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Abstract. Mainstream programming languages offer libraries of concur-
rent data structures. Each method call on a concurrent data structure
appears to take effect atomically. However, clients of such data struc-
tures often require stronger guarantees. For instance, a histogram class
that is implemented using a concurrent map may require a method to
atomically increment a histogram bar, but its implementation requires
multiple calls to the map and hence is not atomic by default. Indeed,
prior work has shown that atomicity errors in clients of concurrent data
structures occur frequently in production code.
We present an automatic and modular verification technique for clients
of concurrent data structures. We define a novel sufficient condition
for atomicity of clients called condensability. We present a tool called
Snowflake that generates proof obligations for condensability of Java
client methods and discharges them using an off-the-shelf SMT solver.
We applied Snowflake to an existing suite of client methods from sev-
eral open-source applications. It successfully verified 76.9% of the atomic
methods without any change and verified the rest of them with small code
refactoring and/or annotations.

1 Introduction

Many modern programming languages provide libraries of concurrent data struc-
tures (e.g., the java.util.concurrent package and Intel Threading Building
Blocks library) that are widely used. A concurrent data structure is an object
that satisfies the well-known correctness criterion called linearizability [19]. At
a high level, this property ensures that the operations of the data structure
can be invoked concurrently from multiple threads while still appearing to ex-
ecute atomically and behaving according to the sequential specification of the
data structure. The linearizability guarantee relieves the programmer from com-
plex reasoning about possible interference among data-structure methods and
removes the need to add explicit synchronization.

While the linearizability guarantee is very useful, it only pertains to an indi-
vidual operation on the data structure. In practice, clients of a concurrent data
structure may require stronger guarantees. For example, consider the AtomicMap
class in Figure 1, which is a subset of Java’s ConcurrentHashMap class and pro-
vides atomic methods for getting, putting and removing elements, as well as



1 class AtomicMap <K, V> { // data structure

2 V get(K k) { /*..*/ }

3 void put(K k, V v) { /*..*/ }

4 V remove(K k) { /*..*/ }

5 V putIfAbsent(K k, V v) { /*..*/ }

6 boolean replace(K k, V ov , V nv) { /*..*/ }

7 }

1 class AtomicHistogram <K> { // client

2 private AtomicMap <K, Integer > m;

3

4 V get(K k) {

5 return m.get(k);

6 }

7

8 Integer inc(K key) {

9 while (true) {

10 Integer i = m.get(key);

11 if (i == null) {

12 Integer r = m.putIfAbsent(key , 1); ~
13 if (r == null)

14 return 1;

15 } else {

16 Integer ni = i + 1;

17 boolean b = m.replace(key , i, ni); ~
18 if (b)

19 return ni;

20 } } } }

Fig. 1. The classes AtomicMap and AtomicHistogram

conditional versions of put: putIfAbsent only performs the put if the given key
is currently unmapped, and replace only performs the put if the given key is
currently mapped to a given value. As Figure 1 shows, a programmer may use
the AtomicMap class to implement the client AtomicHistogram class, which sup-
ports the method inc to increment one bar of the histogram. The figure shows
a correct implementation of atomic increment [30], which is subtle and error
prone. For example, a naive implementation of this client method, which simply
gets the current value and puts back an incremented value, is not atomic and
can easily violate the sequential specification in the presence of multiple threads.
In this paper, we present an automatic and modular technique for verification
of the atomicity of clients of concurrent data structures, such as our histogram
class.

Prior work on automatic atomicity verification leverages Lipton’s notion
of moverness [23]. Moverness can be applied to verify conflict-serializability
of transactions [4] and atomicity of both data-structure and client methods



[14, 15, 35]. The main idea is to prove that individual operations in a method
M can commute with operations from other threads, in such a way that M ’s
operations can be always “moved” to be contiguous in any execution. Moverness
has been successfully applied to automatically check atomicity of concurrent
code that uses locks for synchronization [14, 15] and was later extended to sup-
port non-blocking synchronization by paired load-link (LL) and store-conditional
(SC) instructions [35]. Unfortunately, the ABA problem [27] makes moverness
too strong a requirement to prove atomicity of non-blocking algorithms that
employ compare-and-swap (CAS) [35]. Similarly, as we will show in the next
section, the ABA problem makes the moverness requirement too strong to prove
the atomicity of the increment method in Figure 1.

Instead, we define and check a novel sufficient condition for atomicity called
condensability. Our approach handles client classes that use a single concurrent
data structure in their implementation. Consider a client method M that uses
an atomic object o. Intuitively, a call to M in a concurrent execution e is con-
densable if there is a method call m on o in M ’s execution such that (a) either
m does not modify the state of o or it is the only method call in M ’s execution
that does so; and (b) the sequential execution of the entire method M at the
place of m in e results in the same final state of o as m and the same return
value as the original execution of M . A client object is condensable if every
execution of every method of it is condensable. The notion of condensability is
similar in spirit to the idea of moverness, but instead of moving individual oper-
ations in a method, condensability allows relocating the entire method at once.
Condensability targets a common class of clients that access a single concurrent
data structure and provides a modular verification technique for atomicity of
this class of clients. Specifically, condensability can be separately checked for
each method, so changes to one method do not affect the condensability of other
methods. In Section 3, we formalize condensability and prove that condensability
implies atomicity.

We demonstrate the applicability of condensability with an automatic check-
ing tool for Java called Snowflake. The tool takes as input a client class C along
with a sequential specification for each of the methods in the concurrent data
structure that C employs. As we will show later, such specifications are typically
quite simple and are obtainable from documentation of the data structures. For
each method in C, Snowflake generates a set of proof obligations that are suffi-
cient for condensability and provides them to the Z3 SMT solver [8]. If the proof
obligations are discharged, the method is verified to be atomic.

We applied Snowflake to a suite of open-source benchmarks that was used
to evaluate prior work by others [30]. Snowflake succeeds in verifying atomicity
of 76.9% of the atomic methods and rejecting all non-atomic methods in the
benchmark suite. In addition, Snowflake can verify the remaining 23.1% of the
atomic methods after some manual code refactoring.

Related work. Shacham et al. [30] provide a tool called Colt for finding
atomicity bugs in client methods of concurrent data structures by heuristically
executing such code with interference from other threads. They reported many



bugs in a variety of real-world applications. Tools like Colt identify actual exe-
cutions with atomicity bugs and as such have no false positives, but they cannot
prove the absence of such errors.

In later work, Shacham and colleagues have explored conditions on client
methods that allow for exhaustive testing for interference, thereby support-
ing atomicity verification. Shacham [29] shows that a data-independent client
method, whose control flow does not depend on the specific data values used,
need only be tested using a bounded number of data values in order to cover all
possible atomicity violations. Zomer et al. [37] show that an encapsulated client
method, whose only shared state is the underlying data structure, need only be
tested using two threads and one occurrence of the client method. They also
provide a condition called composition closure on the underlying data structure
that allows each client method to be tested separately for interference. Our work
requires client methods to be encapsulated and to support additional restrictions
but does not restrict the data structure itself; indeed maps are not composition
closed. Our restrictions allow us to verify atomicity via a few simple and modular
condensability conditions on each method.

Work on atomicity refinement provides sound rules for extending the scope
of atomic blocks [12, 20]. Some refinement rules, such as Jonsson’s absorption
rule [20], are similar in spirit to our requirements for condensability. However,
the refinement rules must be applied step by step in order to eventually produce
a single atomic block, while condensability directly compares an interleaved ex-
ecution to a sequential version.

Others have ensured atomicity for clients of linearizable data structures by
automatically inserting additional synchronization [5, 16, 18]. Such approaches
provide strong atomicity guarantees by construction but incur synchronization
overheads that our approach avoids.

In addition to prior work on atomicity, condensability is closely related to
the notion of linearization points in linearizability proofs, which are points where
each method can be seen to atomically satisfy its sequential specification. Lin-
earizability is a strong property that combines atomicity with functional cor-
rectness. Therefore, most prior works on linearizability either do not support
complete automation [9, 10, 22, 26, 28, 31] or search for linearizability bugs in a
bounded number of threads [6,7,24,33,34,36]. Notable exceptions are techniques
based on abstract interpretation [2,3,11,32] and observer automata [1]. The first
approach [2,3, 11,32] instruments each linearization point with the surrounding
method’s specification and relies on abstract interpretation of the instrumented
class to check that the implementation and specification methods always return
the same value in the context of the most general client. The second approach [1]
instruments each method to generate an abstract event whenever a linearization
point is passed, captures the specification as an observer automata on the ab-
stract events, and checks the safety of the cross-product of the program and the
observer. These approaches are more general than ours and can verify low-level
concurrent data structures, but they require explicit reasoning about all possible
interactions among the methods of the data structure. Condensability imposes



((v, m) = m.get(k))⇒ (v = m(k) ∧m′ = m)

(m′ = m.put(k, v)′)⇒ (m′ = m[k 7→ v])

(m′, v′) = m.putIfAbsent(k, v)⇒
v′ = m(k) ∧
((m(k) = null) ∧ (m′ = m[k 7→ v])) ∨
(¬(m(k) = null) ∧ (m = m′))

Fig. 2. Axioms for get, put and putIfAbsent methods

stronger requirements but in turn enables separate verification of methods of a
client class. Finally, a modular set of sufficient conditions for linearizability has
been proposed specifically for concurrent queues [17].

2 Example

We now illustrate our approach for automatically verifying atomicity for clients
of concurrent data structures through the AtomicHistogram example in Figure 1.
Our approach verifies the atomicity of each method in the class in isolation; we
will illustrate how it works on the inc method.

Specifications. We assume that AtomicMap is atomic and that we are given
specifications for its methods. Figure 2 depicts the axioms characterizing the
behavior of the get, put and putIfAbsent methods of a map. The specifications
are first-order logic assertions with equality and uninterpreted functions. We
model each method as returning a pair of a return value (when the return type
is not void) and a new map, and we model the abstract map state as a function
from each key in the map to its value and from each key not in the map to null.
We use m[k 7→ v] to denote the state that maps the key k to the value v and
otherwise agrees with the map state m. The axiom for the putIfAbsent method
states that the mapping of the input key k is updated to the input value v if the
previous mapping of k is null, and otherwise the map state remains unchanged.
The return value of putIfAbsent is always the old mapping for the key k.

Purity. To show that the inc method in AtomicHistogram is atomic, we
will show that every possible execution of the method is condensable. Due to
the while loop there are an unbounded number of execution paths. We address
this challenge by leveraging the notion of purity from past work on atomicity
[13, 35]. At a high level, a loop is pure if only the last iteration of the loop has
externally observable effects. If a loop is pure then only the last iteration needs
to be considered when reasoning about atomicity, thereby reducing verification
of atomicity to loop-free programs. Our approach requires and checks that each
loop in a method is pure.

The loop in inc in Figure 1 is pure: each loop iteration attempts to write to
the map (via either putIfAbsent or replace) and only continues to iterate if the
write fails to happen (putIfAbsent returns a non-null value or replace returns



1 // First path

2 Integer i = m.get(key);

3 assume (i == null);

4 Integer r = m.putIfAbsent(key , 1); ~
5 assume (r == null);

6 return 1;

1 // Second path

2 Integer i = m.get(key);

3 assume (!(i == null));

4 Integer ni = i + 1;

5 Boolean b = m.replace(key , i, ni); ~
6 assume (b);

7 return ni;

Fig. 3. The two loop-free paths of inc

false). Given the specifications for the map operations shown above, it is easy
to automatically verify the purity of this loop. Since the loop is pure, henceforth
we need only consider the two loop-free execution paths shown in Figure 3. We
use an assume statement to record the choices made at each conditional.

Condensability. Consider the first path shown in Figure 3. Unfortunately,
moverness cannot prove the atomicity of the path. Though both of the calls to
get and putIfAbsent indicate that the key is not in the map, other threads
can add and then remove the key between get and putIfAbsent, causing an
ABA problem [27]. Using moverness would require that either get be a right
mover, commuting with any subsequent operation from another thread, or that
putIfAbsent be a left mover, commuting with any preceding operation from
another thread. However the get call does not commute with a subsequent op-
eration from another thread that puts the same key into the map. Similarly the
putIfAbsent call does not commute with a preceding operation from another
thread that removes the same key from the map. Although the path is atomic,
the moverness requirement is too strong to prove it.

Instead, given an interleaved execution of the client method, condensability
identifies a method call on the base atomic object called the condensation point
and attempts to prove that the interleaved execution of the client method can be
replaced by a sequential execution of the client method at the condensation point,
which we call the condensed execution. We heuristically identify the condensation
point as a method call that mutates the state of the underlying concurrent
data structure. If the heuristic fails, the static analysis can be repeated for each
method call in the path. The heuristically identified condensation points are
marked with ~ in the paths of Figure 3.

Consider an arbitrary execution X of a concurrent program on a histogram
h that includes the first path of the inc method. We assume the methods of m
are atomic but make no other atomicity assumptions. Since m is atomic, there is



some execution S of the program such that S is equivalent to X for m (i.e. the
execution S contains the same method calls and return values on m as X) and
S is sequential for m (i.e. each method call on m in S is immediately followed by
its associated return). Therefore, the portion of S that includes the execution of
the first path has the following form:

1 // m0

2 Integer i = m.get(key);

3 // m1

4 // Interleaving (other method calls on m)

5 // m2

6 Integer r = m.putIfAbsent(key , 1); ~
7 // m3

Here, the states m0 and m1 denote the pre-state and post-state of the method call
m.get(key), and m2 and m3 denote the pre-state and post-state of the method
call m.putIfAbsent(key, 1) for m in S. While S is sequential for the map m, it
is not necessarily sequential for the histogram h due to the interleaving of other
method calls from other threads between the calls to get and putIfAbsent.

To prove the condensability of this execution of inc, we must prove the
following conditions:

1. None of the method calls other than the condensation method call mutate
the state of m.

2. Consider a condensed execution of inc from the condensation point, that is,
a sequential execution of inc starting from the state m2 for the map m.

1 // m2

2 Integer result = h.inc(key);

3 // m3’

2.1. The state of the map after the condensed execution should be the same
as the post-state of the condensation method call.

2.2. The two calls to inc should have the same return value.

The first condition above requires us to prove that m0 = m1, which is easily
discharged given our earlier specification for get. The second condition requires
us to reason about the execution path taken by the condensed execution of inc
which in general can differ from the path taken in the original execution. Since in
the original execution, the call to putIfAbsent from state m2 returns null, it is
easily seen using the specifications for get and putIfAbsent that the condensed
execution of inc will look as follows:

1 // m2

2 Integer i’ = m.get(key);

3 // m2

4 Integer r’ = m.putIfAbsent(key , 1);

5 // m3’

6 return 1;

Specifically, the call to get will return null, so the “then” branch at line 11 in



inc will be executed. Therefore putIfAbsent is called from the same state m2 as
in the original execution, so the (assumed) determinism of putIfAbsent implies
that m3 = m3’, discharging condition 2.1. Finally, condition 2.2 is trivial in this
case, since both executions of inc end with the statement return 1.

A similar analysis can be done to show that the second path in Figure 3
is also condensable, and hence that inc is condensable. Note that this analysis
is completely modular: the condensability of inc can be proven without having
to explicitly enumerate the possible interactions with the other methods in the
histogram class, or even to know the full set of such methods.

If each method in the histogram is condensable, then we say that the his-
togram itself is condensable. In the next section we formalize the notion of con-
densability and show that condensability implies atomicity.

3 Atomicity and Condensability

In this section, we first present some preliminary definitions and formalize the
standard notion of atomicity. Then we define condensability and state our main
theorem, that condensability implies atomicity.

3.1 Executions and Atomicity

Method calls and events. Let l, o, n, T , and v denote a label, an object, a
method name, a thread and a value. Let inv(l . o.nT (v)) denote an invocation
event of a method call labeled l by thread T that calls the method n on the object
o with the argument v. Let ret(l . v) denote a response event of the method call
labeled l that returns v.

Operations on event sequences. Let E and E′ be event sequences. For a
thread T , we use E|T to denote the subsequence of all events of T in E. For an
object o, we use E|o to denote the subsequence of all events of o in E.

Executions. An execution X is a sequence of events where each invocation
event has a unique label and every thread T is well-formed in X (i.e. X|T is an
alternating sequence of invocations and responses, with each pair of an invocation
and response having the same label). We say label l is in X and write l ∈ X
if there is an invocation event with label l in X. Let Labels(X) denote the set
of labels in X. The functions iEv and rEv on Labels(X) map a label to the
invocation and the response events associated with the label.

An execution X is equivalent to an execution X ′ if one is a permutation of
the other one; that is, only the events are reordered but the components of the
events (including the argument and return values) are preserved.

Real-time relations. For an execution X, we define the real-time relations
≺X , and �X on Labels(X) as follows: l1 ≺X l2 if and only if rEv(l1) precedes
iEv(l2) in X, and l1 �X l2 if and only if l1 ≺X l2 ∨ l1 = l2.

An execution X is sequential iff ∀l, l′ ∈ X : l �X l′ ∨ l′ �X l.



Definition 1 (Atomicity). An execution X of a program p is atomic for an
object o if and only if there exists an execution S of p (called the justifying
execution of X for o) such that

– S|o is sequential,
– S|o is equivalent to X|o, and
– S|o is real-time-preserving i.e. ≺X|o ⊆ ≺S|o.1

An object o is atomic iff every execution of every program is atomic for o.

Atomicity considers sequential executions on the object as justifying execu-
tions. On the other hand, linearizability requires the justifying execution to be a
member of a pre-defined sequential specification for the object. In other words,
an atomic object is linearizable with respect to its sequential executions.

3.2 Condensability

Now we can define condensable objects and state our condensability theorem.
A method call on an object o is an accessor if it does not change the state of

o, and otherwise the method is a mutator. For example, a call to putIfAbsent is
a mutator if it returns null and is an accessor otherwise. We say that an object
c composes object o if the only shared object in the implementation of c is o;
any other object accessed by methods of c is either local or thread-local.

The following definition formalizes the notion of condensability that we in-
formally described in the previous section.

Definition 2 (Condensable). Consider an object c that composes an atomic
object o. A method m of c is condensable if and only if for every execution X
and justifying execution S of X for o, and for every execution e of m in S, there
exists a method call P(e) on o in e such that

1. All the method calls on o in e other than P(e) are accessors.
2. Let s be the sequential execution of m with the same arguments as in e and

the same pre-state for o as P(e) in S,
2.1. s results in the same post-state for o as P(e) in S, and
2.2. s results in the same return value as e.

The method call P(e) is called the condensation point and the execution s is
called the condensed execution. An object is condensable if and only if all of its
methods are condensable.

Note that the condensed execution s of m may take a different path from the
original execution e.

A notable property of the above definition is that the condensability of a
method is independent of that of other methods. This independence supports
modular verification of condensability for each method of an object.

The following theorem states our main result.
1 Real-time-preservation is often implicitly assumed.



Theorem 1 (Condensability). Every condensable object is atomic.

Please see the technical report [21] for the proof. Let us intuitively explain
why the condensability conditions are sufficient for atomicity. Consider an ar-
bitrary execution X of a program on c. As o is atomic, there is a justifying
execution S of X for the atomicity of o. Our goal is to produce a justifying
execution S′ for the atomicity of c. The idea is to construct the execution S′

from S as follows: every execution of a method call on c is removed from S and
replaced by its condensed execution at its condensation point.

By construction, no two method calls on c interleave in S′; thus, S′|c is
sequential. To prove that S′ is real-time-preserving for c, we need to show that
if a method call m1 on c with execution e1 is before a method call m2 on c with
execution e2 in X, then m1 is before m2 in S′. As e1 is before e2 in X, P(e1) is
before P(e2) in X. We have that S is real-time-preserving for o thus, as P(e1)
is before P(e2) in X, we have that P(e1) is before P(e2) in S as well. Thus, by
the construction of S′, m1 is before m2 in S′.

Therefore, it remains to show that S′ is an execution of the program that is
equivalent to X. Consider two consecutive condensed executions s1 and s2 in S′

that replace two condensation methods calls m1 and m2 in S. To prove that S′ is
an execution of the program, we should show that the state of o in the post-state
of s1 is equal to the state of o that is assumed in the pre-state of s2. This fact
is derived from the following three equalities. First, by condition 2.1 above the
state of o in the post-state of s1 is equal to the state of o in the post-state of
m1. Second, since there is no condensation method call between m1 and m2 and
by condition 1 all the other method calls on o are accessors, the state of o in
the post-state of m1 is equal to the the state of o in the pre-state of m2. Third,
by construction the state of o in the pre-state of s2 is equal to the state of o
in the pre-state of m2. Finally, to complete the proof that S′ is equivalent to S
we leverage condition 2.2 above, which requires each call in S′ to have the same
return value as its counterpart in X.

4 Checking Condensability

In this section, we show how condensability of a loop-free client method can
be represented as constraints and automatically checked. We assume that all
method calls in the client method are on the underlying atomic data structure.
We will relax this assumption in the next section.

Consider a loop-free client method with the input parameter p. Let o be the
underlying atomic data structure. Let P be the set of paths of the method. Let
Pi denote the ith path. Let |P | denote the size of P . Let us denote a path with
the triple (b, m, r) where b is the conjunction of the branch conditions of the
path, m is the sequence of method calls y = o.n(x) of the path and r is the
returned variable of the path. In the sequence of method calls m, let mk denote
the kth method call. Let |m| denote the size of m. See the technical report [21]
for how we compute the paths.



Assumptions:
Let Pi = (b, m, r):

1. b
Forall k: 0 ≤ k < |m|

Let mk = (y = o.n(x)):
2. (o2∗k+1, y) = o2∗k.n(x)

Forall j: 0 ≤ j < |P |
Let Pj = (bj , mj , rj):

3. pj = p ∧
4. oj

0 = o2∗l

Forall k: 0 ≤ k < |mj |
Let mk = (y = o.n(x)):

5. (oj
k+1, y

j) = oj
k.n(xj)

6. bj ⇒
post = oj

|mj |
∧

ret = rj

Obligations:
Let Pi = (b, m, r):
Forall k: 0 ≤ k < |m|, k 6= l

7. o2∗k = o2∗k+1 ∧
8. post = o2∗l+1 ∧
9. ret = r

p : Input parameter
x, y, r, ret : Variable
o, post : Object state variable
b : Condition

Fig. 4. Checking Condensability of the ith path at its lth method call

We check the condensability of each path separately. Let us focus on the ith
path Pi = (b, m, r). The condensation point of a path is one of its method calls.
Let us consider the condensability of the ith path at its lth method call. We want
to generate assumptions and obligations that verify that for every execution X
and justifying execution S of X for o, for every execution of the ith path in S, the
method call ml is the condensation point. We consider an arbitrary execution
X and an arbitrary justifying execution S of X for o. We assume that the ith
path is executed in S. The set of assumptions and obligations to check the
condensability of the ith path at the lth method call is depicted in Figure 4. We
describe each of them in turn.

To indicate that the ith path is executed in S, we assert the branch conditions
of the path (line 1) and assert that each method call on the path is executed (line
2). The assertion (o2, y) = o1.n(x) denotes a method call n on o with pre-state
o1 and argument x that results in post-state o2 and return value y. The pre-state
and post-state variables of the kth method are o2∗k and o2∗k+1 respectively. Note
that due to arbitrary interleaving with other threads, the method calls of the
path are not necessarily adjacent in S. Therefore, the post-state variable o2∗k+1

of the kth method call is different from the pre-state variable o2∗(k+1) of the
(k + 1)th method call in the path.

Next, we represent the condensed execution s of the client method at the
condensation point. The condensed execution could take any of the possible
paths through the client method, so we must consider all of them. The states
and variables of each path are superscripted with the index of the path, so that
they do not conflict with one another. Consider one such path Pj . First we assert
that the input parameter to the condensed execution is equal to the input value



of the original method execution (line 3). Next we assert that the pre-state of
the condensed execution oj

0 is equal to the pre-state of the condensation point
o2∗l (recall that the condensation point is the lth method call in the original
path) (line 4). Finally the method calls of the condensed execution are asserted
(line 5). Note that since the condensed execution s is sequential, the post-state
of each method call is the same as the pre-state of the subsequent method call.

Next, we identify which path is actually taken by the condensed execution.
Specifically, the path taken is the unique path whose branch conditions are
satisfied. Therefore, line 6 has the effect of equating post to the post-state of the
condensed execution and ret to the return value of the condensed execution.

Finally, we present the proof obligations for condensability of the ith path.
All the method calls in the ith path other than the condensation point must be
accessors i.e., their pre and post-states must be equal (line 7). The post-state
of the condensed execution path post must be equal to the post-state of the
condensation method call o2∗l+1 in the ith path (line 8). The return value of the
condensed execution ret must equal the return value of the ith path (line 9).

As an example, we present the constraints that each line of Figure 4 gen-
erates for the first path of the inc method in Figure 3. Line 1 generates i =
null ∧ r = null. Line 2 generates (m1, i) = get(m0, key) and (m3, r) =
putIfAbsent(m2, key, 1). For the first path of the inc method, line 3 generates
key0 = key, line 4 generates m0

0 = m2, line 5 generates (m0
1, i

0) = get(m0
0, key0)

and (m0
2, r

0) = putIfAbsent(m0
1, key0, 1), and line 6 generates (i0 = null ∧ r0 =

null)⇒ (post = m0
2 ∧ ret = r0). Similar constraints are generated for the sec-

ond path. The proof obligations are as follows: Line 7 generates m0 = m1. Lines
8 and 9 generate post = m3 and ret = r.

Note that in Figure 4, the universal quantification can be expanded. There-
fore, the assumptions and proof obligations are quantifier-free formulas that an
SMT solver can discharge automatically.

5 Snowflake

Now we present our tool called Snowflake that automatically verifies condens-
ability of Java methods.

User Input. The user must provide Snowflake with the client method to
check along with the axioms that characterize the methods of the data structure
used by the client method. The user also specifies the variable/field in the client
code that holds the underlying data structure object with the BaseObject Java
annotation. Finally, Snowflake supports optional annotations to declare that a
certain method call in the client method is functional, meaning that the call
is side-effect-free and that its return value is solely a function of the states of
the given receiver object and arguments. A variation on this annotation de-
clares a method call to be argument-functional, which is identical except that
the method’s return value does not depend on the receiver object’s state. These
annotations allow Snowflake to verify condensability modularly, without having
to recursively analyze calls to auxiliary methods in the given client method.



We presented the axioms for the get, put, and putIfAbsent methods of the
atomic map in Figure 2. The documentation of current data structures typi-
cally presents a pseudocode specification for the conditional atomic methods in
terms of the more basic methods. For example, the sequential specification of
putIfAbsent in terms of get and put methods is depicted in Figure 5. The ax-
iom of putIfAbsent in Figure 2 can be derived from its sequential specifications
in Figure 5 along with the axioms of the get and put methods in Figure 2. Our
tool has embedded axioms for common methods of Java concurrent map and
set data structures and can be extended to support other collection types. We
present the full set of axioms in the technical report [21].

1 V putIfAbsent(K k, V v) {

2 atomic {

3 V v1 = get(k);

4 if (v1 == null)

5 put(k, v);

6 return v1;

7 }

8 }

Fig. 5. The specification of putIfAbsent in terms of get and put

Paths and Purity. As the first step, Snowflake computes the set of paths
of the client method. We adopt the terminology of paths from [13] and [35].
A path of a loop is exceptional if it is executed as the last iteration of the
loop. An exceptional loop path ends in a break or return statement or by the
condition of the loop evaluating to false. A path of a loop is normal if it is not
exceptional. Informally, a loop is pure if its normal paths have no side effects. We
conservatively determine a loop to be pure if for every method call y = o.n(x)
in a normal path of the loop:

– If o is a shared variable, then the method call is an accessor.
– The variable y is a local variable.
– For all paths in the control flow graph from the end of this normal path to

the return of the method call, the next access to y, if any, overwrites it.

For example, the method calls in the normal paths of the inc method of Figure 1
satisfy these conditions.

An exceptional variant of a method is a copy of the method where each pure
loop of the method is replaced by one of its exceptional paths. The exceptional
variant of an object is the copy of the object where each method is replaced by all
of its exceptional variants. The following theorem is a restatement of Theorem
5.2 from [35]:

Theorem 2. If the exceptional variant of an object is atomic, then the object is
atomic.



The theorem reduces verification of atomicity for methods with pure loops to
loop-free methods.

Given a client method, Snowflake computes the normal paths of the loops
and the exceptional variants of the method. It then converts each path to its
static single assignment (SSA) form. It first checks the purity of the normal paths
using the conditions described above. If the purity of a normal path cannot be
verified, the client method is rejected.

We check the condensability of each exceptional variant using the method
described in Section 4. We use the following heuristics to guess the condensation
point of a path. If there is a call to a method that can mutate the data structure’s
state in the path, the condensation point is the last such method; otherwise, it
is the first method on the data structure in the path. As mentioned before, if
the heuristic fails, we can iterate our approach with a different method call as
the condensation point.

Now, let us relax the assumption that all the method calls in a path are on
the atomic data structure. If there is a method call that is not on the atomic
data structure and is not annotated as functional, the client method is rejected
because we cannot modularly ensure atomicity. Otherwise, we treat each func-
tional method as an uninterpreted function. Specifically, a functional method
call y = o.n(x) is translated to the assertion y = n(o, x). Therefore, as long as
the ith path and the condensed execution call such a method with equal argu-
ments, we can prove that they will have equal results. Mathematical operations
are treated similarly but we additionally assert axioms such as commutativity
and associativity.

Snowflake represents all of the assertions and obligations, along with axioms
for the atomic data structure in the SMT2 format and invokes the Z3 SMT
solver to check their validity. A method is considered condensable if this process
succeeds for each of the method’s exceptional variants. An object is considered
condensable if each of its methods is found to be condensable.

6 Results

Benchmarks and Platform. We adopt the benchmark suite available from
Colt [30]. This benchmark suite is a collection 112 client methods from 51 real-
world applications such as Apache Tomcat, Cassandra, and MyFaces Trinidad.
We call this collection the Colt suite. It consists of 26 atomic and 86 non-atomic
methods.

Snowflake is written in Java, compiled and executed with JDK version 1.7.0.07
and uses Polyglot [25] version 2.5.1 and Z3 version 4.3.2 [8]. The source code of
Snowflake is available [21].

Results. Snowflake is sound, so it correctly rejects all 86 non-atomic bench-
marks in the Colt suite. Figure 6 shows the result of applying Snowflake to the
26 atomic benchmarks of Colt suite. The pie chart partitions these benchmarks
into three groups. Twenty of the benchmarks (76.9%) are proven atomic without
any change. The other six benchmarks are rejected as non-atomic by Snowflake.
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Snowflake on Atomic Benchmarks (51App Suite)
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Accepted w/ Functional 
Annotations
Accepted w/ Refactors

Fig. 6. Evaluation of Snowflake

However, with small modifications they can also be proven to be atomic: two of
them simply require the addition of functional annotations on some methods,
and the other four benchmarks require some code refactoring. For example, we
refactored a block of code that initializes a new object to a method call and an-
notated the method call as functional. Snowflake verified each of the 26 atomic
benchmarks in an average time of 1.45 seconds with a minimum of 1.16 seconds
and a maximum of 2.66 seconds. We present a list of benchmarks and the run
times of our tool in the accompanying web page [21].

A comparison with Colt is instructive. Since Snowflake is a verification tool,
if it accepts a method, it is atomic, but if it rejects the method, it may still
be atomic. On the other hand, since Colt is a bug-finding tool, if it rejects a
method, it is non-atomic, so it does not find any atomicity errors in the 26 atomic
benchmarks of Colt suite. However Colt may not reject non-atomic benchmarks
and indeed Colt is not able to find atomicity errors in four of the non-atomic
benchmarks. Each of these benchmarks first atomically gets the current value
or puts a value for a key and then performs a separate operation on the value.
Although each operation is atomic, they are not atomic together.

7 Conclusion

We introduced condensability as a modular verification technique for atomicity
of clients of concurrent data structures. We defined the notion of condensability
and proved that it implies atomicity. Condensability of an object can be sepa-
rately checked for each method of the object. We showed how condensability of
a method can be represented as constraints and automatically checked. We pre-
sented our tool, Snowflake, that automatically verifies condensability and applied
it to real-world client methods. In future work, we are interested to generalize
our approach to support impure loops as well as multiple writes to the data
structure.

Acknowledgements Thanks to Madan Musuvathi and Erez Petrank for ini-
tial discussions on this topic, and to Lorenzo Gomez for contributions to the
Snowflake tool.
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