
Binary Reduction of Dependency Graphs
Christian Gram Kalhauge

kalhauge@cs.ucla.edu

Computer Science Department

University of California, Los Angeles (UCLA)

Los Angeles, CA, USA

Jens Palsberg

palsberg@ucla.edu

Computer Science Department

University of California, Los Angeles (UCLA)

Los Angeles, CA, USA

ABSTRACT
Delta debugging is a technique for reducing a failure-inducing in-

put to a small input that reveals the cause of the failure. This has

been successful for a wide variety of inputs including C programs,

XML data, and thread schedules. However, for input that has many

internal dependencies, delta debugging scales poorly. Such input

includes C#, Java, and Java bytecode and they have presented a

major challenge for input reduction until now. In this paper, we

show that the core challenge is a reduction problem for dependency

graphs, and we present a general strategy for reducing such graphs.

We combine this with a novel algorithm for reduction called Binary

Reduction in a tool called J-Reduce for Java bytecode. Our experi-

ments show that our tool is 12x faster and achieves more reduction

than delta debugging on average. This enabled us to create and

submit short bug reports for three Java bytecode decompilers.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
Debugging, dependencies, reduction

ACM Reference Format:
Christian Gram Kalhauge and Jens Palsberg. 2019. Binary Reduction of

Dependency Graphs. In Proceedings of the 27th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3338906.3338956

1 INTRODUCTION
Delta debugging automates a process that programmers otherwise

do by hand. When a program crashes on an input, the programmer

tries to understand the cause of the crash by reducing the input.

Intuitively, the programmer can cut the input in half and see if one

of the two halves causes the crash as well. After some repetitions

of this step, the input may be small enough for the programmer to

spot the cause of the problem. Delta debugging executes a more ad-

vanced version of this, automatically. For example, delta debugging

can map the original input to a nonconsecutive subsequence. Thus,

delta debugging relieves programmers from the tedium of reducing

and executing, and lets them focus on improving their programs.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of
the 27th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia,
https://doi.org/10.1145/3338906.3338956.

In their seminal paper on delta debugging, Zeller and Hilde-

brandt [27] showed successful experiments in which the inputs

were C programs, Mozilla user actions, and UNIX commands. Other

papers have reported on experiments with XML data [19], thread

schedules [5], and event sequences [11]. The problem of reducing

failure-inducing input to a minimal size is NP-complete [19], and

for an input with n characters, trying all 2n substrings may be futile.

Instead, the delta debugging algorithm ddmin [27] tries O (n2) sub-
strings. This led to massive success but when most natural subsets

of the input are invalid, most iterations of ddmin fail and are of

no help towards reduction. As a step towards scalability, Zeller

and Hildebrandt showed how ddmin does better when applied to

a list of lines. This is better than a character-oriented approach

because often a line of code represents a syntactic element such as

a statement. Misherghi and Su [19] went further and introduced

hierarchical delta debugging (HDD) that works with the syntactic

structure of the data. For example, for reduction of a method body,

HDD represents the body as a list of statements and runs ddmin

on the list. This is better than a line-oriented approach because a

statement can span multiple lines. Use of the syntactic structure en-

sures that each input is syntactically valid and increases the chance

that each run produces useful information.

In this paper we consider the next level of difficulty, which arises

when elements of the syntactic structure have many internal de-
pendencies. Such input includes C#, Java, and Java bytecode, where

a class may depend on other classes and where compilation and

bytecode verification require all dependencies to be present. We can

represent such a program as a list of classes and run ddmin on the

list, yet most runs will fail because the input is invalid. We solve this

by modeling the internal dependencies in the input as a dependency
graph and then running reduction on a list of transitive closures in

the dependency graph. We will show experiments with reduction

by both ddmin and a novel algorithm called Binary Reduction.

In the remainder of the paper, Section 2 introduces the challenge

in detail, after which Sections 3–6 present our contributions:

• We show that dependency graphs are a convenient data

structure for reduction, particularly by ddmin (Section 3).

• We present a new reduction algorithm, called Binary Reduc-

tion that runs only O (n logn) iterations (Section 4).

• We evaluate on 238 Java bytecode programs that induce

failures in three decompilers. Binary Reduction on graphs is

12x faster and reduces more than ddmin (Section 5).

• We submitted bug reports for the decompilers (Section 6).

Finally, Section 7 discusses related work, and Section 8 concludes.

https://doi.org/10.1145/3338906.3338956
https://doi.org/10.1145/3338906.3338956

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Christian Gram Kalhauge and Jens Palsberg

2 THE CHALLENGE
We will explain the challenge of reducing input with dependencies

via an example. The example concerns the Java bytecode decompiler

called CFR (http://www.benf.org/other/cfr/). CFR takes as input a

valid Java bytecode program and decompiles it to a Java source

program. This is useful for programmers who want to inspect and

reason about libraries that have been shipped as bytecode. Ideally, a

decompiler produces source code that can be compiled to bytecode

such that the input bytecode and output bytecode are behaviorally

equivalent. When we look for bugs, we will use a more modest

quality measure: a decompiler should produce source code that

compiles. If CFRmaps a valid bytecode program to a source program

that doesn’t compile, we say that CFR fails.
We define a valid bytecode program as a set of class-files that each

individually verifies and depends only on classes in the program

itself or in the standard library. A class A depends on another class

B if A mentions B anywhere in its bytecode. This can happen in

many places, such as in an extends-clause, in a type annotation, in

a new-expression, or in a type cast.

Our example begins with the discovery of a bug in CFR. We ran

CFR on a valid Java bytecode program with 17 classes and then we

ran javac on the produced source program, which led to this error

message from javac:

... error: illegal start of expression
if (var2_3.hasNext()) ** break;

Now we would like to send a bug report to CFR, but it can be hard

to locate the bug in 17 classes. In this paper we focus on reducing

the bytecode program to one with a subset of the classes that still
induces CFR to fail with the same bug report. Thus, the reducer

picks classes without changing them.

The task of reducing a set of classes to a smaller set of classes

is of the kind for which delta debugging usually excels. We imple-

mented the delta debugging algorithm called ddmin by Zeller and

Hildebrandt [27] such that it works on a list of classes. However,

the result of reducing our Java bytecode program with 17 classes

was disappointing: the result was a program with 14 classes.

Figure 1 illustrates our run of ddmin. The boxes and ×’s show
which classes were input to an iteration of ddmin, while the column

labeled fail shows whether CFR failed (marked with yes), succeeded
(marked with no), or whether the bytecode program was invalid

(marked with ?). In most cases, the input bytecode program is

invalid so to highlight the few steps with valid inputs, we use boxes

in those steps. Specifically, when CFR reproduces the bug we use

□, and in all other cases with valid inputs we use ■.

The many iterations with invalid bytecode programs inputs are

of no help towards reduction. Additionally, each invocation of CFR

and javac can take between a couple of seconds and multiple

minutes, which decreases scalability.

Regehr et al. [21] identified this kind of problem in 2012 and

called it the test-case validity problem. They also identified two

kinds of solutions, namely:

(1) detect invalid inputs or

(2) avoid invalid inputs.

In the context of C, Regehr et al. [21] used two tools to detect invalid
code, which led to an excellent reducer. However, they left avoiding
invalid code as an open problem.

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 fail

× × × × × × × × × · · · · · · · · ?

· · · · · · · · · × × × × × × × × ?

× × × × × · · · · · · · · · · · · ?

· · · · · × × × × × · · · · · · · ?

· · · · · · · · · · × × × × × · · ?

· · · · · · · · · · · · · · · × × ?

· · · · · × × × × × × × × × × × × ?

× × × × × · · · · · × × × × × × × ?

× × × × × × × × × × · · · · · × × ?

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ · · yes

× × × × × · · · · · · · · · · · · ?

· · · · · × × × × × · · · · · · · ?

· · · · · · · · · · × × × × × · · ?

· · · · · × × × × × × × × × × · · ?

× × × × × · · · · · × × × × × · · ?

× × × × × × × × × × · · · · · · · ?

× × × · · · · · · · · · · · · · · ?

· · · × × × · · · · · · · · · · · ?

· · · · · · × × × · · · · · · · · ?

· · · · · · · · · × × × · · · · · ?

· · · · · · · · · · · · × × × · · ?

· · · × × × × × × × × × × × × · · ?

× × × · · · × × × × × × × × × · · ?

× × × × × × · · · × × × × × × · · ?

× × × × × × × × × · · · × × × · · ?

× × × × × × × × × × × × · · · · · ?

× × · · · · · · · · · · · · · · · ?

· · × × · · · · · · · · · · · · · ?

· · · · × × · · · · · · · · · · · ?

· · · · · · × × · · · · · · · · · ?

· · · · · · · · × × · · · · · · · ?

· · · · · · · · · · × × · · · · · ?

· · · · · · · · · · · · × × · · · ?

· · · · · · · · · · · · · · × · · ?

· · × × × × × × × × × × × × × · · ?

× × · · × × × × × × × × × × × · · ?

× × × × · · × × × × × × × × × · · ?

× × × × × × · · × × × × × × × · · ?

× × × × × × × × · · × × × × × · · ?

× × × × × × × × × × · · × × × · · ?

× × × × × × × × × × × × · · × · · ?

× × × × × × × × × × × × × × · · · ?

■ · · · · · · · · · · · · · · · · no
· × · · · · · · · · · · · · · · · ?

· · × · · · · · · · · · · · · · · ?

· · · × · · · · · · · · · · · · · ?

· · · · × · · · · · · · · · · · · ?

· · · · · × · · · · · · · · · · · ?

· · · · · · × · · · · · · · · · · ?

· · · · · · · ■ · · · · · · · · · no
· · · · · · · · × · · · · · · · · ?

· · · · · · · · · × · · · · · · · ?

· · · · · · · · · · × · · · · · · ?

· · · · · · · · · · · × · · · · · ?

· · · · · · · · · · · · × · · · · ?

· · · · · · · · · · · · · × · · · ?

· · · · · · · · · · · · · · × · · ?

· □ □ □ □ □ □ □ □ □ □ □ □ □ □ · · yes

· × · · · · · · · · · · · · · · · ?

· · × · · · · · · · · · · · · · · ?

· · · × · · · · · · · · · · · · · ?

· · · · × · · · · · · · · · · · · ?

· · · · · × · · · · · · · · · · · ?

· · · · · · × · · · · · · · · · · ?

· · · · · · · ■ · · · · · · · · · no
· · · · · · · · × · · · · · · · · ?

· · · · · · · · · × · · · · · · · ?

· · · · · · · · · · × · · · · · · ?

· · · · · · · · · · · × · · · · · ?

· · · · · · · · · · · · × · · · · ?

· · · · · · · · · · · · · × · · · ?

· · · · · · · · · · · · · · × · · ?

· · × × × × × × × × × × × × × · · ?

· × · × × × × × × × × × × × × · · ?

· × × · × × × × × × × × × × × · · ?

· × × × · × × × × × × × × × × · · ?

· × × × × · × × × × × × × × × · · ?

· × × × × × · × × × × × × × × · · ?

· × × × × × × · × × × × × × × · · ?

· × × × × × × × · × × × × × × · · ?

· × × × × × × × × · × × × × × · · ?

· × × × × × × × × × · × × × × · · ?

· × × × × × × × × × × · × × × · · ?

· × × × × × × × × × × × · × × · · ?

· × × × × × × × × × × × × · × · · ?

· × × × × × × × × × × × × × · · · ?

· □ □ □ □ □ □ □ □ □ □ □ □ □ □ · ·

Figure 1: A detailed run of the example using unmodified
delta debugging (ddmin). The rows are the iterations of ddmin.
The columns identifies classes (represented using a num-
ber) in the input of each iteration: if a class is included it
is marked with □, ■, or ×.

http://www.benf.org/other/cfr/

Binary Reduction of Dependency Graphs ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

210

3 4

5

6

78

9 10

11

12

1314 15

16

Figure 2: The dependency graph of our example program.
Thenodes are classes in the programand the edges represent
references to other classes. The class marked 1 induces the
bug in the decompiler.

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 fail

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ · · yes

■ · · · · · · · · · · · · · · · · no
· · · · · · · ■ · · · · · · · · · no
· □ □ □ □ □ □ □ □ □ □ □ □ □ □ · · yes

· · · · · · · ■ · · · · · · · · · no

· □ □ □ □ □ □ □ □ □ □ □ □ □ □ · ·

Figure 3: A run where all the invalid bytecode program in-
puts have been filtered out before execution (verify).

Inspired by the success of Regehr et al. [21], our first attempt

to improve the situation was to detect invalid bytecode programs.

Specifically, we enhanced ddmin to a version called verify that

checks, in every iteration, that the bytecode program is valid before

running CFR and javac. Given that the original bytecode program

is valid and that each class stays unchanged, a check of whether a

bytecode program is valid boils down to checking that all depen-

dencies are present. We do this by going through each class to find

its dependencies, after which we assemble the dependencies into a

graph.

Figure 2 shows the dependency graph for our example; each

node represents a class and each edge represents a dependency.

The classes are numbered from 0 to 16 (corresponding to numbers

in Figure 1), for simplicity. The edge 1 → 4 means that class 1

depends on class 4. Sometimes classes are tightly coupled, in that

case bidirectional edges are possible. Using this graph, verify can

check for each iteration that all the dependencies are present before

running CFR. Figure 3 shows that verify invokes CFR and javac
just five times, yet still produces a program with 14 classes. In

Section 5, our experiments show that verify is 3x faster than

ddmin on a list of classes, on average.

We have found that the actual error is induced by class 1, marked

in bold in Figure 2. However, for a bytecode program with class

1 to be valid, classes 2, 4, and 7 also have to be present. Thus, the

smallest valid input that induces an error in CFR is {1, 2, 4, 7}, which

is 3.5x smaller than the result given by ddmin and verify. This
raises the question: why do ddmin and verify do poorly and what

can we do about it?

The problem has to dowith a lack ofmonotonicity that we explain
now. In our example, consider the two valid, failure-inducing inputs

{1, 2, 4, 7} and {0, 1, . . . , 16}. Figure 3 shows many sets S where

{1, 2, 4, 7} ⊆ S ⊆ {0, 1, . . . , 16}

and in every case, S is invalid bytecode. Thus, we don’t have the

property that as inputs get bigger, failure is preserved. Equivalently,

we don’t have the property that as inputs get smaller, nonfailure

is preserved. In other words, when we run CFR followed by javac
on possibly invalid bytecode, this combined operation fails to be

monotonic.

The lack ofmonotonicity has a big effect on the reduction process.

Specifically, the process can move from a failure-inducing input

such as {0, 1, . . . , 16} to a smaller input such as {0, 1, . . . , 8} that

induces no failure, and still miss the even smaller, failure-inducing

input {1, 2, 4, 7}. For example, if we from {0, 1, . . . , 8} remove some

classes that had missing dependencies, the removal may make the

input valid again, hence make the failure reappear.

We note that the original paper on ddmin assumes that “failure
is monotone” [27, Section VIII]. However, delta debugging has been

successful even when monotonicy fails (including when the input

is a C program) so what is different about our case? The answer is

that

for input with many internal dependencies,
monotonicity can fail spectacularly.

Indeed, Figure 1 shows that almost every subset is invalid bytecode

so trying O (n2) subsets among the (2n) possible subsets has little
chance of success.

Notice that in Figure 1, ddmin managed to remove the interde-

pendent classes 15 and 16 in a single step. This was mostly due to a

lucky ordering of the classes. We can see from this example that

for ddmin to remove interdependent classes, it must remove them

at the same time. An attempt to remove either one in a single step

would run into invalid bytecode.

For another example, notice that if we remove class 11 from

{0, 1, . . . , 16}, we get an invalid bytecode program. By inspecting

Figure 2 we can see that in addition to removing class 11, we also

have to remove class 8, thus also class 13, and so on. For ddmin to
have a chance to remove such a long dependency chain in a single

step, we would need the classes to be ordered in a particularly

fortunate way. However, given that the reduction problem is NP-

complete, finding a good listing is a hard problem.

The above analysis has led us to abandon the idea of detecting
invalid input and instead pursue how to avoid it. We will present

a new approach that avoids invalid bytecode programs entirely

by putting dependencies front and center. The key idea is to do

reduction of dependency graphs, as we explain next.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Christian Gram Kalhauge and Jens Palsberg

3 REDUCTION OF DEPENDENCY GRAPHS
In this section we will distill the essence of reducing an input with

internal dependencies in a way that avoids invalid inputs. Thus,

we will run CFR followed by javac only on valid bytecode. Hence,

all remaining violations of monotonicity, in the sense of Section 2,

come from CFR and javacc, and those tend to be insignificant.

Let us assume that the validity of an input can be modeled with

a dependency graph. If all elements in the input have no missing

dependencies, the input is valid. Intuitively, if we group all elements

with their dependencies, and with the dependencies of their depen-

dencies, and so on, then picking such a group would be a valid input.

For the case of a set of verified classes, no missing dependencies

mean a valid bytecode program.

We avoid invalid inputs by changing the reduction problem

from working with a list of elements to working with a list of

sets of elements. We ensure that each such set of elements is a

valid input by requiring that it is a self-contained subset without

missing dependencies. Those subsets are the transitively closed
subsets of nodes in the dependency graph of the input. Recall that

the transitive closure (or simply closure) of a set of nodes is the

smallest superset that is transitively closed.

Our reduction strategy is based on the idea that a set of closures
represents the union of those closures, which makes sense because

the union of two closures is itself a closure. This means that no

matter what subset of the list of closures a reduction algorithm

picks, the union of that subset would be a closure. And since every

closure is valid input we have a strategy that avoids invalid inputs.

The dependency graph reduction strategy. Here is our strategy for
reduction of an input with internal dependencies:

(1) Map the input to its dependency graph.

(2) Compute the closure of each node.

(3) Form a list of the closures.

(4) Run a reduction algorithm on the list of closures.

(5) Output the union of the reduced list of closures.

For our dependency graph in Figure 2, Step 2 maps the 17 nodes

to the following 8 different closures: S1 = {7, 8, . . . , 16}, S2 =
{7, 8, . . . , 14}, S3 = {1, 2, . . . , 7}, S4 = {1, 2, 3, 4, 7}, S5 = {1, 2, 4, 7},
S6 = {4, 7}, S7 = {7}, and S8 = {0}. We have fewer closures than

nodes because of cycles in the graph.

The above strategy leaves two aspects to be refined. First, in

Step 3 we must decide how to order the closures. This turns out to

be important, as we will discuss below. Second, in Step 4 we must

decide how to reduce the list of closures. We have some freedom

here because when we remove a closure from the list, the result

is again a list of closures. Thus, a reduction algorithm can remove

closures and avoid invalid subsets entirely.

Using ddmin on a list of closures. In this section we use ddmin

in Step 4 and refer to this algorithm as closure. In each iteration

of ddmin, the union of the closures represents a valid bytecode

program so all we need to do is to check whether CFR fails.

Figure 4 shows two runs of closure on the closures of the nodes

in Figure 2. The difference lies in how we ordered the closures up

front; any ordering is possible. In both cases, the number of itera-

tions is much smaller than in the run of ddmin shown in Figure 1.

The reason is that closure encounters no invalid subsets so it

S1 S2 S3 S4 S5 S6 S7 S8 fail

□ □ □ □ · · · · yes

■ ■ · · · · · · no
· · □ □ · · · · yes

· · □ · · · · · yes

· · □ · · · · ·

S7 S8 S6 S5 S4 S3 S2 S1 fail

□ □ □ □ · · · · yes

■ ■ · · · · · · no
· · □ □ · · · · yes

· · ■ · · · · · no
· · · □ · · · · yes

· · · □ · · · ·

Figure 4: Two runs of closure on the example in Figure 2,
where {1} induces failure. The first run has the closures in
an arbitrary order; the second has them sorted after size.

S7 S8 S6 S5 S4 S3 S2 S1 fail

■ ■ ■ ■ · · · · no
· · · · □ □ □ □ yes

· · · · ■ ■ · · no
· · · · · · ■ ■ no
· · · · ■ · · · no
· · · · · ■ · · no
· · · · · · ■ · no
· · · · · · · ■ no
· · · · · □ □ □ yes

· · · · · ■ · · no
· · · · · · ■ · no
· · · · · · · ■ no
· · · · · · ■ ■ no
· · · · · □ · □ yes

· · · · · ■ · · no
· · · · · · · ■ no

· · · · · □ · □

Figure 5: A run of closure on the example in Figure 2, where
{1, 12} induces failure.

homes in on a solution in just four and five iterations, respectively.

In this example closure run as fast as verify, in Figure 3, but the

first run returns S3 = {1, 2, . . . , 7}, which is much better than the

output in Figure 3, which is {1, 2, . . . , 14}. The second run returns

S5 = {1, 2, 4, 7}, which is the best possible subset.

For the second run in Figure 4, we sorted the closures by size,

from smallest to largest. The reason this works well has to do with

a quirk in running ddmin on a list of sets. Specifically, ddmin views

S3, S4, S5 as equally good reduced sets, because each one is a single
closure. Whether ddmin produces one of S3, S4, and S5 depends
on the order of the closures, and, like in Section 2, some orders

are more lucky than others. In each of the two runs in Figure 4,

closure produced a single closure and behaved like binary search.

We know that ddmin tends to process input from left to right, as

we can see in Figure 1, so when we sort the closures by size we

have a good chance to get the smallest closure.

Binary Reduction of Dependency Graphs ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

The algorithm closure leaves room for improvement. For ex-

ample, suppose the failure is induced by the combination of class

1 and class 12 (rather than only class 1). The smallest reduced set

is S5 ∪ S2, which has size 11. However, Figure 5 shows a run of

closure that produces the larger set S3 ∪ S1, which has size 16.

Like before, this happens because ddmin looks for the smallest

possible set of sets without considering the sizes of those sets. Here,

ordering the closures by size is insufficient to get the best result. In

the next section we present an algorithm that matches closure in

simple cases and is better and faster in general.

4 BINARY REDUCTION
We will extend the classical reduction problem with a notion of cost
that can model sizes of closures, and we will present an algorithm

called Binary Reduction.

4.1 The Input Reduction Problem
For all sets we can refer to the elements using indicies: e.g. if A is a

set, then A1, . . . ,A |A | refer to the elements of A. If Σ is a set, then

2
Σ
is the powerset of Σ; we use D, S,U to range over the elements

of 2
Σ
. We say that P : 2

Σ → Bool, a predicate on subsets of Σ, is
monotonic if S1 ⊆ S2 implies that P (S1) ⇒ P (S2).

We recast reduction as a decision problem:

Definition 1 (Input Reduction Problem). Given (Σ, P ,C,U ,k),
where Σ is a set of symbols, P : 2

Σ → Bool is a polynomial-time mono-
tonic predicate, C : 2

Σ → N is a polynomial-time cost function, and
U ∈ 2Σ is a failure inducing input (P (U) = True), k ∈ N is a natural
number, decide ∃S ⊆ U : P (S) ∧ (C (S) < k).

Intuitively, P represents buggy software andU represents failure-

inducing input. We follow the convention of Misherghi and Su [19]

that P returns False both in the case of invalid input and in the

case of no failure. The novelty in the above definition is the cost

function C . In order to define the problem as a decision problem,

we use the standard technique of asking whether the cost of S ex-

ceeds a threshold k . Many instantiations are possible, including the

following four.

Original Problem. In the seminal delta debugging paper [27], Σ is

the index set of the input list,U = 2
Σ
, andC (S) = |S |. The problem

is to find the smallest subset of the index set that induces a failure.

Syntax Trees. In the paper on hierarchical delta debugging [19],

Σ is a set of subtrees of a tree,U = 2
Σ
, and C (S) = |S |. Thus, the

problem is to find the fewest subtrees that induce a failure. Contrary

to the original paper, if we define the cost function to be the sum

of the sizes of the subtrees, a reducer that solves the problem will

aim to choose the smallest subtrees.

Set of Sets. If we want to minimize the union of a set of sets,

we can pick Σ = 2
E
, where E is a set, U = 2

Σ
, and C (S) = |∪S |.

Additionally, we can lift any predicate Q : 2
E → Bool on subsets of

E to a predicate P : 2
Σ → Bool by defining P (S) = Q (∪S).

Dependency Graphs. The previous section explains how to do

reduction of a dependency graph by mapping it to the Set of Sets
problem above. The idea is to compute the closures of the nodes in

the dependency graph and then to find the smallest union of the

closures that satisfies the predicate.

Algorithm 1: Binary Reduction

Input: (Σ, P ,C,U ,k)
Define: A ⪯S ′ B := C (S ′ ∪ {A}) ≤ C (S ′ ∪ {B})
Data: S ← ∅ and D ← sort⪯S(U)

while r > 0 where r ← min r st. P
(
S ∪

{
D j : j ≤ r

})
do

S ← S ∪ {Dr }

D ← sort⪯S

({
D j : j < r

})
end
return C (S) < k

Misherghi and Su [19] proved that the hierarchical delta debug-

ging problem is NP-complete. In a similar manner, we prove that

the Input Reduction Problem is NP-complete.

Theorem 1. The Input Reduction Problem is NP-complete.

Proof. The Input Deduction Problem is in NP because, given a

witness S ⊆ U , we can check in polynomial time that P (S)∧(C (S) <
k) since P and C runs in polynomial time.

We show that the Input Deduction Problem is NP-hard by re-

ducing from the Hitting Set Problem, which is NP-complete [15].

The Hitting Set Problem is: given (Σ,Z ,k), where Z ⊆ 2
Σ
is a set

of sets, decide ∃S ⊆ ∪iZi : (∀i : S ∩ Zi , ∅) ∧ (|S | < k). The
reduction works as follows. Define U = ∪iZi and P (S) = (∀i :

S ∩ Zi , ∅) and C (S) = |S |. Notice that P is monotonic. Notice

also that if (Σ, P ,C,U ,k) has a solution S , then (S ⊆ ∪iZi = U),
(∀i : S ∩ Zi , ∅), and (C (S) = |S | < k). This means that S is also a

solution to (Σ,Z ,k). □

Our problem is NP-complete and, unless P = NP, the best we

can do in polynomial time is an approximation. In the next section,

we will present a polynomial-time approximation algorithm for

solving the input reduction problem.

4.2 The Binary Reduction Algorithm
Recall that in Figure 5, closure makes a bad choice and rejects

the left half of the input. The closures on the left are insufficient

to induce a failure. Instead, closure finds a much worse solution

among the bigger closures on the right. The reason is that closure
takes no advantage of getting a sorted input list.

We introduce Algorithm 1, an algorithm called Binary Reduction.

The algorithm is inspired by the second run of closure in fig. 4,

where ddmin operates like a binary search and quickly finds a single

closure. Binary Reduction extends this idea to work in cases where

multiple closures are required. We use (sort⪯S(X)) to denote the

sorting of X according to the total order ⪯S and (min r st. p) to
denote finding the smallest r such that p is satisfied.

The idea is to maintain two sets S and a D. Here, S is the set of

elements that we know are in the final set, and D is a sorted set of

elements still to be searched. We initialize S to be empty, indicating

we know nothing, and we initialize D to be the input, as we want

to search the entire space.

The algorithm searches for the minimal prefix of a sorted list-

ing of D that together with S satisfies P . Since we know that

S ∪
{
D j : j ≤ r

}
is the smallest prefix that satisfies P , we also know

that removing Dr from the sets would make P false, therefore Dr

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Christian Gram Kalhauge and Jens Palsberg

S1 S2 S3 S4 S5 S6 S7 S8 fail

· · · · · · · · no
□ □ □ □ · · · · yes
■ · · · · · · · no
■ ■ · · · · · · no
□ □ □ · · · · · yes

· · ⊠ · · · · · yes

· · ⊠ · · · · ·

S7 S8 S6 S5 S4 S3 S2 S1 fail

· · · · · · · · no
□ □ □ □ · · · · yes
■ · · · · · · · no
■ ■ · · · · · · no
■ ■ ■ · · · · · no

· · · ⊠ · · · · yes

· · · ⊠ · · · ·

Figure 6: Two runs of Binary Reduction (binary) on the ex-
ample in Figure 2, where {1} induces failure. The first run
has C (X) = |X |; the second has C (X) = |∪X |.

S7 S8 S6 S5 S4 S3 S2 S1 fail

· · · · · · · · no
■ ■ ■ ■ · · · · no
■ ■ ■ ■ ■ ■ · · no
□ □ □ □ □ □ □ · yes

· · · · · · ⊠ · no
■ ■ ■ · · · ⊠ · no
□ □ □ □ □ · ⊠ · yes
□ □ □ □ · · ⊠ · yes

· · · ⊠ · · ⊠ · yes

· · · ⊠ · · ⊠ ·

Figure 7: A run of BinaryReduction (binary) on the example
in Figure 2, with C (X) = |∪X | and failure induced by {1, 12}.

must be part of the final set. We can therefore add Dr to S and re-

duce the search space to the smaller prefix withoutDr ,
{
D j : j < r

}
.

We continue to reduce the search space until the smallest prefix is

empty (r = 0). Since we only added elements to the solution that

were required and since P is monotonic, the solution is one-minimal
[27]: if any element is removed from S , then P is no longer satisfied.

The core of the algorithm is the search for the smallest prefix of

D that satisfies P . In general, this takes O (n) time, where n is the

size of the search space. However, we have a monotonic P so

P (∅) ⇒ P ({D1}) ⇒ P ({D1,D2}) ⇒ . . . ⇒ P ({D1,D2, . . . ,Dn })

and thus we can use binary search.

The final touch is to keep the setD sorted, using the cost function

C . Our idea is to use the cost function to sort the search space such

that low-cost elements are chosen early. This is a greedy algorithm

that makes the best pick possible in each iteration. As with other

greedy algorithms, this may fail to produce the best global solution,

yet our experiments show that the results are good in practice.

Notice that every iteration sorts D according to the cost of the

union of the currently selected set S and the individual inputs. This

is an advantage because sometimes the cost of the union of two

input sets does not equal the sum of the cost of each of the sets.

We will use Binary Reduction in Step 4 of the strategy in Sec-

tion 3; we refer to this algorithm as binary. The first diagram in

Figure 6 shows a run of binary on the example in Figure 2, with a

natural cost function C (X) = |X |. We use ⊠ to mark the Dr that is

added to the solution in the line S ← S ∪ {Dr }. Like in the first run

of delta debugging over the closures of the graph in Figure 4, we get

S3, which is suboptimal. However, in contrast to closure, we can
easily modify binary to use a more interesting cost function, like

the number of elements in the union of the sets C (X) = |∪X |. Fig-
ure 6 shows that run. Like in the second run of closure in Figure 4,

we get S5, which is the best solution.

Figure 7 shows a run of binary on the example in Figure 2, but

this time the failure is induced by {1, 12}. In contrast to the run of

closure in Figure 5, we get the best solution S5 ∪ S2. Notice that
the run took only 3 binary searches and 9 invocations of P .

Even thought the choice of C (X) = |∪X | solves our problem,

we could imagine more interesting cost functions like the total

size of classes. Binary Reduction greedily choose a local minimum

regardless of cost function, but we expect that it performs best if

the cost function is monotone in the size of X.

Complexity analysis. The complexity of Binary Reduction de-

pends on the complexity of the cost functionC ($C), the predicate P
($P), the size n = |U | of the input, and the final size s of the reduc-
tion. We do at most s binary searches, with O (logn) invocations of
P and worst-case n calculations ofC (S) as part of sorting (assuming

caching) which takes O (n logn) time. So in total we have

O (s (logn · $P(n) + n · $C(s) + n logn)) .

Inspecting the time complexity of the algorithm we can see that

we will make at most O (s logn) invocations of P . Since s is bound
by n, the complexity of the algorithm is O (n logn) iterations.

5 EXPERIMENTAL RESULTS
This section presents an empirical evaluation of using dependency

graphs and Binary Reduction for reduction. We have implemented

those techniques in a tool for Java bytecode programs called J-

Reduce. J-Reduce is a general tool for reducing inputs while preserv-

ing errors. We will use three decompilers as part of the evaluation,

yet any tool that takes Java bytecode as input could have been used.

The evaluation supports the two main claims of the paper:

(1) Reduction based on a list of closures is faster and better than
reduction based on a list of classes. When we run ddmin on a list

of classes, we time out 75% of the runs after an hour. In contrast,

when we run ddmin on a list of closures, we time out only 9% of

the runs after an hour. Including the timeouts, the list-of-closures

approach gives 7x speedup and 1.07x smaller results, on average.

(2) Binary Reduction is faster and better than ddmin. Only 1% of

the runs of Binary Reduction on a list of closures time out after an

hour. Including the timeouts, Binary Reduction gives 1.7x speedup

and 1.15x smaller results, on average, compared to running ddmin

on the same input. Overall, we get 12x speedup and 1.24x smaller

results compared to running ddmin on a list of classes.

Binary Reduction of Dependency Graphs ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Figure 8: These three histograms show the distribution of the failure inducing inputs over three metrics; number of classes,
the average in- and out degree of the underlying dependency graph, and the number of strongly connected components.

5.1 Experimental Setup
5.1.1 Implementation. J-Reduce has a single frontend that extracts
a dependency graph from binary Java class files. Specifically, J-

Reduce scans through each class-file to search for references to

other classes and assembles them into a dependency graph. The

common frontend and backend enable easy comparison of the algo-

rithms. J-Reduce implements four different reduction algorithms:

• ddmin: Classical delta debugging on a list of classes.

• verify: Uses ddmin plus detection of invalid bytecode.

• closure: Uses ddmin on a list of closures, sorted after size.

• binary: Uses Binary Reduction on a list of closures.

We implemented J-Reduce in 7,929 lines of Haskell code that passed

FSE’s artifact evaluation [13] and is open source
1
.

5.1.2 Choice of Predicate. For testing of the decompilers, we use

the property that a decompiler should produce source code that

compiles with javac; otherwise it has a bug. We use the predicate

that javac produces the same bug as the original bug.

To get a monotonic predicate we took special care to keep all

inputs except the reduced class files exactly the same. For example,

the internal ordering in the file systemmay play a role in the output

of the decompilers and in javac. Specifically, javac produces only

a subset of the bugs in the source code, depending on which files it

reads first. So, we kept a sorted lists of files and only wrote to the

file system and jars in that order.

5.1.3 Choice of Decompilers. We choose three decompilers as the

basis of our predicates: CFR [3, version 0.132], Fernflower [22, com-

mit 8be977e76], and the decompiler from the Procyon project [23,

version 0.5.30]. We set up each decompiler according to the instruc-

tions on its webpage. We ran Fernflower with the -dgs=1 flag to en-
able handling of generics. We ran CFR with --caseinsensitivefs
true. We ran Procyon with no special arguments.

5.1.4 Benchmarks. Our benchmarks are 100 large Java programs

that we obtained from the NJR project [20]. We selected programs

that each has at least 100 classes and for which we have source code.

We focus on bytecode files that we have produced from source code

1
https://github.com/ucla-pls/jreduce

Table 1: Aggregated results of all the runs. The first column
indicates the percentage of runs that we had to timeout. The
second column is the average (GM) final relative size after
reduction. The third columns are the average (GM) running
times in seconds. Smaller is better.

timeout final size time [s]

binary 0.8% 25.7% 203

closure 8.8% 29.8% 336

verify 19.8% 42.6% 750

ddmin 74.8% 31.9% 2339

ourselves to ensure that we start each reduction with a valid byte-

code program. Some of the projects are dependent on large-scale

libraries, but our reduction leaves those libraries unchanged and we

exclude them from the dependency graph and our measurements.

We found that CFR fails on 94% of the programs, Fernflower

fails on 56%, and Procyon fails on 88%. Thus, in total we have 238

failure-inducing inputs.

Figure 8 shows how the distribution of the inputs over three

metrics: number of classes, average in-degree and out-degree in the

underlying dependency graph (excluding self-loops), and number

of strongly connected components. The inputs contain a median

of 171 classes, and between 103 and 1006 classes. The benchmarks

are diverse both in terms of the in-degree and out-degree, with a

median of 3.6, and in terms of the number of strongly connected

components, with a median of 100.

5.1.5 Platform. We performed the experiments on a machine with

24 Intel(R) Xeon(R) Silver 4116 CPU cores at 2.10GHz and 188 Gb

RAM. We executed the experiments using OpenJDK (1.8.0_172-02).

We ran the experiments in parallel in batches of 8. We ran each

reduction for no more than an hour (3600s).

5.2 Results
For each reduction algorithm (binary, closure, verify, and ddmin)
we measured the total time in seconds, the number of invocations

https://github.com/ucla-pls/jreduce

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Christian Gram Kalhauge and Jens Palsberg

Figure 9: For reduction that preserves the full bug, the first two charts show the number of cases that terminate within x
seconds and x iterations, and the third chart shows the final number of classes relative to the original size. Higher is better.

of the predicate made by the algorithm, and the fraction of classes

left in the output after reduction. The results are shown in Figure 9.

If a tool was timed out after an hour (3,600 seconds), we report the

smallest set of classes that had been found to preserve the bug. This

reflects that a user can use the best result available at time out.

The times include the generation of the graph (median 0.5s, max

7.1s), the initial run that tests if the predicate is true, and for the

tools that used closures, the calculation of the closures (median

5.0ms, max 96.0ms).

Table 1 shows the aggregated results of all the runs: the per-

centage of the runs that we time out, the geometric mean of the

relative final size, and the mean time used (including timeouts). The

geometric mean allows us to talk about how many times a tool is

better than another, based on how much is left after reduction.

We have also plotted all the results in cumulative charts. Figure 9

shows the results of the four configurations in three charts. The first

chart shows how many programs that each reducer has finished

after some seconds. The second chart shows how many programs

that each reducer has either finished or timed out on after some

invocations of the predicate. The third and final chart represents

the relative size after reduction for an hour.

First, let us evaluate how ddmin (ddmin) performs against ddmin

plus detection of invalid bytecode (verify). Unsurprisingly, verify
is much faster than ddmin, because it does not have to run the pred-

icate for the cases where not all the dependencies are present. Also,

verify timeouts on 19.8% of the programs where ddmin timeouts

on 74.8%. The resulting size of verify, however, is worse, with
42.6% average final size against ddmin’s average of 31.9%. There
are two factors that affect this. One, adding the verifier makes the

predicate more non-monotonic: missing dependencies in classes

not visited by javac emerge as a problem. Two, our dependency

graph may be an over-approximation of the actual dependencies

used by the decompilers and compiler. This means that our veri-

fier can reject a program that might decompile and make javac
produce an error.

Second, let us evaluate runs of ddmin on a list of closures (named

closure). This is affected by the overapproximation of the depen-

dency graph, but the number of items is now both smaller (median

100 vs median 171), and also the predicate is now monotonic (disre-

garding non-determinism). This has a dramatic effect on speed and

leads to a smaller output. closure only timeouts in 8.8% of all the

inputs, and produces on average 29.8% final size. closure preforms

better on most of the inputs, but ddmin outperforms closure in a

few cases. We think this happens because the dependency graph

is an overapproximation of the actual dependencies used by the

compiler. This means that ddmin in some cases can remove an extra

class, because it is in reality not needed by the compiler.

Third, let us evaluate runs of Binary Reduction on a list of clo-

sures (binary). binary performs better than closure, with a tim-

oute rate of only 0.8%, and is on average 1.7x faster. The final size

of the reduction is also better, with 25.7% final size on average. The

better reduction can be attributed to two factors: fewer timeouts

and Binary Reduction’s ability to pick the smallest closure. When

controlling for the fewer timeouts, by not counting the benchmarks

where either of the algorithms timed out, Binary Reduction is able

to produce 1.11x smaller results than delta debugging. On a few

cases ddmin outperforms binary, this is partly due to the over-

approximation, but also that some of the benchmarks could yield

different results when run twice. ddmin sometimes runs the same

reduction candidate twice, which means that it has a higher chance

of getting lucky and accepting the reduction.

In conclusion, using Binary Reduction on the dependency graph

of Java bytecode programs are 12x faster and 1.24x smaller results

on average than delta debugging directly on the list of classes.

5.3 Threats to Validity
5.3.1 External Validity. The primary threats to external validity

is the choice of domain. We chose the domain of decompilers, be-

cause bugs were plentiful and easy to find. We do, however, believe

that the results extend to all domains with inputs with internal

dependencies, and especially to domains that expect valid bytecode

programs as inputs.

5.3.2 Internal Validity. We chose 100 fairly large benchmarks at

random from the NJR repository; we deem them to be representative

of real life programs. We chose programs with over 100 classes to go

beyond what people may be willing to reduce by hand. The timeout

Binary Reduction of Dependency Graphs ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

time was set at one hour, which might skew the study; however,

we think that few users would run a reduction program for more

than an hour. Our definition of a bug in a decompiler (produces
code that does not compile) is not the strongest definition. We could

expect that we could find even more bugs if we had used a stronger

requirement. This does however not affect our study as we find

plenty bugs.

In our experiment we reduced using a cost function that tries

to minimize the number of classes, however the total size of the

classes would also be an interesting metric, as two small classes

might be better than one big class. Our technique is sufficiently

general to reduce using any cost function, though we do expect

ddmin to perform even worse in this case and it would be an unfair

comparison as ddmin can only reduce based on counts. While we

believe that ddmin is an adequate baseline, we could calculate the

reduction approximation ratio of both algorithms if we had an ideal

reduction, which we could find by doing an exhaustive search. We

leave this to future work, perhaps for a smaller benchmark suite.

Finally, the decompilers that we have chosen are not completely

deterministic, which means that the predicates, even over the clo-

sures, are not completely monotonic. We see this as a strength of

the study since in real life programs are often not deterministic,

and predicates are often not completely monotonic.

5.4 Data Availability
We have made the raw data used for the analysis available [14]. It

includes two files: a “benchmarks.csv” file, which contains the data

for histogram in Figure 8, and a “deliverable.csv” file, which contains

the data for the cumulative diagrams in Figure 9 and averages in

Table 1.

6 REPORTING BUGS
Section 5 listed results from reducing input in a general manner

that preserves the output from javac in its entirety. The median

reduced bytecode program has 84 classes, which is too many to

include in a succinct bug report. This observation led us to consider

how domain-specific knowledge about javac can lead to additional

reduction. We found that the output from javac may list multiple

problems so a straightforward idea is to preserve less than the entire
output. As a radical step towards more aggressive reduction, we ran

an experiment in which we preserve only javac’s exit code. Thus,
we preserve that javac returns an error, but not which one(s).

Indeed, the final list of problems may have no overlap with the

initial list.

Our experiment with running Binary Reduction on 238 programs

took 34 minutes in wall clock time, or 13 hours in processing time,

for an average of 3 minutes per program. The median reduced

bytecode program had 2 classes, excluding libraries. Indeed, in 133

cases out of 238 cases, the reduced program had 1 or 2 classes: 57

cases for CFR, 46 for Procyon, and 30 for Fernflower. The output

from javacc included many distinct error messages (disregarding

line number and class): 67 distinct error messages for CFR, 83 for

Procyon, and 27 for Fernflower.

We used the results of the experiment to report 2 bugs to CFR, 1

bug to Procyon, and 2 to Fernflower. We choose the benchmarks of

size no more than 2 classes, which induced errors that looked like a

fixable bugs and were significantly different from each other. At the

time of writing these lines, the developers of CFR have confirmed

and fixed one of the bugs, the developers of Procyon have triaged

the bug, but not yet fixed it, and the developers Fernflower have

triaged the bugs but not had time to fix them.

We stopped short of filing additional bug reports because we are

aware that two failure-inducing inputs may be about the same bug.

We want to avoid reporting the same bug twice and we leave it to

future work to find an effective way to categorize bug reports.

7 RELATEDWORK
The literature on program reduction and delta debugging is rich and

diverse. We will cover some of the most closely related papers from

that literature and we will focus on three aspects. The first aspect is

how previous work has dealt with the test-case validity problem, the

second aspect is how our approach compares to various approaches

to input reduction, and the final aspect looks at program reduction

as slicing.

The Test-Case Validity Problem. Our paper is the first to avoid
invalid input. We will discuss how some prominent papers have

dealt with invalid input.

Zeller and Hildebrandt [27] introduced delta debugging. They

wrote [27, Section VIII] that “Delta Debugging assumes that failure
is monotone”. However, their paper showed how to apply Delta

Debugging to a variety of input for which failure isn’t monotone,

namely C programs, Mozilla user actions, and UNIX commands. For

each kind we can remove a few characters from a failure-inducing

input and thereby change it into an invalid input. In some cases, we

can remove additional characters and get another failure-inducing

input. Delta debugging works well for those kinds of inputs because

most natural subsets are valid. In contrast, for Java bytecode, most

natural subsets are invalid. Our experiments show that for Java

bytecode, delta debugging of a list of classes times out often and

gives a disappointing factor of reduction.

Delta debugging has also been implemented in the Delta tool

[18]. This tool uses a line-based algorithm that suppresses newlines

below a particular depth in the syntax tree. This decreases the risk

of removing half of a subtree and thereby producing invalid inputs.

Misherghi and Su [19], in their paper on hierarchical delta debug-

ging, avoided invalid subsets by structuring the input as a syntax

tree and by removing entire subtrees at a time. Their insight is that

the elements of a subtree can be a natural subset of the input, such

as a statement in a statement list. They found that they can remove

a single statement from a statement list and preserve that the syntax

tree is valid. Compared the classical delta debugging algorithm, the

hierarchical approach gave a decrease in the number tests needed

for C-program input by a factor of 11.5 on average. However, while

each Java bytecode class is a natural subset of a bytecode program,

most subsets of the classes are invalid. For Java bytecode, the top

level of hierarchical delta debugging is delta debugging of a list of

classes, which we have shown works poorly.

Regehr et al. [21] identified the problem with invalid input and

pursued an approach, for C, that detects invalid input. The core of

their approach is akin to the algorithmwe called verify. They went
further and built in detailed knowledge of C that enabled their tool

to reduce C-program 25 times more than language-independent

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Christian Gram Kalhauge and Jens Palsberg

tools. In contrast, our tool avoids invalid code and uses a general

reducer. Our experiments show that for Java bytecode, detection of

invalid input is slow and this gives a small factor of reduction.

Sun et al. [24] showed, with their tool Perses, how to avoid in-

valid inputs in a language-independent manner. They did this by

transforming an input grammar into a convenient form that can

guide reduction. They showed that this approach is competitive

with less general approaches. However, the approach relies on that

once the grammar has reached the convenient form, two specific

transformations preserve validity. While indeed those transfor-

mations do preserve validity for many kinds of input, they often

produce invalid subsets in the case where the input is a list of Java

bytecode classes. The problem is that a grammar has no model of

the many internal dependencies. Thus, while the generality of the

approach is attractive, the approach is ineffective for inputs such

as Java bytecode programs.

The resent tool Chisel [12] uses reinforcement learning to do

fast debloating of C programs. The approach is 3.7–7.1x faster than

competing approaches. The approach detects invalid input, as illus-

trated by the following quote from the paper: “Chisel simply rejects

nonsensical programs without invoking the test script by using a

simple dependency analysis, such as programs that do not contain

the main function, variable declarations, variable initializations, or

return statements.”. We speculate that one can combine their idea of

reinforcement learning with our idea of using a dependency graph

to avoid invalid input. We leave this to future work.

In Cleve and Zeller’s work on STRIPE [6], they tried to use differ-

ent clustering techniques to increase the speed of delta debugging

on an execution trace. Specifically, they wrote “[O]ur future work

will concentrate on introducing domain knowledge into delta de-

bugging. In the domain of code changes, we have seen significant

improvements by grouping changes according to files, functions,

or static program slices, and rejecting infeasible configurations[.]”

We believe that we have solved this problem by giving the user a

simple interface, dependencies, with which they can encode many

different kinds of domain specific dependency information.

Approaches to Input Reduction. BiSect [7, 8] is a tool for use with
git that does a binary search to find the commit that introduced a

bug. This is akin to the binary search that we use to implement the

min function in Binary Reduction. The BiSect technique does no

reduction of the input.

The papers by Artho [2], by Li et al. [17], and by Yu et al. [26]

all have the goal to isolate failure-inducing changes in a revision

history. They use clever representations of revision histories and use

variations of delta debugging to achieve the goal. In all three papers,

dependencies among changes and validity of history slices play

major roles. Artho [2] notes that, in the context of interdependent

changes, the approach “cannot deal with certain changes affecting

multiple files”. Li et al. [17] detects invalid history slices, while Yu

et al. [26] uses classical delta debugging with no optimization for

invalid input. We speculate that those approaches can be enhanced

with ways to avoid invalid history slices, in a way that is akin how

we avoid invalid input. We leave this to future work.

Delta debugging has a wide range of applications. In particu-

lar, researchers have shown how to use delta debugging to help

normalize, generalize, and improve test cases [9, 10, 16]. For test

cases with many internal dependencies, our approach can be used

to avoid giving invalid inputs to the reducer.

Program Slicing and De-bloating. Delta debugging can be used to

slice a program [25], that is, reduce the program while preserving

its behavior. When the slices are intended to be used as runnable

program, such reduction is called de-bloating.

Delta debugging is a simple approach to slicing as it requires little

knowledge about the program: we can reduce the program while

preserving the observable properties like those given test cases.

Binkley et al. [4] uses delta debugging to reduce a set of files using

a technique they call observational slicing (ORBS). Our technique

is sufficiently general that it can augment ORBS by allowing the

user to define dependency edges between lines in different files.

J-Reduce functions perfectly as a program slicer. Since we are

using a static analysis to detect the edges in the dependency graph

we likely under-approximate edges that are the result of reflection.

Under-approximating the dependency graph is acceptable, as it

will only result in more strongly connected components in our

algorithm. In the worst case we have exactly one strongly connected

component for each input node, which means that we are just doing

regular reduction. This might take longer, but will always output

correct byte code.

Our technique is akin to Agrawal and Horgan [1], which uses a

over-approximating static analysis to collect a dependency graph

between statements in a program. It then uses a dynamic analysis to

traverse the program and reduce the graph to see which nodes are

actually executed. In contrast our technique starts with a possible

under-approximating static analysis and does not need to run the

program. This means that it can be used on other properties like

finding bugs in decompilers. Since our technique tolerates under-

approximation, we might use a dynamic analysis to generate the

dependency graph. We leave this for future work.

8 CONCLUSION
We have presented a new approach to reducing failure-inducing

input with many internal dependencies. Our approach uses a de-

pendency graph to avoid invalid inputs, and it uses a new algorithm

called Binary Reduction, that we showed works better than ddmin.

We have implemented an open-source tool J-Reduce that reduces

Java class-files. We evaluated our tool on decompilers, yet our tool

works for any program that takes class files as input. Examples

include static and dynamic analyses, code coverage tools, and code

visualizers. Our tool is 12x faster and achieves more reduction than

delta debugging. This enabled us to create and submit short bug

reports for three Java bytecode decompilers.

Our approach may work well for other kinds of inputs with

many internal dependencies. For example, our technique can be

used for languages with module systems, such as C# or Python. We

can also consider use of a dependency graph in which the nodes

are methods and fields. We leave these points to future work.

ACKNOWLEDGMENTS
We thank John Bender, Shuyang Liu, Akshay Utture, and the anony-

mous reviewers for helpful suggestions. DARPA award number

RF228-G1:5 and ONR award N00014-18-1-2037 supported us.

Binary Reduction of Dependency Graphs ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] Hiralal Agrawal and Joseph R Horgan. 1990. Dynamic program slicing. In ACM

SIGPlan Notices, Vol. 25. ACM, 246–256.

[2] Cyrille Artho. 2011. Iterative delta debugging. International Journal on Software
Tools for Technology Transfer 13, 3 (2011), 223–246.

[3] Lee Benfield. [n. d.]. CFR – another Java decompiler. ([n. d.]). http://www.benf.

org/other/cfr/ (accessed Aug 24, 2018).

[4] David Binkley, Nicolas Gold, Mark Harman, Syed Islam, Jens Krinke, and Shin Yoo.

2014. ORBS: Language-independent program slicing. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
ACM, 109–120.

[5] Jong-Deok Choi and Andreas Zeller. 2002. Isolating Failure-inducing Thread

Schedules. In ISSTA.
[6] Holger Cleve and Andreas Zeller. 2000. Finding failure causes through automated

testing. arXiv preprint cs/0012009 (2000).
[7] Wiktor Czajkowski. 2018. Sneaky Bugs and How to Find Them (with git bisect).

Netguru (January 2018). https://www.netguru.co/codestories/sneaky-bugs-and-

how-to-find-them.

[8] Developers. [n. d.]. Bisect. ([n. d.]). https://git-scm.com/docs/git-bisect (accessed

Aug 24, 2018).

[9] Alex Groce, Mohammad Amin Alipour, Chaoqiang Zhang, Yang Chen, and John

Regehr. 2016. Cause reduction: delta debugging, even without bugs. Software
Testing, Verification and Reliability 26, 1 (2016), 40–68.

[10] Alex Groce, Josie Holmes, and Kevin Kellar. 2017. One test to rule them all.

In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, 1–11.

[11] Mouna Hammoudi, Brian Burg, Gigon Bae, and Gregg Rothermel. 2015. On the

use of delta debugging to reduce recordings and facilitate debugging of web

applications. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. ACM, 333–344.

[12] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective

Program Debloating via Reinforcement Learning. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 380–394.

[13] Christian Gram Kalhauge and Jens Palsberg. 2019. Artifact from "Binary Reduc-

tion of Dependency Graphs". https://doi.org/10.5281/zenodo.3262201

[14] Christian GramKalhauge and Jens Palsberg. 2019. Results from "Binary Reduction

of Dependency Graphs". https://doi.org/10.5281/zenodo.2574326

[15] Richard M. Karp. 1972. Reducibility among Combinatorial Problems. In Com-
plexity of Computer Computations, R. Miller and J. Thatcher (Eds.). Plenum Press,

85–103.

[16] Andreas Leitner, Manuel Oriol, Andreas Zeller, Ilinca Ciupa, and Bertrand Meyer.

2007. Efficient unit test case minimization. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering. ACM,

417–420.

[17] Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. 2016. Precise semantic

history slicing through dynamic delta refinement. In Automated Software Engi-
neering (ASE), 2016 31st IEEE/ACM International Conference on. IEEE, 495–506.

[18] S McPeak, DS Wilkerson, and S Goldsmith. 2015. Berkeley Delta. URL http://delta.
tigris. org (2015).

[19] Ghassan Misherghi and Zhendong Su. 2006. HDD: Hierarchical Delta Debugging.

In ICSE’06, International Conference on Software Engineering.
[20] Jens Palsberg and Cristina Lopes. 2018. NJR: A Normalized Java Resource. In

SOAP’18, Proceedings of ACM SIGPLAN International Workshop on State Of the
Art in Program Analysis.

[21] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun

Yang. 2012. Test-case Reduction for C Compiler Bugs. In PLDI.
[22] Roman Shevchenko and other contributors. [n. d.]. Fernflower. ([n. d.]). https:

//github.com/fesh0r/fernflower (accessed Aug 24, 2018).

[23] Mike Strobel. [n. d.]. Procyon Java Decompiler. ([n. d.]). https://bitbucket.org/

mstrobel/procyon/overview (accessed Aug 24, 2018).

[24] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018.

Perses: Syntax-Guided Program Reduction. In ICSE’18, International Conference
on Software Engineering.

[25] Mark Weiser. 1981. Program slicing. In Proceedings of the 5th international
conference on Software engineering. IEEE Press, 439–449.

[26] Kai Yu, Mengxiang Lin, Jin Chen, and Xiangyu Zhang. 2012. Towards automated

debugging in software evolution: Evaluating delta debugging on real regression

bugs from the developers’ perspectives. Journal of Systems and Software 85, 10
(2012), 2305–2317.

[27] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-

Inducing Input. TSE (2002).

http://www.benf.org/other/cfr/
http://www.benf.org/other/cfr/
https://www.netguru.co/codestories/sneaky-bugs-and-how-to-find-them
https://www.netguru.co/codestories/sneaky-bugs-and-how-to-find-them
https://git-scm.com/docs/git-bisect
https://doi.org/10.5281/zenodo.3262201
https://doi.org/10.5281/zenodo.2574326
https://github.com/fesh0r/fernflower
https://github.com/fesh0r/fernflower
https://bitbucket.org/mstrobel/procyon/overview
https://bitbucket.org/mstrobel/procyon/overview

	Abstract
	1 Introduction
	2 The Challenge
	3 Reduction of Dependency Graphs
	4 Binary Reduction
	4.1 The Input Reduction Problem
	4.2 The Binary Reduction Algorithm

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Results
	5.3 Threats to Validity
	5.4 Data Availability

	6 Reporting bugs
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

