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Abstract

Read-only fields are useful in object calculi, pi calculi, and statically-typed intermediate lan-
guages because they admit covariant subtyping, unlike updateable fields. For example, Glew’s
translation of classes and objects to an intermediate calculus places the method tables of classes
into read-only fields; covariant subtyping on the method tables is required to ensure that sub-
classes are translated to subtypes. In programs that use updateable fields, read-only fields can
be either specified or discovered. For both cases we show that type inference is equivalent
to solving type constraints, which in turn is P-complete and computable in O(n3) time. We
also present an implementation for the Abadi-Cardelli object calculus. Perhaps surprisingly,
specifying read-only fields explicitly does not make type inference easier.

1 Introduction

1.1 Background

In the quest for more expressive type systems, subtyping has become a common means for flexible
matching of types. For example, for an assignment x=e, we need not require that x and e have
the same type; it is sufficient that the type of e be a subtype of the type of x. Subtyping comes
in many flavors. For object types of the form [` : B, . . .], there are several design choices. Abadi
and Cardelli [1] explain that if the field ` can be both read and updated, then ` must be invariant,
that is, if [` : A, . . .] is a subtype of [` : B, . . .], then A = B. Following Abadi and Cardelli, we will
use the notation [`0 : B, . . .] where the superscript 0 denotes that the object type has an invariant
field `.

A covariant read-only field (CROF) is a field which enjoys covariant subtyping and which cannot
be updated. Again following Abadi and Cardelli, we will use the notation [m+ : B, . . .] where the
superscript + denotes that the object type has a covariant field m. Covariance means that if
[m+ : A, . . .] is a subtype of [m+ : B, . . .], then A is a subtype of B, a weaker condition than
A = B.

CROFs make a type system more expressive. For example, below is a program written in a
variant of the Abadi-Cardelli object calculus [1]. Each method ς(x)b binds a name x which denotes
the smallest enclosing object, much like “this” in Java. We apologize in advance that the methods
do not exhibit any useful behavior; the method were chosen to make them difficult to type check.
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let
Point = [move = @(x)x]
ColorPoint = [move = @(y)y setcolor = @(z)z]
Circle = [center = @(d)Point]
ColorCircle = update Circle.center <=

@(e) call (call ColorPoint.move).setcolor
in

call (call ColorCircle.center).move

Palsberg and Jim [15] noted that this program is not typable in Abadi and Cardelli’s type system
Ob1<:µ, which has recursive types, width subtyping for object types, and only invariant fields.
The key reason for the untypability is that the body of the ColorCircle’s center method forces
ColorPoint to have a type which is not a subtype of the type of Point, intuitively as follows.

Point : µ(X)[move0 : X]
ColorPoint : µ(X)[move0, setcolor0 : X]

µ(X)[move0, setcolor0 : X] 6≤ µ(X)[move0 : X]
Moreover : call (call ColorCircle.center).move is not typable.

To increase expressiveness, we can add CROFs to Ob1<:µ such that each field can be either invariant
or covariant:

Ob1<:µ+ = Ob1<:µ ∪ CROFs.

This is sufficient to make the above program type check with the following types:

Point : [move0: [ ]]
ColorPoint : [move0: [setcolor+: [move+: [ ]]]; setcolor0: [move+: [ ]]]
Circle : [center0: [move+: [ ]]]
ColorCircle : [center0: [move+: [ ]]]

These types were produced by our implementation of the algorithm presented in this paper. Notice
that the program (the input to our algorithm) does not mention whether a field is read-only, or
whether it can both be read and updated. Our algorithm automatically discovers which fields
should be CROFs.

The above program is also typable with the so-called simple self-types of Palsberg and Jim [15].
Bugliesi and Pericas-Geertsen [3] observed that any program that can be typed with simple self-
types can also be typed in Ob1<:µ+. Perhaps interestingly, their encoding of simple self-types uses
recursive types to type the above program, while our more direct algorithm produces nonrecursive
types in this case. More importantly, type inference with simple self-types is NP-complete [15],
while our type inference algorithm for the more expressive type system Ob1<:µ+ runs in polynomial
time.

A programmer can specify that some of the fields are read-only. For example, in the above
program, a programmer may specify that the setcolor field is read-only by inserting a + annotation:
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let
Point = [move = @(x)x]
ColorPoint = [move = @(y)y setcolor^+ = @(z)z]
Circle = [center = @(d)Point]
ColorCircle = update Circle.center <=

@(e) call (call ColorPoint.move).setcolor
in

call (call ColorCircle.center).move

For this program, our implementation produces the following types:

Point : [move0: [ ]]
ColorPoint : [move0: [setcolor+: [move+: [ ]]]; setcolor+: [move+: [ ]]]
Circle : [center0: [move+: [ ]]]
ColorCircle : [center0: [move+: [ ]]]

Notice that the second occurrence of setcolor in the type for ColorPoint now has the annotation +
instead of 0.

If, in addition, the program were changed to make the center method of Circle read-only,
then our implementation would correctly decide that the resulting program is not typable (because
Center is updated in ColorCircle).

Perhaps surprisingly, adding annotations, such as the one for setcolor, seems not to make the
type inference problem easier. In this paper we show that even if all fields are explicitly specified
as either updateable or read-only, the type inference problem is P-complete. If the programmer
leaves a field unspecified, then our algorithm will discover whether it is advantageous to make it
read-only.

CROFs play an essential role in Glew’s translation of objects and classes to a typed intermediate
language [5]. Like most implementations of object-oriented languages, Glew’s translation uses
method tables. One of Glew’s insights is that the method table can conveniently be placed in a
CROF. For example, let a and b be two source-language objects such that the type of b is a subtype
of the type of a. The type system for the source language supports that b may have more methods
than a (width subtyping). This means that the method table in the translation of b will be longer
than the method table in the translation of a:

translation (a) = . . . [mt = ma, . . .] . . .
translation (b) = . . . [mt = mb, . . .] . . .

where mt is the field name for the method table. Glew’s translation of b has a subtype of the type
of his translation of a; he makes mt a CROF, and he gives the following types to the translations
of a and b:

type-of (translation (a)) = . . . [mt+ : type-of (ma), . . .] . . .
type-of (translation (b)) = . . . [mt+ : type-of (mb), . . .] . . .

Glew’s translation produces typed intermediate code, including the annotations 0 and +.
Is type inference possible for an implicitly-typed version of Glew’s intermediate language? In

this paper we present a type-inference algorithm for a fragment of Glew’s type system. Our long-
term goal is to extend the algorithm to cover a larger fragment. Such an algorithm would make it
possible to omit bulky type annotations, and to automatically discover the CROFs.
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A O(n3) type inference algorithm for Abadi and Cardelli’s type system Ob1<:µ (only invariant
fields) was given in [14]. There is a similar O(n3) type inference algorithm for the calculus with
only CROFs (only covariant fields). Surprisingly, there seems to be no easy way to “merge” the
two algorithms to obtain an algorithm for the combined type system, Ob1<:µ+. Both algorithms
work by reducing type inference to the problem of solving a set of constraints. A constraint is a
pair (A,B), where A and B are types that may contain type variables; and the goal is to find a
substitution S such that for each constraint (A,B), we have S(A) ≤ S(B) where ≤ is the subtype
order. We will use R to range over sets of constraints; we will often refer to R as a relation on
types. A key theorem about both algorithms states:

Theorem A set of constraints is solvable if and only if its closure is consistent.

Here, “closure” means that certain syntactic consequences of the constraints have been added to
the constraint set, and “consistent” means that there are no obviously unsatisfiable constraints (e.g.,
(int, [` : boolean])). Both algorithms construct a solution from a closed, consistent constraint set.
This framework has been used for solving subtype constraints for a variety of types [14, 9, 18, 16, 17].
All type-inference algorithms based on this framework, including the one in this paper, can be
viewed as whole-program analyses because they use a constraint set generated from the whole
program.

Finding an algorithm thus rests on finding a correct definition of “closure.” For the type system
with only covariant fields, there are three closure rules, all operating on a constraint set R:

• if (A,B) ∈ R, then (A,A), (B,B) ∈ R (reflexivity);

• if (A,B), (B,C) ∈ R, then (A,C) ∈ R (transitivity);

• if ([`+ : B, . . .], [`+ : B′, . . .]) ∈ R, then (B,B′) ∈ R (propagation of subtyping to fields).

Computing the closure takes O(n3) time. For Ob1<:µ (only invariant fields), there are also three
closure rules:

• if (A,B) ∈ R, then (A,A), (B,B) ∈ R (reflexivity);

• if (A,B), (B,C) ∈ R, then (A,C) ∈ R (transitivity);

• if (A, [`0 : B, . . .]), (A, [`0 : B′, . . .]) ∈ R, then (B,B′) ∈ R (propagation of subtyping to fields).

Notice that the last rule also can be used to give (B′, B), so it actually forces B and B′ to be
unified. Now, can we solve constraints over the types in Ob1<:µ+ by taking the union of the two
sets of closure rules? As it happens, a notion of closure based on the union of the rules does not
support the result mentioned above. For example, consider the constraint set that consists of the
following two constraints:

(V, [`+ : int]) (V, [`+ : boolean])

where V is a type variable. Apart from reflexivity, this constraint set is closed under the four
closure rules above. Moreover, the constraint set is consistent: there are no obviously unsatisfiable
constraints. So, if there was a theorem of the form mentioned above, this constraint set should be
solvable. However, it is not solvable. To see that, consider the following informal argument. In any
solution, V must be assigned a type of the form [`+ : A, . . .], for some A. (Actually, it might also
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be possible to annotate ` with 0, but that will not help). Now, because ` is a CROF, we must be
able to satisfy the constraints:

(A, int) (A, boolean)

This is not possible: there is no subtype of both int and boolean in this system. Conclusion: either
there are too few closure rules, or else there is something wrong with the notion of consistency.

The example suggests that in a setting with both covariant and invariant fields, a new technique
is called for.

1.2 Our Results

We present the design and implementation of a type inference algorithm for Ob1<:µ+. The algo-
rithm automatically discovers CROFs. It is based on a theorem of the form discussed above, with
a new notion of closure and a traditional notion of consistency. Type inference is equivalent to
solving type constraints, which in turn is P-complete and computable in O(n3) time. The novel
aspect of our definition of closure is that it keeps track of both subtype relations and which pairs
of types must have a lower bound. For the example constraint set above, our closure rules will
note that since [`+ : int] and [`+ : boolean] must have a lower bound, it must also be the case
that int and boolean have a lower bound, which is obviously false. Our nine closure rules describe
the interaction between a set of subtype constraints and a set of lower-bound constraints. In our
proof of the main theorem (of the form mentioned above), we use a new technique that employs a
convenient characterization of the subtyping order (Lemma 2.6). The characterization uses notions
of subtype-closure and subtype-consistency that are different, yet closely related, to the already-
mentioned notions of what we for clarity will call satisfaction-closure and satisfaction-consistency.

Our prototype implementation, already showcased above, works with a version of the Abadi-
Cardelli object calculus. The implementation is freely available from:

http://www.cs.purdue.edu/homes/tzhao/type-inference/inference.htm

Future work includes the addition of atomic subtyping [12, 22, 6, 4, 2].

1.3 Related Work

One of the first uses of annotations such as +, often called variance annotations, can be found
in Pierce and Sangiorgi’s paper [19] on typing and subtyping for mobile processes. They used
annotations of types in a type system for the π-calculus to enforce that some channels are for input
only or for output only.

The variance annotation “−” is sometimes used to denote that a field is contravariant and
write-only. We know of no easy way of extending the results of this paper to cover “−”.

Igarashi and Viroli [8] used variance annotations to control subtyping between different instanti-
ations of a generic class, and to specify the visibility of fields and methods. Their example language
is explicitly typed.

Igarashi and Kobayashi [7] showed how to infer types with annotations about the uses of
communication channels in concurrent programs. A use is either 0 (never used), 1 (used at most
once), or ω (used arbitrarily). The set of uses forms an algebra with operations such as 0 + 1 = 1.
Depending on the use annotations of a record type, the fields may enjoy covariant or contravariant
subtyping. The most notable differences between their type inference problem and ours are that
their type inference problem uses finite types without width subtyping and with all of covariance,
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contravariance, and invariance, while ours uses recursive types and width subtyping, but only
covariance and invariance. It remains to be seen whether it is possible to extend their techniques
to handle width subtyping and recursive types.

Tang and Hofmann [20] studied type inference for a logic of Abadi and Leino, for the purpose of
helping with automatic generation of verification conditions [21]. They use a subtyping relation for
object types in which fields are invariant and methods are covariant. Thus, in their type inference
problem it is explicitly specified what is read-only and what is updateable. The two most notable
differences between their type inference problem and ours are that (1) they consider finite types
while we study recursive types and (2) we enable automatic discovery of CROFs. Their work was
carried out independently of ours; the technical approaches have some basic ideas in common. In
particular, most of our nine rules for satisfaction-closure seems to have counterparts in Tang and
Hofmann’s approach.

1.4 Examples

We now present two examples that give a taste of the definitions and techniques that are used later
in the paper. In the first example we return to the program with points and colorpoints. We use
the program to illustrate the reduction of the type inference problem to a constraint problem. In
the abstract syntax of the Abadi-Cardelli object calculus, we can write the program as follows:

Point = [move = ς(x)x]
ColorPoint = [move = ς(y)y, setcolor = ς(z)z]

Circle = [center = ς(d)Point]
ColorCircle = Circle.center⇐ ς(e)ColorPoint.move.setcolor

Main = ColorCircle.center.move

We can use the rules in Section 4.1 to generate the following set of constraints. In the left column
are all occurrences of subterms in the program; in the right column are the constraints generated
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for each occurrence. We use A ≡ B to denote the pair of constraints (A,B) and (B,A).

Occurrence Constraints

x (Ux, Vx)
Point ([move0 : Vx], VPoint)

Ux ≡ [move0 : Vx]
y (Uy, Vy)
z (Uz, Vz)

ColorPoint ([move0 : Vy, setcolor0 : Vz], VColorPoint)
Uy ≡ [move0 : Vy, setcolor0 : Vz]
Uz ≡ [move0 : Vy, setcolor0 : Vz]

Circle ([center0 : VPoint], VCircle)
Ud ≡ [center0 : VPoint]

ColorCircle (VCircle, VColorCircle)
VCircle ≡ Ue

(VCircle, [center0 : VColorPoint.move.setcolor])
ColorPoint.move (VColorPoint, [move+ : UColorPoint.move])

(UColorPoint.move, VColorPoint.move)
ColorPoint.move.setcolor (VColorPoint.move, [setcolor+ : UColorPoint.move.setcolor])

(UColorPoint.move.setcolor, VColorPoint.move.setcolor)
ColorCircle.center (VColorCircle, [center+ : UColorCircle.center])

(UColorCircle.center, VColorCircle.center)
ColorCircle.center.move (VColorCircle.center, [move+ : UColorCircle.center.move])

(UColorCircle.center.move, VColorCircle.center.move)

The above constraint set is solvable and a solution can be found by running our constraint solving
algorithm. The solution that will be generated was displayed earlier in this section; it corresponds
to the following type derivation. Define:

P = [move+ : [ ]]
Q = [move0 : [setcolor+ : P ], setcolor0 : P ]
E = ∅[d : [center0 : P ]]
F = ∅[e : [center0 : P ]].

We can derive ∅ ` ColorCircle.center.move : [ ] as follows.

E[x : [move0 : [ ]]] ` x : [move0 : [ ]]
E ` Point : [move0 : [ ]]

E ` Point : P

∅ ` Circle : [center0 : P ]

F [y : Q] ` y : Q

F [y : Q] ` y : [setcolor+ : P ]
F [z : Q] ` z : Q

F [z : Q] ` z : P
F ` ColorPoint : Q

F ` ColorPoint : [move+ : [setcolor+ : P ]]
F ` ColorPoint.move : [setcolor+ : P ]

F ` ColorPoint.move.setcolor : P

∅ ` ColorCircle : [center0 : P ]
∅ ` ColorCircle.center : P

∅ ` ColorCircle.center.move : [ ]

Notice the four uses of subsumption:

[move0 : [ ]] ≤ P
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Q ≤ [setcolor+ : P ]
Q ≤ P

Q ≤ [move+ : [setcolor+ : P ]].

Our second example illustrates our algorithm for solving constraints, particularly the role of the
closure operation. Let R consist of the following three constraints:

(U, [`+ : [`+ : [m+ : [ ]]]])
(U, V )
(V, [`+ : [`0 : W ]]),

where U, V,W are type variables and `,m are labels of fields. The satisfaction-closure of R and the
accompanying lower-bound relation are shown below. A pair (A,B) is in the lower-bound relation
when it has been deduced that A and B must have a lower bound in the subtype ordering.

Satisfaction-closure of R (excerpt) Lower-bound relation (excerpt)
(U , [`+ : [`+ : [m+ : [ ]]]]) ( [`+ : [`0 : W ]] , [`+ : [`+ : [m+ : [ ]]]] )
(U , V ) ( [`0 : W ] , [`+ : [m+ : [ ]]] )
(V , [`+ : [`0 : W ]])
(U , [`+ : [`0 : W ]])
(W , [m+ : [ ]]).

Let us now explain how the rules for satisfaction-closure (Definition 5.1) generate the constraints in
the table above. Since (U, V ) and (V, [`+ : [`0 : W ]]) are both in R and therefore in the sat-closure of
R, we have from transitivity of R (sat-closure rule (iii)) that (U, [`+ : [`0 : W ]]) is in the sat-closure of
R. Furthermore, since both (U, [`+ : [`0 : W ]]) and (U, [`+ : [`+ : [m+ : [ ]]]]) are in the sat-closure of
R, we have from Lemma 5.3, Property (C), that ([`+ : [`0 : W ]], [`+ : [`+ : [m+ : [ ]]]]) is in the lower
bound relation, and hence, from sat-closure rule (vii), we have that also ([`0 : W ], [`+ : [m+ : [ ]]])
is in the lower-bound relation. Finally, since ([`0 : W ], [`+ : [m+ : [ ]]]) is in the lower-bound
relation, we have from sat-closure rule (viii) that (W, [m+ : [ ]]) is in the sat-closure of R. Given the
sat-closure of R, call it R′, our algorithm checks for satisfaction-inconsistency, that is, subtyping
constraints that obviously are unsatisfiable. In this case, the satisfaction-closure is satisfaction-
consistent, and our algorithm then constructs the following solution SR′ :

SR′(U) = [`+ : [`0 : [m+ : [ ]]]]
SR′(V ) = [`+ : [`0 : [m+ : [ ]]]]
SR′(W ) = [m+ : [ ]].

One might try to devise a constraint solving algorithm that would be an alternative to ours. The
constraint set R is a good benchmark: it seems nontrivial to derive (W, [m+ : [ ]]) without the help
of a lower-bound relation.

Paper overview In Section 2, we define types and subtyping, and we give a decision procedure
for subtyping. In Section 3 we present an extension of the Abadi-Cardelli object calculus, and in
Section 4 we show that the type inference problem for that calculus is equivalent to a constraint
problem. In Section 5 we give an O(n3)-time algorithm for solving constraints, and in Section 6 we
show that the constraint problem is P-hard.
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2 Types and subtyping

We will work with recursive types, and we choose to represent them by possibly infinite trees.

2.1 Defining types as infinite trees

We use U , V to range over the set T V of type variables; we use k, `, m to range over labels
drawn from some possibly infinite set Labels of method names; and we use v to range over the
set Variances = {0,+} of variance annotations. Variance annotations are ordered by the smallest
partial order v such that 0 v +.

The alphabet Σ of our trees is defined

Σ = T V ∪ {σ ⊆ Labels× Variances | (`, v), (`, v′) ∈ σ ⇒ v = v′}.

A path is a finite sequence α ∈ Labels∗ of labels, with juxtaposition for concatenation of paths, and
ε for the empty sequence. A type or tree A is a partial function from paths into Σ, whose domain
is nonempty and prefix closed, and such that (`, v) ∈ A(α) if and only if A(α`) is defined. We use
A, B, C to range over the set T (Σ) of trees.

Note that trees need not be finitely branching or regular. Of course, we will be particularly
interested in two subsets of T (Σ), the finite trees Tfin(Σ) and the finitely branching and regular
trees Treg(Σ). Some definitions, results, and proofs are given in terms of T (Σ), in such a way that
they immediately apply to Tfin(Σ) and Treg(Σ). In particular, we will state conditions on whether
one tree is a subtype of another that result in an algorithm in case both trees are in Tfin(Σ) or
Treg(Σ).

An example tree is given below.

{(`1,+), (`,+)}
`1

qqqqqqq `
TTTTTTTT

U1 {(`2,+), (`,+)}
`2

jjjjjjjjjjj `
TTTTTTTT

U2 {(`3,+), (`,+)}
`3

kkkkkkkkkkk `

LLLLLLL

U3 . . .

We now introduce some convenient notation. We write A(α) = ↑ if A is undefined on α. If for
all i ∈ I, Bi is a tree, `i is a distinct label, and vi ∈ Variances, then [`vi

i : B i∈I
i ] is the tree A such

that

A(α) =


{(`i, vi) | i ∈ I} if α = ε
Bi(α′) if α = `iα

′ for some i ∈ I
↑ otherwise.

We abuse notation and write U for the tree A such that A(ε) is the type variable U and A(α) = ↑
for all α 6= ε.

2.2 Defining subtyping via simulations

Definition 2.1 A relation R over T (Σ) is called a simulation if, whenever (A,A′) ∈ R, we have
the following conditions.
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• For all U , A = U if and only if A′ = U .

• For all `, v′, B′, if A′ = [`v′ : B′, . . .], then there exist v, B such that A = [`v : B, . . .], v v v′,
and

(B,B′) ∈ R, and

v′ = 0 implies (B′, B) ∈ R.

2

For example, the empty relation on T (Σ) and the identity relation on T (Σ) are both simulations.
Simulations are closed under unions and intersections, and there is a largest simulation, which we
call ≤:

≤ =
⋃
{R | R is a simulation}.

Alternately, ≤ can be seen as the maximal fixed point of a monotone function on P(T (Σ)×T (Σ)).
Then we immediately have the following result.

Lemma 2.2 A ≤ A′ if and only if

• For all U , A = U if and only if A′ = U .

• For all `, v′, B′, if A′ = [`v′ : B′, . . .], then there exist v, B such that A = [`v : B, . . .], v v v′,
and

B ≤ B′, and

v′ = 0 implies B′ ≤ B.

All of these results are standard in concurrency theory, and have easy proofs, c.f. [11]. Similarly, it
is easy to show that ≤ is a preorder. Our simulations differ from the simulations typically found
in concurrency in that they are all anti-symmetric (again, the proof is easy).

Lemma 2.3 ≤ is a partial order.

Proof. See Appendix A. 2

We may apply the principle of co-induction to prove that one type is a subtype of another:

Co-induction: To show A ≤ B, it is sufficient to find a simulation R such that
(A,B) ∈ R.

2.3 An algorithm for subtyping

The co-induction principle results in an easy algorithm for subtyping on Tfin(Σ) and Treg(Σ). Sup-
pose R is a relation on types, and we want to know whether A ≤ B for every (A,B) ∈ R. By
co-induction this is equivalent to the existence of a simulation containing R. And since simulations
are closed under intersection, this is equivalent to the existence of a smallest simulation containing
R. We can characterize this smallest simulation as follows.

Definition 2.4 We say a relation R on types is subtype-closed if it satisfies the following two
properties.

• If ([`v : B, . . .], [`v′ : B′, . . .]) ∈ R and v v v′, then (B,B′) ∈ R.
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• If ([`0 : B, . . .], [`0 : B′, . . .]) ∈ R, then (B′, B) ∈ R.

2

Note that the subtype-closed relations on types are closed under intersection; therefore for any
relation R on types, we may define its subtype-closure to be the smallest subtype-closed relation
containing R. Every simulation is subtype-closed, and subtype-closure is a monotone operation.

Definition 2.5 We say a relation R on types is subtype-inconsistent if any of the following cases
hold.

• (U,A) ∈ R or (A,U) ∈ R for some distinct U and A.

• ([`+ : B, . . .], [`0 : B′, . . .]) ∈ R for some `, B, B′.

• ([`vi
i : B i∈I

i ], [`v : B, . . .]) ∈ R for some `, v, B, and `i, vi, Bi for i ∈ I; and furthermore
` 6= `i for all i ∈ I.

We say R is subtype-consistent iff R is not subtype-inconsistent. 2

Note that every simulation is subtype-consistent, and moreover, any subset of an subtype-consistent
set is subtype-consistent.

Lemma 2.6 Let R be a relation on types. The following statements are equivalent.

i) A ≤ B for every (A,B) ∈ R.

ii) The subtype-closure of R is a simulation.

iii) The subtype-closure of R is subtype-consistent.

Proof.

• (ii)⇒ (i): Immediate by co-induction.

• (i) ⇒ (iii): R is a subset of ≤, so by monotonicity and the fact that ≤ is subtype-closed,
the subtype-closure of R is a subset of ≤. Then since ≤ is subtype-consistent, its subset, the
subtype-closure of R, is subtype-consistent.

• (iii)⇒ (ii): Let R′ be the subtype-closure of R, and suppose (A,A′) ∈ R′.

If A = U , by subtype-consistency A′ = U ; and similarly, if A′ = U , then A = U .

If A′ = [`v′ : B′, . . .], by subtype-consistency A must be of the form [`v : B, . . .], where v v v′.
From v v v′ and R′ being subtype-closed, we have (B,B′) ∈ R′. If v′ = 0, then from v v v′

we have v = 0, so from R′ being subtype-closed, we have (B′, B) ∈ R′.

2

This immediately suggests an algorithm for testing whether A ≤ B for A,B ∈ Treg(Σ): construct
the subtype-closure of {(A,B)} and test whether it is subtype-consistent. If n is the number of
distinct subtrees of A and B, then the subtype-closure of {(A,B)} is of size at most n2, and can
be constructed in n2 time. Consistency checking is linear, so the algorithm runs in time O(n2).

Theorem 2.7 Subtyping on Treg(Σ) is decidable in O(n2) time.

In the remainder of the paper, we only consider types in Treg(Σ).
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3 The Abadi-Cardelli Object Calculus

We now present an extension of the Abadi-Cardelli object calculus [1] and a static type system.
We use x, y to range over term variables. Expressions are defined by the following grammar.

a, b, c ::= x variable
| [`vi

i = ς(xi)b i∈1..n
i ] object (`i distinct)

| a.` field selection / method invocation
| (a.`⇐ ς(x)b) field update / method update

An object [`vi
i = ς(xi)b i∈1..n

i ] has method names `i and methods ς(xi)bi. The order of the methods
does not matter. Each method ς(x)b binds a name x which denotes the smallest enclosing object,
much like “this” in Java. Those names can be chosen to be different, so within a nesting of objects,
one can refer to any enclosing object. Each method name `i is annotated with a variance annotation
vi ∈ {0,+} which in the case of 0 indicates that the method is both readable/invocable and
writable/updateable, while it in the case of + indicates that the method is only readable/invocable.
As syntactic sugar, we will allow variance annotations to be omitted, and in such cases the default
is 0. With this default, our calculus is an extension of the Abadi-Cardelli calculus [1]: a term in the
Abadi-Cardelli calculus is also a term in our calculus, namely one where all variance annotations
implicitly are 0. A value is of the form [`vi

i = ς(xi)b i∈1..n
i ]. A program is a closed expression.

A confluent, small-step operational semantics is defined by the following rules:

• If a = [`vi
i = ς(xi)b i∈1..n

i ], then, for j ∈ 1..n,

a.`j ; bj [xj := a], and

if vj = 0, then (a.`j ⇐ ς(y)b) ; a[`j ← ς(y)b].

• If b ; b′, then a[b] ; a[b′].

Here, bj [xj := a] denotes the expression bj with a substituted for free occurrences of xj (renaming
bound variables to avoid capture); and a[`j ← ς(y)b] denotes the expression a with the `j field
replaced by ς(y)b. A context is an expression with one hole, and a[b] denotes the term formed by
replacing the hole of the context a[·] by the term b (possibly capturing free variables in b).

An expression b is stuck if it is not a value and there is no expression b′ such that b ; b′. An
expression b goes wrong if ∃b′ : b ;∗ b′ and b′ is stuck.

A type environment is a partial function with finite domain which maps term variables to types
in in Treg(Σ). We use E to range over type environments. We use E[x : A] to denote a partial
function which maps x to A, and maps y, where y 6= x, to E(y).

The typing rules below allow us to derive judgments of the form E ` a : A, where E is a type
environment, a is an expression, and A is a type in Treg(Σ).

E ` x : A (provided E(x) = A) (1)

E[xi : A] ` bi : Bi ∀i ∈ 1..n

E ` [`i = ς(xi)b i∈1..n
i ] : A

(where A = [`vi
i : B i∈1..n

i ]) (2)

E ` a : A

E ` a.` : B
(where A ≤ [`+ : B]) (3)

E ` a : A E[x : A] ` b : B

E ` a.`⇐ ς(x)b : A
(where A ≤ [`0 : B]) (4)
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E ` a : A

E ` a : B
(where A ≤ B) (5)

The first four rules express the typing of each of the four constructs in the object calculus and the
last rule is the rule of subsumption. We say that a term a is well-typed if E ` a : A is derivable for
some E and A. The following result can be proved by a well-known technique [13, 23].

Theorem 3.1 (Type Soundness) Well-typed programs cannot go wrong.

The type inference problem for our extension of the Abadi-Cardelli calculus is: given a term a,
find a type environment E and a type A such that E ` a : A, or decide that this is impossible.

4 Type Inference is equivalent to Constraint Solving

A substitution S is a finite partial function from type variables to types in Treg(Σ), written {U1 :=
A1, . . . , Un := An}. The set {U1, . . . , Un} is called the domain of the substitution. We identify
substitutions with their graphs, and write (S1 ∪ S2) for the union of two substitutions S1 and S2;
by convention, we assume that S1 and S2 agree on variables in their common domain, so (S1 ∪ S2)
is a substitution. Substitutions are extended to total functions from types to types in the usual
way.

A relation R is solvable if and only if there is a substitution S such that for all (A,B) ∈ R, we
have S(A) ≤ S(B).

We now prove that the type inference problem is logspace-equivalent to solving constraints.

4.1 From Type Inference to Constraint Solving

We first prove that the type inference problem is logspace-reducible to solving constraints.
We write E′ ≤ E if, whenever E(x) = A, there is an A′ ≤ A such that E′(x) = A′. The

following standard result can be proved by induction on typings.

Lemma 4.1 (Weakening) If E ` c : C and E′ ≤ E, then E′ ` c : C.

By a simple induction on typing derivations, we obtain the following syntax-directed character-
ization of typings. The proof uses only the reflexivity and transitivity of ≤.

Lemma 4.2 (Characterization of Typings) E ` c : C if and only if one of the following cases
holds:

• c = x and E(x) ≤ C;

• c = a.`, and for some A and B, E ` a : A, A ≤ [`+ : B], and B ≤ C;

• c = [`vi
i = ς(xi)b i∈1..n

i ], and for some A, and some Bi, for i ∈ 1..n, E[xi : A] ` bi : Bi, and
A = [`vi

i : B i∈1..n
i ] ≤ C; or

• c = (a.` ⇐ ς(x)b), and for some A and B, E ` a : A, E[x : A] ` b : B, A ≤ [`0 : B], and
A ≤ C.

Definition 4.3 Let c be an expression in which all free and bound variables are pairwise distinct.
We define Xc, Yc, Ec, and C(c) as follows.
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• Xc is a set of fresh type variables. It contains a type variable Ux for every term variable x
appearing in c.

• Yc is a set of fresh type variables. It contains a type variable Vc′ for each occurrence of a
subterm c′ of c, and a type variable Uc′ for each occurrence of a select subterm c′ = a.` of c.
(If c′ occurs more than once in c, then Uc′ and Vc′ are ambiguous. However, it will always be
clear from context which occurrence is meant.)

• Ec is a type environment, defined by

Ec = {x : Ux | x is free in c}.

• C(c) is the set of the following constraints over Xc and Yc:

For each occurrence in c of a variable x, the constraint

(Ux, Vx). (6)

For each occurrence in c of a subterm of the form a.`, the two constraints

(Va, [`+ : Ua.`]) (7)

(Ua.`, Va.`). (8)

For each occurrence in c of a subterm of the form [`vi
i = ς(xi)b i∈1..n

i ], the constraint

([`vi
i : Vbi

i∈1..n], V[`
vi
i =ς(xi)b

i∈1..n
i ]) (9)

and for each j ∈ 1..n, the constraints

Uxj ≡ [`vi
i : Vbi

i∈1..n]. (10)

For each occurrence in c of a subterm of the form (a.`⇐ ς(x)b), the constraints

(Va, V(a.`⇐ς(x)b)) (11)

Va ≡ Ux (12)

(Va, [`0 : Vb]). (13)

2

In the definition of C(c), each equality A ≡ B denotes the two constraints (A,B) and (B,A).

Theorem 4.4 E ` c : C if and only if there is a solution S of C(c) such that S(Vc) = C and
S(Ec) ⊆ E.

Each direction of the theorem can be proved separately. However, the proofs share a common
structure, so for brevity we will prove them together. The two directions follow immediately from
the two parts of the next lemma.

Lemma 4.5 Let c0 be an expression. For every subterm c of c0,

i) if E ` c : C, then there is a solution Sc of C(c) such that Sc(Vc) = C and Sc(Ec) ⊆ E; and
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ii) if S is a solution of C(c0), then S(Ec) ` c : S(Vc).

Proof. The proof is by induction on the structure of c. In (ii), we will often use the fact that
any solution to C(c0) (in particular, S) is a solution to C(c) ⊆ C(c0).

• If c = x, then Ec = {x : Ux} and C(c) = {(Ux, Vx)}.

i) Define Sc = {Ux := E(x), Vx := C}. Then Sc(Vc) = Sc(Vx) = C, and Sc(Ec) = {x :
E(x)} ⊆ E.
Furthermore, by Lemma 4.2, E(x) ≤ C, so Sc is a solution to C(c).

ii) By (1), S(Ec) ` c : S(Ux).
And since S(Ux) ≤ S(Vx) = S(Vc), we have S(Ec) ` c : S(Vc) by (5).

• If c = a.`, then Ec = Ea and C(c) = C(a) ∪ {(Va, [`+ : Ua.`]), (Ua.`, Va.`)}.

i) By Lemma 4.2, for some A and B, E ` a : A, A ≤ [`+ : B], and B ≤ C.
By induction there is a solution Sa of C(a) such that Sa(Va) = A and Sa(Ea) ⊆ E.
Define Sc = Sa ∪ {Ua.` := B, Va.` := C}. Then Sc solves C(c), Sc(Vc) = Sc(Va.`) = C,
and Sc(Ec) = Sa(Ea) ⊆ E.

ii) By induction, S(Ea) ` a : S(Va).
Since S(Va) ≤ S([`+ : Ua.`]), by (5) we have S(Ea) ` a : S([`+ : Ua.`]).
Then by (3), S(Ea) ` a.` : S(Ua.`).
Since S(Ua.`) ≤ S(Va.`) = S(Vc), by (5) we have S(Ea) ` a.` : S(Vc).
Finally, Ec = Ea and c = a.`, so S(Ec) ` c : S(Vc) as desired.

• If c = [`vi
i = ς(xi)b i∈1..n

i ], then Ec =
⋃

i∈1..n(Ebi
\xi), and

C(c) = { ([`vi
i : Vbi

i∈1..n], Vc) }
∪ { Uxj ≡ [`vi

i : Vbi
i∈1..n] | j ∈ 1..n }

∪ (
⋃

i∈1..n C(bi)).

i) By Lemma 4.2, for some A, and some Bi for i ∈ 1..n, we have E[xi : A] ` bi : Bi and
A = [`vi

i : B i∈1..n
i ] ≤ C.

By induction, for every i ∈ 1..n there is a substitution Sbi
such that Sbi

solves C(bi),
Sbi

(Vbi
) = Bi, and Sbi

(Ebi
) ⊆ E[xi : A].

Let Sc = (
⋃

i∈1..n Sbi
) ∪ {Vc := C} ∪ {Uxi := A | i ∈ 1..n}.

Clearly, if Sc is well-defined, then it is a solution to C(c), Sc(Vc) = C, and Sc(Ec) ⊆ E.
To show that Sc is well-defined, we first assume that the domain of any Sbi

is Xbi
∪ Ybi

(else restrict Sbi
to this set).

Then it suffices to show that for any distinct j, k ∈ 1..n, the substitutions Sbj
and Sbk

agree on all type variables in their common domain. And if U is in the domain of both
Sbj

and Sbk
, it must have the form Uy for some term variable y free in both bj and bk.

Then y must be assigned a type by E, so the conditions Sbj
(Ebj

) ⊆ E[xj : A] and
Sbk

(Ebk
) ⊆ E[xk : A] guarantee that Sbj

(Uy) = E(y) = Sbk
(Uy). Therefore Sc is well-

defined, as desired.
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ii) By induction, S(Ebj
) ` bj : S(Vbj

) for all j ∈ 1..n.
By weakening, S(Ec ∪ {xj : Uxj}) ` bj : S(Vbj

) for all j ∈ 1..n.

Since S solves C(c), S(Uxj ) = S([`vi
i : Vbi

i∈1..n]) for all j ∈ 1..n.
Then by (2), S(Ec) ` c : S([`vi

i : Vbi
i∈1..n]).

Finally S([`vi
i : Vbi

i∈1..n]) ≤ S(Vc), so we have S(Ec) ` c : S(Vc) by (5).

• If c = (a.`⇐ ς(x)b), then Ec = Ea ∪ (Eb\x), and

C(c) = C(a) ∪ C(b) ∪ {(Va, Vc), Va ≡ Ux, (Va, [`0 : Vb])}.

i) By Lemma 4.2, for some A and B, E ` a : A, E[x : A] ` b : B, A ≤ [`0 : B], and A ≤ C.
By induction there is a solution Sa of C(a) such that Sa(Va) = A and Sa(Ea) ⊆ E, and
a solution Sb of C(b) such that Sb(Vb) = B and Sb(Eb) ⊆ E[x : A].
Let Sc = Sa ∪ Sb ∪ {Vc := C,Ux := A}. (We omit a proof that Sc is well-defined; this
can be shown just as in the previous case.)
Then Sc is a solution to C(c), Sc(Vc) = C, and Sc(Ec) ⊆ E.

ii) By induction S(Ea) ` a : S(Va) and S(Eb) ` b : S(Vb).
By weakening, S(Ec) ` a : S(Va) and S(Ec[x : Ux]) ` b : S(Vb).
Then by (4), S(Ec) ` c : S(Va), and by (5), S(Ec) ` c : S(Vc).

2

4.2 From Constraint Solving to Type Inference

The following result is proved by a method similar to the one used by Palsberg [14] and Palsberg
and Jim [15].

Lemma 4.6 Solvability of constraints is logspace-reducible to the type inference problem.

Proof. It is straightforward to show that any constraint set over Treg(Σ) can be simplified, in a
solution-preserving way, such that each constraint is of the form (W,W ′) where W and W ′ are of
the forms V or [`vi

i : V i∈1..n
i ], where vi ∈ {0,+}, and where V, V1, . . . , Vn are variables. Let R be

such a simplified constraint set. Define
aR = [ `0

V = ς(x)(x.`V )
for each variable V in R

`0
Q = ς(x)[`vi

i = ς(y)(x.`Vi)
i∈1..n]

for each Q in R of the form [`vi
i : V i∈1..n

i ]
m0

Q,`j
= ς(x)((x.`Vj ⇐ ς(y)(x.`Q.`j)).`Q)

for each Q in R of the form [`vi
i : V i∈1..n

i ]
and for each j ∈ 1..n

k0
Q,`j

= ς(x)((x.`Q).`j ⇐ ς(y)(x.`Vj ))
for each Q in R of the form [`vi

i : V i∈1..n
i ]

and for each j ∈ 1..n with vj = 0
`0
(W,W ′) = ς(x)((x.`W ′ ⇐ ς(y)(x.`W )).`W )

for each constraint (W,W ′) ∈ R
]

Notice that aR can be generated in log space.
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We first prove that if R is solvable then aR is typable. Suppose R has solution S. Define
A = [ `0

V : S(V ) for each variable V in R
`0
Q : S(Q) for each Q in R of the form [`vi

i : V i∈1..n
i ]

m0
Q,`j

: S(Q) for each Q in R of the form [`vi
i : V i∈1..n

i ]
and for each j ∈ 1..n

k0
Q,`j

: S(Q) for each Q in R of the form [`vi
i : V i∈1..n

i ]
and for each j ∈ 1..n with vj = 0

`0
(W,W ′) : S(W ) for each constraint (W,W ′) ∈ R

]
It is straightforward to show that ∅ ` aR : A is derivable.
We now prove that if aR is typable, then R is solvable. Suppose aR is typable. From Theorem 4.4

we get a solution S of C(aR).
Notice that each method in aR binds a variable x. Each of these variables corresponds to a

distinct type variable in C(aR). Since S is a solution of C(aR), and C(aR) contains constraints of
the form Ux = [. . .] for each method in aR (from rule (10)), all those type variables are mapped
by S to the same type. Thus, we can think of all the bound variables of methods of aR as being
related to the same type variable, which we will write as Ux.

Notice also that most methods in aR bind a variable y. None of these variables are used in aR,
and each of them corresponds to a distinct type variable in C(aR). They will not play any role in
the rest of the proof.

Define

SR(V ) = S(Ux)↓`V for each variable V in R.

The definition is justified by Property 1 below.

• Property 1 If V is a variable in R, then S(Ux)↓`V is defined.

• Property 2 For each Q in R of the form [`vi
i : V i∈1..n

i ], we have S(Ux)↓`Q = [`vi
i : (S(Ux)↓

`Vi)
i∈1..n].

We will proceed by first showing the two properties and then showing that R has solution SR.
To see Property 1, notice that in the body of the method `V we have the expression x.`V . Since

S is a solution of C(aR), we have from the rules (6) and (7) that S satisfies

(Ux, Vx) and (Vx, [`+
V : Ux.`V

]),

so
S(Ux)↓`V ≤ S(Ux.`V

) (14)

We conclude that since S(Ux.`V
) is defined, also S(Ux)↓`V is defined.

To see Property 2, let Q be an occurrence in R of the form [`vi
i : V i∈1..n

i ]. For each j ∈ 1..n, in
the body of the method mQ,`j

, we have the expression x′.`Vj ⇐ ς(y)(x.`Q.`j) where we, for clarity,
have written the first occurrence of x as x′. Since S is a solution of C(aR), we have from the rules
(6), (7), (8), and (13), that S satisfies

(Ux , Vx′) and (Vx′ , [`0
Vj

: Vx.`Q.`j
]) (15)

(Ux , Vx) and (Vx , [`+
Q : Ux.`Q

]) (16)
(Ux.`Q

, Vx.`Q
) (17)

(Vx.`Q
, [`+

j : Ux.`Q.`j
]) (18)

(Ux.`Q.`j
, Vx.`Q.`j

) (19)
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Thus,

S(Ux)↓`Q ≤ S(Ux.`Q
) from (16)

≤ S(Vx.`Q
) from (17)

≤ [`+
j : S(Ux.`Q.`j

)] from (18)
≤ [`+

j : S(Vx.`Q.`j
)] from (19)

= [`+
j : (S(Ux)↓`Vj )] from (15)

Therefore,

S(Ux)↓`Q ↓`j ≤ S(Ux)↓`Vj (20)

In the body of the method `Q we have the expression [`vi
i = ς(y)(x.`Vi)

i∈1..n]. Since S is a
solution of C(aR), we have from the rules (8), (9), and (10) that S satisfies

(Ux.`Vj
, Vx.`Vj

) (21)

([`vi
i : Vx.`Vi

i∈1..n] , V[`
vi
i =ς(y)(x.`Vi

) i∈1..n]) (22)

Ux ≡ [. . . `0
Q : V[`

vi
i =ς(y)(x.`Vi

) i∈1..n] . . .] (23)

Thus, from (22) and (23) we have

[`vi
i : S(Vx.`Vi

) i∈1..n] ≤ S(V[`
vi
i =ς(y)(x.`Vi

) i∈1..n]) = S(Ux)↓`Q, (24)

so

S(Ux)↓`Vj ≤ S(Ux.`Vj
) from (14)

≤ S(Vx.`Vj
) from (21)

≤ S(Ux)↓`Q ↓`j from (24).

From that and (20) we conclude:

S(Ux)↓`Q ↓`j = S(Ux)↓`Vj . (25)

For each j ∈ 1..n with vj = 0, in the body of the method kQ,`j
, we have the expression

((x′.`Q).`j ⇐ ς(y)(x.`Vj )) where we, for clarity, have written the first occurrence of x as x′. Since
S is a solution of C(aR), we have from the rules (6), (7), (8), and (13) that S satisfies

(Ux , Vx′) and (Vx′ , [`+
Q : Ux′.`Q

]) (26)
(Ux′.`Q

, Vx′.`Q
) (27)

(Vx′.`Q
, [`0

j : Vx.`Vj
]) (28)

Thus,

S(Ux)↓`Q ≤ S(Ux′.`Q
) from (26)

≤ S(Vx′.`Q
) from (27)

≤ [`0
j : S(Vx.`Vj

)] from (28)

From that and (24) we have:
Var({ S(Ux)↓`Q }, `j) = vj . (29)

Therefore, by (25), we have that S(Ux)↓`Q = [`vi
i : (S(Ux)↓`Vi)

i∈1..n], that is, Property 2.
We can summarize Property 1 and 2 as follows.
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• Property 3 If W is a left-hand side or a right-hand side of a constraint in R, then S(Ux)↓`W

is defined and SR(W ) = S(Ux)↓`W .

We will now show that R has solution SR.
Consider a constraint (W,W ′) in R. The body of the method `(W,W ′) contains the expression

x′.`W ′ ⇐ ς(y)(x.`W ) where we, for clarity, have written the first occurrence of x as x′. Since S is
a solution of C(aR), we have from the rules (6), (13), (6), (7), and (8) that S satisfies

(Ux , Vx′) and (Vx′ , [`0
W ′ : Vx.`W

]) (30)
(Ux , Vx) and (Vx , [`+

W : Ux.`W
]) (31)

(Ux.`W
, Vx.`W

) (32)

We conclude

SR(W ) = S(Ux)↓`W from Property 3
≤ S(Ux.`W

) from (31)
≤ S(Vx.`W

) from (32)
= S(Ux)↓`W ′ from (30)
= SR(W ′) from Property 3

2
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5 Solving Constraints

In this section we present an algorithm for deciding whether a relation R is solvable. We first define
the notions of satisfaction-closure (Section 5.1) and satisfaction-consistency (Section 5.2), and then
we prove that a relation R is solvable if and only its satisfaction-closure is satisfaction-consistent
(Theorem 5.11).

5.1 Satisfaction-closure

Definition 5.1 If R is a relation on types, we say R is satisfaction-closed (abbreviated sat-closed)
if there exists relation L on types such that

i) if (A,B) ∈ R, then (A,A), (B,B) ∈ R.

ii) if (A,B), (B,C) ∈ R, then (A,C) ∈ R;

iii) if (A,B) ∈ R, then (A,B) ∈ L;

iv) if (A,B) ∈ L, then (B,A) ∈ L;

v) if (A,B) ∈ L, and (B,C) ∈ R, then (A,C) ∈ L;

vi) if ([`+ : B, . . .], [`+ : B′, . . .]) ∈ R, then (B,B′) ∈ R;

vii) if ([`+ : B, . . .], [`+ : B′, . . .]) ∈ L, then (B,B′) ∈ L;

viii) if ([`0 : B, . . .], [`+ : B′, . . .]) ∈ L, then (B,B′) ∈ R;

ix) if ([`0 : B, . . .], [`0 : B′, . . .]) ∈ L, then (B,B′) ∈ R.

2

Notice that the intersection of a family of sat-closed relations is itself sat-closed. From that we
have that for a given relation R, there is a smallest sat-closed relation that includes R; we call that
sat-closed relation the sat-closure of R.

Notice also that for a given sat-closed relation R, there is a smallest relation L such that the
sat-closure rules for R and L are satisfied; we call L the lower-bound relation for R.

For a relation R, notice that the sat-closure of R and the lower bound relation for the sat-
closure of R are the pairwise-⊆-smallest pair (R′, L) that contains (R, ∅). We can compute R′ and
L by a straightforward fixed-point computation that uses the sat-closure rules to monotonically add
elements to the two relations. We can apply McAllester’s theorem [10] to get that the fixed-point
computation takes O(n3) time where n is the size of R.

Lemma 5.2 A relation and its sat-closure have the same set of solutions.

Proof. Since the sat-closure of a relation R contains R, it follows that any solution of the
sat-closure of R is also a solution of R.

To prove the converse, define that (R,L) is solvable iff there exists a mapping S such that

• if (A,B) ∈ R, then S(A) ≤ S(B), and

• if (A,B) ∈ L, then there exists a type C, such that C ≤ S(A) and C ≤ S(B).

We will prove the following more general property:
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Any solution of R is also a solution of the pairwise-⊆-smallest pair (R′, L) that contains
(R, ∅).

We proceed by induction on the fixed-point computation of (R′, L) from (R, ∅). We need to show
that after each iteration, any solution of R is also a solution of the resulting pair of relations.

In the base case, we have that any solution of R is also a solution of (R, ∅).
In the induction step, suppose (R1, L1) has a solution S. For each of the nine sat-closure rules,

we need to show that the rules will only add pairs to R1 and L1 that have solution S:

i) the relation ≤ is reflexive;

ii) the relation ≤ is transitive;

iii) a ≤-lower bound for S(A) and S(B) is S(A);

iv) if S(A) and S(B) have a ≤-lower bound, then S(B) and S(A) have a ≤-lower bound;

v) if S(A) and S(B) have a ≤-lower bound D, and S(B) ≤ S(C), then D is also a ≤-lower
bound for S(A) and S(C);

vi) the definition of ≤ propagates ordering to common `-fields which both have variance +;

vii) the types [`+ : S(B), . . .], [`+ : S(B′), . . .] must have a ≤-lower bound [`v : C, . . .], and hence
C is a ≤-lower bound for S(B) and S(C);

viii) the types [`0 : S(B), . . .], [`+ : S(B′), . . .] must have a ≤-lower bound [`0 : S(B), . . .], and
hence S(B) ≤ S(B′); and finally

ix) the types [`0 : S(B), . . .], [`0 : S(B′), . . .] must have a ≤-lower bound [`0 : S(B), . . .], and
hence S(B) ≤ S(B′).

2

A sat-closed relation has the five properties that are expressed in the following lemma.

Lemma 5.3 Suppose R is sat-closed, and let L be the lower-bound relation for R.

(A) If ([`v : B, . . .], [`v′ : B′, . . .]) ∈ L, then (B,B′) ∈ L.

(B) If (A,A′) ∈ L and (A,A1), (A′, A2) ∈ R, then then (A1, A2) ∈ L.

(C) If (A,A1), (A,A2) ∈ R, then (A1, A2) ∈ L.

(D) If ([`v : B, . . .], [`v′ : B′, . . .]) ∈ R and v v v′, then (B,B′) ∈ R.

(E) If ([`0 : B, . . .], [`0 : B′, . . .]) ∈ R, then (B′, B) ∈ R.

Proof. For Property (A) there are four cases. If v = +, v′ = +, then from sat-closure rule (vii)
we have (B,B′) ∈ L. If v = 0, v′ = +, or v = 0, v′ = 0, then from sat-closure rules (viii) or (ix), we
have (B,B′) ∈ R, and then from sat-closure rule (iii) we have (B,B′) ∈ L. Finally, if v = +, v′ = 0,
then from sat-closure rule (iv) we have ([`v′ : B′, . . .], [`v : B, . . .]) ∈ L, so from sat-closure rule (viii)
we have (B′, B) ∈ R, so from sat-closure rule (iii) we have (B′, B) ∈ L, and hence from sat-closure
rule (iv) we have (B,B′) ∈ L. So, in all cases (B,B′) ∈ L.
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For Property (B), notice that from sat-closure rule (v), (A,A′) ∈ L, and (A′, A2) ∈ R, we have
(A,A2) ∈ L. From sat-closure rule (iv) and (A,A2) ∈ L, we have (A2, A) ∈ L. From sat-closure
rule (v), (A2, A) ∈ L, and (A,A1) ∈ R, we have (A2, A1) ∈ L, so from sat-closure rule (iv) we have
(A1, A2) ∈ L.

For Property (C), notice that from sat-closure rule (i) and (A,A1) ∈ R we have (A,A) ∈
R, so from sat-closure rule (iii) we have (A,A) ∈ L. From Property (B), (A,A) ∈ L, and
(A,A1), (A,A2) ∈ R we conclude that (A1, A2) ∈ L.

For Property (D) there are three cases. If v = +, v′ = +, then from sat-closure rule (vi)
we have (B,B′) ∈ R. If v = 0, v′ = +, or v = 0, v′ = 0, then from sat-closure rule (iv) and
([`v : B, . . .], [`v′ : B′, . . .]) ∈ R, we have ([`v : B, . . .], [`v′ : B′, . . .]) ∈ L, so from sat-closure rules
(viii) or (ix), we have (B,B′) ∈ R.

For Property (E), we have from sat-closure rule (iii) that ([`0 : B, . . .], [`0 : B′, . . .]) ∈ L, so
from sat-closure rule (iv), we have ([`0 : B′, . . .], [`0 : B, . . .]) ∈ L, so from sat-closure rule (ix), we
have (B′, B) ∈ R. 2

From Lemma 5.3, Properties (D) and (E), we have that if a relation is sat-closed, then it is
also subtype-closed.

5.2 Satisfaction-consistency

Definition 5.4 We say R is satisfaction-inconsistent (abbreviated sat-inconsistent) if any of the
following two cases hold.

• ([`+ : B, . . .], [`0 : B′, . . .]) ∈ R for some `, B, B′.

• ([`vi
i : B i∈I

i ], [`v : B, . . .]) ∈ R for some `, v, B, and `i, vi, Bi for i ∈ I; and furthermore
` 6= `i for all i ∈ I.

We say R is sat-consistent iff R is not sat-inconsistent. 2

Notice that if a relation is subtype-consistent, then it is also sat-consistent.

Lemma 5.5 If R is solvable, then R is sat-consistent.

Proof. Immediate. 2

5.3 Main Result

We first list the terminology used in the later definitions.

Types = the set of types
States = P(Types)

RelTypes = P(Types × Types)
RelStates = P(States × States)

To define the solution SR, we will need the following notation. We use T to range over sets of
types. Then we make the following definitions.

T .` = {B | ∃A ∈ T . A = [`v : B, . . .]}.
aboveR(T ) = {B | ∃A ∈ T . (A,B) ∈ R}.

ABOVER(R′) = {(aboveR({A}), aboveR({B})) | ∃(A,B) ∈ R′}.
Var(T , `) = u{v | ∃A ∈ T . (`, v) ∈ A(ε)}.
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In the last definition, u is the greatest lower bound of a nonempty set of variances; u∅ is undefined.
The types of the above definitions are

T .` : States→ States
aboveR : States→ States

ABOVER : RelTypes→ RelStates
Var : States× Labels→ Variances

For any set T of types we define LV : States → P(Labels × Variances), the labels and variances
implied by T , by

LV(T ) = {(`, v) | v = Var(T , `)}.

For a relation R we build an automaton with states consisting of sets of types appearing in R,
and the following one-step transition function:

δR(T )(`) =

{
aboveR(T .`) if T .` 6= ∅
undefined otherwise.

We write States(R) for the set of states of the automaton, and use g, h to range over states.
The one-step transition function is extended to a many-step transition function in the usual

way.

δ∗R(g)(ε) = g,

δ∗R(g)(`α) = δ∗R(δR(g)(`))(α).

Any state g defines a type, TypeR(g), and any relation R on States(R) defines a relation on types
TYPER(R), as follows:

TypeR(g)(α) = LV(δ∗R(g)(α)),
TYPER(R) = {(TypeR(g),TypeR(h)) | (g, h) ∈ R}.

We have that
TypeR : States→ Types

TYPER : RelStates→ RelTypes

For any relation R on types, we define SR to be the least substitution such that for every U
appearing in R we have

SR(U) = TypeR(aboveR({U})).

We claim that if R is sat-closed and sat-consistent, then SR is a solution to R.
The first step is to develop a connection between subtype-closure and δ. Define the function

A : RelTypes→ RelTypes by (A,B) ∈ A(R) iff one of the following conditions holds:

• (A,B) ∈ R.

• For some `, v, v′, such that v v v′, we have ([`v : A, . . .], [`v′ : B, . . .]) ∈ R.

• For some `, we have ([`0 : B, . . .], [`0 : A, . . .]) ∈ R.

Note, the subtype-closure of a relation R is the least fixed point of A containing R.
Define the function BR : RelStates → RelStates by (g, h) ∈ BR(R) iff one of the following

conditions holds:
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• (g, h) ∈ R.

• For some ` and (g′, h′) ∈ R, such that Var(g′, `) v Var(h′, `), we have g = δR(g′)(`), h =
δR(h′)(`).

• For some ` and (h′, g′) ∈ R, we have g = δR(g′)(`), h = δR(h′)(`), Var(g′, `) = 0, and
Var(h′, `) = 0.

The next two lemmas (Lemma 5.6 and Lemma 5.7) are key ingredients in the proof of Lemma 5.8.
Lemma 5.6 states fundamental relationship between TYPER, A, and BR.

Lemma 5.6 The following diagram commutes:

RelStates
TYPER−−−−−−−→ RelTypesyBR

yA
RelStates

TYPER−−−−−−−→ RelTypes

Proof. To prove TYPER ◦ BR ⊆ A ◦ TYPER, suppose R ∈ RelStates and (A,B) ∈ TYPER ◦
BR(R). There must be a pair of states (g, h) ∈ BR(R) such that A = TypeR(g) and B = TypeR(h).
We reason by cases on how (g, h) ∈ BR(R). From the definition of BR we have that there are three
cases.

First, suppose (g, h) ∈ R. We have (Type(g),Type(h)) ∈ TYPER(R), so from the definition of
A we have (Type(g),Type(h)) ∈ A ◦ TYPER(R).

Second, suppose for some ` and (g′, h′) ∈ R, such that Var(g′, `) v Var(h′, `), we have g =
δR(g′)(`) and h = δR(h′)(`). From (g′, h′) ∈ R, we have (TypeR(g′),TypeR(h′)) ∈ TYPER(R).
From the definition of TypeR we have that there must exist vA = Var(g′, `) and vB = Var(h′, `)
such that TypeR(g′) = [`vA : A, . . .] and TypeR(h′) = [`vB : B, . . .], so, by the definition of A, we
have (A,B) ∈ A ◦ TYPER(R).

Third, suppose for some ` and (h′, g′) ∈ R, we have g = δR(g′)(`), h = δR(h′)(`), Var(g′, `) = 0,
and Var(h′, `) = 0. From (h′, g′) ∈ R, we have (TypeR(h′),TypeR(g′)) ∈ TYPER(R). From the
definition of TypeR we have TypeR(g′) = [`0 : A, . . .] and TypeR(h′) = [`0 : B, . . .], so, by the
definition of A, we have (A,B) ∈ A ◦ TYPER(R).

To prove A◦TYPER ⊆ TYPER ◦BR, suppose R ∈ RelStates and (A,B) ∈ A◦TYPER(R). We
reason by cases on how (A,B) ∈ A ◦TYPER(R). From the definition of A we have that there are
three cases.

First, suppose (A,B) ∈ TYPER(R). There must exist g and h such that A = TypeR(g), B =
TypeR(h), and (g, h) ∈ R. From (g, h) ∈ R and the definition of BR, we have that (g, h) ∈ BR(R),
so (A,B) ∈ TYPER ◦ BR.

Second, suppose for some `, v, and v′, such that v v v′, we have ([`v : A, . . .], [`v′ : B, . . .]) ∈
TYPER(R). There must exist g′ and h′ such that TypeR(g′) = [`v : A, . . .], TypeR(h′) = [`v′ :
B, . . .], (g′, h′) ∈ R, Var(g′, `) = v, and Var(h′, `) = v′. Then g = δR(g′)(`) and h = δR(h′)(`)
are well defined, and (g, h) ∈ BR(R) by the definition of BR. And by the definition of TypeR,
A = TypeR(g) and B = TypeR(h), so (A,B) ∈ TYPER ◦ BR(R) as desired.

Third, suppose for some `, we have ([`0 : B, . . .], [`0 : A, . . .]) ∈ TYPER(R). There must exist
g′ and h′ such that TypeR(g′) = [`0 : A, . . .], TypeR(h′) = [`0 : B, . . .], and (h′, g′) ∈ R. By the
definition of TypeR, Var(g′, `) = 0 and Var(h′, `) = 0. Then g = δR(g′)(`) and h = δR(h′)(`)
are well defined, and (g, h) ∈ BR(R) by the definition of BR. And by the definition of TypeR,
A = TypeR(g) and B = TypeR(h), so (A,B) ∈ TYPER ◦ BR(R) as desired. 2
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Lemma 5.7 Suppose R is sat-closed. For all n, if (g, h) ∈ Bn
R ◦ABOVER(R), then g ⊇ h.

Proof. Let L be the lower-bound relation for R. We will prove the following more general
property:

For all n, if (g, h) ∈ Bn
R ◦ABOVER(R), then

• g ⊇ h, and

• if A1, A2 ∈ g, then (A1, A2) ∈ L.

We proceed by induction on n. In the base case of n = 0, suppose (g, h) ∈ ABOVER(R). From
the definition of ABOVER we have that we can choose A,B such that (A,B) ∈ R, g = aboveR({A}),
and h = aboveR({B}). To prove g ⊇ h, suppose C ∈ h. We have (B,C) ∈ R, and together with
(A,B) ∈ R and transitivity of R (sat-closure rule (ii)), we have (A,C) ∈ R, so C ∈ g, and hence
g ⊇ h. Suppose A1, A2 ∈ g. We have (A,A1), (A,A2) ∈ R, so from Lemma 5.3, Property (C), we
have that (A1, A2) ∈ L.

In the induction step, suppose (g, h) ∈ Bn+1
R ◦ ABOVER(R). From the definition of BR we

have that there are three cases. First, suppose (g, h) ∈ Bn
R ◦ ABOVER(R). From the induction

hypothesis we have that the two desired properties are satisfied.
Second, suppose for some ` and (g′, h′) ∈ Bn

R ◦ ABOVER(R), such that Var(g′, `) v Var(h′, `),
we have g = δR(g′)(`) and h = δR(h′)(`). From the induction hypothesis we have g′ ⊇ h′. From
g′ ⊇ h′ and the definition on δR it is immediate that g ⊇ h. Suppose A1, A2 ∈ g. From g =
δR(g′)(`) and the definition of δR, we have that there exists [`v : A′

1, . . .], [`
v′ : A′

2, . . .] ∈ g′, and
(A′

1, A1), (A′
2, A2) ∈ R. From the induction hypothesis we have ([`v : A′

1, . . .], [`
v′ : A′

2, . . .]) ∈ L,
so from Lemma 5.3, property (A), we have that (A′

1, A
′
2) ∈ L. From Lemma 5.3, Property (B),

(A′
1, A

′
2) ∈ L, (A′

1, A1), (A′
2, A2) ∈ R we have (A1, A2) ∈ L.

Third, suppose for some ` and (h′, g′) ∈ Bn
R◦ABOVER(R), we have g = δR(g′)(`), h = δR(h′)(`),

Var(g′, `) = 0, and Var(h′, `) = 0. From the definition of δR and Var(g′, `) = 0, we have that there
exists at least one type [`0 : A, . . .] ∈ g′. From the induction hypothesis we have h′ ⊇ g′. Thus,
[`0 : A, . . .] ∈ h′. To prove g ⊇ h, suppose B ∈ h. By the definition of δR and Var(h′, `) = 0,
there must exist a type [`0 : B′, . . .] ∈ h′ such that (B′, B) ∈ R. From the induction hypothesis
and [`0 : A, . . .], [`0 : B′, . . .] ∈ h′, we have ([`0 : A, . . .], [`0 : B′, . . .]) ∈ L. From sat-closure
rule (ix), we have (A,B′) ∈ R. Therefore, from the transitivity of R (sat-closure rule (ii)) and
(A,B′), (B′, B) ∈ R, we have (A,B) ∈ R, so B ∈ g, and hence g ⊇ h. The property that “if
A1, A2 ∈ g, then (A1, A2) ∈ L” can be proved in the same way as in the previous case.

2

Lemma 5.8 If R is sat-closed, then the subtype-closure of TYPER ◦ ABOVER(R) is subtype-
consistent.

Proof.

The subtype-closure of TYPER ◦ABOVER(R)
=

⋃
0≤n<∞

An ◦ TYPER ◦ABOVER(R) (Definition of subtype-closure)

=
⋃

0≤n<∞
TYPER ◦ Bn

R ◦ABOVER(R) (Lemma 5.6)

=
⋃

0≤n<∞

⋃
(g,h)∈Bn

R◦ABOVER(R)

{(TypeR(g),TypeR(h))} (Definition of TYPER).
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From Lemma 5.7 we have that if (g, h) ∈ Bn
R ◦ ABOVER(R), then g ⊇ h. If g ⊇ h, then it is

immediate from the definition of TypeR that {(TypeR(g),TypeR(h))} is subtype-consistent. Thus,
the subtype-closure of TYPER◦ABOVER(R) is the union of a family of subtype-consistent relations.
Since the union of a family of subtype-consistent relations is itself subtype-consistent, we conclude
that the subtype-closure of TYPER ◦ABOVER(R) is subtype-consistent. 2

The following lemma is a key ingredient in the proof of Lemma 5.10. The two lemmas 5.9 and
5.10 are the two places where it is needed that a relation is satisfaction-consistent.

Lemma 5.9 If A = [`v : B, . . .] appears in R and R is sat-closed and sat-consistent, then

aboveR((aboveR({A})).`) = aboveR({B}).

Proof. To prove the direction ⊇, notice that from sat-closure rule (i) and A appearing in R, we
have (A,A) ∈ R, so A ∈ aboveR({A}), hence B ∈ (aboveR({A})).`, and thus

aboveR((aboveR({A})).`) ⊇ aboveR({B}).

To prove the direction ⊆, suppose C ∈ aboveR((aboveR({A})).`). From that we have there
exists C ′ ∈ (aboveR({A})).` such that (C ′, C) ∈ R. From C ′ ∈ (aboveR({A})).` we have that there
exists [`v′ : C ′, . . .] such that (A, [`v′ : C ′, . . .]) ∈ R. From sat-consistency and (A, [`v′ : C ′, . . .]) ∈ R,
we have that v v v′. From Lemma 5.3, Property (D), (A, [`v′ : C ′, . . .]) ∈ R, and v v v′, we have
that (B,C ′) ∈ R. From transitivity of R (sat-closure rule (ii)) and (B,C ′), (C ′, C) ∈ R, we have
(B,C) ∈ R, so C ∈ aboveR({B}). 2

Lemma 5.10 If R is sat-closed and sat-consistent, then

i) for any type A appearing in R, SR(A) = TypeR ◦ aboveR({A}); and

ii) SR(R) = TYPER ◦ABOVER(R).

Proof. The second property is an immediate consequence of the first property.
To prove the first property, we will, by induction on α, show that for all α, for all A appearing

in R, SR(A)(α) = TypeR ◦ aboveR({A})(α).
If α = ε and A is a type variable, the result follows by definition of SR.
If α = ε and A = [`vi

i : B1..n
i ], then SR(A)(α) = {(`i, vi) | i ∈ 1..n} and TypeR◦aboveR({A})(α) =

LV(aboveR({A})). From sat-closure rule (i) and A appearing in R, we have (A,A) ∈ R, so
A ∈ aboveR({A}). From A ∈ aboveR({A}) and sat-consistency, we have LV(aboveR({A})) =
LV({A}) = {(`i, vi) | i ∈ 1..n}, as desired.

If α = `α′ and A is a type variable, the result follows by definition of SR.
If α = `α′ and A = [`v : B, . . .], then

SR(A)(α)
= SR(B)(α′) (Definition of SR)
= TypeR ◦ aboveR({B})(α′) (Induction hypothesis)
= LV(δ∗R(aboveR({B}))(α′)) (Definition of TypeR)
= LV(δ∗R(aboveR((aboveR({A})).`))(α′)) (Lemma 5.9)
= LV(δ∗R(δR(aboveR({A}))(`))(α′)) (Definition of δR)
= LV(δ∗R(aboveR({A}))(`α′)) (Definition of δ∗R)
= TypeR ◦ aboveR({A})(α) (Definition of TypeR and α = `α′).
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If α = `α′ and A is a record without an ` field, then SR(A)(α) is undefined. By sat-consistency,
no C ∈ aboveR({A}) has an ` field, so from the definition of TypeR we have that TypeR ◦
aboveR({A})(`α′) is undefined, as desired. 2

We are now ready to prove the main result of this section.

Theorem 5.11 R is solvable if and only if its sat-closure is sat-consistent.

Proof. If R is solvable, then we have from Lemma 5.2 that the sat-closure of R is solvable, so
from Lemma 5.5 we have the sat-closure of R is sat-consistent.

Conversely, let R′ be the sat-closure of R, and assume that R′ is sat-consistent. From Lemma 5.8
and Lemma 5.10, we have that the subtype-closure of SR′(R′) is subtype-consistent, so from
Lemma 2.6, we have that R′ has solution SR′ , and so from Lemma 5.2 we have that R has so-
lution SR′ . 2

In summary, to solve a constraint set R, we proceed as follows. First, we compute the sat-closure
R′ of R (this takes O(n3) time where n is the size of R). Next, the R′ is checked for sat-consistency
(this takes O(n) time). If R′ is sat-inconsistent, then R is not solvable, otherwise SR′ is an example
of a solution of R. Thus, we have shown the following result.

Corollary 5.12 Satisfiability of a constraint set is decidable in O(n3) time.

6 P-hardness

Theorem 6.1 Solvability of constraints is P-hard.

Proof. An SC-system (simple constraint set) is a finite set of constraints of the forms

V ≡ V ′

(V , [`0
i : V i∈1..n

i ]).

Notice that any SC-system is a constraint set. Thus it is sufficient to prove that solvability of
SC-systems over Treg(Σ) is P-hard. We will do that by reducing a closely related P-hard problem
to this problem.

Let T 0
reg(Σ) be the subset of Treg(Σ) where all variance annotations are 0. In [14] it is proved

that solvability of SC-systems over T 0
reg(Σ) is P-hard.

Let R be an SC-system. It is sufficient to prove that R is solvable over Treg(Σ) if and only if it
is solvable over T 0

reg(Σ).
It is immediate that if R is solvable over T 0

reg(Σ) then it is solvable over Treg(Σ).
Conversely, suppose that R is solvable over Treg(Σ), and let R′ be the sat-closure of R. We have

that SR′ is a solution of R′, and therefore, by Lemma 5.2, SR′ is also a solution of R. By Lemma
6.2, SR′ maps all variables in R to elements of T 0

reg(Σ), 2

Lemma 6.2 Let R to be an SC-system and R′ is the sat-closure of R. If R is solvable over Treg(Σ),
then SR′(V ) ∈ T 0

reg(Σ) for all V in R.

Proof. From the sat-closure rules, it follows that R′ is an SC-system as well. It is clear from
the definition that aboveR′ produces only types in T 0

reg(Σ). Also by definition, TypeR′(g)(α) =
LV(δ∗R′(g)(α)), and, by the definition of δR′ , we have that δ∗R′(g)(α) is a set of types in T 0

reg(Σ)
for any type set g and path α. Thus, the function TypeR′ produces only types in T 0

reg(Σ). Since
SR′(V ) = TypeR′(aboveR′({V })), we have that SR′(V ) ∈ T 0

reg(Σ). 2
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7 Conclusion

We can do type inference in polynomial time for objects with both covariant and invariant fields.
Covariant read-only fields can be either explicitly specified or discovered by our algorithm. Perhaps
surprisingly, specifying read-only fields explicitly seems not to make type inference easier.

Acknowledgment: Palsberg was supported by a National Science Foundation Faculty Early
Career Development Award, CCR–9734265.

A Proof of Lemma 2.3

Here we give a full proof that ≤ is a partial order.
First, ≤ is reflexive because the identity on T (Σ) is a simulation.
The composition (R ◦R′) of binary relations R and R′ over a set X is defined in the usual way:

(x, x′) ∈ (R ◦R′)⇔ ∃x′′ ∈ X. (x, x′′) ∈ R, (x′′, x′) ∈ R′.

Lemma A.1 If R is a reflexive simulation, then (R ◦R) is a simulation.

Proof. Suppose (A,A′) ∈ (R ◦R). Then there is an A′′ such that (A,A′′) ∈ R and (A′′, A′) ∈ R.

• If A′ = U , then A′′ = U because (A′′, A′) ∈ R; and then A = U because (A,A′′) ∈ R.

• Similarly, if A = U , then A′ = U .

• Otherwise A′ = [`v′ : B′, . . .]. Then since R is a simulation, we have

A′′ = [`v′′ : B′′, . . .],

A = [`v : B, . . .],

v v v′′ v v′,

(B′′, B′) ∈ R,

v′ = 0⇒ (B′, B′′) ∈ R,

(B,B′′) ∈ R, and

v′′ = 0⇒ (B′′, B) ∈ R.

Since v is transitive we have v v v′.

We have (B,B′′) ∈ R, (B′′, B′) ∈ R; that is, (B,B′) ∈ (R ◦R).

If v′ = 0, then from v′′ v v′ we have v′′ = 0, and so (B′, B′′) ∈ R, (B′′, B) ∈ R, that is,
(B′, B) ∈ (R ◦R), as desired.

2

Corollary A.2 ≤ is transitive.

Proof. Just note that ≤ is reflexive, and ≤ ⊇ (≤ ◦ ≤) because ≤ is the largest simulation. 2

Lemma A.3 Every simulation is antisymmetric.

Proof. Let R be a simulation. We prove the following statement by induction on α:
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If (A,A′) ∈ R and (A′, A) ∈ R, then A = A′, that is, A(α) = A′(α) for every α.

• If α = ε, we show A(α) = A′(α) by cases on the structure of A.

If A = U , then by the definition of simulation, A′ = U . Therefore A(α) = U = A′(α).

If A is a record type, then by the definition of simulation and the antisymmetry of v, A′

is a record type with exactly the same labels and variances; that is, A = [`vi
i : B i∈1..n

i ]
and A′ = [`vi

i : B′ i∈1..n
i ]. Therefore A(α) = {`vi

i : i ∈ 1..n} = A′(α) as desired.

• If α = `α′, we consider two cases.

If A(`) is undefined, then either A = U for some U , or A is a record type with no `
field. In the first case, A′ = U because (A′, A) ∈ R. In the second case, A′ has no `
field (otherwise (A,A′) ∈ R would imply A has an ` field, contradiction). In either case,
A′(`) is undefined, so both A(α) and A′(α) are undefined.

If A = [`v : B, . . .], then by the definition of simulation and the antisymmetry of v, we
have A′ = [`v : B′, . . .] and (B,B′), (B′, B) ∈ R. Then by induction, B(α′) = B′(α′). So
A(α) = B(α′) = B′(α′) = A′(α) as desired.

2
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B Notation

α path (element of Labels∗)
ε the empty path
Σ the alphabet of trees
σ element of Σ
A, B, C types
A(α) symbol of Σ at path α in type A
A ↓ α subtree of type A at path α
A[U := B] type A with U replaced by B
a, b, c terms
a[·] context with one hole
a[b] context a[·] with hole filled by term b
a[`← ς(x)b] update field ` of a with ς(x)b
a[x := b] term a with x replaced by b
aR term whose typability is equivalent to R
a ; b term a rewrites to term b
R relation on types also known as set of constraints
C(a), Ea, Xa, Ya system equivalent to typability of term a
E type environment
E[x : A] type environment with updated binding for x
E\x type environment with binding for x removed
I index set
i, j indices
k, `, m labels
Labels the set of labels
n index bound
Q, W elements of constraints
S substitution
U , V type variables
Variances the set of variances
v variance (element of Variances)
X generic set
x, y term variables
≤ our subtyping relation
v, t ordering and lub on Variances
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