Scalable Context-Sensitive Flow Analysis Using Instantiation Constraints

Manuel Fahndrich

Jakob Rehof

Manuvir Das

Microsoft Resarch One Microsoft Way

Redmond WA, 98052
{maf ,rehof ,manuvir}@microsoft.com

Abstract

This paper shows that a type graph (obtained via polymor-
phic type inference) harbors explicit directional flow paths
between functions. These flow paths arise from the instan-
tiations of polymorphic types and correspond to call-return
sequences in first-order programs. We show that flow infor-
mation can be computed efficiently while considering only
paths with well matched call-return sequences, even in the
higher-order case. Furthermore, we present a practical al-
gorithm for inferring type instantiation graphs and provide
empirical evidence to the scalability of the presented tech-
niques by applying them in the context of points-to analysis
for C programs.

1 Introduction

Context-sensitivity based on Hindley-Milner style polymor-
phic type inference is in wide spread use due to its good
practical running time. The low cost of such inference based
analyses stems from the use of unification to model intra-
procedural dependencies of values. Inter-procedural depen-
dencies of values is captured by instantiations of polymor-
phic function types, but this information is generally ig-
nored.

In this paper we study the flow of values between func-
tions characterized by instantiations of polymorphic types.
To make matters concrete, we study a polymorphic version
of Steensgaard’s type-based points-to analysis [Ste96]. Our
analysis is flow-insensitive, i.e., statement order is ignored,
but it is context-sensitive, i.e., the effects of one call site do
not pollute the results at another call site to the same func-
tion. The intra-procedural part of the analysis uses undi-
rected dependencies.

The analysis has two phases. In the first phase we
build a type instantiation graph (TIG) using a polymor-
phic inference algorithm similar to ML’s type reconstruc-
tion, but based on instantiation (or semi-unification) con-
straints [Hen93]. In the second phase, points-to informa-
tion for individual program points is computed by answering

simple reachability queries on the type instantiation graph.
Contributions of this paper are:

e Our flow computation works without change on higher-
order programs. Previous work on context-sensitive
flow analysis is either restricted to first-order programs
(e.g- [CRL99, LH99]), reduces the higher-order case
to first-order by computing a call-graph approximation
through other means (e.g. [WR99, CGS™99]), or com-
putes a global fix-point, revisiting function descriptions
as function pointers are discovered (e.g. [WL95]). Our
technique enables us to compute flow information in the
higher-order case directly, without the need for a call-
graph approximation or an expensive global fix-point.!

e Qur flow algorithm is efficient. Individual queries (e.g.
all sources-one sink) can be answered completely on de-
mand in linear time (in the size of the type instantiation
graph). Furthermore, the algorithm is simple, since
queries correspond to graph reachability questions.

e The analysis is practical and scales to large programs.
The GCC SPEC benchmark is analyzed in under 3 min-
utes (not including parse time).

e Even though value dependencies are represented as
equivalence classes intra-procedurally, flow of values
across procedure boundaries is directional. Our flow
computation can be retrofitted to existing analyses
based on Hindley-Milner typing, extending them into
flow analyses.

Many context-sensitive flow analyses based on function
summaries (e.g. [CRL99, LH99, FFAQ0]) are presented as
a two phase computation. In phase 0, information is prop-
agated from the callees (where it originates) to the callers.
In phase 1, information is propagated from callers to callees.
This information represents summary information within a
callee from all contexts. Our results show that this phase
distinction is present on each individual flow path and gen-
eralizes to the higher-order case.

The rest of the introduction defines what we mean by
context-sensitivity and flow. Section 2 defines our frame-
work of constraint based type inference. Section 3 presents
our constraint resolution algorithm and describes the con-
struction of the type instantiation graph. Section 4 presents
the flow computation on the type instantiation graph. Ex-
perimental results proving the scalability are shown in Sec-
tion 5. The paper concludes with related work.

In Section 1.1 we discuss different notions of context-sensitivity
with distinct cost/precision trade-offs.

1.1 Context-sensitivity in higher-order programs

Context sensitivity in first-order programs is defined in
terms of valid call-return paths. A path is valid if paired up
call and return edges on that path are associated with the
same call site. For higher-order programs (function pointers
in C) we must first define what context-sensitivity means for
indirect function calls. We explain the context-sensitivity of
an analysis in terms of a conceptual copying of function bod-
ies. Consider the example program below:

typedef int (*FIP) (int *);

int f(int *p) {...}
int g(int *q) {...}

void foo(int a, int b, int c¢) {
int ra, rb;
FIP fp = c7f;:g;;

(1) ra
(2) b
}

Function pointer fp is assigned either function £ at occur-
rence ¢ or function g at occurrence j. Indirect call sites
1 and 2 are using fp. Consider a polymorphic analysis of
this program that treats each indirect call to a particular
function independently from other calls. Such an analysis
corresponds to analyzing the expanded program shown in
Figure 1 monomorphically (not context-sensitive). In this
expansion, we have two copies f;; and f;2 of function f,
one per indirect call site, and similarly for function g. This
context-sensitivity is based on functions reaching individual
call-sites. It is expensive, since the number of instances of a
function depends on the number of indirect call sites it flows
to.

Another form of context-sensitivity for higher-order pro-
grams is adopted in this paper. We only allow one copy
of a function per occurrence of a function symbol. In our
example, this form corresponds to analyzing the expanded
program in Figure 2 monomorphically. There is one copy
of function f corresponding to occurrence ¢ and one copy of
function g corresponding to occurrence j. The same function
is called at the two indirect call-sites 1 and 2. This form has
the advantage that it generates only as many instances of a
function f as there are occurrences of the symbol f in the
program. On the other hand, the use of fewer instances may
lead to less precise results. This form of context-sensitivity
corresponds to recursive let-polymorphism [Myc84]. Note
that in the first-order case, the two approaches are identi-
cal, since function symbols only occur at call sites.

The analogy of copying functions is only conceptual (and
obviously does not apply in the recursive case). In practice,
we analyze a function only once, producing a compact sum-
mary (its polymorphic type). At each instance, a copy of
this summary is used.

fp1(&a) ;
fpo (&b) ;

1.2 Flow information

We now define the flow queries we compute. Assume that
each sub-expression in a program is annotated by a label
£. We ask questions such as “Do values arising at label ¢;
in the program flow to a program point labelled 27" More
precisely, we associate the label £ of an expression e with
the type 7 of e. The queries are then answered by tracing

paths on the type instantiation graph (TIG) instead of the
program. The TIG embodies the type relations necessary
for the program to be well-typed.

2 Constraint based type inference

Constraint based type inference automatically infers types
for a program by generating a set of type constraints from
the program text and then solving the constraints. The
following section introduces types and constraints, and in
the next section we give an algorithm for solving these con-
straints. Note that the types we infer do not necessarily
coincide with standard C types.

2.1 Types and locations

Type based flow analysis assigns types and locations to pro-
gram objects.? Type expressions, ranged over by 7, are built
from variables, ranged over by «, and type constructors:

T ou= a | (r,...,m) =t | ptr(r)

In order to capture flow properties, type constructors (—,
ptr) are labeled with flow variables, ranged over by £. The
type (71,...,m) —° 7 is the type of functions mapping
arguments of types 71,... ,T, to a result of type 7; the type
ptrl(r) is the type of pointers pointing to objects of type
7. Flow variables, ¢, are used to uniquely name (types of)
program objects of interest, such as pointers, functions and
locations. For example, ptrz('r) is a pointer to the location
named £. In the type (71,... ,7s) —=¢ 7, we can think of ¢
as the address of a particular function.

In order to model the distinction between L-values and
R-values in C, we introduce locations of the form [r]*, de-
noting a memory location named £, holding values of type 7.
Locations [r]° are associated with L-values, whereas types
7 are associated with corresponding R-values. Consider the
following C program fragment as a simple example:

int x, *p;

P = &x;

In this program, symbol x is associated with a location
[]%, and p is associated with [ptrf(a)]®. The types are

interpreted as saying that after executing the assignment, p
points to location £ associated with x, i.e., p points to x.

2.2 Constraint generation

Figure 3 gives a representative set of constraint generation
rules for our pointer analysis of C programs. The rules for
expressions use typing judgments of the form A+ e : o/C,
where o is either a location or a type. The meaning of such
a judgment is that in type environment A expression e can
be given type or location o, on condition of the constraint
set C. A type environment A is a set of assignments of the
form z : [r]*, assigning location []¢ to program variable z. A
constraint set C is a finite set of simultaneous equalities and
inequalities between types, written as 7 = 7' and 7 <}, 7/,
respectively. An equality 7 = 7' means that the types 7
and 7' must be unified. Inequalities are called instantiation
constraints. We now explain the meaning of inequalities
together with some of the the rules of Figure 3.

2We should emphasize that the techniques presented in this paper
generalize to any conventional type language. The one chosen here
just makes it easy for us to show how our techniques apply to the
analysis of C programs.

int £;; (int *p) {...}
int fi;2(int *p) {...}

int gj1(int *q) {...}
int gjz(int *q) {...}

void foo(int a, int b, int c¢) {
int ra, rb;

if (e) {
ra = f;;(&a);
rb = f;2(&b);
}
else {
ra = gji(&a);
b = g;2(&b);
}
}

Figure 1: One expansion per function per call-site

2.2.1 Instantiation constraints

Polymorphism [Mil78, DM82] specializes the type of a func-
tion at each use by instantiating the type. Instantiation is
usually expressed by substitution of bound variables. In-
stead we use inequalities of the form 7 <} 7' to express
that 7' is an instance of 7 [Hen93, KTU94]. An inequality
7 <! 7' requires that 7’ must be a substitution instance of
7, .., 7 = R(r) for some substitution R (mapping of type
variables to types).

Constraints of the form 74e5 <}, 7use are generated when-
ever rule [Fun] in Figure 3 is applied. Here 74. represents
the type inferred from the definition of a function f (via rule
[Def]), whereas Tuse represents the instance type inferred
for a particular use of f (for example via rule [Call]). A
formal definition of the solution to a set of constraints is
given in Section 3. Disregarding for the moment the indices
i and p on the inequality symbol 2, we briefly outline how
functions get typed using the rules of Figure 3 by a simple
example.

2.2.2 An example
Counsider the identity function id defined by

id(x){ return x; }

This function can be given the polymorphic type a —¢ a,
where the type variable o may be instantiated to any type
at uses of id. The definitional type a —* « is inferred by
rule [Def]. Assuming location [a]! for x, we conclude by
rule [Ret], that the return type of id (denoted act(:q) in
the rule) is a. By rule [Def | we then conclude that the
definitional type of id (denoted asa in the rule) is a —¢ .

Now, suppose we apply id to a pointer p of type ptrl’ (y) ata
call site id(p). Because this call site mentions the function
name id, the rule [Fun | gives rise to a constraint of the
form aiq 5; B, where f is a fresh variable for the type of id
at this call site. Since we already found that aia = a —¢ q,
the instantiation constraint is equivalent to o —° a <p B.

3The meaning of index i is explained in Section 2.2.3, and the
meaning of the index p is explained in Section 2.2.4.

int f;(int *p) {...}
int g;(int *q) {...}

void foo(int a, int b, int c) {

int ra, rb;

if (e) {
ra = f;(&a);
rb = f;(&b);
}
else {
ra = g;(&a);
rb = g; (&b);
}

Figure 2: One expansion per function occurrence

Finally, rule [Call | requires the type of the argument p to
be equal to the domain type of id, so the type of id at
this call site (i.e., 3), must have the form ptrl’ y) U 7
for some type 7. The inequality above therefore becomes
equivalent to

a—=ta S; ptrél) I (1)

By choosing 7 to be ptrll (7), the inequality (1) can be solved
by instantiating « to ptrt’ 7)-

Notice that the order in which we process the definition
and the uses of a function symbol does not matter. If we
process a use before a definition, we can still express the fact
that the definitional type must instantiate to the use type,
because we collect the constraint af S;, Tuse at the use site.
When the definition of f is processed, an equality ay =
Tdes is generated, leading to Tgef S; Tuse. Instantiation
constraints therefore allow type inference to be performed
in a fully modular way [0J97].

2.2.3 Constraint indices

Textual references to a function symbol f in a program are
assumed to be tagged with a unique index ¢ identifying the
occurrence, written f;. For each occurrence f;, rule [Fun]
gives rise to a constraint oy S; B, where ay is a place-
holder for the definitional type of f and 3 is a placeholder
for the instance type required at the particular use f;. The
index 4 of the occurrence is attached to the corresponding
inequality and is used by the constraint solver to keep track
of inequalities inferred from this one.

2.2.4 Constraint polarities

Inequalities <j, are further annotated by a polarity p. Po-
larities are used by our algorithm to direct the flow compu-
tation. Intuitively, polarities keep track of input and output
positions in types, and they do so in a way that works for
higher order programs. Formally, polarities are elements in
the set {4+, +, T}, which is ordered by + < T, + < T. The
polarity + represents positive polarity, - negative polarity,
and T both positive and negative polarity.

Expressions

[fresh

LR e B/ (a, < Y

Ae) =[]’

A CFREOT

Al eo:7/Co

Af-eilTi/Ci (i:l...n)
C’ZU;L:()CJ'
C"={ro=(11,...,™) > 7}

[Call] Al eoler, ... eq):7/CTUCY

AbFer:[1]t/Ch

Ales:7,/Cs

Cs={r=1'}
AbFer=e:7'/C1UC2UCs

[Assign |

Are:[r]f/C

[Rval] Ate:1/C

Ate:[r]f/C
AF &e: ptri(r)/C

[Addr]

At e:ptri(r)/C

[Deref]W

Statements
Al s Cy
Al sy :Co

[Sequence]A - 81382 : Cl U C2

Az [r]'Fs:C
AFlocal z ins: C

[Local]

Az [n], . zn i [m])m Fs: C
C' ={ay = (11,--. ,) =* Qpet(f)}

[Def] AF f(z1,...,za){s}: CUC

Are:7/C
C’:CU{a,et(f) ZT}

[Ret] At returnge : C'

Figure 3: Constraint generation for analysis of C

We say that a term 7 occurs positively (resp. negatively)
in a type expression 7', if 7 occurs nested to the left of the
function type constructor (—) in 7’ an even (resp. uneven)
number of times. For example, in the type expression (o —
B) — ~, the type @ — B occurs negatively, a and + occur
positively, and 8 occurs negatively. Targets 7 of pointer
types pir(7) occur at polarity T.

The notion of polarities is standard in type theory. We
transfer this notion to inequalities in the following way. Ini-
tially, every inequality generated by rule [Fun] in Figure 3
has positive polarity (.e., all inequalities have the form <%).
During constraint resolution inequalities propagate to their
subterms, where polarities switch according to the polarities
of the subterms.

Our flow computation in Section 4 interprets the instan-
tiation relations as flow-edges. Intuitively, the derived con-
straint a <% ptrll () can be interpreted as implying that
(the type of) the actual argument p (ptr‘(7y)) flows to (the
type of) the formal parameter x (a), and the constraint
a <% T as implying that (the type of) the return value of
id () flows to (the type of) the return point of the call (7).
In this interpretation, the direction of flow is governed by
polarities: the flow moves opposite the direction of the neg-
ative inequality (<%) but along the direction of the positive
inequality (<%).

3 Constraint resolution

In this section we first give a technical definition of what it
means to solve a set of constraints. We then go on to present
our constraint resolution algorithm.

3.1 Semi-unification

The problem of solving constraint systems involving equal-
ities and inequalities of the form described above is well-
known and usually referred to as the semi-unification prob-
lem [Hen93, KTU94].

Following is a technical definition of what it means to
solve such systems (the reader may wish to skip it on a first
reading; more background can be found in [Hen93, KTU94]).

Definition 3.1 A substitution is a function from type vari-
ables to types. An inequality T <}, 7' is called solvable if 7'
is a substitution instance of 7, i.e., one has R;(7) = 7’ for
some substitution R;.

A substitution S is a solution to a constraint set C (con-
sisting of simultaneous equalities and inequalities) iff one
has S(r) = S(v') for every equality 7 = 7' € C and
S(t) <i S(r') is solvable (by some substitution R;) for every
inequality 7 S; 7' € C. Notice that for each particular index
i, the set of inequalities associated with i (S(r) <} S(r'))
may be solved by different substitutions R;. O

Semi-unification is known to be undecidable [KTU93],
but a practical semi-decision procedure was defined by Hen-
glein [Hen93]. So far, no natural counterexample (i.e., a
program that would make the algorithm loop) is known, and
the results of the present paper corroborate the practicality
of the algorithm.

3.2 Algorithm

The core of our constraint resolution algorithm is shown in
Figure 4. It uses auxiliary operations defined in Figure 5.

1. Input: A finite set C of constraints, of the form ¢ S;', tort=t".

2. Initially : Wlist := C
3. Iteration :
while Wiist # 0 do
7 op 7' := FETCH(Wlist);
L := FIND(7);

R :=FIND(7');
if L =R then continue;

if L matches ¢!(r1,...,7,) and R matches d* (i, ...

switch (op)

,75) and ¢ # d then fail;

. ,7») and R matches & (T1,- v 5 70)

case =
UNION(L, R);
if L matches cf (71, -
then
Wlist :== WhistU{{=0}U{r, =7 |k=1...n};
case Sf,

storable := STORE(L <}, R);
if not storable then continue;

if L matches c‘(r1,... ,7,) and R matches ¢ (r},... ,7})
then))

Wiist := Wlist U {€ <}, £'} U {m <}, 71, | pr = PROPAGATE(c,p, k), k=1...n}
if L matches c¢‘(7i,...,7,) and R matches a
then

if Eoc(a, L)

then

Wlist := Wlist U {a = L};
else

Wiist := Whist U{a =c" (B, ... ,n), L <i a}

where ¢, 31, ...
end; (* while *)

, Brn. are fresh,;

(Notation: T matches 7’ is syntactic pattern matching.)

Figure 4: Algorithm Z for solving instantiation constraints

Our algorithm extends Henglein’s algorithm in [Hen93] in
two directions. First, it allows recursive types (so that type
equations such as @ = @ — « have solutions) via cyclic uni-
fication ([ASU88] Section 6.6), and, secondly, our procedure
propagates polarities. While Henglein’s algorithm was spec-
ified as an abstract graph rewriting system in [Hen93], we
give a more concrete, worklist based algorithm. We do so for
three reasons. First, the algorithm builds the instantiation
graph over which the flow computation takes place, and we
attempt to give enough detail that the reader can see how
our flow computation is supported by the constraint solver in
practice. Second, we wish to demonstrate the scalability of
the particular implementation strategy chosen here. Third,
handling recursive types turns out to be challenging, and
we hope that our specification can serve as an off-the-shelf,
easily implementable solution.

Since the main structure of the algorithm follows
[Hen93], we will focus on the extensions, polarities, recur-
sive types and the construction of type instantiation graphs,

which are concentrated in the operations PROPAGATE, EOC
and STORE.

3.2.1 Type representation and recursive types

In Figure 4, non-variable types are written as c¢*(r1,... ,7)
with ¢ and d ranging over type constructors (—, ptr). Types
are represented as possibly cyclic graphs (cycles represent re-
cursive types), whose nodes represent type constructors and
type variables, as in [ASU88] Section 6.6. A single type con-
structor, say c, can be represented by many different nodes,
corresponding to different occurrences of the constructor c.

Unification of types is implemented via equivalence re-
lations based on fast UNION/FIND, and nodes are instru-
mented with UNION/FIND-information in a standard manner
([ASU88] Section 6.6).

Performing a UNION operation on two constructed types
(m,...,m) and ! (ti,...,7) involves choosing one of
the nodes representing the main constructor ¢ of one of the

FETCH(Wlist) =
if equalities(Wlist) # 0
then return POP(equalities(Wlist));
else return pop(inequalities(Wlist));

UNION(7,7') =
if 7 is a variable
then rep := 7'; other :=T;
else rep := 7; other :== 7';
ecr(other) := rep;
Wiist := Wlist U {rep <} 7 | other =} 7};

STORE(T <}, 7') =
if target(r,4) is undefined
then
target(r,1) := 7';
polarity(,i,7') := p;
return true;
else
if 7' # target(r,1)
then
polarity(r,i,7") := polarity(r,i,7") U p;
Wiist :== Wlist U {7’ = target(r,i)};
return false;

PROPAGATE(c, p, k) =
if ¢ is co-variant in k
then return p;

if ¢ is contra-variant in k
then return —p;

if ¢ is invariant in k
then return T;

eEoc(r,7') =
if 374,..., 7, such that
’=nandn—=n—=...57, =1
and 7 is proper subterm of 7’
then return true;
else return false;

(Notation: 7 — 7' iff i, p. 75 7'.)
Figure 5: Auxiliary procedures for Algorithm 7

two types as equivalence class representative (in this case,
either the node for ¢ labeled with £ or the node for ¢ labeled
with £’ is chosen as representative). Labels on type construc-
tors respect node equivalence such that label £ is equivalent
to label ¢ if and only if the constructor nodes corresponding
to ¢! and ¢’ are equivalent under UNION /FIND. Labels on
type constructors can be used as identifiers of (equivalence
classes of) nodes, so that ¢! denotes a particular (equivalence
class) node representing constructor c.

3.2.2 Main loop

The main loop of the algorithm (Figure 4) uses a work-
list, which always holds the remaining unsolved constraints
(initially the input constraint set C'). In the loop, an un-
solved constraint 7 op 7’ is popped (using the operation
FETCH) from the worklist, where op is either an equality
symbol (=) or an inequality (<}). The FETCH operation

chooses equalities before inequalities. This scheme identifies
as many nodes in the type structure as early as possible,
leading to improved performance. If the terms 7 and 7' of
the constraint have distinct root constructors ¢ and d, the
constraint cannot be solved and the algorithm fails. Other-
wise, the algorithm branches on the form of the relation (op)
of the constraint. If op is equality, =, a UNION is performed,
and equalities are propagated downwards on the type trees.

If op is inequality, 7 <}, 7', a STORE operation is per-
formed. This operation caches instantiations and applies
the following constraint closure rule:

TS;TI A TS;IT2 = T1I=T (2)

Notice that, in this rule, the index ¢ must be the same on
both inequalities. The rule ensures that any two occur-
rences of the same variable get instantiated to the same
type, within a single instantiation. For example, the con-
straint (1) from our running example in Section 2.2.2, a —*
a<i ptrel () " 7, implies o <% ptrel (7) and o <4 7, as
explained earlier. Hence, we must have ptr[' (y)=r.

For an inequality 7 Si, 7', the STORE operation stores
a reference to the node representing the main constructor
of 7/ at the node representing the main constructor of .
This reference also carries the information contained in the
index 4 and polarity p. The algorithm uses the notation
7+, 7' for cached instantiations as well as target(r,i) = 7'
and polarity(r,4,7') = p. If a node has already been stored
at 7 and index ¢ (i.e., if target(r, 1) is defined), the STORE
operation emits the equation 7/ = target(,4), thereby im-
plementing rule (2).

Operation STORE defines the type instantiation graph on
which our flow computations will be performed (see Sec-
tion 3.3). The instantiation graph is further used by the
UNION operation. Suppose we have a constraint of the form
7 = 7', and that 7 is chosen as equivalence class repre-
sentative. Then the type 7' will effectively be “killed”. If
target(7’,1) is defined (for any), we must make sure that
targets of 7' do not get lost as 7’ is killed; this is done by
substituting 7 for 7, and we therefore emit 7 <}, 7" to the
worklist for all targets 7" of 7'; these will then become tar-
gets of 7 by future STORE operations, as described above.

The operation PROPAGATE gets called when constraints
are propagated (added to the worklist), as explained in Sec-
tion 2.2.4.. This operation finds the appropriate polarity for
the propagated constraints.

The extended occurs check [Hen93], implemented in the
operation EOC, ensures that cyclic instantiation constraints
of the form 7' <!} --. <! 7 where 7 is a proper subterm
of 7/ get transformed into equalities, thereby blocking cases
where infinite instantiations might otherwise occur. The
check EOC(r, 7') is implemented by a depth-first search over
the instantiation graph starting from the root node of 7’. If
the root node of 7 is reachable via instances from the root
node of 7/, one checks whether the root of 7 properly occurs
within 7/. The occurs-check is done by a depth-first search
of the term-graph representing 7’.

3.3 Type instantiation graph

The instantiation cache maintained by STORE defines the
type instantiation graph and represents a complete trace

4For C, we use finite sum types as in [Ste96], guaranteeing that
constraints solving never fails.

typedef void (*FIP) (int *);

void f(int *p) { /% £ 1 ptrfi(a) —% void #*/
1 . I

}

FIP gO { /% g : void —Y (ptrfe(a’) —% void) */
(1) return (&f) ; /x £; ptr‘53 (o) =% void */

}

h() {

int c; /% c : [o]5 %/

() FIP fp = g(); /* gj : void —is (ptrl5 (@) —f6 void) */
(2) fp(&c); /% fp : ptrfs(a’’) —% void */

}

< <4) B ¥ gy 73 WL X e

Type instantiation graph

[ptrllJ<+—[ptr[3J<+—[ptrl5]

Flow graph

Figure 6: Example with returned function pointer

Instantiation constraint 7 <7, 72

Instantiation constraint 7 jf, T2
Positive polarity flow edge

Negative polarity flow edge
Structural edge in type ptr’(r)

Figure 7: Edge conventions

of all instantiations during resolution. More precisely, the
nodes of the graph are subterms of types and there is an
edge T "> if and only if 7 =}, 7', i.e., the constraint

resolution algorithm inferred = jli, 7.

4 Computing global flow information

This section shows how to compute global flow informa-
tion (points-to information in our running example) from
the type-instantiation graph by interpreting type instanti-
ation graphs as flow graphs. When presenting graphs, we
use the conventions shown in Figure 7. Instantiations are
represented as dotted edges labelled by the instantiation
constraint. Their direction represents the instantiation di-
rection (from generic to instance). Flow edges represent the

actual flow direction of values and are labelled by a polar-
ity (explained later). Nodes are particular subexpressions of
types. We draw only the top-level nodes of such types, pos-
sibly surrounded by a box to help identify them as nodes.
Where appropriate, we connect types with their immediate
subexpressions via undirected solid edges.

We continue by examining a simple example that sug-
gests how to interpret a type instantiation graph as a flow
graph. Our examples explicitly contain function pointers to
show the workings of the flow computation in the higher-
order case. More details on the correctness of the approach
can be found in a technical report [FRDO00].

Figure 6 shows a C program with the inferred types given
as comments. The instantiation graph arising from points &
and j is given at the bottom left of the Figure (void nodes
are not shown). Recall that labels can be thought of as
labelling type nodes. We will take this view in the following
explanation. Let us first ask the following query at line
(2): What are the functions that are applied at this indirect
call? The function node of the indirect call is (%). The C
semantics tells us that function f identified by flows to
the indirect call. In our instantiation graph, node is
connected to via the instantiation edges

These instantiations with positive polarity stem from the use
of the [FUN] rule on occurrences of f; and g;. If we view
these instantiation edges as directed flow edges (as shown
in Figure 6 bottom right), we can conclude that function

(0) int *id(int *p) { /* id :
1) *p; return p;
}
foo() {
int b; /% b : [B]B %/
(1) id (&b) ; /* id;
}
bar() {
int c; /% c i [y] =/
) id(&c); /* id;
}
Nz ..F.lf....._)zz ji Nz
i <%

Type instantiation graph

ptré (@) —=*2 ptr't(a) */

: ptrfs(8) =% ptrf3(8) */

o ptrfs (y) o' ptrfs(y) */

Flow graph

Figure 8: Identity example

f (represented by node (,%2)) flows to the indirect function
pointer fp (represented by node (%)). We capture this
observation in our first flow rule.

Rule 4.1 Instantiation edges with positive polarity (+)
translate into flow edges with the same direction. These flow
edges inherit polarity +.

Next, we ask the flow query: what pointer value can
be dereferenced by p at point (1)? The C semantics tells
us that the address (or location) of c¢ flows to p where it
is dereferenced. The contents of p is uniquely identified
by node , and the location of c is labelled by .
Inspecting our instantiation edges in Figure 6, we notice that
these two nodes are connected by the instantiation edges

[ptrel]...?.?.%ptrzs]..?.Ji.)[ptr)

where the constraints have negative polarity. In order to
deduce flow from to [ptr’t) we must treat instantiation
edges with polarity — as flow edges in the opposite direction
of the instantiation, suggesting the next flow rule:

Rule 4.2 Instantiation edges with negative polarity (+)
translate into flow edges having opposite direction. These
flow edges inherit polarity +.

The two flow rules yield a sound flow representation of a
program described by a type instantiation graph, i.e., they
completely capture all value flow in the program. But un-
fortunately, applying them blindly to a type instantiation
graph results in a complete loss of context-sensitivity as
shown by the next example in Figure 8. If we ask the ques-
tion: what pointers are returned by the application of id at

(j), we obtain the answer: pointers to locations ¢3 (b) and
5 (c) through the path

= +
b B pu®)

The flow of ¢3 (b) is imprecise since it traces a path from
call site (i), through id, returning to call site (j). In or-
der to obtain more precise answers to flow queries, we need
to restrict the set of paths we consider in the reachability
question, without sacrificing soundness.

4.1 PosNeg-flow

So far we have used the polarity on instantiations to give
direction to flow edges. But we have ignored the polarity of
the flow edges themselves. Flow edges inherit their polarity
from the instantiation edge that gives rise to the flow edge.
The imprecise flow path from w to above consists
of a negative (<) flow edge, followed by a positive (+) flow
edge. In the first-order case, a negative polarity edge rep-
resents the flow edge from an actual to a formal parameter,
and a positive polarity edge represents the flow of a result
back to the caller. In this light, a path fragment consisting
of a negative (<) flow edge followed by a positive (+) flow
edge represents a call/return flow. In the context-sensitive
setting, such paths need only be considered if the call site
of the call edge matches the site of the return edge. In our
formulation, call sites are represented by indices on the in-
stantiation edges but we chose to elide the index on flow
edges for reasons addressed below. Suppose for the instant
that we nevertheless attach the index of an instantiation
edge when we translate it into a flow edge. Annotated with

indices, the imprecise path above has the form

+,i +.J
N S

indicating that the call edge originates from site 4, but
returns to site j. Reps et. al. show in [RHS95] for the
first-order case that restricting flow paths to matching
call/returns is equivalent to a context-free language reach-
ability query. In our case however, the problem is simpler
since our type inference explained in the previous section col-
lapses matching sequences of a negative edge (+) followed
by a positive (+) edge by Rule (2). In other words, pre-
sented with two instantiation edges with matching indices
i

>t <4
T <l TQ o> T

the constraint resolution produces an equality 71 = 72, ef-
fectively collapsing nodes 71 and 72. On the equivalent flow
graph the collapse amounts to

P i,
T —>T0 ———>T2 = T0

Thus, flow sequences representing matching call/returns are
already collapsed in the type instantiation graph and can
be ignored in the flow computation. We thus disregard all
paths containing a negative edge followed by a positive edge
in our graph reachability problem. Thus, the only valid flow
paths consist of any number of positive edges, followed by
any number of negative edges. We call such paths PosNeg-
paths.

Definition 4.1 [PosNeg-Flow] We say that there is flow
from a node labelled ¢; to a node labelled ¢> in a flow graph
G constructed via Rules 4.1 and 4.2, if there exists a PosNeg-
path in G from ¢; to £s. O

The soundness of our PosNeg-flow in the higher-order
case relies on the fact that each instantiation constraint pro-
duced during constraint generation can be interpreted as a
subtyping constraint with the obvious flow interpretation.
A detailed discussion of the mechanism and a proof of its
soundness can be found in [FRDO0O].

4.2 Complexity

Our flow formulation answers individual queries (e.g. all
source-one sink) in linear time in the size of the type in-
stantiation graph. All queries can be answered in quadratic
time. The complexity is directly related to the fact that the
end-points of matching call/return edges are collapsed.

Restricting each individual query to PosNeg-paths leads
to a simple algorithm that is naturally demand-driven. In
contrast, two phase algorithms require that phase 0 (up
propagation) be entirely completed before any propagation
of phase 1 (down propagation), otherwise context-sensitivity
is lost. Implementing a completely demand-driven version
of these two-phase algorithms is thus challenging.

In [FRDO00], we study the generalization of the present
flow analysis to directional edges. In the generalized case,
flow queries are answered via context-free language reach-
ability as described by Reps et. al [RHS95, MR97]. Our
technical report contains a cubic algorithm for answering all
or any single query.

5 Experiments

This section shows that our techniques scale to large pro-
grams by presenting numbers for an implementation of the
described type inference and flow algorithms. We show the
precision improvements gained over a monomorphic version
in the context of points-to analysis. The monomorphic anal-
ysis is a version of Steensgaard’s points-to analysis [Ste96].5

‘We analyze a range of C programs from the SPEC bench-
mark suite. The raw numbers are given in Table 1. All ex-
periments were run on a Dell Precision 610 with 512MB of
memory. To measure the precision of the points-to analy-
sis, we count points-to set sizes at static pointer dereference
points only (direct accesses to arrays are not counted as
dereferences).

Types of global variables are treated monomorphically.
Each occurrence of malloc generates a fresh global variable
representing the class of heap cells arising at that point. Our
implementation uses sum types to represent C values that
can be either pointers or functions.

Figure 9 shows the reductions in the average points-to set
size obtained through polymorphism. The most dramatic
reduction is obtained for Vortex, where the average points-
to set size drops from 1661 to 62. Even for GCC, we get
almost a factor of 5 reduction in the average points-to set
size.

Figure 10 gives the running time of the monomorphic and
the polymorphic analyses. We give the time per abstract
syntax tree node to show the scaling behavior. The running
time is broken down into monomorphic running time, time
for computing the polymorphic type instantiation graph (in
excess of the monomorphic time), and the time to compute
the flow result. The numbers show that the polymorphic
type instantiation graph can be computed with little over-
head over a monomorphic analysis. The time to compute
the flow information however is a substantial fraction of the
analysis time. Fortunately, the absolute times are still small
(<3 minutes for gcc). The flow computation is currently
implemented as a non-demand driven, forward-only flow,
where each symbol is propagated along all PosNeg-paths.
‘We believe this naive implementation can be improved sub-
stantially.

Finally, Figure 11 shows the space consumption of the
polymorphic analysis as a factor of the space consumption
of the monomorphic analysis. The space is broken down
into type nodes and instantiation edges. The space over-
head of polymorphism is substantial and currently the main
inhibitor to scaling the analysis to very large programs. We
are able to construct the final type instantiation graph for
MS Word (2.1MLoc) within 512MB of memory, but exceed
memory during the flow computation. Finding ways to fur-
ther reduce the memory consumption is part of future work.

6 Related work

Jagannathan and Wright [JW95] and Nielson and Niel-
son [NN97] study flow analysis frameworks. These frame-
works contain analyses that can distinguish between a num-
ber of distinct contexts in which functions are used. They
differ from our technique in that functions are reanalyzed in
each new context.

5Library function stubs are treated polymorphically, no condi-
tional unification is used.

Normalized dereference set size

Benchmark

Monomorphic B Polymorphic

Figure 9: Reductions of points-to sizes

2000
1500
1000

500

0

PR
§ &
s &

Analysis time (us per node)

(o]

N O
:\\@ S ¢ 40(8-} §
Benchmark

B Monomorphic I Instantiation overhead ™ Flow step overhead

Figure 10: Running times

Test program | Code lines | AST nodes || Ave. deref size Analysis time (secs)
Mono [Poly | Mono [Poly [Flow
compress 1,904 2,234 7 3 0.5 0.6 | 10.7%
li 7,602 23,379 282.1 | 185.2 1.8 40.9 | 93.2%
m88ksim 19,412 65,967 107.3 11.6 4.6 11.5 | 42.8%
ijpeg 31,215 79,486 37.9 | 111 7.0 | 448 | 80.7%
go 29,919 109,134 51.3 16.6 4.7 9.9 | 38.1%
perl 26,871 116,490 511 | 21.1 76 | 16.4 | 39.8%
vortex 67,211 200,107 || 1661.3 61.9 17.3 | 161.3 | 79.5%
gee 205,406 604,100 429.5 91.8 42.3 | 179.5 | 64.7%

Table 1: Raw measurement data: Lines of code and AST node count.

points, and running time in seconds.

18

Multiple of #Nodes
Monomorphic
o

o

3 &) N &
g@@ ‘\Q@ ¢ ¢ 40(8* ©
<

C
"%,
N

Benchmark

#Nodes: Polymorphic ® # nstantiation edges

Figure 11: Space overhead

In contrast to the context-free language reachability for
interprocedural precise flow paths of Reps al. [RHS95], valid
paths in our analysis have the simple form of PosNeg-paths
due to the absence of directional flow within a function.
Along another dimension our flow is more general, since it
deals directly with structured data types and higher-order
programs.

Heintze and McAllester present a sub-transitive closure
analysis for ML [HM97] also based on types. Like ours, their
analysis traces flow paths on type graphs, but flow paths are
not context-sensitive. Furthermore, their analysis requires a
non-recursive type graph which precludes its application to

Average sizes of points-to sets at static dereference

C programs.

In Lackwit [0J97], O’Callahan and Jackson exploit a re-
lation induced by instantiations of polymorphic types, called
compatibility. Compatibility is undirected and can be under-
stood as a less precise version of our flow relation.

Foster et. al. [FFA00] presents a study of the relative pre-
cision trade-offs of monomorphic vs. polymorphic points-to
analyses, both for directed and undirected intra-procedural
flow. Their polymorphic version of Steensgaard’s points-to
analysis is less precise than the one presented here in two as-
pects: 1) sets of mutually recursive functions are analyzed
monomorphically, and 2), the flow computation does not
take full advantage of the polarities described here.

The analyses of Chatterjee et. al. [CRL99] and Wilson
and Lam [WL95] are flow sensitive and much more precise
than the analysis presented here. Their scalability remains
unknown.

Finally, the technique presented here is a special case
of a more general analysis based on both directional flow
constraints and instantiation constraints [FRDO0].

7 Conclusion

This paper argues that type-based context-sensitive analy-
ses based on parametric polymorphism harbor implicit di-
rectional inter-procedural flow, even in the case where intra-
procedural flow is undirected. The inter-procedural flow is
defined by annotating instantiation edges with polarities and
interpreting them as directed flow edges. We presented these
ideas through a context-sensitive points-to analysis for C.

The resulting algorithm computes individual flow queries in
linear time. We have presented empirical evidence support-
ing the practical nature of the approach.

References

[ASUSS]

[CGST99]

[CRLYY]

[DMS2]

[FFA00]

[FRDOO]

[Hen93]

[HIM97]

[TW95]

[KTU93]

[KTU94]

A. V. Aho, R. Sethi, and J. D. Ullman. Compil-
ers Principles, Techniques, and Tools. Addison
Wesley, 1988.

Jong-Deok Choi, Manish Gupta, Mauricio Ser-
rano, Vugranam C. Sreedhar, and Sam Mid-
kiff. Escape analysis for java. In OOPSLA’99
[OOP99], pages 1-19.

Ramkrishna Chatterjee, Barbara G. Ryder, and
William A. Landi. Relevant context inference.
In Conference Record of the 26th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, January 1999.

L. Damas and R. Milner. Principle type-schemes
for functional programs. In Conference Record
of the 9th Annual ACM Symposium on Princi-
ples of Programming Languages, pages 207-212,
January 1982.

Jeffrey S. Foster, Manuel Fahndrich, and Alexan-
der Aiken. Polymorphic versus monomorphic
points-to analysis. In Proceedings of the 7Tth
International Static Analysis Symposium, Lec-
ture Notes in Computer Science. Springer Verlag,
June 2000.

Manuel Fihndrich, Jakob Rehof, and Manuvir
Das. From polymorphic subtyping to CFL reach-
ability: Context-sensitive flow analysis using in-
stantiation constraints. Technical Report MSR-
TR-99-84, Microsoft Research, March 2000.

Fritz Henglein. Type inference with polymorphic
recursion. ACM Transactions on Programming
Languages and Systems, 15(2):253-289, 1993.

Nevin Heintze and David McAllester. Linear-
time subtransitive control flow analysis. In Pro-
ceedings of the 1997 ACM SIGPLAN Confer-
ence on Programming Language Design and Im-
plementation, number 32:6 in SIGPLAN notices,
pages 261-272, June 1997.

Suresh Jagannathan and Andrew Wright. Effec-
tive flow analysis for avoiding run-time checks. In
Proceedings of the 2nd International Static Anal-
ysis Symposium, volume 983 of Lecture Notes in
Computer Science, pages 207-224. Springer Ver-
lag, September 1995.

A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. The
undecidability of the semi-unification problem.
Information and Computation, 102(1):83-101,
January 1993.

A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. An
analysis of ML typability. Journal of the ACM,
41(2):368-398, March 1994.

[LH99]

[Mil78]

[MR97]

[Myc84]

[NN97]

[0J97]

[OOP99]

[RHS95]

[Ste96]

[WLO5]

[WR99]

Donglin Liang and Mary Jean Harrold. Efficient
points-to analysis for whole-program analysis. In
Proceedings of the Tth European Software Engi-
neering Conference and the Tth ACM SIGSOFT
Symposium on the Foundations of Software En-
gineering, September 1999.

R. Milner. A theory of type polymorphism in
programming. Journal of Computer and System
Sciences, 17:348-375, 1978.

David Melski and Thomas Reps. Intercon-
vertibility of set constraints and context-free
language reachability. In Proceedings of the
ACM SIGPLAN Symposium on Partial Evalua-
tion and Semantics-Based Program Manipulation
(PEPM-97), volume 32, 12 of ACM SIGPLAN
Notices, pages 74-89. ACM Press, June 1997.

A. Mycroft. Polymorphic type schemes and re-
cursive definitions. In Proceedings of the 6th In-
ternational Symposium on Programming, pages
217228, 1984.

Flemming Nielson and Hanne Riis Nielson. In-
finitary control flow analysis: a collecting seman-
tics for closure analysis. In Conference Record
of the 24th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Lan-
guages, pages 332-345. ACM Press, January
1997.

Robert O’Callahan and Daniel Jackson. Lackwit:
A program understanding tool based on type in-
ference. In International Conference on Software
Engineering, May 1997.

Proceedings of 14th Annual Conference on
Object-Oriented Programming, Systems, Lan-
guages, and Applications, volume 34, 10 of ACM
SIGPLAN Notices. ACM Press, November 1999.

Thomas Reps, Susan Horwitz, and Mooly Sa-
giv. Precise interprocedural dataflow analysis via
graph reachability. In Conference record of POPL
’95, 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages: papers
presented at the Symposium: San Francisco, Cal-
ifornia, January 22-25, 1995, pages 49-61, 1995.

Bjarne Steensgaard. Points-to analysis in almost
linear time. In Conference Record of the 23rd An-
nual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 32—
41, January 1996.

Robert P. Wilson and Monica S. Lam. Efficient
context-sensitive pointer analysis for ¢ programs.
In Proceedings of the 1995 ACM SIGPLAN Con-
ference on Programming Language Design and
Implementation, number 30:6 in SIGPLAN no-
tices, June 1995.

John Whaley and Martin Rinard. Compositional
pointer and escape analysis for java programs. In
OOPSLA’99 [OOP99], pages 187-206.

