
Contents

1 Type Systems: Advances and Applications 1

1.1 Introduction . 1

1.2 Types for Confinement . 3

1.2.1 Background . 4

1.2.2 Static Analysis . 5

1.2.3 Confined Types . 6

1.2.4 Related Work on Alias Control . 20

1.3 Type Qualifiers . 21

1.3.1 Background . 21

1.3.2 Static Analysis . 22

1.3.3 A Type System for Qualifiers . 23

1.3.4 Related Work on Type Refinements 34

i

ii CONTENTS

Chapter 1

Type Systems: Advances and

Applications

1.1 Introduction

This chapter is about the convergence of type systems and static analysis. Historically, these

two approaches to reasoning about programs have had different purposes. Type systems

were developed in order to catch common kinds of programming errors early in the software

development cycle. In contrast, static analyses were developed in order to automatically

optimize the code generated by a compiler. The two fields also have different theoretical

foundations: type systems are typically formalized as logical inference systems [65], while

static analyses are typically formalized as abstract program executions [49, 23].

Recently, however, there has been a convergence of the objectives and techniques under-

lying type systems and static analysis [61, 45, 59, 62]. On the one hand, static analysis is

increasingly being used for program understanding and error detection, rather than purely

for code optimization. For example, the LCLint tool [33] uses static analysis to detect

null-pointer dereferences and other common errors in C programs, and it relies on type-

system-like program annotations for efficiency and precision. As another example, the ESP

1

2 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

tool [24] uses static analysis to detect violations of API usage protocols, for example that a

file can only be read or written after it has been opened.

On the other hand, type systems have become a mature and widely accepted technology.

Programmers write most new software in languages such as C [48], C++ [32], Java [42], and

C# [53], which all feature varying degrees of static type checking. For example, the Java

type system guarantees that if a program calls a method on some object, then at run time

the object will actually have a method of that name, expecting the proper number and kind

of arguments. Types are also used in the intermediate languages of compilers and even in

assembly languages [55], such as the typed assembly language for x86 called TALx86 [54].

With this success, researchers have been motivated to explore the potential to extend

traditional type systems to detect a variety of interesting classes of program errors. This

exploration has shown type systems to be a robust approach to static reasoning about pro-

grams and their properties. For example, type systems have been recently used to ensure the

safety of manual memory management (e.g., [68, 57, 43]), to track and restrict the aliasing

relationships among pointers (e.g., [22, 13, 1, 34]), and to ensure the proper interaction of

threads in concurrent programs (e.g., [35, 10, 36]).

These new uses of type systems have brought type systems closer to the domain of static

analysis, both in terms of objectives and techniques. For example, reasoning about aliasing

is traditionally done via a static analysis to compute the set of may-aliases, rather than via

a type system. As another example, some sophisticated uses of type systems have required

making types flow-sensitive [26, 40], whereby the type of an expression can change at each

program point (e.g., a file’s type might denote that the file is open at one point but closed

at another point). This style of type system has a natural relationship to traditional static

analysis, where the set of “flow facts” can change at each program point.

In this chapter, we describe two type systems that both have a strong relationship to

static analysis. Each of the type systems is a refinement of an existing and well-understood

type system: the first refines a subset of the Java type system while the second refines a

system of simple types for the lambda calculus. The refinements are done via annotations

that refine existing types in order to specify and check finer-grained properties. Many of

1.2. TYPES FOR CONFINEMENT 3

the sophisticated type systems mentioned above can be viewed as refinements of existing

types and type systems. Such type systems are examples of type-based analyses [60]; that

is, they assume and leverage the existing type system and they provide information only for

programs that type check with the existing type system.

In the following section we describe a type system that ensures a strong form of encapsu-

lation in object-oriented languages. Namely, the analysis guarantees that an object of a class

declared confined will never dynamically escape the class’s scope. Object confinement goes

well beyond the guarantees of traditional privacy modifiers like protected and private,

and it bears a strong relationship to standard static analyses.

Language designers cannot anticipate all of the refinements that will be useful for pro-

grammers nor all of the ways in which these refinements can be used to practically check

programs. Therefore, it is desirable to provide a framework that allows programmers to

easily augment a language’s type system with new refinements of interest for their applica-

tions. In the third section we describe a representative framework of this kind, supporting

programmer-defined type qualifiers. A type qualifier is a simple but useful kind of type refine-

ment consisting solely of an uninterpreted “tag.” For example, C’s const qualifier refines an

existing type to further indicate that values of this type are not modifiable, and a nonnull

qualifier could refine a pointer type to further indicate that pointers of this type are never

null.

1.2 Types for Confinement

In this section we will use types to ensure that an object cannot escape the scope of its class.

Our presentation is based on results from three papers on confined types [9, 44, 75].

4 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

1.2.1 Background

Object-oriented languages such as Java provide a way of protecting the name of a field, but

not the contents of a field. Consider the following example.

package p;

public class Table {
private Bucket[] buckets;

public Object[] get(Object key) { return buckets; }
}

class Bucket {
Bucket next;

Object key, val;

}

The hash table class Table is a public class which uses a package-scoped class Bucket as

part of its implementation. The programmer has declared the field buckets to be private

and intends the hash-table-bucket objects to be internal data structures which should not

escape the scope of the Bucket class. The declaration of Bucket as packaged scoped ensures

that the Bucket class is not visible outside the package p. However, even the combination

of a private field and a package-scoped class does not prevent Bucket objects from being

accessible outside the scope of the Bucket class. To see why, notice that the public get

method in class Table has body return buckets; which provides an array of bucket objects

to any client, including clients outside the package p. Any client can now update the array

and thereby change the behavior of the hash table.

The example shows how an object reference can leak out of a package. Such leakage is a

problem because (1) the object may represent private information such as a private key and

(2) code outside the package may update the object, making it more difficult for programmers

1.2. TYPES FOR CONFINEMENT 5

to reason about the program. The problem stems from a combination of aliasing and side

effects. Aliasing occurs when an object is accessible through different access paths. In the

above example, code outside the package can access bucket objects and update them.

How can we ensure that an object cannot escape the scope of its class? We will briefly

discuss how one can solve the problem using static analysis and then proceed to show a

type-based solution.

1.2.2 Static Analysis

Static analysis can be used to determine whether an object can escape the scope of its class.

We will explain a whole-program analysis, that is, an approach which requires access to all

the code in the application and its libraries.

Assuming that we have the whole program, let U be the set of class names in the program.

The basic idea is to statically compute, for each expression e in the program, a subset of U

which conservatively approximates the possible values of e. We will call that set the flow

set for e. For example, if the flow set for e is the set {A, B, C}, then that means that the

expression e will evaluate to either an A-object, a B-object, or a C-object. Notice that we

allow the set to be a conservative approximation; for example, e might never evaluate to a

C-object. All we require is that if e evaluates to an X-object, then X is a member of the

flow set for e.

Researchers have published many approaches to statically computing flow sets for expres-

sions in object-oriented programs, see for example [63, 25, 3, 67, 70] for some prominent and

efficient whole-program analyses. For the purposes of our discussion here, all we rely on is

that flow sets can be computed statically.

Once we have computed flow sets, we can for each package-scoped class C determine

whether C ever appears in the flow set for an expression outside the package of C. For

each class that never appears in flow sets outside its package, we know that its objects don’t

escape its package in this particular program.

6 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

The whole-program-analysis approach has several drawbacks.

Bug finding after the program is done. First, the approach finds bugs after the

whole program is done. While that is useful, we would like to help the programmer find

bugs while he/she writes the program.

No enforcement of discipline. Second, the static analysis does not enforce any disci-

pline on the programmer. A programmer can write crazy code and the static analysis may

then simply report that every object can escape the scope of its class. While that should be

a red flag for the programmer, we would like to help the programmer determine which lines

of code to fix to avoid some of the problems.

Fragile. Third, the static analysis tends to be sensitive to small changes in the program

text. For one version of a program, a static analysis may find no problems with escaping

objects, and then after a few lines of changes, suddenly the static analysis finds problems all

over the place. We would like to help the programmer build software in a modular way such

that changes in one part of the program do not affect other parts of the program.

The type-based approach in the next section has none of the three drawbacks.

The static-analysis approach in this section is one among many static analyses that solve

the same or similar problems. For example, researchers have published powerful escape

analyses [6, 7, 8, 30] some of which can be adapted to the problem we consider in this

chapter.

1.2.3 Confined Types

We can use types to ensure that an object cannot escape the scope of its class. We will show

an approach for Java which extends Java with the notions of confined type and anonymous

method. The idea is that if we declare a class to be confined, then the type system will

enforce rules that ensure that an object of the class cannot escape the scope of the class. If

a program type checks in the extended type system, then an object cannot escape the scope

of its class.

1.2. TYPES FOR CONFINEMENT 7

Confinement can be enforced using two sets of constraints. The first set of constraints,

confinement rules, applies to the classes defined in the same package as the confined class.

These rules track values of confined types and ensure that they are neither exposed in public

members, nor widened to non-confined types.

The second kind of constraints, anonymity rules, applies to methods inherited by the

confined classes, potentially including library code, and ensures that these methods do not

leak a reference to the distinguished variable this which may refer to an object of confined

type.

We will discuss the confinement and anonymity rules next, and later show how to formalize

the rules and integrate them into the Java type system.

Confinement Rules

The following confinement rules must hold for all classes of a package containing confined

types.

• C1: A confined type must not appear in the type of a public (or protected) field or the

return type of a public (or protected) method.

• C2: A confined type must not be public.

• C3: Methods invoked on an expression of confined type must either be defined in a

confined class or be anonymous methods.

• C4: Subtypes of a confined type must be confined.

• C5: Confined types can be widened only to other confined types.

• C6: Overriding must preserve anonymity of methods.

Rule C1 prevents exposure of confined types in the public interface of the package as client

code could break confinement by accessing values of confined types through a type’s public

interface. Rule C2 is needed to ensure that client code cannot instantiate a confined class.

8 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

It also prevents client code from declaring field or variables of confined types. The latter

restriction is needed so that code in a confining package will not mistakenly assign objects of

confined types to the fields or variables outside that package. Rule C3 ensures that methods

invoked on an object enforce confinement. In the case of methods defined in the confining

package, this ensues from the other confinement rules. Inherited methods defined in another

package do not have access to any confined fields, since those are package-scoped (Rule

C1). However, an inherited method of confined class may leak the this reference, which

is implicitly widened to the method’s declaring class. To prevent this, Rule C3 requires

these methods to be anonymous (as explained below). Rule C4 prevents the declaration of

a public subclass of a confined type. This prevents spoofing leaks where a public subtype

defined outside of the confined package is used to access private fields [19]. Rule C5 prevents

code within confining packages from assigning values of confined types to fields or variables

of public types. Finally, Rule C6 allows us to statically verify the anonymity of the methods

that are invoked on expressions of confined types.

Anonymity Rule

The anonymity rule applies to inherited methods which may reside in classes outside of the

enclosing package. This rule prevents a method from leaking the this reference. A method

is anonymous if it has the following property.

• A1: The this reference is used only to select fields and as the receiver in the invocation

of other anonymous methods.

This prevents an inherited method from storing or returning this as well as using it as an

argument to a call. Selecting a field is always safe, as it cannot break confinement because

only the fields visible in the current class can be accessed. Method invocation (on this) is

restricted to other methods that are anonymous as well. Note that we check this constraint

assuming the static type of this and Rule C6 ensures that the actual method invoked on

this will also be anonymous. Thus, Rule C6 ensures that the anonymity of a method is

independent of the result of method lookup.

1.2. TYPES FOR CONFINEMENT 9

Rule C6 could be weakened to apply only to methods inherited by confined classes. For

instance, if an anonymous method m of class A is overridden in both class B and C, and B

is extended by a confined class while C is not, then the method m in B must be anonymous

while m of C needs not be. The reason is that the method m of C will never be invoked on

confined objects and thus there is no need for it to be anonymous.

Confined Featherweight Java

Confined Featherweight Java, which we refer to as ConfinedFJ, is a minimal core calculus for

modeling confinement for a Java-like object-oriented language. ConfinedFJ extends Feath-

erweight Java (FJ) which was designed by Igarashi, Pierce and Wadler [46] to model the

Java type system. It is a core calculus as it limits itself to a subset of the Java language with

the following five basic expressions: object construction, method invocation, field access,

casts and local variable access. This spartan setting has proved appealing to researchers.

ConfinedFJ stays true to the spirit of FJ. The surface differences lie in the presence of class

and method level visibility annotations. In ConfinedFJ, classes can be declared to be either

public or confined, and methods can optionally be declared as anonymous. One further

difference is that ConfinedFJ class names are pairs of identifiers bundling a package name

and a class name just as in Java.

Syntax

Let metavariable L range over class declarations, C, D, E range over a denumerable set of class

identifiers, K, M range over constructor and method declarations respectively, and f and x

range over field names and variables (including parameters and the pseudo-variable this)

respectively. Let e, d range over expressions and u, v, w range over values.

We adopt FJ notational idiosyncrasies and use an over-bar to represent a finite (possibly

empty) sequence. We write f to denote the sequence f1, . . . , fn and similarly for e and v.

We write C f to denote C1 f1, . . . Cn fn, C <: D to denote C1 <: D1, . . . , Cn <: Dn and finally

this.f = f to denote this.f1 = f1, . . . , this.fn = fn.

10 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

C ::= p.q

L ::= [public|conf] class C ! D { C f; K M }
K ::= C(C f) { super(f); this.f = f; }
M ::= [anon] C m(C x) { return e; }
e ::= x | e.f | e.m(e) | (C) e | new C(e)

v ::= new C(v)

Figure 1.1: ConfinedFJ: Syntax.

The syntax of ConfinedFJ is given in Figure 1.1. An expression e can be either one of

a variable x (including this), a field access e.f, a method invocation e.m(e), a cast (C) e,

an object new C(e). Since ConfinedFJ has a call-by-value semantics, it is expedient to add a

special syntactic form for fully evaluated objects, denoted new C(v).

Class identifiers are pairs p.q such that p and q range over denumerable disjoint sets of

names. For ConfinedFJ class name p.q, p is interpreted as a package name and q as a class

name. In ConfinedFJ, class identifiers are fully qualified. For a class identifier C, packof (C)

denotes the identifier’s package prefix, so, for example, the value of packof (p.O) is p.

Each class declarations is annotated with one of the visibility modifiers public, conf, or

none; a public class is declared by public class C ! D {. . .}, a package-scoped, confined

class is conf class C ! D{. . .}, and a package-scoped, nonconfined class is class C ! D{. . .}.
Methods can be annotated with the optional anon modifier to denote anonymity.

We will not formalize the dynamic semantics of ConfinedFJ (for full details, see [75]). We

assume a class table CT which stores the definitions of all classes of ConfinedFJ program

such that CT (C) is the definition of class C. The subtyping relation C <: D denotes that

class C is a subtype of class D; <: is the smallest reflexive and transitive class ordering that

has the property that if C extends D, then C <: D. Every class is a subtype of l.Object.

The function fields(C) return the list of all fields of the class C including inherited ones;

methods(C) returns the list of all methods in the class C; mdef (m) returns the identifier of

defining class for the method m.

1.2. TYPES FOR CONFINEMENT 11

Type Rules

Figure 1.2 defines relations used in the static semantics. The predicate conf (C) holds if the

class table maps C to a class declared as confined. Similarly, the predicate public(C) holds

if the class table maps C to a class declared as public. The function mtype(m, C) yields the

type signature of a method. The predicate override(m, C, D) holds if m is a valid, anonymity

preserving, redefinition of an inherited method or if this is the method’s original definition.

Class visibility, written visible(C, D), states that a class C is visible from D if, either, C is

public, or if both classes are in the same package.

The safe subtyping relation, written C ! D, is a confinement preserving restriction of the

subtyping relation <:. A class C is a safe subtype of D if C is a subtype of D, and either

C is public or D is confined. This relation is used in the typing rules to prevent widening

a confined type to a public type; confinement-preserving widening requires safe subtyping

to hold. The type system further constrains subtyping by enforcing that all subclasses of a

confined class must belong to the same package (see the T-Class rule and the definition of

visibility). Notice that safe subtyping is reflexive and transitive.

Figure 1.3 defines constraints imposed on anonymous methods. A method m is anonymous

in class C, written anon(m, C), if its declaration is annotated with the anon modifier. The

following syntactic restrictions are imposed on the body of an anonymous method. An

expression e is anonymous in class C, written anon(e, C), if the pseudo-variable this is

used solely for field selection and anonymous method invocation. (C) e is anonymous if e

is anonymous. new C(e) and e.m(e) are anonymous if e "= this and e, e are anonymous.

With the exception of this all variables are anonymous. this.f is always anonymous, and

this.m(e) is anonymous in C if m is anonymous in C and e is anonymous. We write anon(e, C)

to denote that all expressions in e are anonymous.

Expression typing rules

The typing rules for ConfinedFJ are given in Figure 1.4, where type judgments have the

form Γ # e : C, in which Γ is an environment that maps variables to their types. The main

12 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

Confined types, type visibility, and safe subtyping:

CT (C) = conf class C ! D {. . .}
conf (C)

public(C)

visible(C, D)

packof (C) = packof (D)

visible(C, D)

C <: D conf (C) ⇒ conf (D)

C ! D

Method type lookup:

mdef (m, C) = D [anon] B m(B x) { return e; } ∈ methods(D)

mtype(m, C) = B→ B

Valid method overriding:

either m is not defined in D or any of its parents, or
mtype(m, C) = C→ C0 mtype(m, D) = C→ C0 (anon(m, D) ⇒ anon(m, C))

override(m, C, D)

Figure 1.2: ConfinedFJ: Auxiliary definitions.

Anonymous method:

mdef (m, C0) = C′
0 anon C m (C x) {. . .} ∈ methods(C′

0)

anon(m, C0)

Anonymity constraints:

anon(e, C)

anon((C′) e, C)

anon(e, C)

anon(new C′(e), C)

x "= this

anon(x, C)

anon(e, C)

anon(e.f, C)

anon(e, C) anon(e, C)

anon(e.m(e), C)

anon(this.f, C)

anon(m, C) anon(e, C)

anon(this.m(e), C)

Figure 1.3: ConfinedFJ: Syntactic Anonymity Constraints.

1.2. TYPES FOR CONFINEMENT 13

Expression typing:

Γ # x : Γ(x) (T-Var)

Γ # e : C fields(C) = (C f)

Γ # e.fi : Ci
(T-Field)

Γ # e : C0 Γ # e : C mtype(m, C0) = D→ C C ! D

mdef (m, C0) = D0 (C0 ! D0 ∨ anon(m, D0))

Γ # e.m(e) : C
(T-Invk)

fields(C) = (D f) Γ # e : C C ! D

Γ # new C(e) : C
(T-New)

Γ # e : D conf (D) ⇒ conf (C)

Γ # (C) e : C
(T-UCast)

Method typing:

x : C, this : C0 # e : D D ! C override(m, C0, D0)
x : C, this : C0 # visible(e, C0) (anon(m, C0) ⇒ anon(e, C0))

[anon] C m(C x) { return e; } OK IN C0 ! D0
(T-Method)

Class typing:

fields(D) = (D g) K = C(D g, C f) {super(g); this.f = f; }
visible(D, C) (conf (D) ⇒ conf (C)) M OK IN C ! D

[public|conf] class C ! D { C f; K M } OK
(T-Class)

Static expression visibility:

visible(Γ(x), C)

Γ # visible(x, C)

Γ # e.fi : C′ visible(C′, C) Γ # visible(e, C)

Γ # visible(e.fi, C)

visible(C′, C) Γ # visible(e, C)

Γ # visible((C′) e, C)

visible(C′, C) ∀i, Γ # visible(ei, C)

Γ # visible(new C′(e), C)

Γ # e.m(e) : C′ visible(C′, C) Γ # visible(e, C) ∀i, Γ # visible(ei, C)

Γ # visible(e.m(e), C)

Figure 1.4: ConfinedFJ: Typing rules.

14 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

difference with FJ is that these rules disallow unsafe widening of types. This is captured by

conditions of the form C ! D which enforce safe subtyping.

• Rules T-Var and T-Field are standard.

• Rule T-New prevents instantiating an object if any of the object’s fields with a public

type is given a confined argument. That is, for fields with declared types D and argument

types C, relation C ! D must hold. By definition of Ci ! Di, if Ci is confined then Di

is confined as well.

• Rule T-Invk prevents widening of confined arguments to public parameters by en-

forcing safe subtyping of argument types with respect to parameter types. In order

to prevent implicit widening of the receiver, we consider two cases. Assume that the

receiver has type C0 and the method m is defined in D0, then it must either be the case

that C0 is a safe subtype of D0 or that m has been declared anonymous in D0.

• Rule T-UCast prevents casting a confined type to a public type. Notice that a down

cast preserves confinement because by Rule T-Class a confined class can only have

confined subclasses.

Typing rules for methods and classes

Figure 1.4 also gives rules for typing methods and classes.

• Rule T-Method places the following constraints on a method m defined in class C0

with body e. The type D of e must be a safe subtype of the method’s declared type

C. The method must preserves anonymity declarations. If m is declared anonymous, e

must comply with the corresponding restrictions. The most interesting constraint is the

visibility enforced on the body by Γ # visible(e, C0), which is defined recursively over

the structure of terms. It ensures that the types of all subexpressions of e are visible

from the defining class C0. In particular, the method parameters used in the method

body e must have types visible in C0.

1.2. TYPES FOR CONFINEMENT 15

• Rule T-Class requires that if class C extends D then D be visible in C and if D is confined,

then so is C. Rule T-Class allows the fields of a class C to have types not visible in

C, but the constraint of Γ # visible(e, C) in Rule T-Method prohibits the method of C

from accessing such fields.

The class table CT is well-typed if all classes in CT are well-typed. For the rest of this

paper, we assume CT to be well-typed.

Relation to the Informal Rules

We now relate the confinement and anonymity rules with the ConfinedFJ type system. The

effect of Rule C1, which limits the visibility of fields if their type is confined, is obtained

as a side effect of the visibility constraint as it prevents code defined in another package

from accessing a confined field. ConfinedFJ could be extended with field and method access

modifier without significantly changing the type system. The expression typing rules enforce

confinement Rules C3 and C5 by ensuring that methods invoked on an object of confined

type are either anonymous or defined in a confined class, and that widening is confinement

preserving. Rule C2 uses access modifiers to limit the use of confined types; and the same

effect is achieved by the visibility constraint Γ # visible(e, C) on expression part of T-

Method. Rule C4, which states that subclassing is confinement preserving, is enforced by

T-Class. Rule C6, which states that overriding is anonymity preserving, is enforced by T-

Method. Finally the anonymity constraint of Rule A1 is obtained by the anon predicate

in the antecedent of T-Method.

Two ConfinedFJ Examples

Consider the following stripped down version of a hash table class written in ConfinedFJ.

The hash table is represented by a class p.Table defined in some package p that holds a

single bucket of class p.Buck. The bucket can be obtained by calling the method get()

on a table, the bucket’s data can then be obtained by calling getData(). In this example,

buckets are confined but they extend a public class p.Cell. The interface of p.Table.get()

16 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

class p.Table ! l.Object {
p.Buck buck;

Table(p.Buck buck) { super(); this.buck = buck; }
p.Cell get() { return this.buck; }

}

class p.Cell ! l.Object {
l.Object data;

l.Object getData() { return this.data; }
}

conf class p.Buck ! p.Cell {
p.Buck() { super(); }

}

class p.Factory ! l.Object {
p.Factory() { super(); } }
p.Table table() { return new p.Table(new p.Buck()); }

}

specifies that the method’s return type is p.Cell; this is valid as that class is public. In

this example a factory class, named p.Factory, is needed to create instances of p.Table

because the table’s constructor expects a bucket and since buckets are confined, they cannot

be instantiated outside of their defining package.

This program does not preserve confinement as the body of the p.Table.get() method

returns an instance of a confined class in violation of the widening rule. The breach can

be exhibited by constructing a class o.Breach in package o which creates a new table and

retrieves its bucket.

class o.Breach ! l.Object {

l.Object main () { return new p.Factory().table().get(); }
}

The expression new o.Breach().main() eventually evaluates to to new p.Buck(), ex-

1.2. TYPES FOR CONFINEMENT 17

posing the confined class to code defined in another package. This example is not typable

in the ConfinedFJ type system. The method p.Table.get() does not type-check because

Rule T-Method requires the type of the expression returned by the method to be a safe

subtype of the method’s declared return type. The expression has the confined type p.Buck

while the declared return type is the public type p.Cell.

In another prototypical breach of confinement, consider the following situation in which

the confined class p.Self extends a Broken parent class that resides in package o. Assume

further that the class inherits its parent’s code for the reveal() method.

conf class p.Self ! o.Broken {

p.Self() { super(); }
}

class p.Main ! l.Object {

p.Main() { super(); }

l.Object get() { return new p.Self().reveal(); }
}

Inspection of this code does not reveal any breach of confinement. But if we widen the scope

of our analysis to the o.Broken class, we may see:

class o.Broken ! l.Object {

o.Broken() { super(); }

l.Object reveal() { return this; }
}

18 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

Invoking reveal() on an instance of p.Self will return a reference to the object itself. This

does not type-check because the invocation of reveal() in p.Main.get() violates the Rule

T-Invk (due to that the non-anonymous method reveal(), inherited from a public class

o.broken, is invoked on an object of a confined type p.Self). The method reveal() cannot

be declared anonymous as the method returns this directly.

Type Soundness

Zhao, Palsberg, and Vitek [75] presented a small-step operational semantics of ConfinedFJ,

which is a computation-step relation P → P ′ on program states P, P ′. They define that a

program state satisfies confinement if every object is in the scope of its defining class. They

proceed to prove the following type soundness result (for a version of ConfinedFJ without

downcast).

Theorem (Confinement [75]) If P is well-typed, satisfies confinement, and P →∗ P ′,

then P ′ satisfies confinement.

The Confinement Theorem states that a well-typed program that initially satisfies confine-

ment preserves confinement. Intuitively, this means that during the execution of a well-typed

program, all the objects that are accessed within the body of a method are visible from the

method’s defining package. The only exception is for anonymous methods, as they may have

access to this which can evaluate to an instance of a class confined in another package, and

if this occurs the use of this is restricted to be a receiver object.

Confined types have none of the three drawbacks of whole-program static analysis: we

can type check fragments of code well before the entire program is done, the type system

enforces a discipline that can help make many types confined, and a change to a line of code

only affects types locally.

1.2. TYPES FOR CONFINEMENT 19

Confinement Inference

Every type-correct Featherweight Java program can be transformed into a type-correct Con-

finedFJ program by putting all the classes into the same package. Conversely, every type-

correct ConfinedFJ program can be transformed into a type-correct Java program by remov-

ing all occurrences of the modifiers conf and anon. (The original version of Featherweight

Java does not have packages.)

The modifiers conf and anon can help enforce more discipline than Java does. If we begin

with a program in Featherweight Java extended with packages and would like to enforce

the stricter discipline of ConfinedFJ, then we face what we call the confinement inference

problem.

The confinement inference problem. Given a Java program, find a subset of

the package-scoped classes that we can make confined, and find a subset of the

methods that we can make anonymous.

The confinement inference problem has a trivial solution: make no classes confined and

make no method anonymous. In practice we may want the largest subsets we can get.

Grothoff, Palsberg, and Vitek [44] studied confinement inference for a variant of the con-

finement and anonymity rules in this chapter. They use a constraint-based program analysis

to infer confinement and method anonymity. Their constraint-based analysis proceeds in

two steps: (1) generate a system of constraints from program text and then (2) solve the

constraint system. The constraints are of following six forms:

A ::= not-anon(methodid)

T ::= not-conf(classid)

C ::= A | T | T ⇒ A | A ⇒ A | A ⇒ T | T ⇒ T

A constraint not-anon(methodId) asserts that the method methodId is not anonymous; simi-

larly, not-conf(classId) asserts that the class classId is not confined. The remaining four forms

20 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

of constraints denote logical implications. For example, not-anon(A.m()) ⇒ not-conf(C) is

read “if method m in class A is not anonymous then class C will not be confined.”

From each expression in a program, we generate one or more constraints. For example,

for a type cast expression (C) e for which the static Java type of e is D, we generate the

constraint not-conf(C) ⇒ not-conf(D), which represents the condition from the T-UCast

rule that conf (D) ⇒ conf (C).

All the constraints are ground Horn clauses. The solution procedure computes the set of

clauses not-conf(classId) that are either immediate facts or derivable via logical implication.

This computation can be done in linear time [31] in the number of constraints, which, in

turn, is linear in the size of the program.

A solution represents a set of classes that cannot be confined and a set of methods that

are not anonymous. The complements of those sets represent a maximal solution to the

confinement inference problem.

Grothoff, Palsberg, and Vitek [44] presented an implementation of their constraint-based

analysis. They gathered a suite of forty-six thousand Java classes and analyzed them for

confinement. The average time to analyze a class file is less than eight milliseconds. The

results show that, without any change to the source, 24% of the package-scoped classes

(exactly 3,804 classes or 8% of all classes) are confined. Furthermore, they found that by

using generic container types, the number of confined types could be increased by close to

one thousand additional classes. Finally, with appropriate tool support to tighten access

modifiers, the number of confined classes can be well over 14,500 (or over 29% of all classes)

for that same benchmark suite.

1.2.4 Related Work on Alias Control

The type-based approach in this chapter is one among many type-based approaches that

solve the same or similar problems. For example, a popular approach is to use a notion of

ownership type [2, 4, 5, 11, 12, 14, 20, 21, 28, 50, 56] for controlling aliasing. The basic idea

1.3. TYPE QUALIFIERS 21

of ownership types is to use the concept of domination on the dynamic object graph. (In a

graph with a starting vertex s, a vertex u dominates another vertex v if every path from s to

v must pass through u.) In a dynamic object graph, we may have an object which we think

of as owning several representation objects. The goal of ownership types is to ensure that

the owner object dominates the representation objects. The dominance relation guarantees

that the only way we can access a representation object is via the owner. An ownership type

system has type rules that are quite different than the rules for confined types.

1.3 Type Qualifiers

In this section we will use types to allow programmers to easily specify and check desired

properties of their applications. This is achieved by allowing programmers to introduce new

qualifiers that refine existing types. For example, the type nonzero int is a refinement of

the type int that intuitively denotes the subset of integers other than zero.

1.3.1 Background

Static type systems are useful for catching common programming errors early in the software

development cycle. For example, type systems can ensure that an integer is never acciden-

tally used as a string and that a function is always passed the right number and kinds of

arguments. Unfortunately, language designers cannot anticipate all of the program errors

that programmers will want to statically check, nor can they anticipate all of the practical

ways in which such errors can be checked.

As a simple example, while most type systems in mainstream programming languages can

distinguish integers from strings and ensure that each kind of data is used in appropriate

ways, these type systems typically cannot distinguish positive from negative integers. Such

an ability would enable stronger assurances about a program, for example that it never

attempts to take the square root of a negative number. As another example, most type

systems cannot distinguish between data that originated from one source and data that

22 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

originated from a different source within the program. Such an ability could be useful to

track a form of value flow, for example to ensure that a string that was originally input

from the user is treated as tainted and therefore given restricted capabilities (e.g., such a

string should be disallowed as the format-string argument to C’s printf function, since a

bad format string can cause program crashes and worse).

Without static checking for these and other kinds of errors, programmers have little

recourse. They can use assert statements, which catch errors but only as they occur in a

running system. They can specify desired program properties in comments, which are useful

documentation but need have no relation to the actual program behavior. In the worst case,

programmers simply leave the desired program properties completely implicit, making these

properties easy to misunderstand or forget entirely.

1.3.2 Static Analysis

Static analysis could be used to ensure desired program properties and thereby guarantee the

absence of classes of program errors. Indeed, generic techniques exist for performing static

analyses of programs (e.g., [49, 23]), which could be applied to the properties of interest to

programmers. As with confinement, one standard approach is to compute a flow set for each

expression e in the program, which conservatively over-approximates the possible values of

e. However, instead of using class names as the elements of a flow set, each static analysis

defines its own domain of flow facts.

For example, to track positive and negative integers, a static analysis could use a domain

of signs [23], consisting of the three elements +, 0, and - with the obvious interpretations. If

the flow set computed for an expression e contains only the element +, then we can be sure

that e will evaluate to a positive integer. In our format-string example, a static analysis could

use a domain consisting of the elements tainted and untainted, respectively representing

data that does and does not come from the user. If the flow set computed for an expression

e contains only the element untainted, then we can be sure that e does not come from the

user.

1.3. TYPE QUALIFIERS 23

τ ::= int | τ → τ
e ::= n | e1 + e2 | x | λx : τ.e | e1e2

Figure 1.5: The syntax of the simply typed lambda calculus.

While this approach is general, it suffers from the drawbacks discussed in Chapter 1.2.2.

First, whole-program analysis is typically required for precision, so errors are only caught

once the entire program has been implemented. Second, the static analysis is descriptive,

reporting the properties that are true of a given program, rather than prescriptive, providing

a discipline to help programmers achieve the desired properties. Finally, the results of a

static analysis can be sensitive to small changes in the program.

The type-based approach described next is less precise than some static analyses but has

none of the above drawbacks.

1.3.3 A Type System for Qualifiers

We now develop a type system that supports programmer-defined type qualifiers. After a

brief review of the simply typed lambda calculus, types are augmented with user-defined

tags and language support for tag checking. A notion of subtyping for tagged types provides

a natural form of type qualifiers. Finally, more expressiveness is achieved by allowing users

to provide specialized typing rules for qualifier checking.

Simply Typed Lambda Calculus

We assume familiarity with the simply typed lambda calculus and briefly review here the

portions that are relevant for the rest of the section. Many other sources contain fuller

descriptions of the simply typed lambda calculus, for example the text by Pierce [65].

Figure 1.5 shows the syntax for the simply typed lambda calculus augmented with integers

and integer addition. The metavariable τ ranges over types and e ranges over expressions.

The syntax τ1 → τ2 denotes the type of functions with argument type τ1 and result type τ2.

The metavariable n ranges over integer constants and x ranges over variable names. The

24 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

Γ # e : τ

Γ # n : int (T-Int)

Γ # e1 : int Γ # e2 : int

Γ # e1 + e2 : int
(T-Plus)

Γ(x) = τ

Γ # x : τ
(T-Var)

Γ, x : τ1 # e : τ2

Γ # λx : τ1.e : τ1 → τ2
(T-Abs)

Γ # e1 : τ2 → τ Γ # e2 : τ2

Γ # e1e2 : τ
(T-App)

Figure 1.6: Static typechecking for the simply typed lambda calculus.

syntax λx : τ.e represents a function with formal parameter x (of type τ) and body e, and

the syntax e1e2 represents application of the function expression e1 to the actual argument

e2.

Figure 1.6 presents static typechecking rules for the simply typed lambda calculus. The

rules define a judgment of the form Γ # e : τ . The metavariable Γ ranges over type

environments, which are finite mappings from variables to types. Informally, the judgment

Γ # e : τ says that expression e is well typed with type τ under the assumption that

free variables in e have the types associated with them in Γ. The rules in Figure 1.6 are

completely standard.

Static typechecking enforces a notion of well-formedness on programs at compile time,

thereby preventing some common kinds of run-time errors. For example, the rules in Fig-

ure 1.6 ensure that a well-typed expression (with no free variables) will never attempt to

add an integer to a function at run time. A type system’s notion of well-formedness is for-

malized by a type soundness theorem, which specifies the properties of well-typed programs.

Intuitively, type soundness for the simply typed lambda calculus says that the evaluation of

well-typed expressions will not “get stuck,” which happens when an operation is attempted

with operand values of the wrong types.

1.3. TYPE QUALIFIERS 25

τ ::= q ν
ν ::= int | τ → τ
e ::= · · · | annot(e, q) | assert(e, q)

Figure 1.7: Adding user-defined tags to the syntax.

A type soundness theorem relies on a formalization of a language’s evaluation seman-

tics. There are many styles of formally specifying language semantics and of proving type

soundness, and common practice today is well described by others [71, 65]. These topics are

beyond the scope of this chapter.

Tag Checking

One way to allow programmers to easily extend their type system is to augment the syntax

for types with a notion of programmer-defined type tags (or simply tags). The new syntax of

types is shown in Figure 1.7. The metavariable q ranges over an infinite set of programmer-

definable type tags. Each type is now augmented with a tag. For example, positive int

could be a type, where positive is a programmer-defined tag denoting positive integers.

Function types include a top-level tag as well as tags for the argument and result types.

In order for programmers to convey the intent of a type tag, the language is augmented

with two new expression forms, as shown in Figure 1.7. Our presentation follows that of

Foster et al. [38, 39]. The expression annot(e, q) evaluates e and tags the resulting value

with q. For example, if the expression e evaluates to a string input by the user, one can

use the expression annot(e, tainted) to declare the intention to consider e’s value as

tainted [58, 66]. The expression assert(e, q) evaluates e and checks that the resulting value

is tagged with q. For example, the expression assert(e, untainted) ensures that e’s value

does not originate from the user and is therefore an appropriate format-string argument to

printf. A failed assert causes the program to terminate erroneously.

Just as our base type system in Figure 1.6 statically tracks the type of each expression,

so does our augmented type system, using the augmented syntax of types. The rules are

shown in Figure 1.8. For simplicity, the rules are set up so that each run-time value created

during the program’s execution will have exactly one tag (a conceptually untagged value can

26 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

Γ # e : ν

Γ # n : int (Q-Int)

Γ # e1 : q1 int Γ # e2 : q2 int

Γ # e1 + e2 : int
(Q-Plus)

Γ, x : τ1 # e : τ2

Γ # λx : τ1.e : τ1 → τ2
(Q-Abs)

Γ # e : τ

Γ(x) = τ

Γ # x : τ
(Q-Var)

Γ # e1 : τ2 → τ Γ # e2 : τ2

Γ # e1e2 : τ
(Q-App)

Γ # e : ν

Γ # annot(e, q) : q ν
(Q-Annot)

Γ # e : q ν

Γ # assert(e, q) : q ν
(Q-Assert)

Figure 1.8: Adding user-defined tags to the type system.

1.3. TYPE QUALIFIERS 27

be modeled by tagging it with a distinguished notag tag). This invariant is achieved via

two interrelated typing judgments. The judgment Γ # e : ν determines an untagged type

for a given expression. This judgment is only defined for constructor expressions, which are

expressions that dynamically create new values. The judgment Γ # e : τ is the top-level

typechecking judgment. It is defined for all other kinds of expressions. The Q-Annot rule

provides a bridge between the two judgments, requiring each constructor expression to be

tagged in order to be given a complete type τ .

Intuitively, the type system conservatively ensures that if Γ # e : q ν holds then the

value of e at run time will be tagged with q. The rules for annot(e, q) and assert(e, q)

are straightforward: Q-Annot includes q as the tag on the type of e, while Q-Assert

requires that e’s type already includes the tag q. The rest of the rules are unchanged from

the original simply typed lambda calculus, except that the premises of Q-Plus allow for

the tags on the types of the operands. Nonetheless, these unchanged rules have exactly

the desired effect. For example, Q-App requires the actual argument’s type in a function

application to match the formal argument type, thereby ensuring that the function only ever

receives values tagged with the expected tag.

Together the rules in Figure 1.8 provide a simple form of value-flow analysis, statically

ensuring that values of a given tag will flow at run time only to places where values of that

tag are expected. For example, a programmer can define a square-root function of the form

λx : positive int.e

and the type system guarantees that only values explicitly tagged as positive will be passed

to the function. As another example, the programmer can statically detect possible division-

by-zero errors by replacing each divisor expression e (assuming our language included integer

division) with the expression assert(e, nonzero). Finally, the type of the following function,

tainted int→untainted int, ensures that although the function accepts tainted data as

an argument, this data does not flow to the return value:

λx : tainted int.annot(0, untainted)

28 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

On the other hand, the following function, which returns the given tainted argument, is

forced to record this fact in its type, tainted int→tainted int:

λx : tainted int.x

Type Soundness The notion of type soundness in the presence of tags is a natural exten-

sion of that for the simply typed lambda calculus. Type soundness still ensures that well-

typed expressions won’t get stuck, but the notion of stuckness now includes failed asserts.

This definition of stuckness formalizes the idea that tagged values will only flow where they

are expected. Type soundness can be proven using standard techniques.

Tag Inference It is possible to consider tag inference for our language. Constructor ex-

pressions are no longer explicitly annotated via annot, and formal argument types no longer

include tags. Tag inference automatically determines the tag of each constructor expression

and the tags on each formal argument, or determines that the program cannot be typed.

Programmers still must employ assert explicitly in order to specify constraints on where

values of particular tags are expected.

As with confinement inference, a constraint-based program analysis can be used for tag

inference. Conceptually, each subexpression in the program is given its own tag variable,

and the analysis then generates equality constraints based on each kind of expression. For

example, in a function application, the tag of the actual argument is constrained to match the

tag of the formal argument type. The simple equality constraints generated by tag inference

can be solved in linear time [64, 69]. Further, if the constraints have a solution then there

exists a principal solution, which is more general than every other solution. Intuitively, this

is the solution that produces the largest number of tags.

For example, consider the following function:

λx : int.λy : int.assert(x, tainted)

One possible typing for the function gives both x and y the type tainted int. However,

1.3. TYPE QUALIFIERS 29

a more precise typing gives y’s type a fresh tag qy, since the function’s constraints do not

require it to have tag tainted. This new typing encodes that fact, as well as the fact that

x and y flow to disjoint places in the program. Finally, the following program generates

constraints that have no solution, since x is required to be both tainted and untainted:

(λx : int.assert(x, tainted)) assert(e, untainted)

Qualifier Checking

While the type system in the previous subsection allows programmers to specify and check

new properties of interest via tags, its expressiveness is limited by the fact that tags are

completely uninterpreted. For example, the type system does not “know” the intent of tags

like positive, nonzero, tainted, and untainted; it only knows that these tags are not

equivalent to one another. However, tags often have natural relationships to one another.

For example, intuitively it should be safe to pass a positive int where a nonzero int is

expected, since a positive integer is also nonzero. Similarly, we may want to allow untainted

data to be passed where tainted data is expected, since allowing that cannot cause tainted

data to be improperly used. The type system of the previous section does not permit such

flexibility.

Foster et al. observed that this expressiveness can be naturally achieved by allowing

programmers to specify a partial order) on type tags [38, 39]. Intuitively, if q1) q2, then

q1 denotes a stronger constraint than q2. The programmer can now declare positive)
nonzero and similarly untainted) tainted, where untainted denotes the set of values

that are definitely untainted and tainted now denotes the set of values that are possibly

tainted. The programmer-defined partial order naturally induces a subtyping relation among

tagged types. For example, given the above partial order, positive int would be considered

a subtype of nonzero int, which therefore allows a value of the former type to be passed

where a value of the latter type is expected.

With this added expressiveness, type tags can be considered full-fledged type qualifiers.

For example, a canonical example of a type qualifier is C’s const annotation, which indicates

30 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

τ ≤ τ ′

q) q′

q int ≤ q′ int
(S-Int)

q) q′ τ ′
1 ≤ τ1 τ2 ≤ τ ′

2

q(τ1 → τ ′
1) ≤ q′(τ2 → τ ′

2)
(S-Fun)

Γ # e : τ

Γ # e : τ ′ τ ′ ≤ τ

Γ # e : τ
(Q-Sub)

Figure 1.9: Adding subtyping to the type system.

that the associated value can be initialized but not later updated. C allows a value of type

int* to be passed where a (const int)* is expected. This is safe because it simply imposes

an extra constraint on the given pointer value, namely that its contents are never updated.

On the other hand, a value of type (const int)* cannot safely be passed where an int* is

expected, since this would allow the pointer value’s constness to be forgotten, allowing its

contents to be modified. Another useful example qualifier is nonnull for pointers, whereby

it is safe to pass a nonnull pointer where an arbitrary pointer is expected, but not vice

versa.

Figure 1.9 shows the extension of the rules in the previous subsection to support qualifiers,

adapted from [39]. Q-Sub is a subsumption rule, which allows an expression’s type to be

promoted to any supertype. The subtyping relation ≤ depends on the partial order)
among qualifiers in a straightforward way. As usual, subtyping is contravariant on function

argument types for soundness [16].

As an example of this type system in action, consider an expression e of type positive

int. Assuming that the programmer specifies positive) nonzero, then by S-Int we have

positive int ≤ nonzero int and by Q-Sub e also has type nonzero int. Therefore, by

the Q-App rule from Figure 1.8, e may be passed to a function expecting an argument of

type nonzero int.

1.3. TYPE QUALIFIERS 31

As an aside, the addition of subtyping makes our formal system expressive enough

to encode multiple qualifiers per type. For example, to encode a type like untainted

positive int, one can define a new qualifier untainted positive along with the par-

tial order untainted positive) untainted and untainted positive) positive. Then

the subtyping and subsumption rules allow an untainted positive value to be treated as

being both untainted and positive, as desired.

As before, type soundness says that the type system guarantees that all asserts will

succeed at run time, where the run-time assertion check now requires a value’s associated

qualifier to be “less than” the specified qualifier, according to the declared partial order.

The type soundness proof again uses standard techniques. It is also possible to general-

ize tag inference to support qualifier inference. The approach is similar to that described

above, although the generated constraints are now subtype constraints instead of equality

constraints.

Foster’s thesis discusses both type soundness and qualifier inference in detail [37]. It also

discusses CQual, an implementation of programmer-defined type qualifiers that adapts the

described theory to the C language. CQual has been used successfully for a variety of appli-

cations, including inference of constness [39], detection of format-string vulnerabilities [66],

detection of user/kernel pointer errors [47], validation of the placement of authorization hooks

in the Linux kernel [74], and the removal of sensitive information from crash reports [15].

Qualifier-Specific Typing Rules

The) partial order allows programmers to specify more information about each qualifier,

making the overall type system more flexible. However, most of the intent of a qualifier

must still be conveyed indirectly via annots, which is tedious and error prone. For example,

the programmer must use annot to explicitly annotate each constructor expression that

evaluates to a positive integer as being positive, or else it will not be considered as such

by the type system. Therefore, the programmer has the burden of manually figuring out

which expressions are positive and which are not. Further, if the programmer accidentally

annotates an expression like -34 + 5 as positive, the type system will happily allow this

32 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

qualifier positive(int Expr E)
case E of

decl int Const C:
C, where C > 0

| decl int Expr E1, E2:
E1 + E2, where positive(E1) && positive(E2)

Figure 1.10: A programming discipline for positive in Clarity.

expression to be passed to a square-root function expecting a positive int, even though

that will likely cause a run-time error.

Qualifier inference avoids the need for explicit annotations using annot. However, qualifier

inference simply determines which expressions must be treated as positive in order to

satisfy a program’s asserts. There is no guarantee that these expressions actually evaluate

to positive integers, and many expressions that do evaluate to positive integers will not be

found to be positive by the inferencer.

To address the burden and fragility of qualifier annotations, we consider an alternate

approach to expressing a qualifier’s intent. Instead of relying on program annotations, we

require qualifier designers to specify a programming discipline for each qualifier, which indi-

cates when an expression may be given that qualifier. For example, a programming discipline

for positive might say that all positive constants can be considered positive, and that

an expression of the form e1 + e2 can be considered positive if each operand expression

can itself be considered positive according to the discipline. In this way, the discipline

declaratively expresses the fact that 34 + 5 can be considered positive while -34 + 5

cannot.

The approach described is used by the Clarity framework for programmer-defined type

qualifiers in C [17]. Clarity provides a declarative language for specifying programming

disciplines. For example, Figure 1.10 shows how the discipline informally described above

for positive would be specified in Clarity. The figure declares a new qualifier named

positive, which refines the type int. It then uses pattern matching to specify two ways in

which an expression E can be given the qualifier positive. The Clarity framework includes

1.3. TYPE QUALIFIERS 33

an extensible typechecker, which employs user-defined disciplines to automatically typecheck

programs.

Formally, consider the type system consisting of the rules in Figures 1.8 and 1.9. We

remove all the rules of the form Γ # e : ν, which perform typechecking on constructor

expressions, and we remove the annot expression form along with its typechecking rule

Q-Annot. When a programmer introduces a new qualifier, she must also augment the

type system with new inference rules indicating the conditions under which each constructor

expression may be given this qualifier. For example, the rules in Figure 1.10 are formally

represented by adding the following two rules to the type system:

n > 0

Γ # n : positive int
(P-Int)

Γ # e1 : positive int Γ # e2 : positive int

Γ # e1 + e2 : positive int
(P-Plus)

Assuming that the programmer also declares positive) nonzero, the subtyping and sub-

sumption rules in Figure 1.9 allow the above rules to be used to give an expression the

qualifier nonzero as well.

Not all qualifiers have natural rules associated with them. For example, the program-

ming disciplines associated with qualifiers like tainted and untainted could be program-

dependent and/or quite complicated. Therefore, in practice both the Clarity and CQual

approaches are useful.

Type Soundness A type soundness theorem analogous to that for traditional type qual-

ifiers, which guarantees that asserts succeed at run time, can be proven in this setting.

In addition, it is possible to prove a stronger notion of type soundness. Clarity allows the

programmer to optionally specify the set of values associated with a particular qualifier.

For example, the programmer could associate the set of positive integers with the positive

qualifier. Given this information, type soundness says that a well-typed expression with

qualifier positive will in fact evaluate to a member of the specified set.

34 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

To ensure this form of type soundness, Clarity generates one proof obligation per programmer-

defined rule. For example, the second rule for positive above requires proving that the

sum of two integers greater than zero is also an integer greater than zero. Clarity discharges

proof obligations automatically using off-the-shelf decision procedures [29], but in general

these may need to be manually proven by the qualifier designer.

This form of type soundness serves to validate the programmer-defined rules. For exam-

ple, if the second rule for positive above were erroneously defined for subtraction rather

than addition, then the error would be caught because the associated proof obligation is

not valid: the difference of two positive integers is not necessarily positive. In this way,

programmers obtain a measure of confidence that their qualifiers and associated inference

rules are behaving as intended.

Qualifier Inference Qualifier inference is also possible in this setting and is implemented

in Clarity, allowing the qualifiers for variables to be inferred rather than declared by the

programmer. Similar to qualifier inference in the previous subsection, a set of subtype

constraints is generated and solved. However, handling programmer-defined inference rules

requires a form of conditional subtype constraints to be solved [18].

1.3.4 Related Work on Type Refinements

Work on refinement types for the ML language allows programmers to create subtypes of

datatype definitions [41], each denoting a subset of the values of the datatype. For example, a

standard list datatype could be refined to define a type of non-empty lists. The language for

specifying these refinements is analogous to the language for programmer-defined inference

rules in Clarity.

Other work has shown how to make refinement types and type qualifiers flow sensitive [26,

40, 51, 27], which allows the refinement of an expression to change over time. For example,

a file pointer could have the qualifier closed upon creation and the qualifier open after it

has been opened. In this way, type refinements can be used to track temporal protocols, for

1.3. TYPE QUALIFIERS 35

example that a file must be opened before it can be read or written.

Finally, others have explored type refinements through the notion of dependent types [52],

in which types can depend on program expressions. An instance of this approach is De-

pendent ML [72, 73], which allows types to be refined through their dependence on linear

arithmetic expressions. For example, the type int list(5) represents integer lists of length

5, and a function that adds an element to an integer list would be declared to have the ar-

gument type int list(n) for some integer n and to return a value of type int list(n+1).

These kinds of refinements are targeted at qualitatively different kinds of program properties

from those targeted by type qualifiers.

36 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

References

[1] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias annotations for pro-
gram understanding. In Proceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 311–330. ACM Press,
2002.

[2] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias annotations for
program understanding. In Proceedings of the ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Appplications (OOPSLA), pages 311–330, Novem-
ber 2002.

[3] David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual function calls.
In Proceedings of the Eleventh Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’96), pages 324–341, San Jose, CA,
1996. SIGPLAN Notices 31(10).

[4] Anindya Banerjee and David A. Naumann. Representation independence, confinement
and access control. In Proceedings of POPL’02, SIGPLAN–SIGACT Symposium on
Principles of Programming Languages, pages 166–177, 2002.

[5] Mike Barnett, Robert DeLine, Manuel Fäahndrich, K. Rustan M. Leino, , and Wolfram
Schulte. Verification of object-oriented programs with invariants. In Fifth Workshop on
Formal Techniques for Java-like Programs, 2003.

[6] Bruno Blanchet. Escape analysis for object oriented languages. application to Java.
In OOPSLA’99 ACM Conference on Object-Oriented Systems, Languages and Applica-
tions, volume 34(10) of ACM SIGPLAN Notices, pages 20–34, Denver, CO, October
1999. ACM Press.

[7] Bruno Blanchet. Escape analysis for Java: Theory and practice. ACM Transactions on
Programming Languages and Systems, 25(6):713–775, 2003.

[8] Jeff Bogda and Urs Hölzle. Removing unnecessary synchronization in Java. In OOP-
SLA’99 ACM Conference on Object-Oriented Systems, Languages and Applications,
volume 34(10) of ACM SIGPLAN Notices, pages 35–46, Denver, CO, October 1999.
ACM Press.

[9] Boris Bokowski and Jan Vitek. Confined types. In Proceedings of the Fourteenth An-
nual Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA’99), pages 82–96, Denver, CO, 1999.

[10] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for safe
programming: Preventing data races and deadlocks. In Proceedings of the 17th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and appli-
cations, pages 211–230. ACM Press, 2002.

[11] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for safe pro-
gramming: Preventing data races and deadlocks. In Proceedings of the ACM Conference
on Object-Oriented Programming, Systems, Languages, and Appplications (OOPSLA),
pages 211–230, November 2002.

[12] Chandrasekhar Boyapati, Alexandru Salcianu, William Beebee, and Martin Rinard.
Ownership types for safe region-based memory management in real-time Java. In ACM
Conference on Programming Language Design and Implementation, pages 324–337, June
2003.

[13] John Boyland. Alias burying: Unique variables without destructive reads. Softw. Pract.
Exper., 31(6):533–553, 2001.

[14] John Boyland. Alias burying: Unique variables without destructive reads. Software—
Practice and Experience, 31(6):533–553, 2001.

[15] Pete Broadwell, Matt Harren, and Naveen Sastry. Scrash: A System for Generating
Secure Crash Information. In USENIX Security Symposium, 2003.

[16] Luca Cardelli. A semantics of multiple inheritance. Information and Computation,

1.3. TYPE QUALIFIERS 37

76(2/3):138–164, February 1988.
[17] Brian Chin, Shane Markstrum, and Todd Millstein. Semantic type qualifiers. In PLDI

’05: Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 85–95, New York, NY, USA, 2005. ACM Press.

[18] Brian Chin, Shane Markstrum, Todd Millstein, and Jens Pal sberg. Inference of user-
defined type qualifiers and qualifier rules. In European Symposium on Programming,
2006.

[19] Dave Clarke, Michael Richmond, and James Noble. Saving the world from bad
Beans: Deployment-time confinement checking. In Proceedings of the ACM Conference
on Object-Oriented Programming, Systems, Languages, and Appplications (OOPSLA),
pages 374–387, Anaheim, CA, November 2003.

[20] David Clarke. Object Ownership and Containment. PhD thesis, School of Computer
Science and Engineering, University of New South Wales, Sydney, Australia, 2001.

[21] David Clarke and Tobias Wrigstad. External uniqueness. In 10th Workshop on Foun-
dations of Object-Oriented Languages (FOOL), New Orleans, LA, January 2003.

[22] David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible alias
protection. In Proceedings of the 13th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 48–64. ACM Press, 1998.

[23] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In Fourth
ACM Symposium on Principles of Programming Languages, pages 238–252, 1977.

[24] Manuvir Das, Sorin Lerner, and Mark Seigle. Esp: path-sensitive program verification
in polynomial time. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference
on Programming language design and implementation, pages 57–68, New York, NY,
USA, 2002. ACM Press.

[25] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs using
static class hierarchy analysis. In W. Olthoff, editor, Proceedings of the Ninth Euro-
pean Conference on Object-Oriented Programming (ECOOP’95), pages 77–101, Aarhus,
Denmark, August 1995. Springer-Verlag.

[26] Robert DeLine and Manuel Fahndrich. Enforcing high-level protocols in low-level soft-
ware. In Proceedings of the ACM SIGPLAN 2001 conference on Programming language
design and implementation, pages 59–69. ACM Press, 2001.

[27] Robert DeLine and Manuel Fahndrich. Typestates for objects. In Proceedings of the
2004 European Conference on Object-Oriented Programming, LNCS 3086, Oslo, Norway,
June 2004. Springer-Verlag.

[28] David Detlefs, K. Rustan M. Leino, and Greg Nelson. Wrestling with rep exposure.
Technical report, Digital Equipment Corporation Systems Research Center, 1996.

[29] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52(3):365–473, 2005.

[30] Alain Deutsch. Semantic models and abstract interpretation techniques for inductive
data structures and pointers. In Proceedings of the ACM SIGPLAN Symposium on Par-
tial Evaluation and Semantics-Based Program Manipulation, pages 226–229, La Jolla,
California, June 21–23, 1995.

[31] William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing the sat-
isfiability of propositional horn formulae. Journal of Logic Programming, 1(3):267–84,
October 1984.

[32] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, 1990.

[33] David Evans. Static detection of dynamic memory errors. In PLDI ’96: Proceedings of
the ACM SIGPLAN 1996 conference on Programming language design and implemen-
tation, pages 44–53, New York, NY, USA, 1996. ACM Press.

[34] Manuel Fahndrich and K. Rustan M. Leino. Declaring and checking non-null types in

38 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

an object-oriented language. In Proceedings of the 18th ACM SIGPLAN conference on
Object-oriented programing, systems, languages, and applications, pages 302–312. ACM
Press, 2003.

[35] Cormac Flanagan and Stephen N. Freund. Type-based race detection for Java. In
Proceedings of the ACM SIGPLAN 2000 conference on Programming language design
and implementation, pages 219–232. ACM Press, 2000.

[36] Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In Pro-
ceedings of the ACM SIGPLAN 2003 conference on Programming language design and
implementation, pages 338–349. ACM Press, 2003.

[37] Jeffrey S. Foster. Type Qualifiers: Lightweight Specifications to Improve Software Qual-
ity. Ph.D. dissertation, University of California, Berkeley, 2002.

[38] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. A Theory of Type Quali-
fiers. In Proceedings of the 1999 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 192–203, Atlanta, Georgia, May 1999.

[39] Jeffrey S. Foster, Robert Johnson, John Kodumal, and Alex Aiken. Flow-insensitive
type qualifiers. ACM Transactions on Programming Languages and Systems, 28(6),
November 2006.

[40] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type qualifiers. In
Proceedings of the ACM SIGPLAN 2002 Conference on Programming language design
and implementation, pages 1–12. ACM Press, 2002.

[41] Tim Freeman and Frank Pfenning. Refinement types for ML. In PLDI ’91: Proceed-
ings of the ACM SIGPLAN 1991 Conference on Programming Language Design and
Implementation, pages 268–277, New York, NY, USA, 1991. ACM Press.

[42] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-
Wesley, 1996.

[43] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James
Cheney. Region-based memory management in Cyclone. In Proceedings of the ACM
SIGPLAN 2002 Conference on Programming language design and implementation,
pages 282–293. ACM Press, 2002.

[44] Christian Grothoff, Jens Palsberg, and Jan Vitek. Encapsulating objects with con-
fined types. ACM Transactions on Programming Languages and Systems. To appear.
Preliminary version in Proceedings of OOPSLA’01, ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications, pages 241–253,
Tampa Bay, Florida, October 2001.

[45] Nevin Heintze. Control-flow analysis and type systems. In Proceedings of SAS’95,
International Static Analysis Symposium, pages 189–206. Springer-Verlag (LNCS 983),
Glasgow, Scotland, September 1995.

[46] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a mini-
mal core calculus for Java and GJ. ACM Transactions on Programming Languages and
Systems, 23(3):396–450, May 2001.

[47] Rob Johnson and David Wagner. Finding user/kernel pointer bugs with type inference.
In Proceedings of the 13th USENIX Security Symposium, pages 119–134, 2004.

[48] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice-
Hall, 1978.

[49] Gary A. Kildall. A unified approach to global program optimization. In Conference
Record of the ACM Symposium on Principles of Programming Languages, pages 194–
206, Boston, Massachusetts, October 1973.

[50] K. Rustan M. Leino and Peter Müller. Object invariants in dynamic contexts. In
Proceedings of ECOOP’04, 16th European Conference on Object-Oriented Programming,
pages 491–516, 2004.

[51] Yitzhak Mandelbaum, David Walker, and Robert Harper. An effective theory of type
refinements. In Proceedings of the eighth ACM SIGPLAN international conference on

1.3. TYPE QUALIFIERS 39

Functional programming, pages 213–225. ACM Press, 2003.
[52] Per Martin-Löf. Constructive mathematics and computer programming. In Sixth Inter-

national Congress for Logic, Methodology, and Philosophy of Science, pages 153–175,
Amsterdam, 1982. North-Holland.

[53] Microsoft. Microsoft Visual C#. http://msdn.microsoft.com/vcsharp.
[54] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Frederick

Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. Talx86: A realistic
typed assembly language. Presented at 1999 ACM Workshop on Compiler Support for
System Software, May 1999.

[55] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to typed
assembly language. In Proceedings of POPL’98, 25th Annual SIGPLAN–SIGACT Sym-
posium on Principles of Programming Languages, pages 85–97, 1998.

[56] Peter Müller and Arnd Poetzsch-Heffter. Universes: A type system for controlling
representation exposure. In A. Poetzsch-Heffter and J. Meyer, editors, Programming
Languages and Fundamentals of Programming. Fernuniversität Hagen, 1999.

[57] George C. Necula, Scott McPeak, and Westley Weimer. CCured: Type-safe retrofitting
of legacy code. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 128–139. ACM Press, 2002.

[58] Peter Ørbæk and Jens Palsberg. Trust in the λ-calculus. Journal of Functional Pro-
gramming, 7(6):557–591, November 1997. Preliminary version in Proceedings of SAS’95,
International Static Analysis Symposium, Springer-Verlag (LNCS 983), pages 314–330,
Glasgow, Scotland, September 1995.

[59] Jens Palsberg. Equality-based flow analysis versus recursive types. ACM Transactions
on Programming Languages and Systems, 20(6):1251–1264, 1998.

[60] Jens Palsberg. Type-based analysis and applications. In Proceedings of PASTE’01, ACM
SIGPLAN/SIGSOFT Workshop on Program Analysis for Software Tools and Engineer-
ing, pages 20–27, Snowbird, Utah, June 2001. Invited paper.

[61] Jens Palsberg and Patrick M. O’Keefe. A type system equivalent to flow analysis.
ACM Transactions on Programming Languages and Systems, 17(4):576–599, July 1995.
Preliminary version in Proceedings of POPL’95, 22nd Annual SIGPLAN–SIGACT Sym-
posium on Principles of Programming Languages, pages 367–378, San Francisco, Cali-
fornia, January 1995.

[62] Jens Palsberg and Christina Pavlopoulou. From polyvariant flow information to inter-
section and union types. Journal of Functional Programming, 11(3):263–317, May 2001.
Preliminary version in Proceedings of POPL’98, 25th Annual SIGPLAN–SIGACT Sym-
posium on Principles of Programming Languages, pages 197–208, San Diego, California,
January 1998.

[63] Jens Palsberg and Michael I. Schwartzbach. Object-oriented type inference. In Pro-
ceedings of OOPSLA’91, ACM SIGPLAN Sixth Annual Conference on Object-Oriented
Programming Systems, Languages and Applications, pages 146–161, Phoenix, Arizona,
October 1991.

[64] M. S. Paterson and M. N. Wegman. Linear unification. Journal of Computer and System
Sciences, 16:158–167, 1978.

[65] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
[66] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting Format

String Vulnerabilities with Type Qualifiers. In Proceedings of the 10th Usenix Security
Symposium, Washington, D.C., August 2001.

[67] Frank Tip and Jens Palsberg. Scalable propagation-based call graph construction algo-
rithms. In Proceedings of OOPSLA’00, ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, pages 281–293, Minneapolis, Min-
nesota, October 2000.

[68] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value λ-

40 CHAPTER 1. TYPE SYSTEMS: ADVANCES AND APPLICATIONS

calculus using a stack of regions. In Proceedings of the 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 188–201. ACM Press, 1994.

[69] Mitchell Wand. A simple algorithm and proof for type inference. Fundamentae Infor-
maticae, X:115–122, 1987.

[70] John Whaley and Monica Lam. Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams. In Proceedings of PLDI’04, ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2004.

[71] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, November 1994.

[72] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through dependent
types. In Proceedings of ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 249–257, Montreal, June 1998.

[73] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In Proceed-
ings of the 26th ACM SIGPLAN Symposium on Principles of Programming Languages,
pages 214–227, San Antonio, January 1999.

[74] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. Using cqual for static analysis of
authorization hook placement. In Dan Boneh, editor, USENIX Security Symposium,
pages 33–48. USENIX, 2002.

[75] Tian Zhao, Jens Palsberg, and Jan Vitek. Type-based confinement. Journal of Func-
tional Programming, 16(1):83–128, 2006. Preliminary version, entitled “Lightweight
confinement for Featherweight Java”, in Proceedings of OOPSLA’03, ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Applications,
pages 135-148, Anaheim, California, October 2003.

