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Abstract. We show that overloading is NP-complete. This solves exercise 6.25 in the 1986 version of
the Dragon book.

1 Introduction

Overloading is a form of polymorphism in which a name denotes multiple functions and “the
context is used to decide which function is denoted by a particular instance of the name” [3]. Many
programming languages support overloading. For example, in MATLAB [8] the name mpower is
overloaded to denote both:

— a function of two arguments a,b where a is a square matrix and the exponent b is a scalar, and
— a function of two arguments a,b where a is a scalar and the exponent b is a square matrix.

When we call mpower in MATLAB, the arguments will be used to decide which function will be
called. Both functions return a square matrix. Similarly, in Java we can program an interface with
two methods that are both named mpower:

interface Math {
SquareMatrix mpower (SquareMatrix a, Scalar b);
SquareMatrix mpower(Scalar a, SquareMatrix b);

}

If a class implements Math and we call mpower on an object of that class, the arguments will be
used to decide which method will be called.

We say that an implementation resolves overloading when it decides which overloaded function
will be called.

How does a language implementation decide which function will be called? The easiest case is
when different functions have different numbers of arguments. In that case, the number of arguments
at the call site is sufficient to decide which function will be called. The harder case is when different
functions have the same number of arguments, like in the mpower example above. In that case, the
types of the arguments at the call site must be used to decide which function will be called.

Both MATLAB and Java has a notion of type associated with each value. A MATLAB value
can be a square matrix or scalar, for example, and a Java value can be a SquareMatrix object or a
Scalar object, for example. The type of a value determines which operations can be performed on
that value. For example, we can perform mpower on a scalar and a square matrix, but not on two
square matrices.

MATLAB and Java differ in when the type of a value is known to the implementation. MATLAB
has a dynamic type system in which the types are known at run time but are unknown to the
compiler, at least in some cases. So, in some cases, a MATLAB implementation must decide at run
time which overloaded function to call:



“MATLAB determines which implementation to call at the time of evaluation in this
case.” [12]

Java has a static type system in which the type of every value is known to the compiler. Java
requires that a Java implementation can resolve overloading by investigating the number and the
types of the arguments passed into a method:

“When a method is invoked, the number of actual arguments (and any explicit type argu-
ments) and the compile-time types of the arguments are used, at compile time, to determine
the signature of the method that will be invoked This enables a Java implementation to
decide at compile time which overloaded function to call.” [7]

For dynamically typed languages like MATLAB, overloading may decrease run-time perfor-
mance. This happens particularly when MATLAB has to examine the types of function arguments
at run time to decide which overloaded function to call.

For statically typed languages like Java, overloading is essentially a syntactic convenience that
frees programmers from inventing different names for functions with similar functionality. Instead,
the responsibility to invent such different names is passed on to the compiler. The compiler uses the
types of function arguments to do a source-to-source transformation that eliminates the use of over-
loading by giving different names to different functions. After such a transformation, compilation
can proceed as usual.

In this paper we focus on the computational complexity of overloading resolution in statically
typed languages. In Sections 2—7 we will explain in detail why overloading resolution is NP-complete
for an important case: a A-calculus with overloading. Our proof consists of three polynomial-time
reductions:

3SAT Monotone One-in-Three 3SAT < Overloading Resolution

<
< Constraint Solving

and an easy proof that the Constraint Solving problem is in NP. Thus, all of the listed problems are
NP-complete. In Section 8 we will discuss interactions of overloading and other language features.

Our proof is inspired by two lines of research. The first inspiration is hardware description
languages that allow component overloading [17,11]. The idea of component overloading is similar
to function overloading: the context is used to decide which component is denoted by a particular
instance of a name. Vachharajani et al [17], and Mathaikutty and Shukla [11] both sketched reduc-
tions that show that component overloading is NP-complete. Our reduction targets a A-calculus
with overloading and we give a detailed proof.

The second inspiration is a paper by Kozen et al. [10] who showed how to reduce a type-checking
problem to a constraint solving problem.

In the 1986 version of the Dragon book [1], Exercise 6.25 is to show that overloading is NP-
complete:

**6.25 The resolution of overloading becomes more difficult if identifier declarations
are optional. More precisely, suppose that declarations can be used to overload identifiers
representing function symbols, but that all occurrences of an undeclared identifier have the
same type. Show that the problem of determining if an expression in this language has a
valid type is NP-complete. This problem arises during type checking in the experimental
language Hope (Burstall, MacQueen, and Sannella [1980]). [1, p.384]

However, the exercise is difficult, we think, and the literature contains no detailed, formal proof,
hence this tutorial. We formalize the exercise as a problem about a A-calculus, as we explain next.



2 Example Language
Our example language is a A-calculus with overloading:
(Expression) eux=uz | A\x.e | ee

We use z to range over identifiers. Overloaded functions all come from the initial environment: each
free variable of an expression refers to an overloaded function. We assume that in every expression,
the bound variables are distinct and different from the free variables.

Each overloaded function has a restricted form of intersection type [5,9]: each intersection type
is an intersection of simple types. When a program uses one of the overloaded functions from the
initial environment, the function gets one of the simple types in the intersection. In contrast, every
programmer-defined function has a simple type.

Our interpretation of Exercise 6.25 in the 1986 version of the Dragon book is that the initial
environment provides identifiers that are declared with intersection types, while each programmer-
defined function leaves an identifier undeclared, that is, without a type annotation, and required
to have a simple type.

Let us now define the type system formally. We use ¢ to range over a finite set of at least two
base types. The types are:

(Type) s,t == c | t—t
(Intersection Type) u == uAwu | t
Ifu=(...ANtA...), then we write u <.
A type environments is a finite mapping from identifiers to types of the form u. We use A to

range over type environments.
A type judgment is of the form A F e : t. The type rules are:

Azt if A(z) <t (1)

Az :s]ke:t
AFdre:s—t

AFel:s—t Abey:s
Abeleg:t

We say that an expression e is typable with a type environment A if and only if there exists ¢
such that A e : t is derivable.
We define the resolution of overloading decision problem as follows:

Overloading Resolution
Instance: An expression e and a type environment A.
Problem: Is e typable with A7

Lemma 1. Suppose a derivation of A & ey : t contains the judgment A’ = €' : t'. If x is a free
variable of ey, then A(z) = A'(x).

Proof. We proceed by induction on eg. We have three cases.

— If eg = x, then €' is also z, so we have A = A’ hence A(z) = A'(x).



— If eg = Ay.e, then from the induction hypothesis and type rule (2), we have (1) (Afy : s])(x) =
A'(z). From (1) and that bound variables are different from the free variables, we have A(x) =
(Aly : s])(z) = A'(x), as desired.

— If ey = ejeo, then €’ occurs in either e; or es. Let us do a case analysis of the two cases. Suppose
¢’ occurs in e;. From the induction hypothesis and type rule (3), we have A(x) = A'(z), as
desired. The other case where ¢ occurs in e is similar, and also here we immediately get

A(z) = A'(z), as desired.
(|

3 Constraints

We define

(Term) ru=v | c| r—r

A constraint system over a set of type variables V is a finite collection of constraints of the forms:

u<sr
/
r=r
where u is an intersection type as defined above, and each variable that occurs in r or 7’ is a member
of V.

We use ¢ to range over finite mappings from type variables to types of the form ¢.
We define:

p(c) =c
@(r1 = r2) = p(r1) = ¢(r2)
A constraint system C' has solution ¢ if and only if

— for each constraint u < r in C, we have u < ¢(r),
— for each constraint r =7’ in C, we have ¢(r) = ¢(r’), and

We say that a constraint system C' is satisfiable if C has a solution.

Constraint Solving
Instance: A constraint system C.
Problem: Is C satisfiable?

Theorem 1. Constraint Solving is in NP.

Proof. Let C be a constraint system. For each constraint u < r in C, where u = A\[__; t;, guess t;,
and replace constraint v < r with the constraint ¢;, = r. The resulting constraint system can be
solved with first-order unification which is doable in polynomial time [13]. O

Let us define a transformation S on constraint systems. The idea of S is to remove a constraint
without changing whether the constraint system is satisfiable.
We define the transformation S:

. _J@\{v=r}Pv:=rif (v=r) e C and v doesn’t occur in r
S(Cv=r)= {C otherwise

Intuitively, S(C,v = r) removes the constraint v = r from C and then replaces all occurrences of v
by 7 in the resulting constraint system.



Lemma 2. C is satisfiable if and only if S(C,v = r) is satisfiable.

Proof. We have two cases.

If C =S(C,v=r), then the lemma is immediate.

If C contains the constraint v = r, where v doesn’t occur in r, then we consider the two
directions of the lemma.

In the forwards direction, we have immediately that if C' has solution ¢, then also S(C,v = r)
has solution ¢.

In the backwards direction, suppose S(C,v = r) has solution ¢. We now have two cases.

In the first case, suppose v doesn’t occur in C'\ { v =7 }. Let { v1,..., v, } be the set of type
variables that occur in 7 but don’t occur in C'\ { v =r }. Let ¢ be a base type. Define:

v=gp, (v (e =c,...,om:=d), (v1=0), ..., (Um = 0)
We have immediately that i solves all constraints in C'\ { v = r }. For the constraint v = r, we
have that ¥(v) = (p(r))[v1 == ¢, ..., vp := c] = 1(r) so 1 also solves v = 7.
In the second case, suppose v does occur in C'\ { v = r }. Notice that since v occurs in
C\ { v=r}, we have that r occurs in (C'\ { v =71 })[v := r]. Define:

=, (v p(r))

We have immediately that v solves all constraints in C'\ { v = r }. For the constraint v = r, we
have that ¥ (v) = ¢(r) = 1(r), so 1 also solves v = 7. O

4 From Overloading to Constraints

We will now show a reduction of the overloading resolution problem to a constraint solving problem.
The reduction is useful both for showing that overloading resolution is in NP and that it is NP-hard.
For a expression ey and a type environment A, we define the set V¢, of type variables:

Vey = { vz | = is an occurrence of a free variable in eg }
U{ vy | Az.eis an occurrence of a subexpression in ey }
U { vxze | Az.e is an occurrence of a subexpression in ¢ }

U { vese, | €1€2 is an occurrence of a subexpression in e }

From ey and A, generate these type constraints over V,:

— For each occurrence of a free variable z in eq, the constraint A(z) < v,.
— For each occurrence of Ax.e in egy, the constraint vy, . = vz — ve.
— For each occurrence of ejes in eg, the constraint ve, = ve, — Ve, e,-

We use C¢, 4 to denote the constraint system generated from ey and A.

Theorem 2. An expression eg is typable with type environment A if and only if Ce, a is satisfiable.

Proof. For the forwards direction, assume that eg is typable with type environment A. In other
words, there exists ty such that A b eq : tg is derivable.

We will define a function ¢ : V,, — Type. In the derivation of A F eq : t, each occurrence of
a subexpression €’ of ey occurs exactly once in a type judgment of the form A’ + ¢ : t'. If the
occurrence of €’ is a free variable of ey or of one of the forms Az.e and ejes, then define p(ver) = t'.
Additionally, each occurrence of a subexpression Ax.¢’ of eg occurs exactly once in a type judgment
of the form A"+ Az.e’ : s’ — t'; define ¢(v,) = ¢'.

We need to show that C¢, 4 has solution ¢. Let us do a case analysis on the members of Ce, 4.



— For an occurrence of a free variable = in e, we have the constraint A(x) < v,. From the type
rule (1) and Lemma 1, we have that there exists a type ¢ such that A(z) <t and ¢p(v,) =t. We
conclude that ¢ solves the constraint.

— For an occurrence of Az.e in ey, we have the constraint vy, . = vy, — v.. From the type rule (2),
we have that there exist types s,t such that p(vyze) = s — t and p(v;) = s and p(ve) = t. We
conclude that ¢ solves the constraint.

— For an occurrence of ejes in e, we have the constraint ve, = ve, — Ve, e, From the type rule (3),
we have that there exist types s,t such that ¢(ve,) = s — t and p(ve,) = s and Y(Veye,) = t.
We conclude that ¢ solves the constraint.

This concludes the proof of the forwards direction.

For the backwards direction, assume that C, 4 is satisfiable. Let ¢ a solution of C¢, 4. For each
occurrence of a subexpression €’ of eg, let x1, ..., x, be the bound variables of the A-abstractions
that enclose €’ in ey. Define

A = A, (21 : 0(Vgy))y -y (T (V)
Notice that A = A.,. We will prove that for each occurrence of a subexpression €’ of ey, we have
A et p(ver)
We proceed by induction on e’. We have four cases.

— For an occurrence of a free variable x in e, we have (1) A(z) < ¢(v,). Notice that (2) A(x) =
Az(x). From (1), (2), we have A,(z) = A(z) < ¢(v;) so we can use type rule (1) to conclude
Az Fx:p(vy), as desired.

— For an occurrence of a bound variable z in ey, we have from type rule (1) that A, - = : p(v,),
as desired.

— For an occurrence of A\z.e in eg, we have (1) @(vrze) = @(vz) — ©(ve). From the induction
hypothesis used on e, we have (2) A, I e : ¢(v.). Next notice that (3) Ae = Axze, (T : ©(vy)).
From (2), (3), and type rule (2), we conclude (4) Axz.e - Az.e : p(vz) = ©(ve). From (1) and
(4), we conclude Ay, . F Ax.e: p(vrg.e), as desired.

— For an occurrence of ejes in e, we have (1) ¢(ve;) = ©(Vey) = ©(Veye,). From the induction
hypothesis used on e; and eg, we have (2) A, F e1 : ¢(ve,) and Ae, F e2 : p(ve,). Next
notice that (3) Ae; = Ae, = Aeje,- From (2) and (3) we conclude (4) Ae,e, F €1 1 p(ve,) and
Aeie, F €21 p(ve,). From type rule (3) and from (1) and (4), we derive A e, F €162 1 9(Veyes),
as desired.

This concludes the proof of the backwards direction. O

5 Monotone One-in-Three 3SAT

The Monotone One-in-Three 3SAT problem is an excellent fit for proving that overloading resolution
is NP-hard. Schaefer proved that Monotone One-in-Three 3SAT is NP-complete [14]. Indeed, he
proved a more general result with a proof that is a bit complicated. We will give a straightforward
proof that Monotone One-in-Three 3SAT is NP-complete.

We will use 0,1 to denote the Boolean values false, true, respectively.

Let R be a three-place Boolean relation which is true if and only if exactly one of its three
arguments is true. Thus, R(1,0,0) = R(0,1,0) = R(0,0,1) = 1, while R(1,1,1) = R(1,1,0) =
R(1,0,1) = R(0,1,1) = R(0,0,0) = 0.



We use ¢ to range over mappings from variables to Boolean values.

We say that a mapping ¢ satisfies a formula if, after we replace each variable x with ¢(x), the
formula evaluates to 1. We also say that a formula is satisfiable if there exists a mapping ¢ that
satisfies the formula.

We define the function T":

T(z1, 22, 23) = R(21,a1,a4) N R(22,a2,a4) N\ R(ay,az,as) A
R(a3> CL4,CL6) A R(ZSa as, f) A R(t7 f? f)

where in each application of T we have that a1, as, a3, aq, a5, ag, t, f are fresh and distinct variables.
We say that ¢’ extends ¢ if and only if dom(¢') D dom(p) AVx € dom(") Ndom(p) : ¢'(z) =

p(x).

Lemma 3. Let ¢ be an assignment of the variables z1, 22, 23 to Boolean values. We have that ¢
satisfies (21 V 22 V 23) if and only if ¢ can be extended to ¢’ that satisfies T(z1, 22, 23).

Proof. In the forwards direction, let us extend each of the seven mappings that satisfy (z1V 22V 23)
to mappings that also satisfy T'(z1, 22, 23):

Mapping 21 22 z3|a1 ag a3 a4 a5 ag t f
o 00100011010
oA 010{(1 0100010
Wl 01110000110
A 100/01 100010
e 101/01 000110
A 11000101010
" 11100001110

In the backwards direction, consider the only mapping 1) ¢ = [21 — 0,22 — 0,23 — 0] that
doesn’t satisfy (z1V22Vz3). Suppose we can extend ¢ to ¢ that satisfies T'(21, 22, 23). From R(¢, f, f)
we have that ¢/(t) = 1 and 2) ¢/(f) = 0. From R(z3,as, f), (1), and (2), we have 3) ¢'(az) = 1.
From R(as,a4,ae) and (3), we have 4) ¢'(aq) = 0. From R(z1,a1,a4) A R(22,a2,a4) and (1) and
(4), we have 5) ¢'(a1) = ¢'(a2) = 1. However, (5) implies that ¢’ doesn’t satisfy R(ai,as,as), a
contradiction. 1

Let us now define the Monotone One-in-Three 3SAT problem.

Monotone One-in-Three 3SAT
Instance: A formula /\;”‘:1 R(xi1, 2, x43), where each z;; is a variable.
Problem: Is the formula satisfiable?

Theorem 3. Monotone One-in-Three 8SAT is NP-complete.

Proof. Monotone One-in-Three 3SAT is in NP because we can guess a mapping ¢ and then check
in polynomial time where ¢ satisfies the formula.

To prove that Monotone One-in-Three 3SAT is NP-hard we will show a reduction from 3SAT.
An instance of 3SAT is a formula of the form F = A ,(li1 V li2 V li3), where each [;; is either a
variable x; or the negation of a variable Z;. The 3SAT problem is whether the formula is satisfiable.
3SAT is NP-complete [6].



Let z1,...,x, be the variables used in F. We will define a formula H over the variables
Tlyeo s Tmy Y1y« --Ym, b, f, where y1,...ym,t, f are all distinct and different from xz1,...,x,;,. We
will use the helper mapping :

Now we define H:

n

H=[ \T(r(n) w(la),7(Ui3)) ] A [\ Rlxj,ysn f)] A Rt £, f)
j=1

i=1

Notice that H is an instance of Monotone One-in-Three 3SAT. Notice also that, for each j € 1..m,
the clauses R(z;,y;, f1) and R(t, f, f) force any assignment that satisfies # to map z; to 1 and y;
to 0, or map z; to 0 and y; to 1. The reason is that R(¢, f, f) forces the assignment to map f to 0,
and so the assignment must map exactly one of x; and y; to 1. So, y; plays the role of 7;.

Suppose ¢ satisfies F. From Lemma 3 we have that we can extend ¢ to ¢’ such that ¢’ satisfies
T(m(li1), m(li2), w(l;3)). From the observation above about y;,t, f we have that we can easily extend
¢’ to " such that ¢ satisfies H.

Conversely, suppose @ satisfies H. From Lemma 3 we have that ¢ satisfies F. g

6 From Monotone One-in-Three 3SAT to Overloading
Let F,T be two base types. Define
w=T—-F—-F—-T)NF—->T—-F—->T)NF—-F—->T-T)

For an instance of Monotone One-in-Three 3SAT

"=\ R(zi, zi2, mi3)
i=1

that uses the variables y1, ..., ym. Thus, each x;; is one of y1,...,y,. We define the type environ-
ment:

A={(fir u) ..., (far>ruo)}
and we define the \-expression:
€0 = AG-AY1. ... AU 9 (fiznizi2213) .. (faZniTn2Tn3)
Theorem 4. H is satisfiable if and only if eqg is typable with a type environment A.

Proof. From Theorem 2 we have that eg is typable with a type environment A if and only if Ce, 4
is satisfiable. So all we need to prove is that:

H is satisfiable if and only if C¢, 4 is satisfiable. (4)



Let us calculate C¢ a:

U)g.... = Vg =7 Uxy;.... (5)
Ulyr.... = Uyp = Udya.... (6)
U\ym.... = Vym 7 Vg (frz11z12213) - (faZn1Zn2@n3) (7)

Vg (frz11212213) - (fam1T(n-1)1%(m-1)2%(n-1)3) — CIaZm1@n2tn3 7 Vg (frz11212213) ... (fa@n1Tn2Tn3) (8)

Vg (fiz11zi2w1s) = Ufozaizaozas 7 Vg (fiziiziomis) (foro1moozas) (9)
Vg = Vfiz11z12213 7 Vg (fiz11o10213) (10)

Vfiwnwis = Yoz = Vfzpzpes L€ 1.0 (11)

Vg = Vao — Ufizpze 0 € 1.1 (12)

Vf, = Vg = Vfimy L€ Ln (13)

uy <vy, 1€l.n (14)

Notice that for each constraint in the lines (5)—(13), the left-hand side doesn’t occur on the right-
hand side. So, we can use the S transformation (m + 4n) times on those constraints to produce the
following constraint system that we call C':

UQ < Vgyy —> Vggp = Vg — Vfizinziazia i€l.n

From Lemma 2 we have that each of the (m + 4n) applications of S preserves satisfiability so we
have:
Ce, 4 is satisfiable if and only if C’ is satisfiable (15)

We can combine (4) and (15) and get that we must prove:
H is satisfiable if and only if C” is satisfiable (16)

In the forwards direction, suppose H has solution ¢. We will use the helper function 9:

T
5(0)=F
Define:

Y(va,;) =0(p(zi5)) 1€, jEL.3
dj(vfixill’mwig) = T

From that H has solution ¢, we have that for each i € 1..n, exactly one of ¢(z;;),7 € 1.3 is 1,
while the other two are 0. So for each i € 1..n, exactly one of §(¢(zi;)),5 € 1..3 is T, while the
other two are F. We conclude that 1) solves C".

In the backwards direction, suppose C’ has solution ). We will use 6! to denote the inverse of
6. Define:

p(zig) =6 (Y(vy,,)), i€lon, jEL.3

From C’ and the definition of ug, we have that for each i € 1..n, exactly one of 1 Vz,;),J € 1.3, 18

)
T, while the other two are F'. So for each ¢ € 1..n, exactly one of 5_1(1/)(%”)),]' € 1..3, is 1, while
the other two are 0. We conclude that ¢ solves H. O



7 Putting it All Together

Theorem 5. Overloading Resolution and Constraint Solving are both NP-complete.

Proof. From Theorem 3 we have that (1) Monotone One-in-Three 3SAT is NP-complete. From (1)
and Theorem 4, we have that (2) Overloading Resolution is NP-hard. From (2) and Theorem 2,
we have that (3) Constraint Solving is NP-hard. From Theorem 1 we have that (4) Constraint
Solving is in NP. From (3) and (4) we have that (5) Constraint Solving is NP-complete. From (5)
and Theorem 2 we have that (6) Overloading Resolution is in NP. From (2) and (6) we have that
Overloading Resolution is NP-complete.

8 Interactions of Overloading and other Language Features

While a compiler can resolve overloading for all practical statically typed languages of which we are
aware, the complexity of the resolution algorithm varies from language to language. The complexity
varies because overloading may be restricted in various ways and because overloading may interact
with other language constructs. Let us consider some of the possibilities.

8.1 Type annotations versus type inference

Our example language relies on type inference to assign a type to every bound variable. The essence
of our overloading is NP-complete theorem is that such type inference must be done by exhaustive
search. We have implemented such a search algorithm for a subset of MATLAB and we found that
it works well in practice.

In contrast to our A-calculus, Java requires every formal parameter to be annotated with a
type. This changes the complexity of the overloading problem from NP-complete to polynomial
time. To see this, let us first take a look at what our reduction from Monotone One-in-Three 3SAT
to Overloading might look like if we target Java instead of A-calculus. For example, we might map
the formula:

R(l’l, X2, 333)

to this Java program:

class B { }
class T implements B { }
class F implements B { }

public class Test {
T f(T a, F b, F c) { return new TQ; }
T f(Fa, Tb, F c) { return new TQ; }
T f(F a, Fb, T c) { return new TO; }

T run() {
B x1,x2,x3;
return f(x1,x2,x3);



The idea of the Java program is as follows. Class B is a common superclass of two classes T and
F that represent the Boolean values. In class Test, the three versions of the overloaded method
f mimic the intersection type of f in the A-calculus program. In the run method, we don’t know
what we need to store in the variables x1,%2,x3 to satisfy the formula so we declare them to be of
type B. The expression f (x1,x2,x3) is the same kind of call that we used in the A-term.

The Java program doesn’t type check! The problem lies with the type annotation B for the
variables x1,x2,x3. The type annotation prevents the expression f (x1,x2,x3) from type checking
because none of the declared £ methods take an argument of type B. If only we could omit the
annotation B, then one could imagine that type inference could assign a type T or F to each of
x1,x2,x3. However, Java doesn’t support such type inference so this style of reduction to Java
doesn’t work.

Let us now explain why overloading resolution in Java can be done in polynomial time. We
will do an informal proof by induction on the structure of expressions. In the base case, we have
expressions such as variables and constants whose nonoverloaded types are known to the compiler
from type annotations or the language specification. Java allows overloading only of methods so
in the key induction step, we can consider a call of an overloaded method. From the induction
hypothesis we have that the compiler knows a nonoverloaded type for each argument expression.
Recall the quote from Section 1 that says that Java resolves overloading by using the number and
compile-time types of the arguments. Thus the compiler can now either declare the call type correct
or give a type error. This concludes the informal proof for Java.

Notice that the proof relies on type annotations for variables, which is exactly what ruined the
Java example above.

8.2 Overloading and subtyping

Java has all of overloading, type annotations, and subtyping. Java’s notion of subtyping presents no
new problems for overloading resolution. The reason is that Java’s type system enables the compiler
to know a static type of every expression, even in the presence of subtyping. Thus, the informal
induction proof in the previous subsection works for Java in this case too. We conclude that also
in the presence of subtyping can we resolve overloading in Java in polynomial time.

Castagna, Ghelli, and Longo [4] studied a typed A-calculus in which the programmer can define
overloaded functions. This goes beyond the A-calculus in Section 2 where all overloaded functions
all come from the initial environment. As far as we know, the problem of devising a type checker
or a type inference algorithm for their calculus remains an open problem.

8.3 Overloading and Hindley-Milner polymorphism

Let us consider the notion of polymorphism known as Hindley-Milner polymorphism that can
be found in such languages as ML and Haskell. If we combine overloading with Hindley-Milner
polymorphism, the result is an undecidable type system [15, 20, 16]. The undecidability result has
led researchers to look for restrictions of overloading. The idea is that Hindley-Milner polymorphism
together with restricted overloading may be decidable. Volpano showed that if we in a system with
Hindley-Milner polymorphism make a Haskell-style restriction on overloading, the resulting type
system is NP-hard [18,19]. Camarao, Figueiredo, and Vasconcellos studied another restriction on
overloading and reported on experiments with a type checking algorithm [2].



9 Conclusion

We have given a detailed proof of why overloading resolution is NP-complete for a typed A-calculus.
We hope that the proof techniques will be helpful to researchers who want to prove similar results
for other languages. We also hope that our paper can help clarify which overloading problems are
NP-complete and which problems have higher complexity due to interactions with other language
features.

Exercise 1: Design a variant of our calculus that captures the essence of overloading in Java.
Prove that type checking can be done in polynomial time.

Exercise 2: Consider a variant of our calculus in which every bound variable is annotated with
a simple type, using the notation Ax : t.e. What is the complexity of type checking?

Exzercise 3: Consider a variant of our calculus in which we disallow Azx.e. What is the complexity
of type checking?

Acknowledgments. We thank Matt Brown, Jakob Rehof, and Alexander Sherstov for helpful
comments and discussions.
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