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Abstract. This paper argues that for many algorithms, and static anal-
ysis algorithms in particular, bottom-up logic program presentations are
clearer and simpler to analyze, for both correctness and complexity, than
classical pseudo-code presentations. The main technical contribution con-
sists of two meta-complexity theorems which allow, in many cases, the
asymptotic running time of a bottom-up logic program to be determined
by inspection. It is well known that a datalog program runs in O(nk)
time where & is the largest number of free variables in any single rule.
The theorems given here are significantly more refined. A variety of al-
gorithms are presented and analyzed as examples.

1 Introduction

This paper presents two theorems that place upper bounds on the running time
of bottom-up logic programs. The association of a running time with a logic pro-
gram allows the program to be viewed as specifying a particular algorithm. This
paper also argues that the ability to easily assign running times to bottom-up
logic programs makes logic programs a useful general framework for expressing
and analyzing static analysis algorithms. This position is supported through a
variety of examples of static analysis algorithms expressed and analyzed as logic
programs.

1.1 Logic Programs as Algorithms

In many cases bottom-up (or forward chaining) logic programs are clearer than
programs involving classical iteration and recursion control structures. For exam-
ple, consider transitive closure. A bottom-up logic program for transitive closure
can be given with the single rule P(z, y) A P(y, z) = P(z, z). We can view this
rule as a program where the input is a “graph” represented as a set of assertions
of the form P(c, d) and the output is the set of assertions derivable from the
input using the rule, i.e.; the transitive closure of the input. The inference rule
is arguably the clearest and most concise possible definition of the notion of
transitivity — the program itself is arguably the clearest possible specification
of the desired output.



In spite of the clarity of inference rules as specifications, it is not obvious
how one should view a set of inference rules as an algorithm. An algorithm has
a well defined running time. But what is the running time of a set of inference
rules? This paper presents two meta-theorems which state upper bounds on the
running time of a bottom-up (forward chaining) execution of an arbitrary set of
inference rules. By associating a set of inference rules with a running time, these
theorems provide a way of viewing a set of inference rules as an algorithm. The
transitivity rule given above runs in O(n?) time where n is the number of nodes
in the input graph. A more efficient program for sparse inputs consists of the two
rules EDGE(z, y) — PATH(z, y) and EDGE(z, y) APATH(y, z) — PATH(z, z). Note
that the more efficient program has fewer ways of instantiating the antecedents of
the transitivity rule. Let e be the number of input edges and n be the number of
nodes. In the more efficient program there are e instances of the first antecedent
and, for each such instance, at most n ways of filling in the final variable. This
gives at most en ways of filling in the left hand side of the rule. The meta-
complexity theorem given in section 2 implies that, for programs with at most
two antecedents per rule, the running time is bounded by the size of the final
data base plus the number of provable instances of the left hand sides of rules.
The more efficient program runs in O(en) time rather than O(n?).

As another example consider context free parsing. We can take the input to
be a context free grammar in Chomsky normal form and a string of terminal
symbols. The grammar can be represented by a set of assertions of the form
A = BC and A = a where A, B, and C are nonterminal symbols and a is a
terminal symbol. We can represent the string by a set of assertions of the form
s; = a which states that the ith symbol in the string is the terminal symbol a.
Now consider the following program for context free parsing.

X=y X=YZ
S; =y Y = Si.j

Z = Si+1k
X = Sig

X = Sik

This program computes all assertions of the form A = s; ; where the non-
terminal X generates the string s;...s;. As in the case of transitive closure, it
can at least be argued that the rules themselves are the clearest possible formal
specification of the desired output. Note that if |G| is the number of produc-
tions in the grammar and n is the length of the input string then there are only
O(|G|n3) provable instances of the triple of antecedents in the second rule. The
meta-complexity theorem in section 2 states that, in general, the running time
of a bottom-up logic program is bounded by the size of the final closure plus
the number of “prefix firings” of the rules, i.e., the number of provable instances
of prefixes of the antecedents of rules. In general there may be more provable



instances of the pair of the first two antecedents of a rule than of the triple of the
first three antecedents. For the above parsing program, however, the pair of the
first two antecedents of the second rule has at most |G|n? provable instances and
the total number of prefix firings is O(|G|n?®) which gives the running time of
the algorithm. This is a logic program presentation of the Cocke-Kasimi-Younger
(CKY) algorithm for context-free parsing.

Bottom-up logic programming has been widely studied in the context of de-
ductive databases [25, 24, 17]. Bottom-up logic programming has been advocated
as a formalism for expressing a variety of natural language parsing algorithms
[23,5]. Bottom-up logic programming has also been advocated for program anal-
ysis algorithms used by compilers [24,21]. The contribution of this paper lies in
the two meta-complexity theorems which provide a simple characterization of
the running time of logic programs. A characterization of running time seems
essential if one is to view a logic program as an algorithm.

1.2 A Framework for Static Analysis

This paper is as much about static analysis in particular as about logic program-
ming in general. Static analysis is used in compilers. For example, an optimizing
compiler can often determine that, at a certain point in the program, the current
value of a certain variable will not be used again. If the value of a variable is
being stored in a register, and that value is no longer needed, then the regis-
ter can be overwritten without storing its current value back into memory or
onto the program stack. Determining that the value of a variable is no longer
needed is called liveness analysis. Liveness analysis is “static” in the sense that
it is performed at compile time rather than run time — properties of a program
are determined by examining the (static) text of the program without relying
on any (dynamic) execution. This paper presents a variety of static analysis al-
gorithms as bottom-up logic programs. In most cases the programs (inference
rules) are arguably the clearest possible specification of the computed output.
Furthermore, the running time associated with these programs by virtue of the
general meta-complexity theorems is either the best known or within a polylog
factor of the best known running time for that analysis.

This paper takes the position that the ability to easily associate logic pro-
grams with running times makes them a useful general formalism for expressing
and analyzing static analysis algorithms. Two other paradigms have achieved
wide recognition as useful general frameworks for static analysis — abstract
interpretation [4] and set constraints [2,9,8]. In all cases the frameworks are
sufficiently flexible that it is often possible to view a single analysis, such as live-
ness analysis, within each of the frameworks, i.e., as a special case of abstract
interpretation, a special case of set constraints, or as an algorithm expressed
as a logic program. It does not seem possible to formally prove that one of
these frameworks is superior to the others. As a Turing complete programming
language, logic programs can in principle subsume any other programming for-
malism. But as a practical matter it is not immediately obvious what fraction



of useful static analysis algorithms are best viewed as logic programs. This pa-
per makes a case for bottom-up logic programs as a useful foundation for static
analysis by presenting a series of examples.

1.3 Overview

Section 2 presents the first meta-complexity theorem and some basic examples.
Sections 3, 4, and 5 present respectively liveness analysis, data flow analysis,
and flow analysis (both data and control) in the lambda calculus. Section 6
presents the second main result of this paper — a meta-complexity theorem for
an extended bottom-up programming language incorporating the union-find al-
gorithm. Sections 7 and 8 present unification and congruence closure algorithms
respectively. Section 9 presents Henglein’s quadratic time algorithm for typa-
bility in a version of the Abadi-Cardelli object calculus [12]. This last example
is interesting for two reasons. First, the algorithm is not obvious — the first
published algorithm for this problem used an O(n®) dynamic transitive closure
algorithm [18]. Second, Henglein’s presentation of the quadratic algorithm uses
classical pseudo-code and is fairly complex. Here we show that the algorithm
can be presented naturally as a small set of inference rules whose O(n?) running
time is easily derived from the union-find meta-complexity theorem.

2 A First Meta-Complexity Theorem

Formally, a bottom-up logic program is simply a set of inference rules where an
inference rule is simply a first order Horn clause, i.e. a first order formula of the
form A1 A.. .AA, — C where C and each A; is a first order atom, i.e., a predicate
applied to first order terms (a first order term is either a constant symbol, a first
order variable, or a function symbol applied to first order terms). We will use
assertion to mean a ground atom, i.e., an atom not containing variables, and use
the term database to mean a set of assertions. For any set R of inference rules
and any database D we let R(D) denote the set of assertions that can be proved
from assertions in D using rules in R. This can be defined more formally with
some additional terminology. A ground substitution is a mapping from a finite
set of variables to ground terms. For any ground substitution ¢ defined on all
the variables in an atom A, we let o(A) be the result of replacing each variable z
in A by o(z). We say that a database F is closed under rule A; A...A A, — Cif
for any ground substitution o defined on the variables in the rule, if ¢(A;) € E,
. 0(Ap) € E then o(C) € E. The output R(D) can be defined as the least
database contianing D and closed under all rules in R. We view the set R as a
program mapping input D to output R(D).
An inference rule can be viewed as nested iterations. Consider the following.

P(y) AQ(y,z) A R(z) — H(z,y) (1)

Consider the case where the input is a database consisting only of assertions
involving the predicates P, ), and R. The output consists of the input plus



all derivable applications of the predicate H. Intuitively, the rule iterates over
assertions of the form P(y) and, for each such assertion, iterates over the values
of  such that Q(y, ) holds and, for each such z, checks that R(z) holds and, if
so, asserts H(z,y).

As the nested loop view might suggest, the order of the antecedents is im-
portant when viewing inferences rules as algorithms. For example, consider the
following rule which is logically equivalent to (1).

P(y) AR(z) AQ(y,x) — H(z,y) (2)

Rule (2) iterates over the assertions of the form P(y) and then, for each such
instance, iterates over all z such that R(z) holds, and for each such z checks
that Q(y, z) holds. Now suppose there is are n values of y satisfying P(y) and
also n values of z satisfying R(z) but for any y there is at most one z satisfying
Q(y, z). In this case we might expect rule (1) to take O(n) time while the
logically equivalent rule (2) to take O(n?) time. If there was only one z such
that R(z) but for any y there were n values of z satisfying Q(y, z) (and still n
values of y satisfying P(y)) then (1) would take O(n?) time while rule (2) would
take O(n) time.

Note that for (2) the total number of iterations of the second loop equals
the number of values of z and y such that P(y) and R(z) are given in the
input. In general, any inference rule can be viewed as a set of nested loops where
the number of iterations of the nth loop corresponds to the number of ways of
instantiating the variables in the first n antecedents. This leads to the following
general definition.

Definition 1. We define a prefix firing of a rule Ay A... AN A, — C in database
E to be a pair (o, i) where 1 < i < n and where o is a ground substitution
defined on the variables in Ay, ..., A; such that o(A;) € E for 1 < j < i. We
let Pr(E) be the set of all prefir firings in E of rules in R.

Rule sets can be recursive — it is possible that a rules derives an assertion
that leads to a new antecedent of that same rule. The algorithms in the intro-
duction are all recursive in this sense. While it is natural to view non-recursive
rules as nested iterations, it is less obvious that this view is appropriate for re-
cursive rules. The first meta-complexity theorem can be viewed as stating that
the nested iteration view applies to recursive rules as well.

Theorem 1. For any rule set R there erxists an algorithm for mapping D to

R(D) which runs in time O(|R(D)| + |Pr(R(D))|).

Before proving theorem 1 we show how it can be used to establish the running
time of some particular logic program algorithms. Consider the transitive closure
algorithm defined by the inference rules EDGE(z, y) — PATH(z, y) and EDGE(z, y)A
PATH(y, z) — PATH(z, z). Suppose R consists of these two rules and D consists
of e assertions of the form EDGE(c, d) involving n constants. There are e (prefix)
firings of the first rule. For the second rule there are e prefix firings for the first



antecedent and for each such firing there are at most n firings of the of the
next antecedent. So the total number of prefix firings is at most en. The closure
contains at most n? < en assertions. Theorem 1 now implies that the algorithm
runs in time O(en).

As another example consider the CKY parsing algorithm. In the following
formulation we assume that the input has been augmented with assertions of
the form SUCC(7,i+ 1) for each 1 < i < n — 1 where n is the length of the input
string. Logic programming and the meta-complexity theorem can be extended
to handle arithmetic, although we will not formally consider arithmetic here.

X=>y X=YZ

s(i) =y Y = s(i, j)
SUCC(j,j/)

X = s(1,1) 7 = s(j', k)
X = s(i, k)

Let R be the above set of two rules, let G be a grammar in Chomsky Nor-
mal form, and let S be an input string of length n. Let D(G, S) consist of the
assertions of the form A = BC and A = a in G plus the assertions s(i) = a
and SUCC(¢,i + 1) for 1 < 7 < n corresponding to the input S. We have that
R(D(G, S)) consists of D(G, S) plus a set of assertions of the form A = s(i, j)
with A a nonterminal in G and 1, j € [1, n]. Hence we have that |R(D(G, S))| is
O(|G|n?). To determine the running time of this algorithm it suffices to bound
the number of prefix firings. Consider the left hand rule. There are at most |G|
ways of instantiating the first antecedent. Each such instantiation fixes the the
value of y and there are then at most n ways of continuing with an instantiation
of 1. So there are at most |G|n prefix firings of the left hand rule. Now consider
the right hand rule. Again there at most |G| ways of instantiating the first an-
tecedent. An instantiation of the first antecedent fixes the value of X, Y, and
7. Given an instantiation of Y there are at most n? ways of instantiating i and
j. An instantiation of j determines the instantiation of j’. Finally there are at
most n possible instantiations of £ and hence the total number of prefix firings

is O(|G|n?).

The proof of theorem 1 is based on a source to source transformation of the
given program R. If risarule A AAsA.. . AA, — C then we define binarization
B(r) to be the following set of rules where Py, Py, ... P, are fresh predicate
symbols and z1, ..., zg, are the variables occurring in the first ¢ antecedents.



The predicate P; represents the relation defined by the first 7 antecedents.

A1 —)Pl(l‘l,...,l‘kl)
Pl(l‘l,...,l‘kl) ANAy — Pg(l‘l,...,l‘k2)

Pooi(z1, .. 2, ) NAp = Po(z1,. .., 28,)
Po(z1,...,25,) 2 C

For a rule set R we define B(R) to be the union of the sets B(r) for r € R.
We assume that the predicate symbols introduced by transformations form a
distinct class of symbols and we let 7(E) denote the subset of E not involving
symbols introduced by transformations. The following lemma states the semantic
correctness of the binarization transformation.

Lemma 1. If n(D) = D, i.e., the input does not use the “fresh” predicates,
then R(D) = n(B(R)(D)).

The proof can be done by two inductions on proof length — the first showing
R(D) C n(B(R)(D)) and the second showing 7(B(R)(D)) C R(D). The details
are omitted here.

A more interesting property of the binarization transformation is that it pre-
serves the number of prefix firings up to a multiplicative factor. More specifically,
we have the following.

Lemma 2. If 7(D) = D then we have the following.
|B(R)(D)| = |R(D)| + |Pr(R(D))|
|PB(r)(B(R)(D))| = 2|Pr(R(D))|

Proof: The first half of the lemma follows from the observation that B(R)(D)
consists of R(D) plus a distinct assertion of the form P;(zy, ..., zy,) for each
element of Pr(R(D)). The second half also follows from the observation that
the assertion of the form P;(zy, ..., xx,) are in one to one correspondence with
Pr(R(D)). For each assertion P;(z1, ..., z,) there are exactly two prefix firings
of B(R) — the firing of all antecedents in the rule that generates P;(z1, ..., zk,)
and the prefix firing of the first antecedent when this assertion is used as an
antecedent. All prefix firings in B(R) are either generations of, or uses of, some
assertion of the form P(z1, ..., zx,). Hence there are exactly twice as many prefix
firings of B(R) as there are of R. H

Lemmas 1 and 2 imply that without loss of generality we can assume that
all rules in R contain at most two antecedents. Now assuming that R is binary
in this sense we define an “indexing transformation” as follows. For any rule r
with two antecedents A3 A Ay — C we define I(r) to be the following set of rules
where z1, ..., z, are all variables occurring in A; but not A, y1, ..., ym are
all variables that occur in both A; and As, and 21, ..., z; are all variables that



occur in As but not A;. The predicates Py, P, and @, and the function symbols
f, g, and h are all fresh.

Al —)Pl(f(l‘l, ey l‘n), g(?/l; sy ym))
Az = Pa(g(yr, -y Ym), R(z1, ..., 2x))
Pi(z, y) A Pa(y, z) = Q(z, v, 2)
Q(f(z1, - oy zn), 9(¥1, -+, Um), h(z1, ..., zx)) = C

For a rule set R in which no rule has more than two antecedents we define I(R)
to consist of all single-antecedent rules in R plus the union of all rule sets I(r)
where 7 i1s a two antecedent rule in R. We first have the following correctness
lemma whose proof we omit.

Lemma 3. If 7(D) = D and all rules in R have at most two antecedents then

R(D) = n(I(R)(D)).

More significantly, we also have the following.

Lemma 4. If 7(D) = D then we have the following.
[I(R)(D)| < |R(D)| + 2|R[|R(D)| + | Pr(R(D))]|
|Prery(I(R)D)| < 3[Pr(R(D))| + 2| R|| Pr(R(D))|

Proof: First consider |I(R)(D)|. We have that I(R)(D) contains R(D) plus
assertions of the form Py (z, y), P2(y, z) and Q(z, vy, z). Each assertion in R(D)
can generate at most |R| assertions of the Pj(z, y) and at most |R| assertions
of the form Py(y, z). Finally, each assertion of the form Q(z, y, z) corresponds
to a firing of a two antecedent rule R. Hence the total number of assertions in
I(R)(D) can be no larger than |R(D)|+2|R||R(D)|+ |Pr(R(D))|. Now consider
|Prry(I(R)(D))|. Each prefix firing of I(R) is either a firing of single antecedent
rule, and hence is also a firing of a rule in R, or is a firing of a rule of the
form given above in the definition of the transformation 7. There can be at most
|R||R(D)| firings of the rules that generate assertions of the form Pi(z, y) and
P5(y, z). The rules that generate Q(z, y, z) have two antecedents. A firing of the
first antecedent corresponds to a firing of the first antecedent in the original rule
in R and a firing of both antecedents corresponds to a firing of both antecedents
in the original rule in R. Hence there can be at most |Pr(R(D))| prefix firings
of the rules that generate the assertions @Q(z, y, z). Finally, each firing of a rule
that uses an assertion of the form Q(z, y, z) as an antecedent corresponds to
a firing of an original rule. Hence the total number of prefix firings can not be
larger than 3|Pr(R(D))| + 2|R||R(D)|.

Lemmas 3 and 4 now allow us to assume without loss of generality that R
consists of single antecedent rules plus rules of the form Py (z, y)APa(y, z) = C.
Under these assumptions we can use the algorithm shown in figure 1 to compute
R(D).

Theorem 1 now follows from the following two lemmas.



Algorithm to Compute R(D):

Initialize F to be the empty set. Mark every element of [J and initialize the queue
Q@ to contain D.

While @ is not empty:
1. Remove an element @ from Q.
2. Add & to E.
3. For each single-antecedent rule A — C in R determine whether there is a
substitution o such that o(A) = @. If so assert o(C) as described below.
4. For each two-antecedent rule Pi(z, y) A P2(y, z) — C do the following:
4a. If @ has the form P (1, t2) then for each t3 such that E contains P»(t2, ts3)
assert o(C) where 0 maps z to 1, y to 2, and z to ts.
4b. If @ has the form P; (2, ts) then for each ¢, such that E contains P (t1, t2)
assert o(C) where o is defined as in 4a.

Procedure for Asserting ¥:

1. If ¥ contains a variable then go into an infinite loop.
2. If ¥ is already marked do nothing.
3. Otherwise, mark ¥ and add ¥ to Q.

Fig. 1. The algorithm underlying theorem 1

Lemma 5. If R(D) is finite then the algorithm terminates with E equal to
R(D).

Proof: Assume that R(D) is finite. This implies that the algorithm never
asserts an open atom, i.e., one containing variables, because otherwise any in-
stance of that atom would be in R(D) and R(D) would have to be infinite. So we
can assume that step 1 of the assert procedure is never executed. The algorithm
maintains the invariant that all assertions in F or on @ are in R(D). Since the
algorithm never places the same assertion on @ twice, if R(D) is finite then the
algorithm must terminate. Furthermore, when the algorithm terminates then
the final value of F must be a subset of R(D). The algorithm also maintains the
invariant that that every atom in D or derivable in one step from FE is either in
FE or on (). This implies that when ) is empty F contains D plus all derivable
assertions. Hence, when the algorithm terminates F contains R(D). B

Lemma 6. The algorithm can be run to completion in O(|R(D)|+|Pr(R(D))|)
time.

Proof: Through out the proof we assume that all terms and atoms are in-
terned — the same expression is represented by a data structure at the same
location in memory — and that equality testing can be done in unit time by
checking pointer equality. Interning also supports unit time marking and check-
ing for the presence of marks.



The initialization step takes time proportional to | D|. There is one execution
of steps 1 and 2 for each element of R(D) and each execution takes unit time.
Step 3 involves an iteration over rules in R. For a given rule A — C and a given
ground atom ¥ one must determine if there exists a ¢ such that & = o(A). Given
that equality testing can be unit time, this can be done in time proportional to
the size of the atom A. If such a ¢ exists, it can be computed in time proportional
to the size of A. The size of A is a constant determined by the rule set and
independent of |R(D)| or |Pr(R(D))|. Assuming that hash table operations take
unit time, computing o(C') takes time proportional to the size of C' and hence
is also O(1). The time spent in a single call to the assert procedure is also O(1).
Hence the time to process a given rule in step 3 is O(1). The time spent iterating
over the rules in step 3is also O(1). So the total time spent in step 3 is O(|R(D)]).
By a similar argument, the time in step 4 outside of inner loops in 4a and 4b is
also O(|R(D)]). Finally we must consider the inner loops in steps 4a and 4b. We
assume that for each term ¢ and predicate P used in an antecedent of a binary
rule we maintain a list of all the terms ¢’ such that E contains P(¢, ¢'). This list
must be extended each time a new assertion of the form P(¢, ¢') is added to E.
The total time spent building these lists is O(|R(D)|). There is an analogous list
for each term ¢ and predicate P of the terms ¢’ such that E conatins P(t', t).
Given these lists, the inner loops in 4a and 4b can each be executed in time
proportional to the number of iterations. It now suffices to show that the total
number iterations of the inner loops in 4a and 4b is O(|Pr(R(D))|). Tt suffices
to show that each of these loops only considers a given triple (¢1, ta, t3) once.
When such a triple is consideredin step 4a the assertion Pj(t1, t2) must equal
@. Hence this triple can not be visited again in a later invocation of step 4a. A
similar statement applies to 4b. B

3 Liveness Analysis

We now turn to applications of meta-complexity theorems in static analysis. Our
first example 1s a very simple static analysis — liveness analysis. As mentioned in
the introduction, most compilers rely on the ability to determine that the value
in a given variable is no longer needed so that a register being used to store
the variable can now be used for other purposes. To present a simple example
of liveness analysis we first define a simple programming language. We take a
program to be a sequence of instructions where each instruction has one of the
following forms where z, y, and z are variables, op is an operation, e.g., addition,
multiplication, or Boolean comparison, and /; and [; are instruction labels — a
number unique to the labeled instruction.

L e = op(y, 2);
l; if = goto lg;
l; - goto Iy

{; : halt

We assume a successor relation on labels — each label that labels an instruction
other than a halt instruction has a successor label which is the next instruction



to be executed. A program state is a pair (I, o) where [ is the instruction label
of the next instruction to be executed and ¢ 1s a “store” mapping variables to
values. A single step of computation converts a given program state into the next
program state. For example, if [ labels the instruction # = +(y, z) then a single
execution step converts the the state ([, o) to the successor state (I, ¢') where l'
is the successor label of [ and ¢’ is identical to o except that o' (z) is o(y) + o (z).
We say that an instruction of the form z = op(y, z) writes z and reads y and z.
We say that a variable z is live in state (I, o) if the computation starting in that
state reads & without having written z in an earlier instruction. For example, if
! labels the instruction z = +(z, y) then z is live at (I, &) because it is about
to be read. If [ labels z = +(y, z) and (I, ) has successor state (I', ¢'), and a
variable w different from z is live at (', ¢') then w is live at {/, o).

L1 l:z=op(y, z) L3 l:gotol’
live(w, 1)

live(y, 1), live(z, 1)

live(w, 1)
L2 l:z=op(y, z)
succ(l, 1) L4 l:if  goto !’
live(w, 1) live(w, 1)
DISTINCT(w, )
live(w, 1)
live(w, 1)
L5 l:if z goto I’
succ(l, 1)
live(w, 1)
live(w, I)
Fig.2. A Liveness Analysis Algorithm
Tt is undecidable to determine whether z is live at ([, ¢) — in the general

case this would require determining if a given loop halts which is equivalent to
deciding the halting problem. A static analysis generally computes a conservative
approximation to an undecidable problem. An algorithm for liveness analysis is
defined by the rules shown in figure 2. The rules are conservative in the sense
that, for any state (/, o) and variable z, if z is live at (/, o) then the rules derive
live(z, ). This can be proved by induction on the number of steps of computation
it takes for the computation starting at (/, ¢) to read z. This implies that if the
rules do not derive live(z, o) then z is not live at any state of the form (I, o).



So if the rules do not derive live(z, [) then the compiler can reuse the register
storing the value of z when it reaches program label [.

The rules assume that for each pair of distinct variables  and y the database
contains the assertion DISTINCT(z, y). In practice the predicate DISTINCT can
be computed on demand rather than stored in the input database. One can prove
that theorem 1 holds with computed predicates in rule antecedents provided that
all antecedents involving a computed predicate P are of the form P(zy, ..., z,),
where each z; 1s a variable and either that all z; occur in some earlier antecedent
(as is the case in figure 2) or the bindings for the variables not occurring in
earlier antecedents can be computed in time proportional to the number of such
bindings.

We now analyze the running time of the algorithm given in figure 2. Let
N be the number of instructions in the program and let V be the number of
variables. Since all derived assertions are of the form live(z, /) we have that
|R(D)| is O(NV). Rule L1 is actually an abbreviation for two rules — one
concluding live(y, /) and one concluding live(z, !). These rules each have N
prefix firings. Now consider rule L2. The first antecedent determines all bindings
other than w. There are N ways of instantiating the first antecedent and V' ways
of instantiating w so we get O(NV) prefix firings. A similar analysis holds for
rules L3, L4 and L5. So the algorithms runs in O(NV) time.

Actually a tighter analysis is possible. Let L be the total number of assertions
of the form live(z, {) contained in R(D). Let V be L/N. Intuitively, V is the
average over all instructions of the number of live variables at that instruction.
It is possible to show that the algorithm actually runs in time O(N + NV). In
practice V remains bounded even for very large programs and so, in practice, the
analysis runs in time linear in the size of the program. To see that the algorithm
runs in time O(N 4+ NV) note that N + NV equals N + L. To show that this
bound holds it suffices to divide the prefix firings into two sets, one of which has
size O(N) and one of which has size O(L). There are only O(N) prefix firings
of 1. We divide the prefix firings of L2 into those in which w is z and those
in which w and z are distinct. There are O(N) prefix firings of the first type.
Each prefix firing of the second type generates a distinct assertion of the form
live(w, {). Hence there are only O(L) prefix firings of the second type. For each of
the rules L3, L4, and L5 we have that each firing generates a distinct conclusion
and hence the number of firings is O(L).

4 Data Flow Analysis

Some programming languages, such as Common Lisp and Scheme, use type
tags on data values and generate “graceful” run time errors if a run-time type
violation occurs, e.g., an attempt is made to extract a slot from a non-structure.
Such languages do not use static type checking but are still guaranteed never to
segment fault. In some cases it is possible for the compiler to statically determine
that a particular pointer variable is guaranteed to be a structure of a certain
type. In that case the run time safety check can be omitted from the compiled



code. Data flow analysis provides one way of determining that a variable is
guaranteed to be a structure of a certain type. More generally, data flow analysis
intuitively determines what kind of values a given variable can have at a given
program point. Data flow analysis has a variety of applications in compilers. As
in most static analyses, data flow analysis is a conservative approximation to an
undecidable problem.

Here we formulate data flow in a simple but abstract setting. We extract
from the program the assignment statements of the form z = e. Here we con-
sider only assignments of the form z = k, = (y, 2), x = II1(y), and z = IT2(y)
where k is an integer constant, (z, y) is the abstract pair of z and y, IT;(z)
is the first component of the pair 2 and IT3(z) is the second component of the
pair z. We take a store to be a mapping from a finite subset of the variables to
values where a value is either an integer or a pair of values. In many program-
ming langauges (e.g., Scheme) it is syntactically impossible to write a program
that uses a variable before assigning it some initial value. In such langauges an
assighment & = e is guaranteed not to be executed until all variables in e have
values. An assignment z = e will be called executable in store o if o assigns a
value to all variables in e and e is not of the form I7;(z) or IT2(z) where o(z)
is not a pair. If x = e is executable in ¢ then e has a well defined value in o
which we denote as o(e). A set of assignment statements define a nondetermin-
istic transition relation on stores. We say that ¢’ is a possible successor of o if
there is an executable assignment z = e such that ¢’ is identical to o except
that ¢/(z) = o(e). We say that ¢’ is reachable from ¢ if either it is ¢ or there is
a possible successor ¢’ of o such that ¢’ is reachable from o’. A store is called
reachable if it is reachable from the empty store (the store that does not assign
any values to any variables). We are interested in the set of values assigned to
z in reachable stores. If the value of z is guaranteed to be a pair, then the run
time safety test can be omitted from the compilation of an instruction of the
form y = IT1(z).

D1 r=k D3 y = II;(z)
z = {21, 22)
z = INT
Yy = zj
D2 z =y, z)
D4 u=w, w="v
z = (y, z)
u=v

Fig.3. A data flow analysis algorithm. The rule involving I7; is an abbreviation for
two rules — one with /77 and one with 7/5.



Figure 3 gives a simple data flow analysis algorithm. The analysis algorithm
generates assertions of the form z = e where z is a program variable and e is
either INT (as in rule D1), an expression (y, z) that occurs on the right hand
side of some assignment statement (as in rule D2) or a program variable (as in
rule D3). If there are N input assignment statements then there are only O(N?)
possible assertions of the form x = e.

The derivable assertions of the form z = INT and z = (y, z) should be
viewed as defining a grammar for generating values. We write £ =™ v to mean
either that v is an integer and z = INT is generated by the rules, or v is a pair
(u, w) where the rules derive z = (y, z) and we have y =* v and w =* v. We
now prove that if a store ¢ is reachable (in the sense defined above) then for
any z assigned a value by o we have that z =* o(z). The proof is by induction
on the number of assignments needed to reach o starting from the empty store.
The result is immediate for the empty store. Now assume the result for o and
let ¢’ be the result of executing z = k. We need to show the result for ¢'(y)
for all y on which ¢’ is defined. If y is = then the result follows by rule D1. If y
is not x the result follows by the induction hypothesis. A similar analysis holds
when o’ is generated by an execution of z = (y, z) where the argument relies
on the existence of rule D2. In the case where ¢’ is generated by y = I7;(z) the
argument involves a combination of rules D3 and D4. Note that if the rules fail
to generate x = INT then z must be a pair and run time checks can be omitted
from the compilation of y = IT;(z).

By counting prefix firings one can show that the running time of the algorithm
in figure 3 is dominated by the number of prefix firings of D4 which is O(N3). It
is possible to show that determining whether z = INT is derivable from a given
set of assignments using the rules in figure 3 is 2NPDA complete [11, 15]. 2NPDA
is the class of languages recognizable by a two-way nondeterministic pushdown
automaton. A language £ will be called 2NPDA-hard if any problem in 2NPDA
can be reduced to £ in n polylog n time. We say that a problem can be solved
in sub-cubic time if it can be solved in O(n*) time for k < 3. If a 2NPDA-hard
problem can be solved in sub-cubic time then all problems in 2NPDA can be
solved in sub-cubic time. The data flow problem is 2NPDA-complete in the sense
that 1t 1s in the class 2NPDA and is 2NPDA-hard. No sub-cubic procedure is
known for any 2NPDA-complete problem and it seems reasonable to conjecture
that no such procedure exists for computing the information specified by figure 3.

Cubic time is impractical for many applications. However, if we only consider
programs in which the assignment statements are well typed using types of a
bounded size, then a more efficient algorithm is possible [10]. This more efficient
algorithm can also be stated and analyzed as a set of inference rules, although
we will not do so here.

5 Flow Analysis in the Lambda Calculus

As a final example of an application of theorem 1 we consider flow analysis in the
lambda calculus with pairing. The lambda calculus can be viewed as an abstract



functional programming language where a program is a term and executing the
program corresponds to computing the value of a term. The terms of the pure
lambda calculus with pairing are defined by the following grammar.

en==z|(e1, ea) | II1(e) | H2(e) | (e1, €2) | Az.e

We define the operational semantics of the lambda calculus in figure 4. The
semantics 1s itself written as a bottom-up logic program evaluator. The evalu-
ation rules manipulate assertions of the form compute(e, o) and (e, o) =* v.
Intuitively, the assertion compute(e, o) states that evaluator should compute
the value of term e under the variables bindings given by o. The assertion
(e, o) =* v states that v is the resulting value. The initial database consists
of a single assertion of the form compute(e, ) where € is a closed term and {
is the empty binding environment. Rules E4 and E5 derive other assertions of
the form compute(w, o). Note that the rules maintain the invariant that in all
derivable assertions of the form compute(w, o) we have that w is a subterm of
the original top level term. We can think of the term w as the program counter
and the o as the program store.

Figure 5 gives an algorithm for both control and data flow analysis for the
A-calculus with pairing. The rules are numbered so as to suggest alignment
with the rules in figure 4. The input to the analysis is a single assertion of the
form compute(e) where e is a closed term. Rules F1, F2, F7 and F9 derive all
assertions of the form compute(w) where w is a subterm of e. The rules also
derive assertions of the form e = w and e =* w where € and w are subterms of
the input. All assertions of the form e =* v have the property that the “value”
v is either a lambda expression or a pairing expression.

To verify the analysis in figure 5 is conservative, i.e., to establish its correct-
ness, we view each assertions of the form e =* w as a production in a grammar
for generating values. To maintain consistency with figure 4, we define a value to
be either a pair (Az.e, o), where o maps the free variables of Az.e to values, or
a pair of values. Note that the base case is given by closed lambda expressions
and empty substitutions. The rules in figure 4 generate assertions of the form
compute(e, o), where e is a subterm of the input term and o maps variables
to values, plus assertions of the form (e, o) =* v where v is a value. We now
formally treat the output of figure 5 as defining a grammar. For any subterm e
of the input term and value v we define e =* v to mean that either e =* Az.u
and v is (Az.u, o) where o is a substitution satisfying y —* o(y) for all y in
the domain of o, or v is a pair (vy, vg) such that e =* (wy, wa) with wy —=* v,
and ws —* vy. The rules in figure 5 are conservative in the sense that if figure 4
generates (e, o) =* v then figure 5 generates a grammar yielding e =* v. The
proof is by computational induction on the inference rules in figure 4 and is
omitted here. Note, however, that if, for a given subterm e, figure 5 does not
generate any assertion of the form e =* Az.e then it follows that all values of
e are pairs and run time checks safety checks in the compilation of II;(e) can
be omitted. By counting prefix firings in the rules in figure 5 we get that the



E1

E2

E3

E4

E5

E6

compute((f w), o)

compute(f, o), compute(w, o)

compute(Az.e, o)

(Az.e, o) =" (Az.e, o)

compute(z, o)

(z, o) =" o(z)

compute((f w), o)
(f, o)y =" Dz.e, o')
(w, o) =" v

((fw), o) = {e, o'[z :=v])

p=4q

compute(q)

P=4q
q:>*v

*

p=> v

E7

E8

E9

E10

compute({e1, e2), o)

compute(er, o), compute(ez, o)

compute({e1, e2), o)
(e1, o) =" vy
(e2, o) =" vy

<<617 €2>7 0> =" <U17 U2>

compute(1;(u), o)

compute(u, o)

compute(1;(u), o)
(u, o) =" (v1, v2)

(I (u), o) =" v,

Fig. 4. An algorithm for evaluating lambda terms.



F1 compute((f w)) F7 compute({e1, e2))

compute(f), compute(w) compute(er), compute(ez),
(617 62) =* (617 62)

F2 compute(Az.e)
F9 compute(I1;(u))
Az.e =" Az.e, compute(e)
compute(u)
F4 compute((f w)), f =" Az.u
F10 compute(I1;(u))
z=>w, (fw)=u u =" {e1, e2)
I1;(u) = e,
F6 u=w, w="v
u="v

Fig. 5. Flow analysis for the A-Calculus with pairing.

running time of this analysis is O(N?3) where N is the number of subterms of
the input term.

The analysis defined in figure 5 can be viewed as a form of set based anal-
ysis [2,7]. The rules can also be used to determine if the given term is typable
by recursive types with function, pairing, and union types [14] using arguments
similar to those relating control flow analysis to partial types [13,19]. It is pos-
sible to give a sub-transitive flow algorithm which runs in linear time under the
assumption that the input expression is well typed and that every type expres-
sion has bounded size [10]. The sub-transitive analysis algorithm can also be
presented as a bottom-up logic program whose running time can be analyzed
using theorem 1.

6 A Union-Find Meta-Complexity Theorem

A variety of program analysis algorithms exploit equality. Perhaps the most
fundamental use of equality in program analysis is the use of unification in type
inference for simple types. Other examples include the nearly linear time flow
analysis algorithm of Bondorf and Jorgensen [3], the quadratic type inference
algorithm for an Abadi-Cardelli object calculus given by Henglein [12], and the
dramatic improvement in empirical performance due to equality reported by
Fahndrich et al. in [6]. Here we formulate a general approach to the incorporation
of union-find methods into algorithms defined by bottom-up inference rules. In



this section we give a general meta-complexity theorem for such union find rule
sets.

We let UNION, FIND, and MERGE be three distinguished binary predicate sym-
bols. The predicate UNION can appear in rule conclusions but not in rule an-
tecedents. The predicates FIND and MERGE can appear in rule antecedents but
not in rule conclusions. A bottom-up bound rule set satisfying these conven-
tions will be called a union-find rule set. Intuitively, an assertion of the form
UNION(u, w) in the conclusion of a rule means that # and w should be made
equivalent. An assertion of the form MERGE(u, w) means that at some point a
union operation was applied to u and w and, at the time of that union operation,
u and w were not equivalent. An assertion FIND(u, f) means that at some point
the find of u was the value f.

For any given database we define the merge graph to be the undirected graph
containing an edge between s and w if either MERGE(s, w) or MERGE(w, s) is in
the database. If there is a path from s to w in the merge graph then we say
that s and w are equivalent. We say that a database is union-find consistent if
for every term s whose equivalence class contains at least two members there
exists a unique term f such that for every term w in the equivalence class of s the
database contains FIND(w, f). This unique term is called the find of s. Note that
a database not containing any MERGE or FIND assertions is union-find consistent.
We now define the result of performing a union operation on the terms s and ¢ in
a union-find consistent database. If s and ¢ are already equivalent then the union
operation has no effect. If s and ¢ are not equivalent then the union operation
adds the assertion MERGE(s, t) plus all assertions of the form FIND(w, f) where
w 1s equivalent to either s or ¢t and f is the find of the larger equivalence class
if either equivalence class contains more than one member — otherwise f is the
term ¢. The fact that the find value is the second argument if both equivalence
classes are singleton is significant for the complexity analysis of the unification
and congruence-closure algorithms. Note that if either class contains more than
one member, and w is in the larger class, then the assertion FIND(w, f) does not
need to be added. With appropriate indexing the union operation can be run in
time proportional to number of new assertions added, i.e., the size of the smaller
equivalence class. Also note that whenever the find value of term changes the
size of the equivalence class of that term at least doubles. This implies that for a
given term s the number of terms f such that F contains FIND(s, f) is at most
log (base 2) of the size of the equivalence class of s.

Of course in practice one should erase obsolete FIND assertions so that for any
term s there is at most one assertion of the form FIND(s, f). However, because
FIND assertions can generate conclusions before they are erased, the erasure
process does not improve the bound given in theorem 2 below. In fact, such
erasure makes the theorem more difficult to state. In order to allow for a relatively
simply meta-complexity theorem we do not erase obsolete FIND assertions.

We define an clean database to be one not containing MERGE or FIND as-
sertions. Given a union-find rule set R and a clean database D we say that a
database F is an R-closure of D if E can be derived from D by repeatedly ap-



plying rules in R — including rules that result in union operations — and no
further application of a rules in R changes E. Unlike the case of traditional in-
ference rules, a union-find rule set can have many possible closures — the set of
derived assertions depends on the order in which the rules are used. For example
if we derive the three union operations UNION(u, w), UNION(s, w), and UNION(u, s)
then the merge graph will contain only two arcs and the graph depends on the
order in which the union operations are done. If rules are used to derived other
assertions from the MERGE assertions then arbitrary relations can depend on the
order of inference. For most algorithms, however, the correctness analysis and
running time analysis can be done independently of the order in which the rules
are run. We now present a general meta-complexity theorem for union-find rule
sets.

Theorem 2. For any union-find rule set R there exists an algorithm mapping D
to an R-closure of D, denoted as R(D), that runs in time O(|D|+|Pr(R(D))|+
|F(R(D))|) where F(R(D)) is the set of FIND assertions in R(D).

The proof is essentially identical to the proof of theorem 1. The same source-
to-source transformation is applied to R to show that without loss of gen-
erality we need only consider single antecedent rules plus rules of the form
P(z,y) ANQ(y,z) = R(z,y,z) where z, y, and z are variables and P, @, and
R are predicates other than UNION, FIND, or MERGE. For all the rules that do not
have a UNION assertion in their conclusion the argument is the same as before.
Rules with union operations in the conclusion are handled using the union op-
eration which has unit cost for each prefix firing leading to a redundant union
operation and where the cost of a non-redundant operation is proportional to
the number of new FIND assertions added.

7 TUnification

Given two first order terms ¢; and ¢5, unification is the problem of determining if
there exists a substitution o such that o(¢1) = o(t2). If such a substitution exists,
then one is interested in finding the most general substitution, the substitution
v such that if o satisfies o(¢1) = o(t2) then we have that there exists a ¢’ such
that ¢ = ¢’ 0 v, i.e., o(u) = o’/ (y(u)) for all terms u. Unification is used in logic
programming when one allows the database to contain assertions with variables.

To give a unification algorithm as a set of inference rules we assume that
the input to the algorithm contains the single assertion UNIFY!(#{, ¢,) where ¢}
and 5 prime are ground terms (data structures) representing the input terms
t1 and t5. It is possible to represent first order terms using constants and a
single pairing function. So we can assume without loss of generality that the
input terms are constructed from constants and a single pairing function when
we write the pair of e; and ey as {e1, e3). An elegant but inefficient unification
algorithm is defined by the following rule plus the reflexivity, symmetry rules for
the predicate =.



U1 UNIFY!(tl, tg) U2 <t1, tg) = <U1, UQ>

i1 =15 ty =uy, tz = us

Before presenting a more efficient union-find based algorithm we consider
the correctness of the above rules as an implementation of unification. The rules
define an equivalence relation on the subterms of the input terms. The constant
symbols in the input terms are divided into two types — those representing
constants and functions of the original terms and those representing variables
of the original terms. If two different non-variable constants become equated,
or if a non-variable constant is equated with a pair then we say that a “clash”
has occurred. In this case the input terms are not unifiable. We can also define
a “subterm” relation that takes into account the equivalence relation. More
specifically, we say that e is a virtual subterm of w if either e is a subterm of
w or w is equivalent to a term w’ such that e is a virtual subterm of w'. If
the virtual subterm relation contains a cycle then we say that the unification
results in an occurs-check violation (some term occurs inside itself). If there
is no clash and no occurs-check violation then a most general unifier can be
constructed as follows. First one selects an element of each equivalence class
where we give preference to non-variable elements — if the class contains a non-
variable then the canonical element must be a non-variable. Then we define o,
to be the canonical representative of the equivalence class of e if that canonical
representative is not a pair, and to be (o, oy ) if the canonical representative
is the pair (u, v). If the virtual subterm relation is acyclic then o, is a finite
term. The most general unifier is the substitution mapping z to o,. The details
of the correctness proof for this unification algorithm are beyond the scope of
this paper. Here we focus on finding a simple presentation of a more efficient
algorithm for constructing the equivalence relation defined by rules Ul and U2.

The algorithm defined by rules Ul and U2 uses explicit rules for equality
(which are omitted above) rather a union-find data structure. The running time
of Ul and U2 can be analyzed using theorem 1. Let N be the number of subterms
of the input term. The size of R(D) is O(N?) and the number of prefix firings
is dominated by the number of prefix firings of the transitivity rule for equality
and is O(N?). A more efficient algorithm for computing the same equivalence
relation is defined by the following two rules.

U3 UNIFY!(z, y) U4 FIND((z, ¥}, f)

UNION(z, y) UNION(II1(f), =), UNION(II5:(f), y)



We first note that U3 and U4 effectively implement Ul and U2. In particular,
if (u1, ug) is in the same equivalence class as (w1, wsy) then they must both have
the same find value f and both u; and w; must be equivalent to 77;(f) and hence
equivalent to each other.

To analyze the running time of the rules U3 and U4 we first note that the
rules maintain the invariant that all find values are terms appearing in the input
problem (the union operation breaks ties be using the second argument as the
source of the find value). This implies that every union operation is either of the
form UNION(s, w) or UNION(/7;(w), s) where s and w appear in input problem.
Let N be the number of distinct terms appearing in the input. We now have
that there are only O(N) terms involved in the equivalence relation defined
by the merge graph. For a given term s the number of assertions of the form
FIND(s, f) is at most the log (base 2) of the size of the equivalence class of s. So
we now have that there are only O(N log N) FIND assertions in the closure. This
implies that there are only O(N log N) prefix firings. Theorem 2 now implies that
the closure can be computed in O(N log N) time. The best known unification
algorithm runs in O(N) time [20] and the best on-line unification algorithm
runs in O(Na(N)) time where « is the inverse of Ackermann’s function. The
application of theorem 2 to rules U3 and U4 yields a slightly worse running time
for what is, perhaps, a simpler presentation.

8 Congruence Closure

The congruence closure problem is to determine whether an equation s = ¢ be-
tween ground terms is provable form a given set of equations between ground
terms using the reflexivity, symmetry, transitivity and congruence rules for equal-
ity. As with unification, we will assume that expressions are represented using
constants and a single pairing function. The congruence property of equality
states that if u; = w; and ug = wa then (u1, us) = (w1, wy). The congruence
rule can not be used directly in a bottom-up logic program because it generates
an infinite number of conclusions and hence a bottom-up procedure using this
rule directly would fail to terminate.

Figure 6 gives a cubic time algorithm for congruence closure. We take the
input to consists of the set of given equations represented by assertions of the
form EQUAL!(u, v) and the “goal equation” stated as EQUAL?(s, ¢). Figure 6
assumes the reflexivity, symmetry and transitivity rules for equality.

Rules C1, C2, and C3 generate assertions of the form INPUT(e) for all terms
e appearing in the input problem. Rule C4 is a variant of the congruence rule
restricted so that it can only generate assertions involving input terms. This
algorithm terminates in O(N?) time (dominated by the transitivity rule for
equality) where N is the number of input terms. It is possible to prove that
running the congruence rule on only the input terms suffices [22].

Now we consider the congruence closure algorithm given in figure 7. These
rules compute the same equivalence relation on the terms in the input as do the
rules in figure 6. In particular, if (u1, us) and (w;, wse) are both input terms



C1

C2

C1

c2’

C3

EQUAL?(z, y) c3 INPUT({z, y))

INPUT(z), INPUT(y) INPUT(z), INPUT(y)

EQUAL!(z, y) c4 INPUT((z1, 22)), INPUT({y1, y2))

rr =Y, T2 =Y2

INPUT(z), INPUT(y), » =y
<x17 :'32) = <y17 y2>

Fig. 6. A cubic congruence closure algorithm.

EQUAL?(z, y) Cc5 INPUT(z)

INPUT(z), INPUT(y) ID-O0R-FIND(z, 7)

EQUAL!(z, y) cé FIND(z, y)

INPUT(z), INPUT(y), UNION(z, y) ID-OR-FIND(z, y)

INPUT({z, y)) c7 INPUT((z, y))
ID-OR-FIND(z, ')

INPUT(z), INPUT(y) ID-O0R-FIND(y, y')
UNION((z', ¥'), (=, y))

Fig.7. An O(Nlog® N) algorithm for congruence closure.



where u; and wy are have been made equivalent, and us and wy have been made
equivalent, then u; and w; must have the same find f; and w; and ws; must
have the same find fs and both (uj, us) and (w;, ws) are made equivalent to
(f1, f2). To analyze the complexity of the rules in figure 7 we first note that,
since the union operation breaks ties by selecting the find value from the second
argument, the rules maintain the invariant that every find value is an input
term. Given this, one can see that all terms involved in the equivalence relation
are either input terms or pairs of input terms. This implies that there are at
most O(N?) terms involved in the equivalence relation where N is the number
of distinct terms in the input. So we have that for any given term s the number
of assertions of the form FIND(s, f) is O(logn). So the number of firings of
the congruence rule is O(nlog2 N). But this implies that the number of terms
involved in the equivalence relation is actually only O(n log2 N). Since each such
term can appear in the left hand side of at most O(log N') FIND assertions, there
can be at most O(Nlog3 N) FIND assertions. Theorem 2 now implies that the
closure can be computed in O(Nlog3 N) time. It is possible to show that by
erasing obsolete FIND assertions the algorithm can be made to run in O(n logn)
time — the best known running time for congruence closure.

9 Henglein’s Quadratic Algorithm

Type inference is the problem of taking a program without type declarations and
inferring types for program variables. For many languages and type systems it
is possible to determine, for a given program without type declarations, whether
or not there exist type declarations under which the program is well typed. In
this case we say that the type inference problem is decidable. Perhaps the most
fundamental type inference algorithm is for the Hindley-Milner type system used
in the programming language ML [16]. Here we consider Henglein’s quadratic
time algorithm for determining typability in a variant of the Abadi-Cardelli
object calculus [12,1]. This algorithm is interesting because the first algorithm
published for the problem was a classical dynamic transitive closure algorithm
requiring O(N?) time [18] and because Henglein’s presentation of the quadratic
algorithm is given in classical pseudo-code and is fairly complex.

The type inference problem solved by Henglein’s algorithm is for object-
oriented programs under a certain type system for objects. An object can be
viewed as a record with fields or slots. An object type specifies types for fields.
For example, the type [¢; = INT, {5 = INT] denotes set of all objects in which
the fields ¢; and £5 are both integers. Note that the type [¢4 = INT, 5 = INT] is
a subtype (a subset) of the type [¢; = INT] — anything in which both fields ¢;
and {5 are integers is something where the field #; is an integer. In the “pure”
object calculus of Abadi and Cardelli there are only objects — there are no
integers, procedures or other data types. The pure calculus is of theoretical
interest because it isolates and simplifies the nature of the objects and object
types. In the pure object calculus type expressions are defined by the following



grammar where « represents type variables.
cu=al|[lh=01;... by = 0] | pao

This grammar allows for the universal type [| that places no constraints on
an object and hence represents the set of all objects. In the Abadi-Cardelli
language objects compute the values for slots on demand (rather than storing
the value in the slot). On-demand computation of slot values allows objects to
be “infinitely deep”. In particular, recursive types such as pal[ly = o, £y = a
are meaningful and denote the set of objects a where slot ¢; has type ¢ and in
which £5 (recursively) has type a. A type expression is closed if all type variables
in that expression are bound in p expressions, e.g., the expression pa[f; = o] is
closed.

A presentation the Abadi-Cardelli programminglanguage is beyond the scope
of this paper. Here we simply note that the problem of determining the existence
of acceptable type declarations can be converted to problem of determining
whether there exists type expressions satisfying a certain set of constraints. More
specifically, we can take the input to be a set of inequalities of the form oy < o5
where o1 and oy are finite type expression as defined by the above grammar.
The problem is to find closed type expressions for the type variables such that
the constraints are satisfied. To define this problem precisely one must define
the inequality relation o < o5 for closed type expressions o1 and o5. Here we
are interested in an “invariant” interpretation of type inequality — a closed type
[l1 = 01;...;4n = 0,] is a subtype of a closed type [my = m;...;mg = 7] if
each m; is equal to some ¢; where o; equals 7;. Equality on (recursive) types
is defined to mean that the (possibly infinite) type expressions that result from
unrolling all recursive definitions are equal.

Although superficially the type inference problem may seem quite complex,
there is a very simple cubic time decision procedure. We assume that the in-
put has been preprocessed so that for each type expression [{4 = o1;...; 4, =
on] appearing in the input (either at the top level or as a subexpression of
a top level type expression) the database also includes all assertions of the
form ACCEPTS([¢1 = o1;...;4n = op], &) and [(1 = o1;5...5 4y = o] li = 0y
with 1 < ¢ < n. Note that this preprocessing can be done in linear time.
The cubic algorithm can be given as a bottom-up logic program consisting of
the following rules plus the reflexivity, symmetry, and transitivity rules for =.

c=rT ACCEPTS(T, )
ACCEPTS(o, {)
c<T c<T
cl=r1t
o<1, 7<%




We say that the input is rejected by the rules if the rules derive an assertion
of the form ¢ < 7 where 7 accepts a field not accepted by o. One can show
that the rules are “sound” in the sense that if the rules reject the input (derive
a contradiction) then the constraints are unsatisfiable. Conversely, if the rules
do not reject the input then it is possible to show that one can construct a
solution to the constraints although the proof is beyond the scope of this paper.
By counting prefix firings we get that this algorithm runs in O(N?3) time.

7<o0o T=0

T=>0 UNION(T, o)

MERGE(7, o) ACCEPTS(T, )
ACCEPTS(a, {)

T=>0, 0=>T o="T

UNION(o.£, 7.£)
o=>T

T=>"0

o =T, 7':>*‘y

0:>*7

Fig. 8. Henglein’s type inference algorithm.

Figure 8 gives a quadratic union-find algorithm which computes the same
closure as the cubic time rules. The equality relation is stored in the union-
find data structure. The inequality relation is stored in the relation = and
its transitive closure =*. Recall that a merge assertion is generated for each
non-redundant union operation. There can be at most O(N) merge assertions.
Hence the base ordering = as only O(N) edges. The version of transitive closure
implemented in these rules is O(en) for an input graph of e edges and n nodes
— we get only O(N?) prefix firings in the transitive closure rules. The number
of prefix firings in the remaining rules is also O(N?) and the number of find
assertions is O(N log N) so the total running time O(N?).



10 Conclusions

This paper has argued that many algorithms have natural presentations as
bottom-up logic programs and that such presentations are clearer and simpler to
analyze, both for correctness and for complexity, than classical pseudo-code pre-
sentations. A variety of examples have been given and analyzed. These examples
suggest a variety of directions for further work.

In the case of unification and Henglein’s algorithm final checks were per-
formed by a post-processing pass. It is possible to extend the logic program-
ming language in ways that allow more algorithms to be fully expressed as
rules? Stratified negation by failure would allow a natural way of inferring
NOT(ACCEPTS(c, £)) in Henglein’s algorithm while preserving the truth of theo-
rems 1 and 2. This would allow the acceptability check to be done with rules.
A simple extension of the union-find formalism would allow the detection of
an equivalence between distinct “constants” and hence allow the rules for uni-
fication to detect clashes. It might also be possible to extend the language to
improve the running time for cycle detection and strongly connected component
analysis for directed graphs.

Another direction for further work involves aggregation. It would be nice
to have language features and meta-complexity theorems allowing natural and
efficient renderings of Dijkstra’s shortest path algorithm and the inside algorithm
for computing the probability of a given string in a probabilistic context free
grammar.
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