A Behavioral Module System for the Pi-Calculus

Sriram K. Rajamani and Jakob Rehof
Microsoft Research
{sriram,rehof }@microsoft.com

Abstract. Distributed message-passing based asynchronous systems are
becoming increasingly important. Such systems are notoriously hard to
design and test. A promising approach to help programmers design such
programs is to provide a behavioral type system that checks for behav-
ioral properties such as deadlock freedom using a combination of type
inference and model checking. The fundamental challenge in making a
behavioral type system work for realistic concurrent programs is state
explosion. This paper develops the theory to design a behavioral module
system that permits decomposing the type checking problem, saving ex-
ponential cost in the analysis. Unlike module systems for sequential pro-
gramming languages, a behavioral specification for a module typically
assumes that the module operates in an appropriate concurrent context.
We identify assume-guarantee reasoning as a fundamental principle in
designing such a module system.

Concretely, we propose a behavioral module system for m-calculus pro-
grams. Types are CCS processes that correctly approximate the behavior
of programs, and by applying model checking techniques to process types
one can check many interesting program properties, including deadlock-
freedom and communication progress. We show that modularity can be
achieved in our type system by applying circular assume-guarantee rea-
soning principles whose soundness requires an induction over time. We
state and prove an assume-guarantee rule for CCS. Our module system
integrates this assume-guarantee rule into our behavioral type system.

1 Introduction

Several computing systems are built today in a distributed wide-area setting,
using an asynchronous message-passing programming model. These programs
are notoriously hard to design and test, due to inherent difficulties in dealing
with concurrency. Better programming languages and programming tools for
building such programs are becoming increasingly important.

In hardware and protocol design, there has been success in modeling differ-
ent agents as communicating finite state machines, and using model checking
to explore the interactions between the agents. However, agents in concurrent
software tend to have more complicated communication structure than their
counterparts in hardware. Indirect references and dynamic creation of new ob-
jects play a prominent role in interactions between software agents. For instance,
one agent can create a new object and send the object’s reference to a second
agent. Following this, both agents can read or change the object’s contents. Such

interactions are typically hard to model using communicating finite state ma-
chines. The m-calculus provides a simple way to model such interactions. The
combination of fresh name generation and channel passing allows faithful mod-
eling of several complicated communication patterns between software agents.
However, in spite of its simple semantics, it is hard to automatically analyze -
calculus programs for checking behavioral properties. Recently, there has been
considerable interest in designing so called behavioral type systems for statically
checking important behavioral properties such as deadlock freedom and com-
munication progress for m-calculus programs. Behavioral type systems use type
inference to extract behavioral abstractions of the program, called behavioral
types, and use model checking to explore the state space of these behavioral
types. The fundamental obstacle in making a behavioral type system scale is the
exponential state space explosion in model checking. The only hope for dealing
with state explosion on realistic programs is to partition the type checking and
model checking problems to operate on pieces of the program, thereby saving
exponential amount of analysis time. We develop the theory required to design
a behavioral module system, which makes such partitioning possible.

Our work is inspired by the behavioral type systems proposed by Igarashi
and Kobayashi [11]. Here, types are CCS-like processes that correctly approxi-
mate the behavior of m-calculus programs, and types are inferred from programs.
A model checker is used as a subroutine inside the typechecker for checking in-
teresting program properties, including deadlock-freedom and communication
progress. In this paper, we propose to incorporate assume-guarantee reasoning
[17,1,3] to enable modular type checking in such a system. Assume-guarantee
reasoning allows the programmer to state behavioral abstractions of a module
that hold only in contexts where the module will actually be used.

Since our types are CCS processes, we need an assume-guarantee rule that
works for CCS. All known assume-guarantee rules require the process calculus to
have a nonblocking semantics. Since CCS processes can block, previous assume-
guarantee results are not directly applicable. This paper has three technical
contributions:

— We state and prove an assume-guarantee rule for CCS.

— We propose a behavioral type system for m-calculus in which types are CCS
processes. Our type system is a variant of Igarashi and Kobayashi’s type
system, and it includes name restriction in the process types.

— We show that name restriction in CCS allows for a natural integration of
our assume-guarantee rule into the behavioral type system.

There are significant technical hurdles in designing a behavioral module sys-
tem for a concurrent programming language. Module systems for sequential pro-
gramming languages such as ML allow the user to specify abstractions of modules
using type signatures. Module systems tactfully combine analysis and user anno-
tation to partition type checking. A type signature of a module in ML is typically
independent of the sequential context where the module is used. However, it is
often impossible to state useful behavioral abstractions of a module that hold
in all concurrent contexts. This phenomenon is well known in the specification

S = po.(z?.ml.a?.a + a?.(m!)*)
Us = py-(2!y)

Sender = vz.(S | Us)

Sender = pa.(m!l.a?.a)

R = pB.(m?.(yl.a!.f + m?.(al)"))
Ur = pné.(y?.0)

Receiver = vy.(R| U,)

Receier = pB.(m?.a!.8)

System = vm, a.(Sender | Receiver)

Fig.1. A Sender and Receiver in CCS

and verification of reactive systems [17,1,3]. Thus, we need to allow the user
to state behavioral abstractions of a module that hold only in contexts where
the module will actually be used. The resulting module system needs to reason
about a module using behavioral abstractions of its environments. For instance,
if we have two concurrent modules P and Q with behavioral specifications P’
and @', then we assume @' as the environment for establishing that P’ is a
correct abstraction of P. Similarly, we assume P’ as the environment for estab-
lishing that @' is a correct abstraction of). Since behavioral abstractions are
used circularly to reason about each other, the soundness of the reasoning needs
to be established. Such circular proof rules are called assume-guarantee(A-G)
rules, and their soundness requires an induction over time. We identify assume-
guarantee reasoning as a fundamental principle in designing a behavioral module
system.

The remainder of the paper is organized as follows. Section 2 contains two
examples illustrating various aspects of our module system. In Section 3 we
state and prove an assume-guarantee rule for CCS. In Section 4 we propose a
behavioral module system for w-calculus. In Section 5 we discuss related work,
and Section 6 concludes the paper.

2 Examples

We show two examples, one to illustrate the assume-guarantee rule and one to
illustrate our type system. We follow the syntax for CCS and w-calculus from [16].

Figure 1 shows a Sender process sending messages to a Receiver process.
The Sender and Receiver communicate through a message channel m and an
acknowledgement channel a, that are known apriori to both processes. Sender
comprises of process S that does the actual communication, and a local user
process Us which is consulted before every message transmission. Receiver com-
prises of process R that does the actual communication, and a local user process
U, which is consulted after every message reception. Suppose we want to check

a safety property of System such as deadlock freedom, specified by a temporal-
logic formula 1. One way to do this is to explore the state space of System
using a model checker. In order to alleviate state explosion, it is useful to write
abstractions of the components of the system, and run the model checker on
each component separately. If the user writes abstract specifications Sender and
Receiver for the sender and receiver respectively, one could attempt using the
following compositional proof rule to avoid exploring the state space of System.

Sender C Sender

Receiver C Receiver

(nm, a)(Sender | Receiver) |= 1
(nm, a)(Sender | Receiver) |= 1

[COMP]

The restriction operator 5 in (nm, a)(Sender | Receiver) prevents the environ-
ment from interacting with Sender and Receiver through the channels m and
a. For present purposes, it can be taken to be the same as the name restriction
operator of [16] for CCS.!

The obligation Sender C Sender requires that every behavior of Sender is a
possible behavior of Sender. Note that the interaction between the component
processes S and Us has been abstracted away in the specification Sender. Thus,
the state space of Sender is smaller than that of Sender. However, the problem
with [COMP] is that, in fact, Sender € Sender, since Sender can be send-
ing arbitrary messages if acknowledgements arrive at unexpected times, whereas
Sender ignores spurious acknowledgements. Also, Receiver € Receiver for sim-
ilar reasons. Since these obligations do not hold, the rule [COMP] cannot be
used to prove that System does not deadlock.

The abstract process Sender is a correct abstraction of Sender only in an
appropriate environment. Similarly, abstract process Receiver is a correct ab-
straction of Receiver only in an appropriate environment. The assume-guarantee
proof rule shown below, allows the Sender and Receiver to be analyzed in com-
position with their abstract environments:

(ym, a)(Sender | Receiver) C Sender
(nm, a)(Sender | Receiver) C Receiver
(nm, a)(Sender | Receiver) = 1

(nm, a)(Sender | Receiver) = 1

[AG]

Note that the obligations of the [AG] rule require the Sender to conform
with Sender only in the environment provided by Receiver. Similarly Receiver is
required to conform with Receiver only in the environment provided by Sender.
Thus, a model checker can discharge the obligations of the [AG] rule and prove
deadlock freedom of System without having to explore the entire state space
of System directly. The soundness of such a proof rule requires certain side
conditions expressing progress, and is established using an induction over time.
In Section 3 we state such side conditions and prove this rule for CCS.

! The reason we use the notation 7 is technical and will be explained later.

S(m,a) = pa.(z?.ml.a?.a + a?.(m!)") TS(m,a) = pee.(z?.mla?.a + a?.(m!)*)

Us = py.(z!) Tu, = py.(z!y)
Sender(m, a) = vz.(S(m,a) | Us) TSender(m,a) = VE.(T§(m,a) | TU,)

TSender(m,a) = po.(ml.a?.a)

R(m,a) = pB.(m?.(yl.al.8 + m?.(a!)*)) TR(m,a) = #B-(m?.(y!.a!.8 + m?.(a!)*))
U, = pé.(y?.9) Ty, = pd.(y?.6)
Receiver(m, a) = vy.(R(m,a) | Ur) TReceiver(m,a) = VY-(TR(m,a) | TU,)

%Receiuer(m,a) = Mﬂ(m"a'ﬂ)

Vendor(m, a) = www![m, a].Sender(m, a) TVendor(m,a) = WWW![(M, 6)TReceiver(m,a)]-
Customer = www?[m, a].Receiver(m, a) (TSender(m,a) | TReceiver(m,a))
System = vwww.((vmsg, ack. Vendor(msg, ack)) | Toustomer = WWW?[(M, @) TReceiver(m,a))-

| Custorner) TReceiver(m,a) T {m, a}

Fig. 2. An Sender-Reciver system in m-calculus and its process types

Now suppose that the Sender is part of a vendor on the world wide web and
the Receiver is part of a customer. A common situation is the customer first goes
to the vendor’s website and after authentication gets fresh channels (these could
be fresh URLs) over which the transaction actually happens. Such an interaction
can be modeled using the channel name generation and channel passing capa-
bilities of the m-calculus. Figure 2 shows a model of the above scenario in the
m-calculus. If we want to check that the vendor process Vendor and customer
process Customer do not deadlock, we need to be able to handle channel passing
in our analysis. A promising approach is to first use a type-system to construct
first-order approximations of the processes called process-types, and use model
checking on the process-types. In Section 4 we build a type-system inspired by
the work of Igarashi and Kobayashi to abstract m-calculus processes using CCS
processes as process types. The right side of Figure 2 shows the process types
generated by the type-system for each w-calculus process on the left. A model
checker is used as a subroutine inside the type-checker. In our type system, it
turns out that the model checker is asked to check:

(nmsga G'Ck) (TSender(msg,ack) | TReceiver(msg,ack)) '= 'Qb

Here Tsepder(msg,ack) 15 the process type for the Sender(msg, ack) process and
TReceiver(msg,ack) 1 the process type for the Receiver(msg, ack) process. These
process types are identical to the Sender and Receiver processes from Figure 1.
The notation z![7].P is used for the type of a process which sends a channel
along z and continues as P, where 7 is a type describing the interactions that
could possibly happen on the sent channel. If the user writes behavioral type
specifications Tsender(msg,ack) a0d TReceiver(msg,ack) at the module interfaces for

Sem = up.(acquire!.release?.3) Tsem = pfB.(acquire!.release?.3)
StageA = A?[z].acquire?.(vy) B?[yl.y?.x!| Tstagea = A?[(z)x!]. acquire?.(vy) B?[(y)y'].(y? | y!)
StageB = pa.(B?[y].y!.release!.a) TStageB = pe.(B?[(y)y!].release!.cx)

System = (xStageA) | StageB* | Sem® | Tsystem = (¥Tstagea) | Tstages” | Tsem”

Fig. 3. A staged-server in w-calculus and its process types

Sender(msg,ack) and Receiver(msg,ack) we can use our assume-guarantee rule
to mitigate the state-explosion that happens inside the type-checker.

Figure 3 shows a staged-server system [13] with two stages. This example
was inspired from a web-crawler example in [14]. StageA receives inputs from
the user and then passes each request to StageB. When StageB responds to the
request, the response is first received by StageA and then passed on to the user.
The system comprises of an unbounded number of copies of StageA and k copies
of StageB. For the purpose of resource control, k& copies of a semaphore process
Sem are used to control access to the k copies of StageB. Name generation is
used to model matching the requests with appropriate responses. With every
request, StageA generates a new channel y, sends y to StageB, and waits for a
response on channel y. The right hand side of Figure 3 shows the process types
generated by our type system. The channel passing from StageA to StageB has
been approximated in the process types. Note that StageA sends a new channel
y to StageB. Upon receiving the channel y, StageB does y!. The type Tstagea
does not send any channels to StageB. The effect of StageB doing y! is statically
transferred inside the description of Tssq4e4 by the type system.

The process System satisfies the following property: whenever StageA wants
to send a message to StageB after successfully acquiring the semaphore (by
executing acquire?), then the send B![y] never blocks. Even though Tgysten is an
infinite state system, due to unbounded number copies of Ts¢gg¢4, We can check
this property on 7systern by using a model checker with counting abstraction
similar to [12].

3 Assume-guarantee rule for CCS

In this section we give syntax and semantics of CCS processes, and we define
trace containment for such processes. The main result of the section is Theo-
rem 1, which gives an assume-guarantee rule for CCS.

3.1 Syntax and semantics of CCS processes
The syntax of CCS processes P is given by the following definition.
Pi:=a | 0 | %G; | P|Q | paP | (vz)P

Gu=zlt.P | z?t.P

The structural preorder < is the least reflexive and transitive relation closed under
the following rules, together with renaming and reordering of bound variables and
reordering of terms in a summation. The notation P = @) abbreviates P < @ and
Q <X P. The set of free names of P is denoted fn(P).

pPlo=pP P[R=Q|P PIQIR=(P|Q)IR

(vz)0=0 pa.P = Plpa.Pla]

z & fn(P) PP Q=@
P|(vz)Q < (vz)(P | Q) PlQ2P|Q

Figure 4: Structural Preorder

PP [Eps]

st1ot2

(oo™ P+)| (.. +2?2.Q+...)— P|Q [rREACT]

(.42l P+.)25 P [O-comu]

xz

t
(.42 P+...) 25 P [l-comMm]

stite ¢ ,
P frau] P—P x¢g!¢ [REs]
(vz)P iy (vz)P’ (vx)P N (vz)P!
<p L ’] L P
PP P 7 @ @=Q [S-conG] PT— [PAR]
P—Q P|Q—P|Q
Eta rules
zt1:t2 £
— P’ P—P z¢gt
T [ETA1] — [ETA2]
(nz)P "— (nz)P’ (nz)P — (nx) P

In the rules above, £ ranges over actions of the form z!* 2??, z!®1-t2 2?¢1:%2 op 7i1:t2,

Figure 5: Labeled Reduction on CCS processes

We write *P as an abbreviation for pa.(P | «), P* as an abbreviation for
pua.(P.a), and P* as an abbreviation for k copies of process P in parallel.
Throughout this section, P,Q, P' and @' range over CCS processes.

We augment the usual syntax of CCS with tags on send and receive oper-
ations. Actions in CCS are of the form z!t g7t zlittz g?tit2 st or ¢ The
actions z!* and z?* denote commitments and actions z!®:¥2, z?'1-¢2 denote re-
actions. Note that commitments have a single tag and reactions have two tags.
The action 7¢1:*2 denotes the invisible or silent reaction, and action € denotes
the null action.

Figure 5 defines the labeled reduction relation on processes. As indicated by
rule S-CONG in Figure 5, reduction is modulo structural congruence, defined in
Figure 4. Note that in addition to the usual rules for the restriction operator v
we have rules ETA1 and ETA2 for the restriction operator 7. This operator is the
same as v, only with different observability properties: The expression (nZ)P is
simply meta-notation for a v-abstraction whose interactions can be observed.
This notation is needed to state our assume-guarantee rule.

Sometimes it is insignificant if an action is a send or receive. In such cases,
we drop the ? and ! symbol from the action for brevity. Let Act be the set of
all actions of the form z'1:*2, zt, 7t1:*2 or e. We use w, wi,ws,... to range over
finite sequences of actions, and we write wy; to denote the i’th element of w. If
P is a CCS process with

pAp P P, P,

then w = wiojwwW[2] - - - Win—1] is a trace of P. In such cases, we lift reductions to

sequences of actions and write P — P,,. The set of all traces of P is denoted
Tr(P). We let Act(w) denote the set of actions occurring in the trace w, and we
define for a process P the set of actions Act(P) =, cTr(p) Act(w).

We will assume that, for any set of processes under consideration, tags are
used only once, i.e., no tag occurs twice in the processes. We let T(P) denote
the set of tags occurring in P.

Let w = wjojwp ---wiy) be a trace in Tr((nZ)(P | Q)), w;) € Act. For an
element wp; in w we will now define the projection of wj;) onto P, denoted (w;))p,
as follows. The definition is by cases over the form of wy; € Act:

ztvt2 if ¢ € T(P) and t, € T(P)
(at1t2) p = gt ift; € T(P) and t, & T(P)
TUEIP =N gt ift, ¢ T(P) and ty € T(P)
(trt2)p, = Ttz if ¢ € T(P) and t € T(P)
TP T e ity g T(P)orty g T(P)
P T e iftgT(P)
(G)P = €

The projection (wp;))q is defined analogously. If w = wjgiwpjwpg - - - Wip—1] is &
trace of P | @, then we define the projection of w onto P, denoted wp, to be
given by

(wp)p = (wpg)p fori=0...n -1

and the projection of w onto @), denoted wq, is defined analogously.

We need an operation to combine traces. Let @ be the partial function on
ActxAct, given by 2t @z = 2t and f@e = e®l = L for all £ € Act. For traces w;
and w; of equal length we define w1 G wsy by setting (w1 wa)[; = (wi)};) B (wa)y
We consider traces modulo €, that is, any number of occurrences of € can be tacitly
inserted or removed from a trace (hence any trace has some representative of any
given length greater than some smallest length). Finally, if T is a list of channel
names, we define the relation

THL~ L

to hold if and only if £® £' is well defined and both of the following conditions
are satisfied for all z € Z:

— if £ is of the form !, then ¢/ # €
— if £ is of the form z*, then £ # €

We lift the relation to traces of equal length n, by defining F w; ~ ws to hold
if and only if for all ¢ = 0...n — 1 we have T I (w1)[; ~ (w2)[3-

Lemma 1. Assume that Act(w) C Act(A) U Act(B). Then we have:
w € Tr(A | B) if and only if wa ® wp is well defined and wa € Tr(A) and
wp € TH(B) and w = wa ® wp.

Lemma 2. Assume that Act(w) C Act(A) U Act(B). Then we have:
we Tr(nZ)(A | B)) if and only if T+ wa ~ wp and wy € Tr(A) andwp € Tr(B)
and w = w4 D wR.

Note that Lemma 2 coincides with Lemma 1 if T is empty.

3.2 Trace Containment

For a trace w, let w™ denote the trace that arises from w by eliding all 7 actions.
Also, let w° denote the sequence that arises from w by replacing all actions of the
form z'1*2 or z* with z. For a trace w, we define the norm of w, denoted N(w), to
be the sequence (w™)°. We write w =5 w' as an abbreviation for N(w) = N(w').

We say that a process I is trace contained in process S with respect to process
P, written I Cp S, if and only if I = (nZ)(P | Q) and for every w € Tr(I) there
exists w' € Tr(S) such that w' =y wp. We abbreviate T Cy Sas I C S.

Let z be a channel name in Z. We say that = is a non-blocking channel
of process P in the process (nZ)(P | Q) if and only if whenever the following
conditions hold:

P24 p

Q@

Tk w ~ws

4. P'=(...4+ad"*".P"+...)

W=

then we have
Q (. +a.Q" +...)

where 7 is some sequence of 7 actions, a = x? anda = z!, or a = z! and @ = z?
for some x.

3.3 Assume-guarantee rule

Given an implementation I and specification S, suppose we want to check if
I C S. Suppose further that I = (vZ)(P | Q) is a composition of two processes
P and () that interact over a set of channels T, and that the specification S =
(vz)(P'| Q") is structurally similar to the implementation I. Then Theorem 1
gives a way of checking if I C S without exploring the entire state space of I
directly.

Theorem 1. (Assume-Guarantee)
For any processes P, Q, P', Q' suppose

Al (mz)(P Q") Cp P’

A2 (mz)(P'| Q) Co Q'

A3. Every channel z in T is either non-blocking for P in (nZ)(P | Q") or non-
blocking for Q in (nT)(P' | Q).

Then we have
(nz)(P| Q) C (nz)(P' | Q')

Before proving the theorem we state a few lemmas. In the following, we will
sometimes use process superscripts on traces, as in w?. This is a naming con-
vention intended as a help to remind the reader that w? is in Tr(P).

Lemma 3. If T+ w; ~ ws and w; =y wi, then T+ wi ~ ws.

Lemma 4. If wy ®ws is well defined and wy =y w}, then wi ®ws is well defined
and w1 B w2 =y Wi D wa.

Lemma 5. Suppose that
€ Tr(nz)(P | Q))

1. w
2. WP € Tr(P') with wP' =y wp
8. (nz)(P'| Q) Co Q'

Then there exists w?' € Tr(Q') such that w9 =y wg.

For natural numbers k, we can talk about trace containment up to k, de-
noted C%, by defining (nz)(P | Q) C% P’ if and only if for all traces w €
Tr((nZ)(P | Q)) of length at most k, there exists w' € Tr(P') with w' =N wp.

Lemma 6. Suppose, for any k, that

1. (@)(P | Q) C P

2. (m7)(P | Q) € Q'

Then (nz)(P | Q) C* (nz)(P' | Q).

Lemma 7. Let w € TH(nZ)(P | Q)) and let w19 € Tr(nT)(P | Q")) such that

1. (0@)(P | Q) Cp P
2. wp =N (wP‘Q)p

3. WP .o e Tr((n@)(P | Q")

Then there ezists w® € Tr(P') such that w¥ =y wp.(@)p.

Lemma 8. (Context Substitution)
Assume

() (P | Q) = (nZ)(Px | Qx)
and w19 € Tr(nZ)(P | Q")) with w =y w9 and wp = (W9)p. Then

!
WPl

0B (P | Q) S (@) (P | Q)
for some Q.

We are now ready to prove Theorem 1.

Proof. Assuming Al, A2 and A3 we prove by induction on the length of traces
in Tr((nZ)(P | Q)) the stronger conclusion

Bl. (nZ)(P | Q) € (nz)(P' | Q') and
B2. (4z)(P | Q) Cp P' and
B3. (n7)(P | Q) Co Q.

Let w = wowy .. .Wk—1Wk - . . wy, be an arbitrary trace in Tr((nZ)(P | Q)). Let
w<; denote the prefix wow; ...w;, for 0 < ¢ < n. We assume the induction

hfpothesis holds for w<j and prove it for w< (r41)-
We first establish the following:

Cl. w<; € Tr((nz)(P | Q)) for all 0 < i < n.

C1 follows by the assumptions and the definition of w<;. To prove C2, we first
observe that, because w<y € Tr((nZ)(P | Q)), Lemma 2 shows that (w<x)p €
Tr(P) and (w<k)g € Tr(Q) and

TH (wek)p ~ (w<k)Q (1)

By induction hypothesis (B2) applied to w<y we get
Jwf € Te(P'). (wek)p =n wf 2)
Now, choose wf according to (2). By (1), (2) and Lemma 3 we have
Thwl ~ (wek)e (3)

Define w,I:I|Q by setting

P’ 4
wi 19 = wf ® (wer)q

Then wfllQ is well defined and in Tr((nZ)(P' | Q)) by (3) and Lemma 2. Because
(by (2)) we have wf” =y (w<k)p, it follows from Lemma 4 that

w @ (wek)o =N (W<k)p ® (W<k)Q

which shows that

UJII: 1@ =N wgk (4)

Furthermore, it follows from the definition of w,f 9 that

(wer)o = (Wp ¥)q (5)

It follows from (4) and (5) that wfllQ is a witness of C2. This concludes the
proof of C2. The claim C3 is proven by a symmetric argument, using induction
hypothesis (B3).

We now proceed to prove B1, B2 and B3 for the inductive case k+1 by a case
analysis on the form of wg41. For space reasons we prove only one representative
case. The full proof can be found in the technical report [20].

— Case 1. wi4; is an interaction zftf2, for x € Z: WLOG let t; € T(P),
ta € T(Q), and let z be non-blocking for P in (nZ)(P | Q).

)
We know from C3 that, for some wle € Tr((nZ)(P | Q")) we have

19" and (wer)p = (Wf'¥)p (6)

t1,

P
W<k =N Wy

By our assumptions, w11 = z1*2, so that P can make the commitment !t

in step wg41. Hence, we have

mt1,t2

nT)(P | Q) =5 (m®)(Pe | Qk) "= (1) (Petr | Qrs1)

with Pk w—l) Pk+1, for some Pk, Qk; Pk+17 Qk+1- By (6) together with Lemma 8
we can conclude that

P|Q’
W

mz)(P | Q') —— (n7)(Pr | Q)
for some @},. Because z is non-blocking for P in (nT)(P | Q'), it follows that

z'3

Q% Q"= Q;c+1

for some sequence of T-actions 7* and some t3,Q", @} ;- Putting the previ-
ous results together, we can conclude that

JEIQ
(mz)(P | Q") k—>
) (P | Q4)
(%) (P, | Q") —
() (Pet1 | Qr+1)
Hence, we have
wp @ gt € Te((nm)(P | Q")) (7)

By (6), (7) and assumption A1, Lemma 7 is applicable (taking & = 7*.x%1:t2),
and we get that there exists wP € Tr(P') such that

p'

w =N (wSk)p.(T*..’Etl’t3)

P =N (wgk)P-xtl = (w<ky1)P

Hence, we have
W =N (wekpr)p (8)
thereby showing B2 for the inductive step k + 1, as witnessed by w®" in (8).
Since w<pt+1 € Tr((nT)(P | Q)), it follows from (8) together with A2 via
Lemma 5 that there exists w®@ € Tr(Q') with w®@ =y (w<k+1)@- This shows
B3 for the inductive step k + 1. Lemma 6 applied to B2 and B3 for £ + 1
then yields B1 for the step k + 1.
— Remaining cases. See technical report [20].
O

A model checker can discharge obligations A1, A2 and A3 and reach the desired
conclusion. Note that

mD)(P Q) C mm)(P' Q) = (@&)(P|Q)C wz)(P'|Q)

Thus, 7 is just a meta-process notation that lets us state the obligations Al,
A2 and A3, all of which require observing the interactions on channels in Z.
We note that model checking CCS is undecidable in general. However model

In the reduction rules below, the structural preorder < is as defined in Figure 4
with the additional rule *P < %P | P.
Syntax

P:=0 | %G | P|Q | =P | (vz)P
G = 2!'[g].P | z?'[g).P
Semantics

ot a'Z P+)t GO+)5 PIE/FQ [R-com]

Vi ’ ’ ;7 £ ’ ’
< <
Pl;P [R-PAR] PP P 7 @ Q=20 [R-SP-CONG]
P|lQ—P|Q P—Q
212 pr PP ot
e [R-NEW1] 7 ad [R-NEW2]
(ve)P 2 (va) P (ve)P = (va) P’

Figure 6: Syntax and Semantics of w Calculus

checking is decidable for certain fragments of CCS such as the finite control
fragment, which disallows p recursion inside parallel composition, and the v
free fragment. In order to model check an arbitrary CCS process one could first
construct an abstraction that falls in such a decidable fragment and then model
check the abstraction.

Theorem 1 generalizes to the case of any finite parallel composition []; P;.
Since the proof method is the same as shown in the proof of Theorem 1, we
confine ourselves to recording

Theorem 2. (Assume-Guarantee)
Let & = P | ... | P{_y | Py, | ... | P, fori = 1...n. Then the following
inference rule is sound
Vi. (z)(Pi | &) Cp, P
(L P C ()1, P

provided that the side-condition (x) is satisfied:

(%)

Vz € T. Vi, j.
(x) < either non-blocking for P; in (nT)(P; | &)
or non-blocking for P; in (nT)(P; | &;)

4 A Behavioral Module System for m-calculus

The syntax and semantics of the 7 calculus is shown in Figure 6. We use abstract
processes I" for types and type environments. A type judgment in this system is

v>Gifori=1...n

0>0 [T-ZERO] TFo TmbGit. . +Gn [T-CHOICE]
nohkP P n>P
ninsan UM wGnE Emmsame O
I'>P I'>P
o T THT v T arme TN
I'sP WF(1y z)
LFSF, [T-SuB] (nZ)I tyv-z = Oy [T-Nbw]

I's>pP (vz)I' > (vE)P

Figure 7: Typing Rules

of the form I' > P, meaning that the abstract process I" is a correct abstraction
of the concrete 7 calculus process P. In the sequel, we will refer to abstract
processes I' as process types. Throughout the remainder of this section, P, P;
and P’ range over m-calculus processes.

Our type system is a variant of the system presented by Igarashi and Kobayashi
[11], with the primary difference being that our process types are exactly CCS.
The process types of Igarashi and Kobayashi form a subcalculus of CCS, because
they do not include the name restriction operator, v. The inclusion of name re-
striction enables us to type processes more precisely. Consider the following
example process P = (ved) P! where P’ is the process

c?.dl+ zlt x?t clts
(c!.d!) | (’””)< o G

The type of P’ in the Igarashi-Kobayashi type system is the process type I given

by
c?.d! t to.clts
(c!.d!+) | (t ty.c7i |) | (d7")
In this type, the restriction (vz)... has been elided, and all occurrences of z are
replaced by tags t1, to, t3, with .1 reducing to I'"'. This is an abstraction of name
restriction, and it introduces an overapproximation of the concrete semantics. In
this case, the type I" contains an execution where the receive d?*¢ blocks for ever,
which arises when reductions on ¢, and t3 are followed by a reaction between c!*
and c?%. However, in process P all executions result in a successful interaction
on channel d. In contrast, since our process types contain name restriction, the
process type of P is identical to P in our system.
The process types in our type system are defined by the following syntax:

7 (tuple types) = (x1,%2,-..,%n)[
I' (process types) =:=0|a |y + ...+ | ([1 | I2) | po.I" | (va)I
¥ a= gl | 27 7].]

This language is equivalent to CCS, with typed channels. Channel types do not
influence reduction semantics of process types. However, they are used by the
type system to model higher-order message passing in 7 calculus. The reduction
semantics of process types is given by Figure 5. For given process type I', each
tag t uniquely determines an occurrence of either z!*[r] or z?*[7]. In the context
of I' let T(t) denote the type 7 thus associated with . We abbreviate z!*[0] as
2!t

The typing rules of our type system are shown in Figure 7. The type system
includes subtyping in rule [T-SuB]. Our subtyping relation < is weak simulation
[16], defined as I1 < I3 if and only if for all action sequences w, whenever

I 5 I, then there exists w' and I such that I LN I} with w =y W'
and I'| < I'j. This definition of < satisfies the axioms for a proper subtyping
relation as defined by Igarashi and Kobayashi [11]. The rule for name restriction
[T-NEW] and the rule for input [T-IN] use the anonymization operator I" 1g,
where S is a set of channel names. The formula 0% in rule [T-NEW] refers to
an invariant, such as deadlock freedom. In order to define the anonymization
operator, we first define the type elimination operator I'\g, where S is a set of
channel names, and it is defined by

0\s =0
a\s =a
. x?%[7]. if z
(#7[7].0)\ s = {m%[e e
*[r i
s = { G [F]\I; \s ifags
(m 4 wm)\s = (n\s) + -+ (w\s)
(71 [m)\s = (m\s) | (%\s)
(m&¥n)\s = (11\s)&(7n\s)
(pa.I'\s = pa.(I'\s)
() I)\s = (vT)(I'\s-7)

Note that the type elimination operator leaves v-bound names intact. For any set
of channels S, let G(S) be the most general environment on channels S defined
by:

G(S) = pa.(d_ (2! +27)).a
Tz€S

The anonymization operator I' 1 is defined as: 2

I'ts= (v5)(I'\s | G(5))

The rule [T-NEW] uses the predicate WF(I") which is defined to hold if and only
if for all traces w = wowy - .. wy, € Tr(wV.I), for all 0 < i < n, if w; = 781t then

T(t1) > T(tz).

% This definition is equivalent to the definition provided by Igarashi and Kobayashi.
Our definition allows refining G(S) using flow computation, in order to improve
precision.

The rule [T-NEWw] is parameterized on the formula Ti. The formula ex-
presses a safety property on the channels T. For example, it could express the
invariant about deadlock freedom on channels in Z. Discharging this assumption
will require CCS-model checking of the process type (nZ)I" 1y _z-

We now state a subject reduction theorem, similar to the one in [11]. A proof
of the theorem can be found in the technical report [20].

Theorem 3 (Subject Reduction). If I'> P and P — P' with WF (I), then
there exists I such that I' — I and " > P'.

Type checking in our type system requires a model checking step to discharge
the assumption

(mz) I 1y = Oy (9)

in the rule [T-NEW]. Since our types are CCS processes, Theorem 1 applies. We
can therefore alleviate the state space explosion in the model checker using user
specified types. More precisely, Theorem 1 shows that the following inference rule
is sound for discharging the assumption (9) when I' is a composition I"' = I | Is:

(mz)(I7 | I3) | OY
(=) (I | I3) Sy IY

(nE)(IY | I2) Cr, Iy
(nz) (I | I2) | OY

provided that every channel z in T is either non-blocking for Iy in (nZ)(I7 | Iy)
or non-blocking for I in (9Z)(I7 | I2).

The behavioral types I'7 and Iy are user-specified types, analogous to user-
specified type signatures in a type system such as ML. In order to apply the
[AG] rule, a model checker is needed to discharge the assumptions of the rule
and its side-condition. However, the types I'{ and I'y are typically more abstract
than It and I, and consequently, the state spaces of I'f and Iy could be much
smaller than the state spaces of I1 and I's. Thus, using the [AG] rule helps us
avoid exploring the state-space of Iy | I, thereby alleviating state explosion.
Indeed, if the program subjected to type checking is well modularized, this may
save an exponential amount of work.

[AG]

5 Related Work

Several behavioral type systems have been proposed recently in which types are
process-like structures, including [18,22,19,21,11]. Also, other analyses have
been proposed to check behavioral properties of concurrent programs, including
[8,9,7].

Our work was foremostly inspired by the generic type system of Igarashi and
Kobayashi [11]. While Igarashi and Kobayashi use a v-free fragment of CCS
for their process types, our type system uses the entire CCS. In particular, the
presence of hiding in the form of name restriction in the process types improves
precision, and opens up several opportunities for modular type checking by ex-
ploiting hiding. We use an assume-guarantee principle to discharge the safety
check at name restriction (rule [T-NEW]) in a modular way. Using this tech-
nique, we can exploit abstract behavioral specifications. The use of this principle
in the context of behavioral type systems appears to be new.

Model checking CCS processes is undecidable in general. However, decidable
fragments of CCS have been identified by either disallowing parallel composition
under recursion or by disallowing name restriction [4]. Tools have been built to
perform bisimulation checking, refinement and model checking of such decidable
fragments of CCS [5].

Assume-guarantee rules that allow apparently circular assumptions about
operating contexts can be traced back to [17,1,2]. Recent work has used such
techniques to model check large hardware circuits [3, 15, 6, 10]. However, all these
rules require a nonblocking assumption on the process calculus, and are not
directly applicable for model checking CCS. Our assume-guarantee rule for CCS
requires progress as a side condition that needs to be checked using the model
checker, and, to the best of our knowledge, our soundness result for assume-
guarantee reasoning in CCS is new.

6 Conclusion

Checking behavioral properties of concurrent, message-passing programs is an
important and difficult problem in todays distributed programming environment.
The major obstacle for doing this in practice is the state-explosion problem
inherent in model checking. Previous work in model checking strongly suggests
that solving this problem requires abstraction and modular methods, so that
one can check a large system by checking parts of the system and combine the
results.

In sequential languages such as ML, module systems have proven to be very
successful for providing both abstraction and modularity. However, the sequen-
tial notion of a module system cannot be directly applied to checking behavioral
types of concurrent programs, because it is much harder to define what a module
boundary means in concurrent contexts. In particular, few interesting properties
of concurrent programs are satisfied independent of their intended context of use.
Hence, it appears that new principles of modularity are needed for behavioral
type systems.

In this paper, we have proposed that assume-guarantee reasoning is a key
principle for modular behavioral type checking. Using the assume-guarantee
principle, the behavior of a module is precisely guaranteed only under assump-
tions about its concurrent context. If we want to combine two modules, they
can be checked under apparently circular assumptions on each others behavioral

“signatures” (circularity is resolved by an induction over time). If programs are
well modularized, this principle can lead to an exponential speed up of type
checking. Furthermore, this principle suggests ways in which users can provide
abstract behavioral specifications at module boundaries.

CCS processes have been proposed as behavioral types for « calculus pro-
grams. In order to enable assume-guarantee reasoning for a general class of be-
havioral type systems, we have proven the assume-guarantee principle sound for
CCS with respect to trace containment. To the best of our knowledge, this result
is new for CCS. Prior assume-guarantee results require non-blocking semantics
on the process calculus and hence cannot be directly applied to CCS. We have
shown how this result can be integrated into a particular type system for the 7
calculus, thereby enabling modular behavioral type checking for message-passing
programs. Hiding in the form of name restriction permits writing modular pro-
grams in the 7 calculus. Our type system exploits hiding to decompose the type
checking problem.

Much work remains to be done to apply our results to a realistic program-
ming language. In addition to handling the variety of constructs in a realistic
language, we need to provide a natural way for the programmer to write behav-
ioral specifications. A realistic system will require a combination of automation
(type inference and model checking) and user-annotations (behavioral specifica-
tions), and it must allow important programming idioms to type.

Acknowledgements. We thank Greg Meredith for several interesting discus-
sions on behavioral type systems, and on the m-calculus. We also would like to
thank Andreas Podelski for comments on this paper.

References

1. M. Abadi and L. Lamport. Composing specifications. ACM Transactions on
Programming Languages and Systems, 15(1):73-132, 1993.

2. M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Pro-
gramming Languages and Systems, 17(3):507-534, 1995.

3. R. Alur and T. A. Henzinger. Reactive modules. In LICS 96: Logic in Computer
Science, pages 207-218. IEEE Computer Society Press, 1996.

4. S. Christensen, Y. Hirshfeld, and F. Moller. Decidable subsets of CCS. The Com-
puter Journal, 37(4):233-242, 1994.

5. R. J. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: a
semantics-based tool for the verification of finite-state systems. ACM Transactions
on Programming Languages and Systems, 15(1):36-72, 1993.

6. A. Eiriksson. The formal design of 1M-gate ASICs. In FMCAD 98: Formal Methods
in Computer-Aided Design, LNCS 1522, pages 49-63. Springer-Verlag, 1998.

7. J. Feret. Confidentiality analysis of mobile systems. In SAS 00: Static Analysis
Symposium, LNCS 1824, pages 135-154. Springer-Verlag, 2000.

8. C. Flanagan and M. Abadi. Types for safe locking. In ESOP 99: European Sym-
posium on Programming, LNCS 1576, pages 91-108. Springer-Verlag, 1999.

9. C. Flanagan and S. N. Freund. Type-based race detection for Java. In PLDI 00:
Programming Language Design and Implementation, pages 219-232. ACM, 2000.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

T. A. Henzinger, X. Liu, S. Qadeer, and S. K. Rajamani. Formal specification and
verification of a dataflow processor array. In ICCAD 99:Computer-Aided Design,
pages 494-499. IEEE Computer Society Press, 1999.

A. Igarashi and N. Kobayashi. A generic type system for the Pi-calculus. In POPL
01: Principles of Programming Languages, pages 128-141. ACM, 2001.

R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer
and System Sciences, 3:147-195, 1969.

J. R. Larus and M. Parkes. Using cohort scheduling to enhance server performance.
Technical Report MSR-TR-2001-39, Microsoft Research, 2001.

L. McDowell. Tappan: The asynchronous programming language specification and
analysis system. Summer-Intern Project Report, Microsoft Research, 2000.

K. L. McMillan. A compositional rule for hardware design refinement. In CAV 97:
Computer-Aided Verification, LNCS 1254, pages 24-35. Springer-Verlag, 1997.

R. Milner. Communicating and Mobile Systems: the w-Calculus. Cambridge Uni-
versity Press, 1999.

J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE Transactions
on Software Engineering, SE-7(4):417-426, 1981.

H. R. Nielson and F. Nielson. Higher-order concurrent programs with finite com-
munication topology. In POPL 94: Principles of Programming Languages, pages
84-97. ACM, 1994.

F. Puntigam and C. Peter. Changeable interfaces and promised messages for con-
current components. In SAC 99: Symposium on Applied Computing, pages 141-145.
ACM, 1999.

S. K. Rajamani and J. Rehof. A behavioral module system for the Pi-calculus.
Technical report, Microsoft Research, 2001.

A. Ravara and V. Vasconcelos. Typing non-uniform concurrent objects. In CON-
CUR 00: Concurrency Theory, LNCS 1877, pages 474—-488. Springer-Verlag, 2000.
N. Yoshida. Graph types for monadic mobile processes. In FSTTCS: Software Tech-
nology and Theoretical Computer Science, LNCS 1180, pages 371-387. Springer-
Verlag, 1996.

