
Decomposing Opacity

Mohsen Lesani Jens Palsberg
Computer Science Department

University of California, Los Angeles
{lesani, palsberg}@ucla.edu

Abstract. Transactional memory (TM) algorithms are subtle and the
TM correctness conditions are intricate. Decomposition of the correct-
ness condition can bring modularity to TM algorithm design and veri-
fication. We present a decomposition of opacity called markability as a
conjunction of separate intuitive invariants. We prove the equivalence of
opacity and markability. The proofs of markability of TM algorithms can
be aided by and mirror the algorithm design intuitions. As an example,
we prove the markability and hence opacity of the TL2 algorithm. In
addition, based on one of the invariants, we present lower bound results
for the time complexity of TM algorithms.

1 Introduction

A transactional memory (TM) [24, 36] is a concurrent object that encapsulates
and manages accesses to an array of memory locations. The clients of a TM are
transactions, sequences of accesses to the encapsulated locations. A transactional
processing system is the composition of a TM and a set of client transactions.
While the clients issue the invocation events, the TM issues the response events.
Researchers have proposed several TM correctness conditions including opacity
[20], VWC [25], TMS1 and TMS2 [13], and DU-opacity [2] that characterize the
required safety conditions on TM response events.

Considering strength of the promised safety properties, designing a correct
TM is an art. TM algorithms whether in software [9, 11, 12, 15, 23, 35], hard-
ware [1, 7, 22, 37] or hybrid [8, 10, 26, 31, 32] are subtle and prone to bugs [30].
Thus, verification of TM algorithms by model checking [4–6,16–18,33], invariant
generation [14] and theorem proving [28] has been a topic of recent attention.
Verifying a complicated monolithic condition for a realistic specification of a
TM algorithm can be a formidable problem. Can the correctness condition of
TM be stated as a conjunction of simpler intuitive conditions? In other words,
is there an meaningful decomposition of the correctness condition? What are
the separate invariants that the TM designers should maintain? Decomposition
of the correctness condition enhances the understanding of the correctness and
brings modularity to the algorithm design. It showcases different aspects of cor-
rectness and helps designers concentrate on maintaining one aspect at a time.
More importantly, separation has obvious benefits of modularity and scalabil-
ity for verification. Furthermore, it supports studying the time complexity and
performance of TM algorithms.

We decompose opacity to separate intuitive invariants. We define that an
execution history is markable if there is a specific ordering relation on the set
of transactions and read operations called marking such that three invariants
are satisfied. We prove that markability is required and sufficient for opacity.
At a high level, the first invariant called write-observation requires that each
read operation returns the most current value. The second invariant called read-
preservation requires that the read location is not overwritten in the interval
that the location is read and the transaction takes effect. The third invariant
is the well-known real-time-preservation property. We show that the marking
relation for the TL2 algorithm [11] can be defined using the execution order and
the linearization order of method calls on the used synchronization objects and
proofs of markability can be aided by and mirror the algorithm design intuitions.
We prove markability and hence opacity of TL2. Finally, inspired by the read-
preservation invariant, we present lower bound results for the time complexity
of a class of TM algorithms.

In the following sections, we first introduce the notion of markability and
present the marking of TL2 as an example. We then formally define markability,
and present the marking theorem that states the equivalence of opacity and
markability. Next, we formally state the marking relation of TL2 and state that
TL2 is markable and hence opaque. Finally, we present our lower bound results
for the time complexity of TM algorithms.

2 Write-observation and Read-preservation

In this section, we explain the main ideas behind markability by focusing on
complete histories with only global reads and writes. A history is complete if
every transaction in it is either aborted or committed. A read R by a transaction
T is global if T has no write to the same location before R. A write W by a
transaction T is global if T has no write to the same location after W .

A transaction history is markable if and only if there exists a marking of
it that is write-observant, read-preserving, and real-time-preserving. We explain
each property in turn.

A marking of a transaction history is a relation on the union of the transac-
tions and the read operations in the history. We can think of the marking as the
union of a collection of orders: The effect order : The effect order is a total order
of the transactions. The access orders: Consider an unaborted read operation
R on a location i. Let us refer to the committed transactions that have write
operation(s) to location i as writers of i. For each such R, the access order is
an antisymmetric relation that orders R and every writer of i. The effect order
represents the order in which the transactions appear to take effect. The access
order of a read operation R from a location i represents where the access to i
by R has happened between the accesses to i by the writers of i.

Note that marking not only recognizes the points where transactions take ef-
fect but also the points where reads take place. The effect point of a transaction
captures the point where the whole transaction takes effect. But a transaction

2

T
1

T
2

T
3

T
4

R

(a)

T
1

T
2

T
3

T
4

R

(b)

T
1

T
2

T
3

T
4

R

(c)

Fig. 1. Illustrations of Write-observation and Read-preservation

is split into multiple operations. Particularly, read operations observe values be-
fore the commit operation is even invoked. Any value that the TM algorithm
returns in response to a read invocation should be justified at the point where the
transaction takes effect. There is a point where each writer transaction writes the
new value to the underlying shared objects. Every read operation reads the value
that it returns at a certain point between the write points of the writer trans-
actions. The access order captures this design decision. Having the access order
in addition to the effect order makes it possible to decompose the consistency
condition into two orthogonal invariants. Particularly, the read-preservation in-
variant makes sure that the read value is not overwritten in the interval between
the point where a read happens and the point where the transaction takes effect.
Next, we will explain write-observation and read-preservation invariants in turn.

At a high level, write-observation means that each read operation should
read the most current value. Let us explain this idea in more detail. Consider an
unaborted read operation R from a location i. Let pre-accessors be the writers
of i that come before R in the access order for R. We can use the effect order to
determine the last pre-accessor that is, the pre-accessor that is greatest in the
effect order. Write-observation requires that the value that R reads be the same
as the value written by the last pre-accessor.

Figure 1 illustrates the write-observation and read-preservation invariants.
Each sub-figure shows a marking relation v. In every sub-figure, the effect order
is T1 v T2 v T3 v T4 and the transaction T3 performs the read operation
R. In Figure 1(a), T1 and T4 are writers of i and the access order for R is
{T1 v R,R v T4}. T1 is the last pre-accessor for R. Thus, by write-observation,
R is expected to return the value that T1 writes to i.

At a high level, read-preservation means that the location read by a read op-
eration is not overwritten between the points that the read takes place and the
transaction takes effect. Let us explain this idea in more detail. Consider an un-
aborted read operation R by a transaction T from a location i. Intuitively, read-
preservation requires that no writer of i comes between R and T in the marking

3

relation. More precisely, read-preservation requires that there is no writer T ′ of
i that accesses i after R and takes effect before T and there is no writer T ′ of
i that takes effect after T and accesses i before R. (Note that depending on
whether a transaction takes effect earlier or later in its lifetime, one of these two
conditions is usually trivially true.) In other words, read-preservation requires
the writers to both access i and take effect on the same side of R and T . More
precisely, if a writer T ′ accesses i before R (T ′ is marked before R in the access
order), then T ′ takes effect before T (T ′ is marked before T in the effect order)
too. Similarly, read-preservation requires that if T ′ accesses i after R, it takes
effect after T too.

The marking relation in Figure 1(a) satisfies read-preservation as there is no
writer between R and T3. The transaction T1 accesses i before R and takes effect
before T3 too. The transaction T4 accesses i after R and takes effect after T3 too.
Figures 1(b) and 1(c) show markings that are not read-preserving. In Figure 1(b),
T1, T2 and T4 are writers of i and the access order is {T1 v R,R v T2, R v T4}.
The transaction T2 is between R and T3. Therefore, the marking is not read-
preserving. In Figure 1(c), T1 and T4 are writers of i and the access order is
{T1 v R, T4 v R}. The transaction T4 is between T3 and R. Therefore, the
marking is not read-preserving.

The real-time-preservation condition requires that if all the events of a trans-
action T happen before all the events of another transaction T ′, then T is less
than T ′ in the effect order.

Our marking theorem says that a history is opaque if and only if it is mark-
able. So, to prove opacity, we can focus on proving markability. The algorithm
designer can usually define the marking relation readily from the guarantees
(such as linearization orders) of the used shared objects. In contrast to opacity,
markability of the algorithm can be established by modular verification of the
separate markability conditions that involve different aspects of the algorithm.

If a transaction history H is markable, we can show that H is opaque. We
construct a justifying history by ordering the transactions in the effect order.
Consider an arbitrary read R from i by T . We call the writers of i that take
effect before T , pre-effectors. Let the last pre-effector be the pre-effector that is
the greatest in the effect order. We need to show that the value that R returns
is the value that the last pre-effector writes. We recall that we refer to the
writers of i that access i before R as pre-accessors and refer to the pre-accessor
that is greatest in the effect order as the last pre-accessor. First, we argue that
pre-accessors are exactly pre-effectors. If a writer of i accesses before R, by read-
preservation, it does not take effect after T . Thus, by totality of effect order, it
takes effect before T . In the other direction, if a writer of i takes effect before T ,
by read-preservation, it does not access after R. Thus, as the access order orders
R and every writer of i, T accesses before R. Second, from write-observation,
we have that R returns the value written by the last pre-accessor. Thus, from
the two above statements, we have that R returns the value written by the last
pre-effector. This is the essence of the condition needed to prove opacity.

4

3 Marking TL2

Now, we look at the marking of the TL2 algorithm [11] as an example. TL2
is specified in Figure 2. The specification first declares the type of the used
synchronization objects and then defines the methods of the TM interface.

In the init method, each transaction t reads the current snapshot version
from clock at I01 and writes it to the read version register rver[t] at I02. The
read version is read at R07 and C08 to validate the read values. TL2 is a deferred-
update TM algorithm. A value that a transaction t writes to a location is buffered
in the write set wset[t] at W01 and is written back to register reg[i] at C16i
while t is committing. TL2 records a version in the register ver[i] for the value
stored in the register reg[i]. The version register ver[i] is updated to ascending
numbers at C17i after new values are written back to reg[i] at C16i. The try-
lock lock[i] is used for exclusive access to the registers for location i. At commit,
the lock lock[i] of each location i in the write set wset[t] is acquired at C01 to
C06. (If a lock cannot be acquired, the previously acquired locks are released
at C05 and the transaction is aborted at C06.) Then, a new snapshot number
is read from clock at C07. Then, for each location in the read set rset[t], first
lock[i] and then ver[i] are read at C10i and C11i and the read is validated. (If a
read is not validated, the acquired locks are released at C13 and the transaction
is aborted at C14.) Finally, the value buffered for each location i in wset[t] is
written back at C15i to C18i. For each pair in the write set wset[t], the following
three operations are executed in order. First, the buffered value is written back
to reg[i], then ver[i] is updated, and then lock[i] is released. To read a location i,
a transaction reads ver[i], reg[i], lock[i] and again ver[i] in order at R03 to R06
and then validates the read. (If the validation fails, the transaction is aborted.)
Finally, i is added to the read set rset[t] and the read value is returned.

Let us describe the marking relation for TL2. The clock object numbers
the snapshots. Every transaction reads an initial snapshot number at I01. A
committing transaction makes a new snapshot at C07. The effect point of a
TL2 transaction is I01, if it is live or aborted and, is C07, if it is committed.
The effect order of transactions is the linearization order of clock for their effect
points. The access point of a read operation is at R04 where reg[i] is read and
the access point of a writer of i is C16i where reg[i] is written. Consider a read R
from i and a writer T ′ to i. If the access point of T ′ is executed before the access
point of R, then T ′ is ordered before R in the access order of R. Otherwise,
T ′ is ordered after R in the access order of R. The access and effect points for
markability of a TM are reminiscent of the linearization points for linearizability
of a concurrent data structure.

One of the two conjuncts of the read-preservation property requires that for
every transaction T with an unaborted read operation R from a location i, there
is no writer T ′ of i such that T ′ takes effect after T and accesses i before R.
Let us see how TL2 preserves this property. We assume that there exists such
a writer T ′ and show that the validation checks embodied in TL2 detect the
existence of T ′ and abort R. We consider a transaction T with a read operation
R from a location i and a writer T ′ of i. We assume that T ′ takes effect after

5

reg : BasicRegister[|I|], rver : ThreadLocal BasicRegister,
ver : AtomicRegister[|I|], rset : ThreadLocal BasicSet,
lock : TryLock[|I|], wset : ThreadLocal BasicMap,
clock : SCounter, lset : ThreadLocal BasicSet

def initt() def committ()

I01 . snap = clock.read() C01 . foreach (i ∈ wset[t])
I02 . rver[t].write(snap) C02i . locked = lock[i].trylock()
I03 . return ok if (¬locked)
def readt(i) C03i . lset.add(i)
R01 . pv = wset[t].get(i) else

if (pv 6= ⊥) C04i . foreach (j ∈ lset)
R02 . return pv C05ij . lock[j].unlock()

C06i . return A
R03 . s1 = ver[i].read()

R04 . v = reg[i].read() C07 . wver = clock.iaf()
R05 . l = lock[i].read()
R06 . s2 = ver[i].read() C08 . sver = rver[t].read()
R07 . sver = rver[t].read() if (wver 6= sver + 1)

if (¬(¬l ∧ s1 = s2 ∧ s2 ≤ sver)) C09 . foreach (i ∈ rset[t])
R08 . return A C10i . l = lock[i].read()

C11i . s = ver[i].read()
R09 . rver[t].add(i) if (¬(¬l ∧ s ≤ sver))
R10 . return v C12i . foreach (j ∈ lset)
{R03→ R04, R04→ R05, R05→ R06} C13ij . lock[j].unlock()
def writet(i, v) C14i . return A
W01 . wset[t].put(i, v)
W02 . return ok C15 . foreach ((i, v) ∈ wset[t])

def abortt() C16i . reg[i].write(v)

A01 . return A C17i . ver[i].write(wver)
C18i . lock[i].unlock()

C19 . return C
{C01→ C07, C10→ C11, C09→ C15,
C16→ C17, C17→ C18}

Fig. 2. TL2 Algorithm Specification

T and T ′ accesses i before R. For brevity, we consider only the case that T
is a live or aborted (not a committed) transaction. Figure 3 depicts the two
transactions. We use the binary operators ≺X to denote execution order, ∼X to
denote concurrent execution and -X to denote in-order or concurrent execution
of method calls. We use the binary operators ≺clock, ≺ver[i] and ≺lock[i] to denote

6

T T ′

I01 . snap = clock.read() C02i . lock[i].trylock()

I02 . rver[t].write(snap) ...

C07 . wver = clock.iaf()

... ...

C16i . reg[i].write(v)

R04 . v = reg[i].read() C17i . ver[i].write(wver)

R05 . l = lock[i].read() C18i . lock[i].unlock()

R06 . s2 = ver[i].read()

R07 . sver = rver[t].read()

if (¬(¬l ∧ s1 = s2 ∧ s2 ≤ sver))
return A

Fig. 3. TL2 Read-Preservation Example

the linearization order of clock, ver[i] and lock[i] respectively.1 We recall that the
real-time-preservation property of a linearizable object o states that if a method
call m1 on o is executed before another method call m2 on o, then m1 is linearized
before m2. Equivalently, if m1 is linearized before m2, then m1 is executed before
or concurrent to m2. By the marking relation defined above, from the premise
that T ′ takes effect after T , and that T is aborted and T ′ is committed, we have
(1) I01 ≺clock C07. Similarly, by the marking relation defined above, from the
premise that T ′ accesses i before R, we have (2) C16i ≺reg[i] R04. The method
calls R05 and C18i are on the object lock[i]. We consider two cases for the
linearization order of them and show that R returns A in both cases. Case 1:
(3) R05 ≺lock[i] C18i. From the execution, we have (4) C02i ≺X C16i and (5)
R04 ≺X R05. By the real-time-preservation property for ver[i] on 2, we have (6)
C16i -X R04. By the transitivity of the execution order on 4, 6 and 5, we have
C02i ≺X R05; thus, by the real-time-preservation property for lock[i], we have
(7) C02i ≺lock[i] R05. From 7 and 3, we have that R05 is executed when lock[i]
is acquired. Therefore, R05 returns true i.e. l = true. Thus, the validation check
fails and R returns A.

Case 2: (8) C18i ≺lock[i] R05. By the real-time-preservation property for
lock[i], from 8, we have (9) C18i -X R05. From the execution, we have (10)
C17i ≺X C18i and (11) R05 ≺X R06. By the transitivity of the execution order
on 10, 9 and 11, we have (12) C17i ≺X R06. By the real-time-preservation
property for ver[i], from 12, we have (13) C17i ≺ver[i] R06. It is straightforward
to separately prove that (14) The register ver[i] is updated only to ascending
numbers. From 14 and 13, we have that R06 reads a value that is greater than
or equal to the value that C17i writes i.e. (15) s2 ≥ wver. From 1, and that iaf

1 We have formally proved the markability of TL2 using a novel program logic [27]
that facilitates reasoning about execution and linearization orders. To keep the focus
of this paper on markability, we use a simplified reasoning instead of the logic.

7

returns the incremented value, we have (16) snap < wver. The value of sver is
read at R07 from rver. The thread-local register rver is only assigned at I02 to
snap. Thus, we have (17) snap = sver. From 15, 16 and 17, we have s2 > sver.
Thus, the validation check fails and R returns A in this case too.

Please see the appendix [29] for the proof of markability of TL2 and also the
marking relations for DSTM (visible reads) [23] and NORec [9] TM algorithms.

4 Markability

In this section, we first present preliminary definitions about execution histories
and then, present the formal definition of markability and state its equivalence
to opacity.

4.1 Histories

Strings. We use ||s|| to denote the size of the string s. If s1 and s2 are strings, we
write s1 b s2 iff s1 is a subsequence of s2. For example, bd b abcde. Let s be an
isogram string (i.e. contains no repeating occurrence of the alphabet.) For any
s1, s2, we write s1 �s s2 iff the last element of s1 occurs before the first element
of s2 in s. For example, ab�abcde de.

Method calls and events. An invocation event is of the form inv(l .
o.nT (v)) where l is a label, o is an object, n is a method name, T is a transaction

identifier and v is a value. A response event is of the form ret(l . v) where l
is a label and v is a value. A completed method call is the sequence of an in-
vocation event and the matching response event (with the same label). We use
l . o.nT (v):v to denote the completed method call inv(l . o.nT (v)) · ret(l . v).

Operations on event sequences. Let E and E′ be event sequences. We
use E · E′ to denote the concatenation of E and E′. For a transaction T , we
use E|T to denote the subsequence of all events of T in E. A sequence of events
is sequential if and only if it is a sequence of completed method calls possibly
followed by an invocation event. A transaction T is sequential in a sequence of
events E if E|T is sequential.

Execution history. An execution history is an event sequence where in-
vocation events have unique labels and every transaction is sequential. We say
label l is in X and write l ∈ X if there is an invocation event with label l in X.
We use l, R and W to denote labels. As the labels are unique in a history, the
following functions on labels are defined. The functions objX , nameX , transX ,
arg1X , arg2X , retvX map labels to the receiving object, the method name, the
transaction identifier, the first and the second arguments, and the return value
associated with the labels. Similary, iEv and rEv functions on labels map labels
to the invocation and the response events associated with the labels.

Real-time relations. For an execution history X, we define the method
call real-time relations ≺X and �X on labels as follows: First, l1 ≺X l2 iff
rEv(l1)�X iEv(l2). Second, l1 �X l2 iff l1 ≺X l2 ∨ l1 = l2.

8

For an execution history X, we define the transaction real-time relations
≺≺X and ��X as follows. First, T ≺≺X T ′ iff X|T �X X|T ′. Second, T ��X T ′ iff
T ≺≺X T ′ ∨ T = T ′.

Transactional Memory. The transactional memory is a singleton object
mem that encapsulates a set of locations where each location, i ∈ I, I =
{1, . . . ,m} encapsulates a value v. The object mem has five methods initt(),
readt(i), writet(i, v), committ() and abortt(). The parameter t is the invoking
transaction identifier. The method call initt() initializes t and returns ok. The
method call readt(i) returns the value of location i or aborts t and returns A.
The method writet(i, v) writes v to location i and returns ok or aborts t and re-
turns A. The method committ() tries to commit transaction t. If t is successfully
committed, it returns C; otherwise, it returns A. The method abortt() aborts t
and returns A. The object mem can be implicit, that is readt(i) abbreviates
mem.readT (i). The reserved values ok, A, C denote successful completion of
writes and, abortion and commitment of transactions respectively.

Transaction History. A transaction history H is an execution history such
that H|mem = HInit · H ′ with the following conditions. HInit is the follow-
ing history that initializes every location to v0. HInit = l0i . initT0

() · l00 .
writeT0

(1, v0):ok · . . . · l0m . writeT0
(m, v0):ok · l0c . commitT0

:C. For every
T ∈ H ′, the history H ′|T is a prefix of E.E′. The event sequence E is the
initialization method call l . initT () (for some l), and then a sequence of reads
l.readT (i):v and writes l.writeT (i, v) (for some l, i, and v). The event sequence
E′ is one of the following sequences (for some l, i, and v): (1) inv(l . readT (i)),
ret(l.A), (2) inv(l.writeT (i, v)), ret(l.A), (3) inv(l.commitT ()), ret(l.C), (4)
inv(l . commitT ()), ret(l .A), or (5) inv(l . abortT ()), ret(l .A). Let THistory
denote the set of transaction histories. Let Trans(H) denote the set of transac-
tions of H. The projection of H on i, written H|i, denotes the subsequence of
history H that contains exactly the events on location i. For a TM algorithm
specification π, let H(π) denote the set of complete transaction histories that
result from execution of transactions with π.

4.2 Formal Definition of Markability

First, we present some preliminary definitions in Figure 4. (We use the prefix
T before some of the terms for transactions to avoid confusion with similar
terms that are usually used for general concurrent objects.) A transaction T is
committed or aborted in a transaction history H if there is respectively a commit
or abort response event for T in H. A completed transaction is either committed
or aborted. A live transaction is a transaction that is not completed. A pending
transaction has a pending event and a commit-pending transaction has a commit
pending event. An extension of a history is obtained by committing or aborting
its commit-pending transactions and aborting the other live transactions.

A local read is a read that is preceded by a write by the same transaction to
the same location. Intuitively, a local read should read a value that is previously
written by the same transaction and hence the name. A global read is a read that
is not local. A local write is a write that precedes a write by the same transaction

9

Committed(H) = {T | ∃l ∈ H : objH(l) = mem ∧ transH(l) = T ∧
retvH(l) = C}

Aborted(H) = {T | ∃l ∈ H : objH(l) = mem ∧ transH(l) = T ∧
retvH(l) = A}

Completed(H) = Committed(H) ∪Aborted(H)

Live(H) = Trans(H) \ Completed(H)

CommitPending(H) = {T | T ∈ Live(H) ∧ ∃l ∈ H :

objH(l) = mem ∧ objH(l) = mem ∧ transH(l) = T}
TExtension(H) = {H ′ | H ′ ∈ THistory ∧ ∃H ′′ : H ′ = H ·H ′′ ∧

Trans(H ′′) ⊆ Trans(H) ∧ ∀T : ||H ′′|T || ≤ 1 ∧
Live(H) \ CommitPending(H) ⊆ Aborted(H ′) ∧
CommitPending(H) ⊆ Completed(H ′)}

TReads(H) = {R | R ∈ H ∧ objH(R) = mem ∧ nameH(R) = read ∧
retvH(R) 6= A}

TWrites(H) = {W |W ∈ H ∧ objH(W) = mem ∧ nameH(W) = write ∧
retvH(W) 6= A}

LocalTReads(H) = {R | R ∈ TReads(H) ∧ ∃W ∈ TWrites(H) :

transH(R) = transH(W) ∧
arg1H(R) = arg1H(W) ∧ W ≺H R}

GlobalTReads(H) = TReads(H) \ LocalTReads(H)

LocalTWrites(H) = {W |W ∈ TWrites(H) ∧ ∃W ′ ∈ TWrites(H) :

transH(W) = transH(W ′) ∧
arg1H(W) = arg1H(W ′) ∧ W ≺H W ′}

GlobalTWrites(H) = TWrites(H) \ LocalTWrites(H)

WritersH(i) = {T | T ∈ Trans(H) ∧ ∃l ∈ TWrites(H) : arg1H(l) = i ∧
transH(l) = T ∧ T ∈ Committed(H)}

Fig. 4. Basic Definitions

to the same location. A local write is overwritten by the same transaction and
hence the name. A global write is a write that is not local. The writers of i are
the committed transactions that write to location i.

Markability is defined in Figure 5. A marking v of a transaction history
is the union of the following relations on the set of transactions and the global
reads. The effect order : The set of transactions is totally ordered by the marking
relation v. In other words, the marking relation v is total, antisymmetric and
transitive on the set of transactions. The access orders: For each global read R
from a location i, R and every writer of i are ordered by the marking relation v.
In other words, the marking relation v totally orders every global read R from
a location i with respect to writers of i and is antisymmetric.

The write-observation property is comprised of the two properties: local write-
observation and global write-observation. Local write-observation requires that
every local read R from a location i returns the value written by the last write

10

Marking(H) = {v |
∀T1, T2, T3 ∈ Trans(H) :

(T1 v T2 ∨ T2 v T1) ∧
(T1 v T2 ∧ T2 v T1)⇒ (T1 = T2) ∧
(T1 v T2) ∧ (T2 v T3)⇒ (T1 v T3) ∧

∀R, T : Let i = arg1H(R) : (R ∈ GlobalTRead(H) ∧ T ∈WritersH(i))⇒
(R v T ∨ T v R) ∧
(R v T ⇒ ¬T v R) ∧ (T v R⇒ ¬R v T)}

NoWriteBetweenH(W,R)⇔
∀W ′ ∈ TWrites(H) : W ′ �H W ∨ R ≺H W ′

LocalWriteObs(H)⇔
∀R ∈ LocalTReads(H) : Let T = transH(R), i = arg1H(R), H ′ = H|T |i :
∃W ∈ TWrites(H ′) :

W ≺H′ R ∧ NoWriteBetweenH′(W,R) ∧ retvH′(R) = arg2H′(W)

N oWriterBetweenH,i(x,v, x′)⇔
∀T ∈W ritersH(i) : T v x ∨ x′ v T

LastPreAccessorH,v(T ′, R)⇔ Let i = arg1H(R), T = transH(R) :

T ′ ∈WritersH(i) ∧ T ′ 6= T ∧ T ′ < R ∧ N oWriterBetweenH,i(T
′,v, R)

GlobalWriteObs(H,v)⇔
∀R ∈ GlobalTReads(H) : ∃W ∈ GlobalTWrites(H) : Let T ′ = transH(W) :

LastPreAccessorH,v(T ′, R) ∧
arg1H(R) = arg1H(W) ∧ retvH(R) = arg2H(W)

W riteObs(H,v)⇔
LocalWriteObs(H) ∧ GlobalWriteObs(H,v)

ReadPres(H,v)⇔
∀R ∈ GlobalTReads(H) : Let i = arg1H(R), T = transH(R) :

N oWriterBetweenH,i(R,v, T) ∧ N oWriterBetweenH,i(T,v, R)

RealT imePres(H,v)⇔
��H ⊆ v

F inalStateMarkable = {H |
H ∈ THistory ∧ ∃H ′ ∈ TExtension(H) : ∃ v ∈Marking(H ′) :

W riteObs(H ′,v) ∧ ReadPres(H ′,v) ∧ RealT imePres(H ′,v)}

Fig. 5. F inalStateMarkable

to i that is executed before R by the same transaction. As we defined before,
pre-accessors of R are the writers of i that are ordered before R in the access
order and the last pre-accessor of R is the one that is greatest in the effect order.
Global write-observation requires that the value that every global read R from
a location i returns is the value written by the global write to i by the last
pre-accessor transaction of R.

The Read-preservation property requires that for every global read R from
location i by transaction T , there is no writer transaction T ′ of i such that T ′

11

is marked between R and T (i.e. T ′ accesses i after R and takes effect before
T), or similarly, T ′ is marked between T and R (i.e. T ′ takes effect after T and
accesses i before R).

The real-time-preservation property requires that if T is before T ′ in the
transaction real-time order, then T takes effect before T ′ as well.

A transaction history is final-state-markable if and only if there exists a
marking for an extension of it that is write-observant, read-preserving, and real-
time-preserving.

The marking theorem states that a transaction history is final-state-opaque
if and only if it is final-state-markable. The formal definition of opacity and the
proofs are available in the appendix [29].

Theorem 1 (Marking). F inalStateOpaque = F inalStateMarkable.

5 Opacity of TL2

Now, we define the marking relation for the TL2 algorithm in Figure 2. We use
the call string label l1’l2 to denote the method call labeled l2 that is executed in
the body of the method call labeled l1. We use initOfH(T) and commitOfH(T)
to denote the init and commit method calls of T in H.

Definition 1 (Marking TL2). Consider an execution history H ∈ H(TL2).
Let

Eff(T) =

{
initOfH(T)’I01 if T ∈ Aborted(H)

commitOfH(T)’C07 if T ∈ Committed(H)

readAcc(R) = R’R04

writeAcc(T, i) = commitOfH(T)’C16i

The marking v for H is the reflexive closure of the relation < that is defined as
follows:

{(T, T ′) | T, T ′ ∈ Trans(H) ∧ Eff(T) ≺clock Eff(T ′)} ∪
{(T,R) | Let i = arg1(R) : R ∈ GlobalTReads(H), T ∈WritersH(i) ∧

writeAcc(T, i) ≺H readAcc(R)} ∪
{(R, T) | Let i = arg1(R) : R ∈ GlobalTReads(H), T ∈WritersH(i) ∧

readAcc(R) -H writeAcc(T, i)}

The following theorems state the markability and the opacity of TL2.

Theorem 2 (Markability of TL2). ∀H ∈ H(TL2) : H ∈ F inalStateMarkable

Corollary 1 (Opacity of TL2). ∀H ∈ H(TL2) : H ∈ F inalStateOpaque

The appendix [29] presents the proofs. The above corollary states that every
history of TL2 is final-state-opaque. As the set of histories of a TM algorithm
is prefix-closed, a TM algorithm is opaque if and only if every history of it is
final-state-opaque. (See [21], Observation 7.4.) Therefore, TL2 is opaque.

12

6 The Cost of Read Validation

The read-preservation invariant requires the TM algorithm to check that a read
location is not overwritten between the point where the location is read and
the point where the transaction takes effect. This requirement motivated us to
study how read-preservation can influence the time complexity of TM operations
and helped us construct client scenarios that exhibit lower bounds. We present
a generalization of the seminal lower bound result presented in [20]. We first
recall some definitions from previous works on the inherent complexity of TM
[3,19,20,34].

An aborted transaction that did not invoke an abort operation is said to be
forcefully aborted. We say that two transactions conflict if they access the same
location and one of them writes to the location. A TM algorithm is (weakly)
progressive if and only if it forcefully aborts a transaction only when it conflicts
with a live transaction. More precisely, it aborts a transaction only when there is
a time t at which it conflicts with another concurrent transaction that is live at
time t (not committed or aborted by time t). In addition to providing progress,
progressive TM algorithms are expected to retry transactions less frequently and
therefore, improve performance.

A TM algorithm is invisible-reads if and only if the read operation does not
mutate (i.e. change the state of) any base object. Mutating base objects can
potentially invalidate the caches and adversely affect performance. Thus, most
high-performance TM algorithms are invisible-reads. A transaction is read-only
if and only if it does invoke any write operations. We assume that the abort
operation for a read-only transaction does not mutate any base shared object.

Two transactions contend on a base object o if and only if they access o and at
least one of them mutates o. A TM algorithm is (strictly) disjoint-access-parallel
if and only if two transactions contend on a base object only if they access a
common memory location. Disjoint-access-parallelism can improve scalability as
transactions that access disjoint memory locations access disjoint base objects.

A TM algorithm is single-version if and only if it stores a single value for
each memory location in the base objects.

Theorem 3. The time complexity of the commit operation of every opaque,
progressive, disjoint-access-parallel and invisible-reads TM algorithm is Ω(|R|)
where R is the read set.

This theorem shows that designers should pick at least one of the following
sources of inefficiency in the design of every opaque TM algorithm: aborting
non-conflicting transactions, sharing base objects between transactions that ac-
cess disjoint locations, visible reads or linear-time complexity of the commit
method. As an example, TL2 shares the clock object between all transactions
and is, therefore, not disjoint-access-parallel. In addition, it has linear-time read-
validation in the commit method.

Theorem 4. The time complexity of the commit operation of every opaque,
progressive, and invisible-reads TM algorithm that stores information about a

13

constant number of locations in each shared object is Ω(|R|) where R is the read
set.

The above theorem generalizes Theorem 3 of [20] by dropping the single-
version requirement. Note that the assumption about limited capacity of shared
objects is stated before the theorem in [20] and explicitly in the theorem here.
We leave the proofs to the appendix [29].

7 Conclusion

We presented a decomposition of opacity called markability as a conjunction of
separate invariants. We proved the equivalence of opacity and markability. We
showcased the applicability of markability as a proof technique for opacity by
stating the marking relation and proving the markability of the TL2 algorithm. In
addition, we presented a lower bound for the time complexity of TM algorithms.

References

1. C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie. Un-
bounded transactional memory. In HPCA, 2005.

2. H. Attiya, S. Hans, P. Kuznetsov, and S. Ravi. Safety of deferred update in trans-
actional memory. In ICDCS, 2013.

3. H. Attiya, E. Hillel, and A. Milani. Inherent limitations on disjoint-access parallel
implementations of transactional memory. Theory of Computing Systems, 49(4),
2011.

4. W. Baek, N. Bronson, C. Kozyrakis, and K. Olukotun. Implementing and evalu-
ating a model checker for transactional memory systems. In ICECCS, 2010.

5. A. Cohen, J. W. O’Leary, A. Pnueli, M. R. Tuttle, and L. D. Zuck. Verifying
correctness of transactional memories. In FMCAD, 2007.

6. A. Cohen, A. Pnueli, and L. D. Zuck. Mechanical verification of transactional
memories with non-transactional memory accesses. In CAV, 2008.

7. I. Corporation. Intel architecture instruction set extensions programming reference,
tsx. 319433-012, 2012.

8. L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott, and M. F.
Spear. Hybrid norec: A case study in the effectiveness of best effort hardware
transactional memory. In ASPLOS, 2011.

9. L. Dalessandro, M. F. Spear, and M. L. Scott. Norec: streamlining stm by abol-
ishing ownership records. In PPoPP, 2010.

10. P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum.
Hybrid transactional memory. SIGPLAN Not., 41(11), 2006.

11. D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC, (LNCS
4167), 2006.

12. D. Dice and N. Shavit. TLRW: Return of the read-write lock. In SPAA, 2010.
13. S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally specifying

and verifying transactional memory. Formal Aspects of Computing, 2012.
14. M. Emmi, R. Majumdar, and R. Manevich. Parameterized verification of transac-

tional memories. In PLDI, 2010.

14

15. P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of word-based
software transactional memory. In PPoPP, 2008.

16. R. Guerraoui, T. A. Henzinger, B. Jobstmann, and V. Singh. Model checking
transactional memories. In PLDI, 2008.

17. R. Guerraoui, T. A. Henzinger, and V. Singh. Software transactional memory on
relaxed memory models. In CAV, 2009.

18. R. Guerraoui, T. A. Henzinger, and V. Singh. Model checking transactional mem-
ories. Distributed Computing, 2010.

19. R. Guerraoui and M. Kapalka. On obstruction-free transactions. In SPAA, 2008.
20. R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In

PPOPP, 2008.
21. R. Guerraoui and M. Kapalka. Principles of Transactional Memory. M&C, 2010.
22. L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg,

M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional memory
coherence and consistency. In ISCA, 2004.

23. M. Herlihy, V. Luchangco, M. Moir, and I. W. N. Scherer. Software transactional
memory for dynamic-sized data structures. In PODC, 2003.

24. M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for
lock-free data structures. In ISCA, 1993.

25. D. Imbs, J. R. de Mendivil, and M. Raynal. Brief announcement: virtual world
consistency: a new condition for stm systems. In PODC, 2009.

26. S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid transactional
memory. In PPoPP, 2006.

27. M. Lesani. On the correctness of transactional memory algorithms. Phd Disserta-
tion. 2014. http://www.cs.ucla.edu/~lesani/companion/dissertation.

28. M. Lesani, V. Luchangco, and M. Moir. A framework for formally verifying software
transactional memory algorithms. In CONCUR, 2012.

29. M. Lesani and J. Palsberg. Decomposing opacity, the companion page. http:

//www.cs.ucla.edu/~lesani/companion/disc14.
30. M. Lesani and J. Palsberg. Proving non-opacity. In DISC, (LNCS 8205). 2013.
31. A. Matveev and N. Shavit. Reduced hardware transactions: A new approach to

hybrid transactional memory. In SPAA, 2013.
32. C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, J. Casper,

C. Kozyrakis, and K. Olukotun. An effective hybrid transactional memory system
with strong isolation guarantees. In ISCA, 2007.

33. J. O’Leary, B. Saha, and M. R. Tuttle. Model checking transactional memory with
spin. In ICDCS, 2009.

34. D. Perelman, R. Fan, and I. Keidar. On maintaining multiple versions in stm. In
PODC, 2010.

35. B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg. McRT-
STM: a high performance software transactional memory system for a multi-core
runtime. In PPoPP, 2006.

36. N. Shavit and D. Touitou. Software transactional memory. In PODC, 1995.
37. A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton, R. Silvera,

and M. Michael. Evaluation of blue gene/q hardware support for transactional
memories. In PACT, 2012.

15

http://www.cs.ucla.edu/~lesani/companion/dissertation
http://www.cs.ucla.edu/~lesani/companion/disc14
http://www.cs.ucla.edu/~lesani/companion/disc14

	Decomposing Opacity

