
Avoiding Exponential Explosion:

Generating Compact Verification Conditions

Cormac Flanagan James B. Saxe
Compaq Systems Research Center

130 Lytton Ave.
Palo Alto, CA 94301

Abstract

Current verification condition (VC) generation al-
gorithms, such as weakest preconditions, yield a
VC whose size may be exponential in the size of
the code fragment being checked. This paper de-
scribes a two-stage VC generation algorithm that
generates compact VCs whose size is worst-case
quadratic in the size of the source fragment, and is
close to linear in practice.

This two-stage VC generation algorithm has
been implemented as part of the Extended Static
Checker for Java. It has allowed us to check large
and complex methods that would otherwise be im-
possible to check due to time and space constraints.

1 Introduction

Developing a reliable software system is a challeng-
ing task. A promising technique for ensuring soft-
ware reliability is to verify statically the absence
of as many errors as possible. Type systems have
been successful at statically detecting certain kinds
of errors, for example, applying a function to an in-
correct number of arguments.

The goal of the Extended Static Checking
project [DLNS98, LSS99, Ext] is to detect stati-
cally additional errors that are normally detected
only at run-time, if ever. Such errors include null
pointer dereferences, array bounds errors, division

To appear in the Conference Record of POPL ’01: The
28th ACM Symposium on the Principles of Program-
ming Languages.

by zero, and the violation of programmer-specified
properties such as method preconditions, method
postconditions, and object invariants. Performing
this kind of checking requires detailed reasoning
about both the semantics of the program fragment
being checked and the desired correctness property.

A standard approach for performing this kind of
analysis is to split the problem into two stages. The
first stage, VC Generation, translates a program
fragment and its correctness property into logical
formula, called a verification condition (VC). The
VC has the property that if it is valid then the
program fragment satisfies its correctness property.
The second stage then uses an automatic decision
procedure (see, e.g., [Nel81, DNS01]) to determine
the validity of the VC.

This approach works well for smaller or simpler
program fragments. However, it is difficult to scale
this approach to larger fragments that have more
complex control flow, in part due to the extremely
large size of the corresponding VCs produced by
current VC generation algorithms. These algo-
rithms can yield impractically large VCs for rou-
tines that contain only a few dozen lines of code.

For example, the weakest precondition transla-
tion [Dij76] produces a VC that may be exponen-
tial in the size of the original program fragment.
Such large VCs are expensive to create, to store,
and to verify. This exponential blow up is not only
a theoretical concern; we have observed this behav-
ior in practice on several more complex methods
that we have tried to check using the Extended
Static Checker for Java (ESC/Java). This situa-
tion is unfortunate since these complex methods
would benefit most from automated techniques for
software defect detection.

Other VC generation algorithms, such as
strongest postconditions or symbolic execu-
tion [NL98], also suffer from the potential for ex-
ponential blow up.

This paper presents a new VC generation al-
gorithm. The algorithm is based on an investiga-
tion into the cause of the exponential worst-case
behavior of the weakest precondition translation.
This investigation reveals that assignment state-
ments are the primary cause of exponential be-
havior, both directly and through their interaction
with control-flow merge points.

Based on this insight, we develop a two-stage
VC generation algorithm. The first stage trans-
lates a source fragment into an assignment-free,
or passive, intermediate form. The second stage
uses a VC generation technique that is optimized
to exploit the assignment-free nature of the passive
form. This two-stage VC generation algorithm cre-
ates a VC whose size is worst-case quadratic in the
size of the source fragment, and in practice appears
to be close to linear.

The use of this two-stage VC generation algo-
rithm has significantly improved the performance
of ESC/Java. As expected, the smaller VCs are
cheaper to create and store. In addition, our
automatic decision procedure, Simplify [DNS01],
requires less time to verify the validity of these
smaller VCs. The combination of these per-
formance improvements has enabled us to check
a number of large and complex methods using
ESC/Java that we were previously unable to check.

The presentation of our results proceeds as fol-
lows: Section 2 reviews ESC/Java, which provides
the context for this work. Section 3 introduces
the intermediate language that we use as the basis
for our development. Section 4 defines the seman-
tics of that language using the weakest precondi-
tion translation, and outlines the problems with
this translation. Section 5 describes the transla-
tion of intermediate language statements into pas-
sive form, and Section 6 describes an optimized VC
generation algorithm for passive statements. Sec-
tion 7 extends our development to handle loops and
exceptions. Section 8 describes the performance
benefits of the two-stage VC generation algorithm
in the context of ESC/Java. Section 9 describes

related work, and we offer some conclusions in Sec-
tion 10.

2 Review of ESC/Java

The Extended Static Checker for Java is a tool
for finding, by static analysis, common defects in
Java programs that are not normally detected un-
til run-time, if ever [LSS99, LNS00]. ESC/Java
is publicly available for research and educational
purposes [Ext]. It takes as input a Java program,
possibly including user annotations, and produces
as output a list of possible defects in the program.

The annotations in the input program de-
scribe program properties such as method precon-
ditions, method postconditions, and object invari-
ants. These annotations allow ESC/Java to catch
software defects using a modular, or method-local,
analysis.

During this analysis, ESC/Java verifies that the
annotations are consistent with the program, and it
also uses the annotations to verify that each prim-
itive operation (such as a dereference operation,
an array access, or a type cast) will not raise a
run-time exception (as might happen, for exam-
ple, if a dereferenced pointer is null or if an array
index is out-of-bounds). To perform this analy-
sis, ESC/Java first translates each method and its
correctness property into a verification condition,
and then uses an automatic decision procedure to
determine the validity of the verification condition.

Since the properties that it attempts to check
are undecidable in the worst case, ESC/Java con-
tains some degree of incompleteness and unsound-
ness by design. That is, it sometime issues spu-
rious warnings and sometimes fails to detect gen-
uine errors. However, the aspects of ESC/Java’s
processing that give rise to unsoundness and in-
completeness are orthogonal to this paper. Except
for the loop desugaring briefly discussed in section
7.1, none of the translations described below are
unsound or incomplete.

3 Guarded Commands

Deriving verification conditions for a large and
realistic language such as Java is quite complex.
To help structure and modularize this translation,

2

A,B, S ∈ Stmt ::= assert e

| assume e

| x := e

| A ; B

| A B

e ∈ Expr (expressions)
x ∈ Var (variables)

Figure 1: The guarded command language.

ESC/Java first translates each method and its cor-
rectness property into an intermediate representa-
tion, known as a guarded command . This trans-
lation eliminates many of the complexities of the
Java programming language and incorporates engi-
neering compromises involving soundness and com-
pleteness; it is outlined elsewhere [LSS99].

In this paper, we focus on the subsequent trans-
lation of the guarded command representation into
a verification condition, and, in particular, on how
to generate a verification condition that is compact
and can be efficiently verified using an automatic
decision procedure.

We base our development on the intermediate
guarded command language shown in Figure 1.
The language is a variation of Dijkstra’s guarded
commands [Dij76], together with some more recent
additions (see, e.g., [Nel89, BvW98]). The lan-
guage includes assert and assume statements, as-
signment statements, sequential composition, and
demonic (indeterminate) choice. (By including as-
sume statements, we no longer need the “guards”
than originally gave the language its name.) The
guarded command language used by ESC/Java is
a small extension of this language with loops and
exceptions; to clarify our presentation we defer dis-
cussion of these constructs to Section 7.

3.1 Informal Semantics

The execution of a guarded command statement
has two possible outcomes: it may terminate nor-
mally (in some program state) or it may “go
wrong” due to a failed assertion. The execution
of the statement assert e terminates normally if
the predicate e evaluates to true in the current pro-
gram state, and goes wrong otherwise. The assume

S wp.S.Q

assert e e ∧ Q

assume e e ⇒ Q

x := e Q(x := e)
A ; B wp.A.(wp .B.Q)
A B wp.A.Q ∧ wp.B.Q

Figure 2: Weakest-precondition semantics.

statement is partial: assume e terminates nor-
mally if the predicate e evaluates to true, and sim-
ply cannot be executed from a state where e eval-
uates to false. The assignment statement x := e

updates the program state so that x is bound to
the current value of the expression e. The state-
ment A ; B denotes the sequential composition of
A and B. The execution of the choice statement
A B executes either A or B, but the choice be-
tween the two is made arbitrarily. Expressions in
the language are pure (side-effect free) and include
at least the boolean constants true and false. All
variables have an arbitrary value in a program’s
initial state.

The indeterminism arising from choice state-
ments and from the program’s initial (arbitrary)
state can be tamed by assume statements: the se-
mantics of a program considers only those execu-
tions in which the predicate of each executed as-
sume statement evaluates to true. For example,
the statement

(assume 0 ≤ x ; A) (assume ¬(0 ≤ x) ; B)

is the deterministic statement commonly written
as

if 0 ≤ x then A else B end

Before going on, we introduce the notational
conventions that we use in this paper. We use
a left-associative infix “.” (binding more strongly
than any other operator) to denote function appli-
cation. For any function f , we use f [x 7→ y] to
denote the function that is identical to f except
that it maps x to y.

3

4 Weakest Precondition Semantics

We define the semantics of the guarded command
language using the weakest precondition transla-
tion

wp : Stmt → Formula → Formula

The set Formula of logical formulae is an exten-
sion of expressions that includes (at least) the usual
boolean operators (∧ , ∨ ,¬, ⇒ ,=) and quantifi-
cation, and is closed under substitution of expres-
sions for variables. We use the notation Q(x := e)
to denote the capture-free substitution of e for ev-
ery free occurrence of x in a formula Q.

The translation wp is defined in Figure 2. For
any statement S and predicate Q on the post-state
of S, wp.S.Q returns a formula characterizing the
pre-states from which executions of S never go
wrong and terminate only in states satisfying Q.

To illustrate the derivation of verification con-
ditions using the weakest precondition translation,
consider the following method abs. This method
returns the absolute value of its argument and
decrements a counter c provided c was initially
positive.

static int abs(int x)

//@ ensures \result >= 0

{
if (x < 0) {

x = -x;

//@ assert x > 0;

}
if (c > 0) {

c--;

}
return x;

}

ESC/Java annotations are given as specially for-
matted Java comments beginning with an @-sign.
This method contains two annotation: a postcon-
dition \result >= 0 and an assertion x > 0. To
verify these properties, ESC/Java translates this

method into the following guarded command Sabs:
1

((assume x < 0 ; x = −x ; assert x > 0)
(assume ¬(x < 0))) ;

((assume c > 0 ; c = c − 1)
(assume ¬(c > 0))) ;

assert x ≥ 0

This guarded command is subsequently translated
into the VC wp.Sabs.true:2

x < 0 ⇒

−x > 0

∧

(

c > 0 ⇒ −x ≥ 0
∧ ¬(c > 0) ⇒ −x ≥ 0

)

∧ ¬(x < 0) ⇒

(

c > 0 ⇒ x ≥ 0
∧ ¬(c > 0) ⇒ x ≥ 0

)

Since this VC is valid, the method abs satisfies its
postcondition and assertion.

Although this VC is of moderate size, in general
a computation wp.S.true may yield a verification
condition whose size is exponential in the size of
S. An examination of the definition of wp reveals
that there are two situations where expressions or
formulae are duplicated.

The first case arises from the translation of an
assignment statement x := e. The weakest precon-
dition of this statement with respect to a postcon-
dition Q is Q(x := e). Since the variable x may
occur many times in Q, the substitution operation
produces a precondition that contains that many
copies of e. For example, the VC wp.Sabs.true con-
tains three copies of the expression −x.

This duplication is particularly pronounced
when assignment statements are sequentially com-
posed. To illustrate this problem, consider the
statement:

S ≡ (x1 := x0 + x0;
x2 := x1 + x1;
. . . ;
xn := xn−1 + xn−1)

The weakest precondition wp.S.(xn > 0) has size
exponential in n; in particular, it contains 2n refer-
ences to x0. We note that this precondition could

1This guarded command elides some details introduced by the
ESC/Java translation that are unrelated to the current discussion.

2For clarity, the VCs in this paper have been simplified by per-
forming peephole optimizations, such as replacing Q ∧ true by Q, as
is also done by ESC/Java.

4

S passify .〈σ, S〉

assert e

{

〈⊥, assert false〉 if e = false

〈σ, assert σ.e〉 if e 6= false

assume e

{

〈⊥, assume false〉 if e = false

〈σ, assume σ.e〉 if e 6= false

x := e 〈σ[x 7→ x′], assume x′ = σ.e〉
where x′ is a fresh variable

A ; B 〈σb, (A′ ; B′)〉
where 〈σa, A

′〉 = passify .〈σ,A〉
〈σb, B

′〉 = passify .〈σa, B〉
A B 〈σ′, (A′ ; Ra) ; (B′ ; Rb))〉

where 〈σa, A
′〉 = passify .〈σ,A〉

〈σb, B
′〉 = passify .〈σ,B〉

〈σ′,Ra ,Rb〉 = merge.〈σa, σb〉

Figure 3: Translation into passive form.

be represented in linear space as a directed acyclic
graph (DAG).

The second cause of duplication occurs in the
translation of a choice statement A B, whose
weakest precondition with respect to a postcondi-
tion Q is wp.A.Q ∧ wp.B.Q. Each conjunct con-
tains a copy of Q (possibly modified by substitu-
tions corresponding to assignment statements in A

and B). Thus the postcondition Q (or some variant
of it) is duplicated in both conjuncts. For example,
in the VC wp.Sabs.true, there are four substitution
instances of the assertion x ≥ 0, one for each of the
possible execution paths through the method abs.

Again, the duplication is more pronounced when
choice statements are sequentially composed; the
size of the resulting weakest precondition may be
exponential in the size of the statement sequence.
Unlike in the previous case, this precondition may
require exponential space even when using a DAG
representation, since the duplicated postconditions
may not be exact copies of each other due to sub-
stitutions arising from assignments.

5 Translation into Passive Form

The preceding discussion indicates that assignment
statements play a role in both sources of duplica-
tion in the weakest precondition translation. Based

merge .〈σ,⊥〉 = 〈σ, skip, skip〉
merge .〈⊥, σ〉 = 〈σ, skip, skip〉

merge .〈σa, σb〉 = 〈σ′,Ra ,Rb〉
where D = {x ∈ Var | σa.x 6= σb.x}

Θ = map from D to fresh variables
Ra = ; {assume σa.x = Θ.x | x ∈ D}
Rb = ; {assume σb.x = Θ.x | x ∈ D}

σ′ = x 7→

{

Θ.x if x ∈ D

σa.x if x 6∈ D

Figure 4: The function merge.

on this insight, we develop a two-stage VC genera-
tion algorithm. The first stage transforms a state-
ment into an assignment-free, or passive, form.
The second stage exploits the assignment-free na-
ture of this passive form to create a compact veri-
fication condition.

To translate a source statement to passive form
we need to remove each assignment statement. The
basic idea is to replace each assignment statement

x := e

by an assumption

assume x′ = e

where x′ is a fresh variable, and to change subse-
quent references to x to refer to x′. We call x′ a
variant of x, and use

Subst = (Var → Var) ∪ {⊥}

to denote the set of substitutions, or mappings
from program variables to their current variants.
The special substitution ⊥ (“bottom”) is used to
indicate infeasible code paths as discussed below.
We extend substitutions from variables to expres-
sions and formulae in the usual manner, and for
any expression or formula e, we define ⊥.e to be e.

The translation into passive form is performed
by the function

passify : Subst × Stmt → Subst × PStmt

defined in Figure 3, where PStmt ⊂ Stmt denotes
the set of assignment-free, or passive, statements.

5

The function passify takes two arguments: an ini-
tial substitution σ ∈ Subst that specifies the cur-
rent variant for each program variable, and a state-
ment S ∈ Stmt to be transformed, and returns a
pair 〈σ′, S′〉, where S ′ in a passive version of S,
and where σ′ ∈ Subst describes the current vari-
ants after S ′ terminates. If S ′ is guaranteed never
to terminate, then σ′ may be ⊥.

The translation of an assert statement assert e

into passive form is straightforward: we simply ap-
ply σ to e. As an optimization, if e is false, we may
indicate that the assertion will never terminate by
returning the special substitution ⊥. The trans-
lation of an assume statement proceeds in a simi-
lar manner. To translate an assignment statement
x := e into passive form, we choose a fresh vari-
able x′, introduce the assumption that x′ = σ.e,
and update σ to record that x′ is the current vari-
ant of x. For a sequential composition, we simply
translate each component in turn.

The translation of a choice statement A B is
more complicated, since the passive forms of A and
B may introduce different variants, say xa and xb,
of some program variable x. We handle this sit-
uation by introducing a third variant, say x′, of
x; appending to the passive form of A the assump-
tion that x′ = xa; appending to the passive form of
B the assumption that x′ = xb; and subsequently
using x′ as the current variant of x.

This translation of choice statements relies on a
helper function

merge : Subst × Subst → Subst × PStmt × PStmt

shown in Figure 4. Given two substitutions σa and
σb describing the current variants after the passive
forms of A and B terminate, the function invo-
cation merge.〈σa, σb〉 returns a triple 〈σ′,Ra ,Rb〉,
where Ra and Rb describe the additional assump-
tions, or renamings, to be appended to the passive
forms of A and B, respectively, and σ ′ is result-
ing substitution. As an optimization, if one of the
arguments to merge is ⊥, then no fresh variables
or additional assumptions are necessary, because
either A or B will never terminate.

In the definition of merge, we use skip to ab-
breviate assume true, and we use “;” as an oper-
ator applied to a set of statements to denote the

sequential composition of those statements (in an
arbitrary order).

For the method abs from Section 4, the corre-
sponding passive statement S ′

abs
is:

((assume x < 0 ; assume x1 = −x ;
assert x1 > 0 ; assume x2 = x1)

(assume ¬(x < 0) ; assume x2 = x)) ;
((assume c > 0 ; assume c1 = c − 1 ;

assume c2 = c1)
(assume ¬(c > 0) ; assume c2 = c)) ;

assert x ≥ 0

The additional assumptions introduced by the
passify translation may produce an increase in the
code size. Although this increase may be quadratic
in the worst case, in practice it appears to be closer
to linear (see Section 8).

The translation of a guarded command state-
ment into passive form preserves the semantics of
the statement, as described by the following theo-
rem.

Theorem 1 Let S ∈ Stmt, let σ ∈ Subst, let

〈σ′, S′〉 = passify .〈σ, S〉

and let x1, . . . , xn be the additional variables in-

troduced by the passify translation. Then for

any predicate Q containing no free occurrences of

x1, . . . , xn,

σ.(wp.S.Q) = ∀x1, . . . , xn : wp.S′.(σ′.Q)

Proof: By structural induction on S.

6 VCs for Passive Statements

It remains to transform the passive representation
into a verification condition. The assignment-free
nature of the passive form allows us to perform this
translation while avoiding the exponential blow up
of the weakest precondition translation. The ab-
sence of assignment statements means that the ex-
ecution of a passive statement cannot change the
program state, and the only effect of such an execu-
tion is to choose among the two possible outcomes:
normal termination and going wrong. Thus the se-
mantics of a passive statement S can be completely
captured by two outcome predicates: N .S, which

6

S N .S W .S

assert e e ¬e

assume e e false

A ; B N .A ∧ N .B W .A ∨ (N .A ∧ W .B)
A B N .A ∨ N .B W .A ∨ W .B

Figure 5: Outcome predicates for passive stmts.

describes the initial states from which the execu-
tion of S may terminate normally, and W .S, which
describes states from which the execution of S may
go wrong.

The definition of the two outcome predicates

N ,W : PStmt → Formula

is shown in Figure 5. An assert or assume state-
ment terminates normally if its predicate is true.
An assert statement goes wrong if its predicate
is false, whereas an assume statement never goes
wrong. A sequential composition A ; B terminates
normally only if both components terminate nor-
mally, and goes wrong if either A goes wrong, or
if A terminates normally and B goes wrong. A
choice statement A B may terminate normally
if either component terminates normally, and may
go wrong if either component goes wrong.

The relationship between the outcome predi-
cates and the wp translation is described by the
following theorem.

Theorem 2 If S is in passive form then

wp.S.Q = ¬(W .S) ∧ (N .S ⇒ Q)

Proof: By structural induction on S.

Hence, for any passive statement S, the VCs
wp.S.true and ¬(W .S) are equivalent. The VC
¬(W .S′

abs
) for the passive statement S ′

abs
consid-

ered earlier is:

¬

(

(x < 0 ∧ x1 = −x ∧ ¬(x1 > 0))
∨ (Q1 ∧ Q2 ∧ ¬(x2 ≥ 0))

)

where:

Q1=

(

(x < 0 ∧ x1 = −x ∧ x1 > 0 ∧ x2 = x1)
∨ (¬(x < 0) ∧ x2 = x)

)

Q2=

(

(c > 0 ∧ c1 = c − 1 ∧ c2 = c1)
∨ (¬(c > 0) ∧ c2 = c)

)

Verifying the assertion expressed by ¬(x1 > 0)
in this VC is straightforward. To verify the post-
condition expressed by ¬(x2 ≥ 0), a theorem
prover would need to analyze separately the two
disjuncts in Q1 (corresponding to the two paths
through the first choice statement in S ′

abs
). How-

ever, the theorem prover need not analyze the two
disjuncts in Q2 (corresponding to the two paths
through the second choice statement). Thus, un-
der the outcome predicate encoding of VCs, the
analysis performed by a theorem prover when ver-
ifying a property (such as an assertion or postcon-
dition) need not correspond to an all-paths analy-
sis of the underlying method; the theorem prover
can use various heuristics in an attempt to ignore
disjunctions arising from choice statements that do
not affect the correctness of the property being ver-
ified.

The VCs generated by this approach are typi-
cally significantly smaller than that generated by
wp. In particular, for a passive statement S, the
VC ¬(W .S) is at most quadratic in the size of S.

Theorem 3 If S is in passive form then

1. |N .S| is O(|S|), and

2. |W .S| is O(|S|2).

Proof: By structural induction on S.

The VC ¬(W .S) still contains a significant
amount of duplication (and hence the quadratic
as opposed to linear bound). For example, the VC
¬(W .S′

abs
) contains two copies of the subformula

x < 0 ∧ x1 = −x.
Since the duplicated subformulae in a VC

¬(W .S) are exact copies (and not substitution in-
stances) of each other, it is straightforward to in-
troduce a name for each duplicated subformula Q,
for example, via (∃x : (x = Q) ⇒ . . .), and to
replace each occurrence of Q by a reference to the
variable x. In the context of the Simplify theorem
prover, for efficiency purposes we name each dupli-
cated subformula Q via the nullary predicate def-
inition (DEFPRED (x) Q), and then replace each
occurrence of Q by the predicate application (x).

Of course, if Q is small, it may not be worth
naming it, due to the overhead of processing the
resulting indirection in the theorem prover. Our

7

implementation uses a cutoff K, and only names a
duplicated subformula if the formula is larger than
K (where the size of a formula is the number of
nodes in its representation). For any finite value
of this cutoff, the size of the resulting VC is linear
in the size of the passive statement, and hence at
most quadratic in the size of the source program.
Section 8 describes experimental results concerning
the effect of K on both the size of VCs and on the
time required to prove them.

7 Handling Loops and Exceptions

ESC/Java uses an extended guarded command lan-
guage that also incorporates loops and exceptions.
This section outlines how to extend our develop-
ment to handle these constructs.

7.1 Loops

ESC/Java incorporates a variety of translations
for loops that provide different trade-offs between
soundness, completeness, and annotation over-
head. These translations are outlined in a related
paper [LSS99]. In this section, we sketch a sound
but incomplete translation for while loops.

This translation relies on the programmer to an-
notate each loop with a loop invariant Q; this in-
variant is required to hold at the beginning of each
iteration of the loop. Using this loop invariant,
we desugar each while statement into a collection
of more primitive guarded commands. Under this
desugaring, a while loop

while {Q} e do S end

becomes

assert Q ;
x1 := y1 ; . . . ; xn := yn ;
assume Q ;
((assume e ; S ; assert Q ; assume false)

assume ¬e)

where x1, . . . , xn are the variables assigned in S,
and y1, . . . , yn are fresh variables that hold arbi-
trary values (from the program’s initial state).

The desugared code ensures the loop invari-
ant holds initially, and then sets the variables

S wp.S.〈Q,R〉

assert e e ∧ Q

assume e e ⇒ Q

x := e Q(x := e)
A ; B wp.A.〈wp.B.〈Q,R〉, R〉
A B wp.A.〈Q,R〉 ∧ wp.B.〈Q,R〉
raise R

A ! B wp.A.〈Q,wp.B.〈Q,R〉〉

Figure 6: Weakest preconditions with exceptions.

x1, . . . , xn to arbitrary values that satisfy the loop
invariant. The code then checks that if e is true,
then the loop invariant still holds after executing
S; if e is false, then the desugared loop terminates.

7.2 Exceptions

ESC/Java’s guarded command language includes
two additional constructs for raising and catching
exceptions:

S ::= . . . | raise | A ! B

The statement raise simply raises an exception.
The guarded command language does not distin-
guish different types of exceptions; this is accom-
plished in ESC/Java by using an auxiliary program
variable. ESC/Java uses guarded command excep-
tions not only to model the behavior of Java excep-
tions, but also to model other forms of “escaping”
control flow, such as break and return statements.
In the catch statement S1 ! S2, the statement S2

is the exception handler for any exception raised
(and not caught) in S1. If S1 terminates normally,
then S2 is not executed.

The weakest precondition translation for the ex-
tended language

wp : Stmt → (Formula × Formula) → Formula

now takes as arguments a statement S and two
postconditions, Q and R, which describe properties
that should hold whenever S terminates normally
or exceptionally, respectively. If the precondition
wp.S.〈Q,R〉 holds a particular state, then any ex-
ecution of S from the state can never go wrong,

8

S passify .〈σ, S〉

assert e

{

〈⊥,⊥, assert false〉 if e = false

〈σ,⊥, assert σ.e〉 if e 6= false

assume e

{

〈⊥,⊥, assume false〉 if e = false

〈σ,⊥, assume σ.e〉 if e 6= false

x := e 〈σ[x 7→ x′],⊥, assume x′ = σ.e〉
where x′ is a fresh variable

A ; B 〈σbn , σx, (A′ ! (Rax ; raise)) ; (B ′ ! (Rbx ; raise))〉
where 〈σan , σax , A′〉 = passify .〈A, σ〉

〈σbn , σbx , B′〉 = passify .〈B, σan 〉
〈Rax ,Rbx , σx〉 = merge.〈σax , σbx 〉

A B 〈σn, σx, ((A′ ; Ran) ! (Rax ; raise)) ; ((B ′ ; Rbn) ! (Rbx ; raise))〉
where 〈σan , σax , A′〉 = passify .〈A, σ〉

〈σbn , σbx , B′〉 = passify .〈B, σ〉
〈Ran ,Rbn , σn〉 = merge.〈σan , σbn〉
〈Rax ,Rbx , σx〉 = merge.〈σax , σbx 〉

raise 〈⊥, σ, raise〉
A ! B 〈σn, σbx , (A′ ; Ran) ! (B′ ; Rbn)〉

where 〈σan , σax , A′〉 = passify .〈A, σ〉
〈σbn , σbx , B′〉 = passify .〈B, σax 〉
〈Ran ,Rbn , σn〉 = merge.〈σan , σbn〉

Figure 7: Translation into passive form for statements with exceptions.

S N .S X .S W .S

assert e e false ¬e

assume e e false false

A ; B N .A ∧ N .B X .A ∨ (N .A ∧ X .B) W .A ∨ (N .A ∧ W .B)
A B N .A ∨ N .B X .A ∨ X .B W .A ∨ W .B

raise false true false

A ! B N .A ∨ (X .A ∧ N .B) X .A ∧ X .B W .A ∨ (X .A ∧ W .B)

Figure 8: Outcome predicates for passive statements with exceptions.

can terminate normally only in states satisfying
Q, and can terminate exceptionally only in states
satisfying R. The new translation is described in
Figure 6.

Since statements can now terminate exception-
ally, we update the passify translation to return
a triple 〈σn, σx, S′〉, where S ′ is a passive state-
ment, σn describes the current variants after S ′

terminates normally, and σx describes the current
variants after S ′ terminates exceptionally. When

translating a sequential composition A ; B, we
need to merge the substitutions corresponding to
the exceptional terminations of A and B. Hence,
we append to the passive forms of A and B code
that catches any thrown exception, performs the
appropriate renaming, and then re-raises the ex-
ception. Conversely, for a catch statement A ! B,
we need to merge the substitutions corresponding
to the normal terminations of A and B. For a
choice statement, we need to merge substitutions

9

corresponding to both normal and exceptional ter-
minations.

The definition of the new passify translation is
shown in Figure 7. The infeasible path optimiza-
tion (using ⊥) is particularly important in the pres-
ence of exceptions (see Section 7.2) because many
statements will never terminate exceptionally.

Finally, we introduce a third outcome predi-
cate, X .S, which describes the pre-states of S from
which exceptional termination is possible. The ap-
propriate definition of the three outcome predi-
cates

N ,X ,W : PStmt → Formula

for passive statements with exceptions is shown in
Figure 8.

Note that because of additional control flow
paths introduced by exceptions, the size of a VC
¬(W .S) may now be exponential in the size of
S. To illustrate this, consider the application of
the outcome predicate N to the code fragment
(A ; B) ! C, which yields the formula

N.((A ; B) ! C)
≡ N.(A ; B) ∨ (X.(A ; B) ∧ N.C)
≡ (N.A ∧ N.B)

∨ ((X.A ∨ (N.A ∧ X.B)) ∧ N.C)

containing two occurrences of the subformula N .A.
However, by naming shared subformulae as de-

scribed in Section 6, we can still represent the VC
¬(W .S) as a formula whose size is linear in the size
of S.

8 Experimental Results

We have implemented, as part of ESC/Java, both
VC generation algorithms described in this paper.
This section presents experimental results com-
paring five VC-generation options: the standard
wp-based translation, and the two-stage transla-
tion based on with four different values (0, 10, 30,
∞) for the cutoff size K above which to introduce
names for duplicated outcome predicates.

These experiments were performed on a 667Mhz
ES40 Alpha workstation containing 4Gb of mem-
ory running Tru64 UNIX. ESC/Java is written in
Java, and was run on the Compaq Fast VM. The
Simplify theorem prover is written in Modula-3,

and runs as a separate process. The two processes
communicate via Unix pipes.

The benchmark we used for these experiments
is ESC/Java’s front-end, which we have annotated
with appropriate specifications. This front-end
consists of 2292 routines (methods and construc-
tors) totaling over 20,000 lines of code.

We have divided the routines in the benchmark
into three categories according to their worst per-
formance under any of the five options. The first
category contains the ten “hardest” routines. The
verification of each of these routines either ex-
hausted a 1Gb heap or required more than five
minutes under at least one of the options. The
second category of routines contains the 17 rou-
tines that required at least 100 seconds under some
option, but no more than 300 seconds under any
option. The third category contains the 2184 rou-
tines in the benchmark that were successfully veri-
fied in under 100 seconds regardless of the VC gen-
eration option chosen. The remaining 81 routines
in the front end are routines for which ESC/Java
performs no VC generation (for example, methods
declared in interfaces); these routines are not in-
cluded in the benchmark.

Figure 9 describes the performance of the five
VC generation options on the routines in the
benchmark, with results for the ten “hardest” rou-
tines given individually, and summed results for
the other two categories.

The columns of the table identify:

• the routine name (or summed category);

• the size of the abstract syntax tree for the rou-
tine (number of nodes);

• the size of the guarded command (number of
nodes);

• the size of the VC under the wp translation
(number of nodes);

• the time required to check this routine under
the wp translation (seconds);

• the size of the passive version of the guarded
command (number of nodes and percentage of
original guarded command);

• the cutoff K for naming duplicated outcome
predicates (number of nodes);

10

wp translation New translation
Routine name AST GC VC time PGC % K VC % time %
BinaryExpr. 420 1805 too big 1545 86 0 5758 1.4
postCheck 10 4840 0.6

30 4700 0.6
∞ 5513 1.0

LiteralExpr. 423 1417 too big 1608 113 0 5735 1.5
postCheck 10 5023 1.3

30 5141 1.3
∞ 5765 1.3

finishFloating 653 3464 too big 7927 229 0 13134 69.5
PointLiteral 10 10616 8.9

30 10583 10.7
∞ 20416 73.9

scanCharOr 812 3896 too big 23904 614 0 33502 49.8
String 10 29851 18.1

30 29924 17.1
∞ 51357 16.3

scanNumber 1030 4170 too big 12383 297 0 19080 34.6
10 15334 23.0
30 15204 14.6
∞ 29093 10.7

scanPunctuation 509 3326 4751446 350.0 10457 314 0 15525 0 26.0 7
10 13748 0 12.9 4
30 13816 0 12.0 3
∞ 17972 0 6.8 2

parseNew 794 7052 102780 77.0 27170 385 0 38186 37 530.1 688
Expression 10 36116 35 432.0 561

30 35749 35 419.0 544
∞ 83659 81 339.2 440

checkExpr 3945 17448 2798672 > 2000.0 35491 203 0 61813 2 750.4 < 30
10 53779 2 401.5 < 16
30 51874 2 347.8 < 14
∞ 90646 3 169.4 < 7

checkStmt 2883 15746 1041210 309.0 43417 276 0 67915 7 457.5 148
10 61382 6 251.1 81
30 57726 6 145.4 47
∞ 105297 10 151.9 49

visitMethodDecl 479 4331 2022351 381.5 5270 122 0 12423 1 10.2 3
10 11430 1 8.7 2
30 11581 1 8.7 2
∞ 12544 1 8.8 2

sum of 17 other 14735 124511 11782617 1574.5 312822 251 0 489529 4 1777.8 113
routines needing 10 461027 4 1048.0 67
> 100 seconds in 30 450090 4 900.7 57
some run ∞ 955276 8 676.8 43

sum of remaining 148168 1851166 11668371 1613.4 2379973 129 0 7471786 64 2473.1 153
2184 routines 10 7095724 61 1662.8 103

30 6998342 60 1508.5 93
∞ 7530778 65 1564.1 97

Figure 9: Experimental results.

• the size of the VC under the two-stage trans-
lation (number of nodes and percentage of the
wp VC);

• the time required to verify this routine under
the two-stage translation (seconds and per-
centage of time using wp)

The times in this table include the time required
to translate the Java abstract syntax tree represen-
tation into a guarded command, the time required
to translate the guarded command into a VC (in-
cluding translation into the intermediate passive
representation, if necessary), and time required to

check the VC. For the summed categories, the en-
tries in the percentage columns tell how big one
summed quantity is as a percentage of another.

The results indicate that all the VC generation
algorithms work well on the simpler routines in the
third category. The two-stage translation produces
smaller VCs that are slightly easier to prove for
K = 30 or K = ∞. Choosing K = 0 results in the
theorem prover performing significant extra work
to process the resulting indirections.

The wp translation has difficulty scaling to the
larger or more complex routines; for five of the
routines in this benchmark the wp translation ex-

11

hausted a 1Gb heap limit.
The two-stage translation performs much bet-

ter on these complex routines; the resulting VCs
are significantly smaller, and can easily fit in the
heap. Again, choosing K = 0 results in larger proof
times. For K > 0, the two-stage translation yields
VCs that require significantly less time to prove
(sometimes by an order of magnitude) than the
VCs produced by the wp translation.

The routine parseNewExpression requires sig-
nificantly more time to verify under the two-stage
translation than under wp. In general, the time
required by Simplify to verify a formula is highly
dependent on the order in which Simplify chooses
to perform various case-splits, and the case-split
order is determined by a variety of heuristics. For
this routine, we suspect that these heuristics are
misled in some manner by the VC generated by
the two-stage translation.

Overall, the two-stage translation perform sig-
nificantly better than the wp translation. It en-
ables ESC/Java to check all of the routines in
this benchmark due to the smaller space require-
ments, and is significantly faster. Excluding the
six routines that could not be checked using the
wp translation, checking the entire benchmark us-
ing wp required 4305 seconds, whereas using the
two-stage translation requires only 2994 seconds
(for K = 30), or 2748 seconds (for K = ∞).

9 Related Work

The VC-generation technique described in this
paper is the result of joint work by the au-
thors with Greg Nelson as part of the ESC/Java
project [Ext]. It is related to an earlier (unpub-
lished) VC-generation technique developed by one
of the authors (Saxe), Nelson, and David Detlefs
as part of an extended static checker for Modula-
3 [DLNS98]. The earlier technique produced simi-
larly compact and efficiently provable VCs, but was
based on intermixing weakest-precondition compu-
tations with strongest-postcondition computations
rather than on translation of statements to passive
form.

An alternative approach for VC generation is
based on all-paths symbolic forward execution.
This approach is well-suited for handling unstruc-

tured or assembly-level code. It has been used in
proof-carrying code systems [NL98] and in com-
piler validation techniques [Nec00]. However, this
approach also suffers from the same causes of po-
tential exponential blow up as the wp translation,
namely, the handling of assignments and control-
flow merge points.

The passive intermediate representation de-
scribed in this paper is similar to the static single
assignment (SSA) representation used in optimiz-
ing compilers [AWZ88, CFR+89]. Both intermedi-
ate representations are designed to facilitate later
analysis stages. The renamings introduced by the
passify translation at control flow merge points are
analogous to the phi-functions used in the SSA rep-
resentation.

10 Conclusions

Verification conditions provide a clean way to rea-
son about program behavior and correctness. We
have shown that the size of VCs need not be expo-
nential in the size on the program fragment being
checked, and we have presented a two-stage VC
generation algorithm, based on a passive interme-
diate representation, that generates compact VCs.
The size of these VCs is worst-case quadratic in the
size of the source fragment, and is close to linear
in practice.

The new algorithm has resulted in significant
performance benefits in ESC/Java; we can now
check many large and complex methods that we
previously could not check due to time or space
constraints.

Some other possible applications for our VC
generation algorithm may include proof-carrying
code [NL98], software model checking [BR00], com-
piler validation [Nec00], and full program verifica-
tion.

Acknowledgments: The authors thank our cur-
rent and previous colleagues on the extended static
checking project, including David Detlefs, Rustan
Leino, Mark Lillibridge, Greg Nelson, and Raymie
Stata for their part in building the framework that
allowed us to carry out the research reported here.
Greg Nelson and David Detlefs made particularly
relevant contributions, as described in section 9.

12

References

[AWZ88] Bowen Alpern, Mark N. Wegman, and
F. Kenneth Zadeck. Detecting Equality
of Variables in Programs. In 15th ACM

Symposium on Principles of Program-

ming Languages, pages 1–11, January
1988.

[BR00] Thomas Ball and Sriram K. Rajamani.
Boolean programs: A model and pro-
cess for software analysis. Technical Re-
port 2000-14, Microsoft Research, 2000.

[BvW98] Ralph-Johan Back and Joakim von
Wright. Refinement Calculus: A Sys-

tematic Introduction. Graduate Texts
in Computer Science. Springer-Verlag,
1998.

[CFR+89] Ron Cytron, Jeanne Ferrante, Barry K.
Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. An Efficient Method of
Computing Static Single Assignment
Form. In 16th Annual ACM Sym-

posium on Principles of Programming

Languages, pages 25–35, January 1989.

[Dij76] Edsger W. Dijkstra. A Discipline of

Programming. Prentice Hall, Engle-
wood Cliffs, NJ, 1976.

[DLNS98] David L. Detlefs, K. Rustan M.
Leino, Greg Nelson, and James B.
Saxe. Extended static checking. Re-
search Report 159, Compaq Systems
Research Center, December 1998.
Available from research.compaq.

com/SRC/publications.

[DNS01] David L. Detlefs, Greg Nelson, and
James B. Saxe. An automatic theorem-
prover for program checking, to appear
2001.

[Ext] Extended Static Checking web
page, Compaq Systems Re-
search Center. On the Web at
research.compaq.com/SRC/esc/.

[LNS00] K. Rustan M. Leino, Greg Nelson,
and James B. Saxe. ESC/Java

user’s manual. Compaq Systems
Research Center Technical Note
2000-002, October 2000. Available
from research.compaq.com/SRC/

publications.

[LSS99] K. Rustan M. Leino, James B. Saxe,
and Raymie Stata. Checking Java
programs via guarded commands. In
Bart Jacobs, Gary T. Leavens, Peter
Müller, and Arnd Poetzsch-Heffter,
editors, Formal Techniques for Java

Programs, Technical Report 251.
Fernuniversität Hagen, May 1999.
Also available as Compaq Systems
Research Center Technical Note
1999-002, from research.compaq.

com/SRC/publications.

[Nec00] George C. Necula. Translation vali-
dation for an optimizing compiler. In
Proceedings of the ACM SIGPLAN’98

Conference on Programming Language

Design and Implementation, pages 83–
94, June 2000.

[Nel81] Greg Nelson. Techniques for program
verification. Technical Report CSL-81-
10, Xerox Palo Alto Research Center,
1981.

[Nel89] Greg Nelson. A generalization of Dijk-
stra’s calculus. ACM Transactions on

Programming Languages and Systems,
11(4):517–561, 1989.

[NL98] George C. Necula and Peter Lee. The
design and implementation of a certify-
ing compiler. In Proceedings of the ACM

SIGPLAN’00 Conference on Program-

ming Language Design and Implemen-

tation, pages 333–344, June 1998.

13

