)))))) (S(K(S(K(S(KK))))) (S(K(S(K(S(S(KS) (
S(K(SF)) (S(KS)K))))))) (S(K(S(K(S(KK))))) (S(K(S(K(S(S(KS) (S(K(SF)) (S(KS) (S(KK) (S(KS)K))))))))) (S(K(S(K(S(KK))))) (S(S(KS
) (S(K(S(KS))) (S(K(S(KK))) (S(K(S(K(S(S(KS) (SF)))))) (S(K(S(K(S(KK))))) (S(S(KS) (S(K(S(KS))) (S(K(S(K(S(KS))))) (S(S(KS) (S(K
(S(KS))) (S(K(S(K(S(KS))))) (S(K(S(K(S(K(S(KS))))))) (S(K(S(K(S(K(S(K(S(EB)))))I)II) (S(K(S(K(S(K(S(KK))I)II)I) (S(S(KS) (S(K(S
(X)) (S(K(S(KK))) (S(K(S(KS))) (S(K(S(KK))) (S(K(S(KS))) (S(K(S(K(S(EF))))) (S(K(S(KK))) (S(S(KS) (S(KK) (S(KS) (S(KK) (S(KS) (S
(KK) (S(KS)K))))))) (K(S(KF)))))))I)I)I)I) (K(K(S(KSIK))I)IDIIIIIID (K(K(S(KK) (S(KSIK)))))I)I)I) (K(K(K(SKK)))))))))) (K(K(S(KS) (S(KK
) (S(XS) (S(KK) (S(KS)K)))))))))))I)III) (S(K(S(K(S(S(KS) (SF)) (S(KK) (S(S(KS) (S(K(SF)) (S(KS)K))) (S(KK) (S(S(XKS) (S(K(SF)) (S(KS)
(S(KK) (8(KS)K))))) (S(KK) (S(S(KS) (S(K(SF)) (S(KS) (S(KK) (S(KS) (S(KK) (S(KS)K))))))) (S(KK) (S(K(S(S(KS) (SF)) (S(KK) (S(S(KS) (8
(S(XS) (S(K(S(KS))) (S(K(S(K(S(EB))))) (S(K(S(KK))) (S(K(S(K(S(S(EB) (K(BB))))))) (S(KS)K)))))) (S(KK) (S(KS)K)))) (K(SKK))))))
(S(XS) (S(KK) (S(KS) (S(KK) (S(KS) (S(KK) (S(KS)K))))))))))))IIIIIII) (S(K(S(K(S(SF(SKK)))I)I)I) (S(K(S(KK))) (S(K(S(K(S(SF(S(K(SKK
1333)))) (S(K(S(KK))) (S(K(S(K(S(SF(S(K(S(K(SKK)))))))))) (S(K(S(KK))) (S(K(S(K(S(SF(S(K(S(K(S(K(SKK)))))))))))) (S(K(S(KK)
) (S(K(S(K(S(SF(S(K(S(K(S(K(S(K(SKK)))))1)))))))) (S(K(S(KK))) (S(S(KS) (S(K(S(KS))) (S(K(S(K(S(EB))))) (S(K(S(KK))) (S(S(KS
) (S(KK) (S(KS) (S(KK) (S(KS) (S(KK) (S(KS) (S(KK) (S(KS) (S(KK) (S(KS)K))))))))))) (K(S(S(KS) (S(K(S(KS))) (S(K(S(K(S(KS))))I) (S(K(
S(K(S(KK))))) (S(K(S(S(KS)K)))IK))))) (S(KKIK)III) D)) (K(K(S(K(S(K(S(K(S(K(S(K(SKK))))))))11))))33)))))3)))))))))) (S(K(S(S
(KS)K)))IK)) (K(S(SF(SKK)) (K(S(S(EB) (K(SKK))) (S(K(SKK))))))))

Figure 8. enact de-sugared

In the examples above, tags arise as constructors of an algebraic
data type of expressions. Certainly, our approach is not tagged
in this sense. Rather, intensionality is built into the calculus in a
fundamental way. Since equality is decidable for normal forms,
including operators, there is no need for any additional tagging.

Before these efforts, Hagiya [14] presented a self-interpreter
for a A-calculus which implicitly defines a type system and does
dynamic type checking.

While typing is unnecessary for self-interpretation in general,
we are inspired by typability-preserving compilers [27] that com-
pile a typed source program to a typed target program and enable
implementers to catch compiler errors by type checking the target
program.

An entirely different approach to typed interpretation is to use
polymorphic types instead of a single universal type for all program
representations. Significant progress in this direction was made by
Pfenning and Lee [29] who studied the polymorphic A-calculus and
presented an interpreter for Fo written in F3 as well as an interpreter
for F,, written in FI , and by Carette, Kiselyov, and Shan [9] who
wrote tagless interpreters in OCaml and Haskell for a simply-typed
A-calculus. They showed the viability of program representations
with polymorphic types, without presenting self-interpreters.

The literature contains just one example (as far as we know)
of a self-interpreter for a statically-typed language without a
universal type. Rendel, Ostermann, and Hofer [31] presented a
self-recogniser for F, which is an extension of the higher-order
polymorphic A-calculus F,, that has a type:type rule. The self-
recogniser has type:

VX.(Expr X) — X

Their notion of quotation is type-monomorphic in that if 's and 't
have the same type, then s and ¢ have the same type too. Equiva-
lently, terms of distinct types yield representations of distinct types.
The use of type-monomorphic quotation is a radical departure from
the use of a single universal type for all program representations,
where all 's and 't have the same type, irrespectively of the types
of s and ¢. They presented a self-recogniser (not strong), and left

open the problems of writing an equality checker and a self-enactor.
Their results inspired our work.

Rendel, Ostermann, and Hofer discuss the notion of typed self-
representation, that is, “representing terms of a programming lan-
guage in the language itself” [31, Section 2], and list five desirable
properties. Let us evaluate how many of those properties our lan-
guage, type system, and self-interpreters have. We list each prop-
erty in this font, followed by our evaluation.

1. Representation. There is a family of types (Expr T') such that
't has type (Expr T) if and only if t has type T. We use
(Expr T') = T and the stated equivalence is our Theorem 7.5.

2. Adequacy. Every term s of type (Expr T') corresponds to a term
t of type T, which means that for every s as above there exists
a t such that s = 't. Our definition of quotation doesn’t have
this property; the reason is that we use (Expr T') = T so an
unquoted term of type 7" also has type (Expr T').

3. First class interpretations. It is possible to express operations
on quoted terms so that they are well-typed for all terms of type
(Expr T'), without the need to refer to any specific such terms.
Our language doesn’t have this property; rather, we use pattern
matching pervasively.

4. Self interpretation. There is a family of contexts evalr () such
that evalr ('t) is observationally equivalent to t if t has type T.
This property is essentially Equation (1) which is implied by
our Theorem 5.2.

5. Reflection. 't exhibits the intensional structure of t in a useful
way. Our self-enactor is a good example of how we can make
good use of the intensional structure of a quoted term.

In summary, our language, type system, and self-interpreters have
three of those properties (1,4,5), while our language intentionally
doesn’t have property 3, and we leave property 2 for future work.
The approach of Rendel, Ostermann, and Hofer can be charac-
terised as follows. A function at one level of the type hierarchy can
be tagged to become a data structure at the next level. This requires
a countable sequence of levels. By contrast, the ability to factorise

means that functions (in normal form) are already data structures
without any need to tag them or shift levels. Hence, the types of
System F are good enough.

The other notable difference is that both applications of terms to
types, and type abstractions, are explicit in their work but implicit
here. This saves us from having to factorise type applications, but
at the cost of type inference being undecidable.

10. Future Work

The use of factorisation to support self-interpreters raises many
interesting questions about foundations and self-interpretation, as
well as several practical questions.

When pattern-matching is driven by the definition of an alge-
braic data type then it is easy to decide whether a pattern-matching
function covers all cases, but here “all cases” must include ev-
ery factorable form of the calculus. Such analyses of coverage
await development. In practice, such open-ended, or extensible
functions prove quite useful. For example, a pretty-printer of type
VX.X — String may have default behaviour that produces an
exception, but as new types are declared, new cases are added for
the new term forms.

It seems likely that the calculus without the fixpoint operator
Y is strongly normalising, for reasons similar to those for query
calculus [16] which extends System F with generic queries for
searching and updating. A more interesting challenge is whether
the results in this paper can be applied to a strongly normalising
calculus. After all, if the basic calculus is strongly normalising,
why shouldn’t the interpretations be so too? To put it another
way, can the Y operator be replaced by something that is strongly
normalising?

By contrast, the denotational semantics of factorisation is quite
undeveloped. For example, there is not yet an account of com-
pounds and atoms in category theory.

Open questions within self-interpretation include the following.
Is there a self-interpreter that is adequate, in the sense of Rendel,
Ostermann, and Hofer? This seems plausible, at the price of making
everything somewhat more obscure. Is there a self-interpreter for a
language with decidable type-checking? This is a harder question,
since it is not clear how to factorise the application of a term to a
type.

Practical questions include the following. Does the calculus ad-
mit an efficient implementation? This seems plausible, since fac-
torisation is a formalisation of the car and cdr of Lisp. Can these
techniques be applied to A-abstractions without first converting to
combinators? How easy is it to adapt the given self-interpreters to
explore alternative interpretations, e.g. to handle closures?

11. Conclusion

The blocking factorisation calculus is statically typed and supports
a quotation mechanism that preserves types and supports both a
typed self-recogniser and a typed self-enactor. Building on the
ground-breaking work of Rendel, Ostermann, and Hofer, it brings
the status of self-interpreters for typed calculi close to the standard
set for pure A-calculus by Mogensen and then Berarducci and
Bohm. Future work may develop strong self-recognisers and self-
enactors, and support types of the form Exp 7" for representations
that are distinct from the type 1" of source programs.

The self-recogniser and self-enactors developed for the block-
ing factorisation calculus have a very natural development as
pattern-matching functions. Each evaluation rule becomes a case of
the one-step reducer enact1 with the evaluation strategy captured
by the nature of the recursion within which this is embedded. It
will be easy enough to modify the strategy, or the reduction rules

to suit evolving tastes. In a sense, all self-interpreters can be seen
as encodings of such pattern-matching functions.

Further, we anticipate using this approach to model various pro-
gram transformations, e.g. to produce code in continuation-passing
style, and also evaluation strategies involving, say, closures. In gen-
eral, this work opens up new possibilities for the interpretation of
typed programming languages during compiler construction.

More generally, this work illustrates some of the expressive
power that the pattern-matching approach brings to bear when one
is able to analyse internal structure with the same facility used to
apply functions.

Acknowledgments. The second author thanks Oleg Kiselyov,
Torben Mogensen, Klaus Ostermann, Frank Pfenning, Andreas
Rossberg, Jeft Siskind, Aaron Stump, Walid Taha, and Mitch Wand
for discussions about the state of the art of self-interpretation. We
thank Thomas Given-Wilson, Shu-yu Guo, Mohsen Lesani, Todd
Millstein and Jose Vergara for helpful comments on a draft of the

paper.

References

[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure
and Interpretation of Computer Programs. MIT Press, 1985.

[2] Henk Barendregt. Self-interpretations in lambda calculus. J. Funct.
Program, 1(2):229-233, 1991.

[3] HP Barendregt. Handbook of Logic in Computer Science (vol.
2): Background: Computational Structures: Abramski,S (ed), chapter
Lambda Calculi with Types. Oxford University Press, Inc., New York,
NY, 1993.

[4] Michel Bel. A recursion theoretic self interpreter for the lambda-
calculus. http://www.belxs.com/michel/#selfint.

[5] Alessandro Berarducci and Corrado Bohm. A self-interpreter of
lambda calculus having a normal form. In CSL, pages 85-99, 1992.

[6] Mathieu Boespflug. From self-interpreters to normalization by evalu-
ation. In Olivier Danvy, editor, Proceedings of Workshop on Normal-
ization by Evaluation, 2009.

[7] bondi programming language. www-staff.it.uts.edu.au/~cbj/
bondi.

[8] Reg Braithwaite. = The significance of the meta-circular inter-
preter. http://weblog.raganwald.com/2006/11/significance-of-meta-
circular_22.html, November 2006.

[9] Jacques Carette, Oleg Kiselyov, and Chung chieh Shan. Finally
tagless, partially evaluated: Tagless staged interpreters for simpler
typed languages. Journal of Functional Programming, 19(5):509-543,
20009.

[10] Olivier Danvy and Pablo E. Martinez Lopez. Tagging, encoding, and
Jones optimality. In Proceedings of ESOP’03, European Symposium
on Programming, pages 335-347. Springer-Verlag (LNCS), 2003.

[11] Sir Arthur Conan Doyle. The Sign of the Four. Lippincott’s Monthly
Magazine, February 1890.

[12] Brendan Eich. Narcissus. http://mxr.mozilla.org/mozilla/
source/js/narcissus/jsexec. js, 2010.

[13] J-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Tracts in
Theoretical Computer Science. Cambridge University Press, 1989.

[14] Masami Hagiya. Meta-circular interpreter for a strongly typed lan-
guage. Journal of Symbolic Computation, 8(6):651-680, 1989.

[15] R. Hindley and J.P. Seldin. Introduction to Combinators and Lambda-
calculus. Cambridge University Press, 1986.

[16] Barry Jay. Pattern Calculus: Computing with Functions and Struc-
tures. Springer, 2009.

[17] Barry Jay and Thomas Given-Wilson. A combinatory account of
internal structure. Journal of Symbolic Logic, 2011. To appear.

http://www-staff.it.uts.edu.au/~cbj/Publications/
factorisation.pdf.

[18] Barry Jay and Delia Kesner. First-class patterns. Journal of Functional
Programming, 19(2):191-225, 2009.

[19] C.B. Jay. The pattern calculus. ACM Transactions on Programming
Languages and Systems (TOPLAS), 26(6):911-937, November 2004.

[20] S.C. Kleene. Introduction to Methamathematics. van Nostrand, 1952.

[21] Stephen C. Kleene. A-definability and recursiveness. Duke Math. J.,
pages 340-353, 1936.

[22] Konstantin Laufer and Martin Odersky. Self-interpretation and reflec-
tion in a statically typed language. In Proceedings of OOPSLA Work-
shop on Reflection and Metalevel Architectures. ACM, October 1993.

[23] Oleg Mazonka and Daniel B. Cristofani. A very short self-interpreter.
http://arxiv.org/html/cs/0311032v1, November 2003.

[24] J.C. Mitchell. Polymorphic type inference and containment. Informa-
tion and Computation, 1985.

[25] Torben Z. Mogensen. Efficient self-interpretations in lambda calcu-
lus. Journal of Functional Programming, 2(3):345-363, 1992. See
also DIKU Report D-128, Sep 2, 1994.

[26] Torben ZA. Mogensen. Linear-time self-interpretation of the
pure lambda calculus. Higher-Order and Symbolic Computation,
13(3):217-237, 2000.

[27] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From Sys-
tem F to typed assembly language. In Proceedings of POPL’98, 25th
Annual SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 85-97, 1998.

[28] Matthew Naylor. Evaluating Haskell in Haskell. The Monad.Reader,
10:25-33, 2008.

[29] Frank Pfenning and Peter Lee. Metacircularity in the polymorphic
A-calculus. Theoretical Computer Science, 89(1):137-159, 1991.

[30] Didier Rémy. Simple, partial type-inference for System F based on
type-containment. In Proceedings of the tenth ACM SIGPLAN in-
ternational conference on Functional programming, ICFP °05, pages
130-143, New York, NY, USA, 2005. ACM.

[31] Tillmann Rendel, Klaus Ostermann, and Christian Hofer. Typed self-
representation. In Proceedings of PLDI'09, ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pages
293-303, June 2009.

[32] John C. Reynolds. Definitional interpreters for higher-order program-
ming languages. In Proceedings of 25th ACM National Conference,
pages 717-740. ACM Press, 1972. The paper later appeared in Higher-
Order and Symbolic Computation, 11, 363-397 (1998).

[33] Armin Rigo and Samuele Pedroni. Pypy’s approach to virtual machine
construction. In OOPSLA Companion, pages 044-953, 2006.

[34] Andreas Rossberg. HaMLet.
berg/hamlet, 2010.

[35] Fangmin Song, Yongsen Xu, and Yuechen Qian. The self-reduction
in lambda calculus. Theoretical Computer Science, 235(1):171-181,
March 2000.

[36] Walid Taha, Henning Makholm, and John Hughes. Tag elimination
and Jones-optimality. In Proceedings of PADO’01, Programs as Data
Objects, Second Symposium, pages 257-275, 2001.

http://www.mpi-sws.org/ ross-

[37] Terese. Term Rewriting Systems, volume 53 of Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

[38] John Tromp. Binary lambda calculus and combinatory logic. In
Kolmogorov Complexity and Applications, 2006. A Revised Version
is available at http://homepages.cwi.nl/ tromp/cl/LC.pdf.

[39] J. B. Wells. Typability and type checking in the second-order \-
calculus are equivalent and undecidable. In Proceedings of LICS 94,
Ninth Annual IEEE Symposium on Logic in Computer Science, 1994.

[40] Wikipedia. Pypy. http://en.wikipedia.org/wiki/PyPy, 2010.

[41] Wikipedia. Rubinius. http://en.wikipedia.org/wiki/Rubinius, 2010.

[42] Tetsuo Yokoyama and Robert Gliick. A reversible programming lan-
guage and its invertible self-interpreter. In Proceedings of PEPM’07,

ACM Symposium on Partial Evaluation and Semantics-Based Pro-
gram Manipulation, 2007.

