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Abstract

Knowing the Worst-Case Ezxecution Time (WCET)
of a program is necessary when designing and verifying
real-time systems. The WCET depends both on the
program flow (like loop iterations and function calls),
and on hardware factors like caches and pipelines.

In this paper we present a method for representing
program flow information, that is compact while still
being strong enough to handle the types of flow previ-
ously considered in WCET research. We also extend
the set of representable flows compared to previous re-
search.

We give an algorithm for converting the flow infor-
mation to the linear constraints used in calculating a
WCET estimate in our WCET analysis tool.

We demonstrate the practicality of the representa-
tion by modeling the flow of a number of programs, and
show that execution time estimates can be made tighter
by using flow information.

Keywords: WCET, flow information, hard real-time,
embedded systems, static program analysis, IPET.

1. Introduction

The purpose of Worst-Case FErecution Time
(WCET) analysis is to provide a priori information
about the worst possible execution time of a piece of
code before using it in a system.

Knowing the WCET of a program or piece of a pro-
gram is necessary when designing and verifying real-
time systems. Considering that every day, more and
more devices are being controlled by embedded real-
time systems (from kitchen appliances through power
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grids to cars and other vehicles), the value of having re-
liable software cannot be overestimated. In many cases,
a failure of an embedded real-time system will lead to
a disaster, sometimes including the loss of human life.

WCET estimates are used in real-time systems de-
velopment to perform scheduling and schedulability
analysis, to determine whether performance goals are
met for periodic tasks, and to check that interrupts
have sufficiently short reaction times.

To be valid, WCET estimates must be safe, i.e. guar-
anteed not to underestimate the execution time. To be
useful, they must be tight, i.e. provide low overestima-
tions. The safeness of an estimate is critical when the
estimate is used in the construction of a safety-critical
system.

The WCET depends both on the program flow (like
loop iterations and function calls), and on architectural
factors like caches and pipelines. Thus, both the pro-
gram flow and the hardware the program runs on must
be modelled by a WCET analysis method.

When performing WCET analysis, it is assumed
that the program execution is uninterrupted (no pre-
emptions or interrupts) and that there are no interfer-
ing background activities, such as direct memory ac-
cess (DMA) and refresh of DRAM. Timing interfer-
ence caused by such resource contention is assumed to
be handled by some subsequent analysis, for instance
schedulability analysis.

In this paper, we investigate how to model program
flow to achieve the tightest possible worst-case execu-
tion time estimates. There 1s a need for a comprehen-
sive flow modeling mechanism, since previous research
has only modeled some subset of the interesting flows
found in actual code [2, 5]. We are able to represent
the types of flows previously considered in the WCET
field, and some that have not been considered before.

In order to use the flow information for actual
WCET estimates, we provide an algorithm for con-
verting the representation to a format suitable for our
WCET calculation method (based on the implicit path



enumeration technique, TPET).
The contributions of this paper are:

e We introduce a high-level flow fact specification
language that balances strength of expression and
compactness in a manner appropriate for WCET
analysis. The language is strong enough to handle
the flow information generated by existing program
analysis methods, while providing compact repre-
sentations for even complex flows.

o We show how the flow facts are converted for use in
an IPET-style WCET calculation.

e We perform experiments to demonstrate the useful-
ness of our flow information language, and demon-
strate that flow information can provide tighter
WCET estimates.

Paper outline: Section 2 presents previous work
and Section 3 gives an overview on the issues involved
in representing the flow information. In Section 4 we
present our representation. Section 5 presents the con-
version algorithm. Section 6 gives an overview of our
WCET analysis tool and Section 7 contains our exper-
imental evaluation. Finally, Sections 8 and 9 present
conclusions and plans for future work.

2. WCET Analysis Overview
and Previous Work

To generate a WCET estimate, we consider a pro-
gram to be processed through the phases of program
flow analysis, low level analysis and calculation. (For
a more detailed division see [8]).

The program flow analysis phase determines pos-
sible program flows, without regard to the time for
each “atomic” unit of flow. The result of the flow
analysis should provide information about which func-
tions get called, how many times loops iterate, if there
are dependencies between if-statements, etc. The in-
formation can be obtained using manual annotations
(integrated in the programming language [21], or pro-
vided separately [10, 14, 23]), or automatic flow analy-
sis [1, 9, 11, 18, 25].

The purpose of low-level analysis is to determine the
execution time for each atomic unit of flow (e.g. an in-
struction or a basic block) given the architecture and
features of the target system. For WCET analysis, in-
struction caches [10, 11, 15, 25], cache hierarchies [19],
data caches [13, 25, 27], branch predictors [3], scalar
pipelines [7, 11, 15] and superscalar CPUs [16, 24, 25]
have been analysed.

The purpose of the calculation phase is to calcu-
late the WCET estimate for a program, given the pro-
gram flow and global and local low-level analysis re-
sults. There are three main categories of calculation

methods proposed in literature: path- [11, 25] (the fi-
nal WCET estimate is generated by calculating times
for explicitly represented paths in a program, search-
ing for the path with the longest execution time), tree-
[3, 15] (the final WCET is generated by a bottom-up
traversal of a tree representing the program), or IPET
(Tmplicit Path Enumeration Technique)-based.

We use an IPET-style calculation [10, 14, 20, 23]
where program flow and atomic execution times are
represented using algebraic and/or logical constraints.
The WCET estimate is calculated by maximizing an
objective function, while satisfying all constraints.

3. Issues of Flow Information

We consider flow information handling to be divided
into three phases:

1. Flow analysis: Obtaining flow information. By
manual annotations or automatic flow analysis.

2. Flow representation: Representing the results of
the flow analysis.

3. Calculation: Using the control flow (as represented
in the flow representation) in the final WCET cal-
culation. Not all calculation methods can take ad-
vantage of all types of flow information.

In this paper we will deal with the last two phases
by presenting a language for representing flow infor-
mation and describing how the flow information can
be converted to the IPET style of calculation.

3.1. Expressing program flow

The most complete form of program flow informa-
tion is a simple explicit enumeration of all possible
paths through the program. Every possible execution
would be represented using an ordered list of state-
ments or instructions. This representation of the dy-
namic behaviour of the program is too expensive for
most programs. Instead, we need a compact approxi-
mate way of representing the dynamic behavior of the
program. The approximation must be:

e Safe — no feasible worst-case executions of the pro-
gram should be excluded.
e Tight — as few infeasible executions as possible

should be included.

Note that we assume that flow analysis is performed
prior to low-level analysis, which means that the flow
analysis does not have access to any information about
the execution time for a particular piece of code.

The largest set of executions of a program is given
by the structure of the program: all paths that can
be traced through the flow-graph of the program, re-
gardless of the semantics of the code are considered
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Figure 1. Relation between possible execu-
tions and flow information

possible. This set is usually infinite, since all loops?
can be taken an arbitrary number of times. The exe-
cutions are made finite by introducing basic finiteness
mformation, where we bound all loops with some upper
limit on the number of executions.

Adding even more information allows the set of ex-
ecutions to be narrowed down further, to a set of stat-
tcally feasible paths. This is the “optimal” outcome of
the flow analysis. Figure 1 provides an illustration of
the sets of paths.

The calculation, finally, uses information about the
execution time of each piece of code to find the paths
in the set of statically feasible paths that correspond
to actual worst-case execution times.

Flow information can be provided on the source code
or object code level. If provided on source code level,
the information must be mapped to the object code
to be used in the WCET calculation. In the presence
of optimization compilers, this problem is non-trivial

[6, 17).

4. Representing Flow Information

To represent the dynamic behaviour of a program
we introduce the concept of a scope. Intuitively, each
scope corresponds to a certain repeating or differen-
tiating execution environment in the program, like a
function call or loop. The exact definition of a scope
is up to the flow analysis algorithms employed: they
can define whatever types of scopes as best suited to
represent the information generated. All scopes are
supposed to be looping, even if they just iterate zero
or one times. Thus there exists a concept of iterations
of scopes.

The scopes form a tree, called a scope tree, with the
entry point to the program given by the root node. An
example of a small scope hierarchy containing loops
and function calls is shown in Figure 2.

1We consider iterative loops and recursive loops to be equiv-
alent, and will simply use the word “loop” in this paper.

int abssum(int *a) v

{ Execution
int i,3j,s,t; scenario
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Figure 2. Example of code with associated
scopes
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Figure 3. Example details of a scope

A scope is a set of nodes and edges. A node belongs
to exactly one scope, and represents the execution of a
certain basic block? in the program in the environment
given by the scope and its superscopes. We call such a
contextualized basic block an ezecution scenario. This
means that there can be several “copies” of the same
basic block in the program flow representation.

Each scope has a header node which has the prop-
erty that no other node in the scope can be executed
more than once without every possible execution path
passing the header node.

An edge connects two nodes and represents poten-
tial program flow. Edges may cross into subscopes or
superscopes, and the source and sink of an edge may
be in different scopes.

Each scope has a set of entry edges, which are edges
coming into the scope from surrounding scopes. Note
that the entry edges may go to other nodes than the

2 A basic block is a piece of object code that is always executed
in sequence, i.e. it contains no branches in or out.
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header node (in this case the scope describes an un-
structured loop).

A node sequence is an ordered list of nodes from
the same scope, such that there is an edge between
each adjacent pair of nodes (and the edges point in the
direction of the sequence).

Figure 3 shows the details of the nested loop scopes
from Figure 2 (the names given for the nodes are just
a notational convenience), and some details related to
flow information.

If all possible paths through the program given by
the edges between the nodes are considered, we get the
structurally possible flows discussed above.

4.1. Constraining the flow through the scopes

Each scope has as a set of associated flow informa-
tion facts. Each flow information fact consists of three
parts, the name of the scope where the fact is defined,
a context specifier, and a constraint expression. Intu-
itively, the constraint expression should hold when the
execution is within the context specification. Figure 4
gives the grammar of the specification language.

All facts in the program are considered to be true
at the same time. There are no “alternative” sets of
facts.

4.1.1. Scope and Context Specifiers

The context specifier in a flow information fact gives
the iterations of the scopes in which the constraint ex-

| Operator | Type |Iterati0ns|

<> foreach all

] total all
<ranges...> | foreach range
[ranges...] total range

Figure 6. Context Specification Operators
pression must be valid. The specifiers are defined us-
ing the two dimensions of type and iteration space, as
shown in Figure 6.

The type is either total or foreach. For a total oper-
ator, the fact is considered as a sum over all iterations
of the context, while the foreach operators consider the
fact as being local to a single iteration of the defining
scope.

The iteration space is the set of iterations of the
scope that a fact is valid for. This can either be all
or range. For “all” facts, ([1, <>), the facts should
be valid for all iterations in the scope, while “ranges”
facts, ([RList], <RList>), only are valid for some it-
erations. The ranges specified inside the context de-
limeters specifies during what iterations that the fact
should be valid.

Range specifications can have one or more dimen-
sions. Each range corresponds to precisely one scope.
The last range in the list corresponds to the defining
scope for the fact, the second last corresponds to the
parent scope of the defining scope, the third last corre-
sponds to the parent scope to the parent scope of the
defining scope, etc. The scope that corresponds to the
first range in the list is called the anchor scope of the
fact. For all operators and one-dimensional ranges the
anchor scope and defining scope are the same.

For example, the fact bar : <1..4,1..10>: 2¢ = 1,
in Figure 5, has a “foreach /range” context specification
with two ranges and is defined in scope bar and has
scope foo as anchor scope. The fact should be applied
to each individual iteration of the bar scope when bar’s
iteration counter is within 1 to 10 (inclusive) and, at
the same time, the iteration counter of the parent scope
foo 1s within 1 to 4.

4.1.2. Constraint Specification

The constraints are specified as a relation (<,=,>)
between two arithmetic expressions involving ezecution
count variables and integers. The arithmetic opera-
tions allowed depends on the power of the calculation
method used (the syntax specification in Figure 4 uses
the common arithmetic operators +, —, *, /, since that
is appropriate for the IPET calculation technique).

The execution count variables, (Zentity), correspond
to nodes, sequences of nodes, and edges. The values of
the variables correspond to the number of times the en-
tities are executed, 1.e. an execution profile of the pro-



gram. By constraining the possible values of the vari-
ables, we limit the the set of possible execution paths.
A fact can only refer to execution count variables in
the defining scope and its subscopes.

The value of a variable corresponds to the number
of times the entity is executed within the context. This
is a local value, and not global to the entire program
execution.

The execution count of the headernode of a scope
is used to limit the number of iterations of a certain
scope. The execution count variable of the headernode
of a scope will be referred to as Zpeqder(scope)-

There are also execution count variables for scopes,
corresponding to the number of times the scope is
entered from its parent scope. Those variables are
called entry count variables, and will be referred to as
Tentry(scope)- Note that the value of the entry count
variable is equal to the sum of all the entry edge vari-
ables. Figure 3 shows an example of the variables for
entries, headers, nodes, and other details of a scope.

4.1.3. Detailed Fact Semantics

The semantics of the flow facts are defined as restric-
tions on the flow of a program. We define the exact
restriction by reasoning over all possible executions of
a program.

An ezecution path is a sequence of nodes and edges
from the scope tree such that the nodes are connected
by the edges. It begins at the entry node of the pro-
gram, and ends at the exit. Tt might be infinite (if the
program contains loops). A subpath is a consecutive
segment of an execution path. A path p must satisfy
all flow facts in order to be included in the set of pos-
sible executions.

Whether a path p satisfies a certain fact f = scope :
context : contraint is determined by finding all parts of
p that correspond to the scope : context specification
and checking for constraint satisfaction in each. For
example, a fact defined for an inner loop in a loop nest
will need to be checked against every execution of the
inner loop in p.

A path p enters the cover of a fact f when the it-
eration counter of the anchor scope becomes equal to
the lower range limit of the anchor scope. A path p
exits the cover of a fact when the execution enters a
scope which is not a descendant of the anchor scope, or
when the iteration counter of the anchor scope becomes
larger than upper range limit of the anchor scope. For
“all” facts, (<>,[1), the enter and exit of the fact cover
occur when the defining scope is entered resp. exited
(since no iteration numbers are given).

Within a cover of a fact we will count the number
of occurrences of the nodes, edges, and sequences of

Fact under consideration: innerloop:[1..2,1.5]:X. >=5

subpaths where not counted: not

occurences of C within outer range
are counted +

e =

m

—~ —~ —~
©

e @
W om W

—
jm

= — =
m

O Start
A
A3

L subpath

\ cover of the fact
entry to innerloop .
execution path

entry to outerloop

Figure 7. Example for fact semantics

nodes referred to in constraint. Note that a fact only
can refer to variables belonging to entities within the
defining scope, or the subscopes of the defining scope.
The occurrences will only be counted when all iteration
numbers between the anchor and defining scope are
within the corresponding ranges specified by the fact.

The number of occurrences of each entity will be
checked against the counts allowed in constraint. If
the fact is a “total” fact the sum of all occurrences of
each entity should be checked against the constraint.
If the fact is a “foreach” fact we will further subdivide
the number of occurrences of each entity so that we get
a separate sum for each iteration of the defining scope
in the cover. Each such sum is then checked against
the constraint. This provides iteration-local semantics
of foreach facts.

A single iteration of a scope is defined as beginning
when the scope is entered or the header node executed,
and ending the next time the header node is executed,
or the scope is exited to a scope above it. For unstruc-
tured loops, there might be an iteration zero, since the
loop can be entered without immediately passing the
header node.

Figure 7 shows an example of a multidimensional
fact defined for the scope tree shown in Figure 3.
Dashed arrows represents (long) sequences of nodes
and edges, and solid arrows a single edge from the scope
tree.

The cover of the innerloop: [1..2,1..5] : z¢ > 5
fact starts with the first iteration in the outer scope,
and ends when the third iteration of the outer scope be-
gins. Inside the cover, we find the subpaths where the
iteration numbers are within all the ranges of the fact.
Inside these subpaths, the number of occurences of
node C are counted. Since the fact has “total” seman-
tics, we check this sum check against the constraint.

Had the fact used “foreach” semantics, each itera-
tion of the inner loop would be counted by itself.

4.1.4. Examples

The use of constraints to describe program flow is
well-known from the implicit path-enumeration tech-
nique (TPET) [10, 14, 20, 23]. The use of context spec-



ifications, however, makes this approach much more
powerful than previous methods.

For example, we can specify information for each
iteration of a loop, by using one fact for each itera-
tion. Information related to certain paths through a
loop can be expressed using constraints on sequences
of nodes. The specification of information locally in
a scope is much more convenient than previous global
approaches.

Some examples of types of flows that can be de-
scribed are:

e A simple loop bound is specified by using an
“all/total” operator: scope : [] ! Theader(scope) <
bound. If the header of the loop contains the loop
exit check (e.g. for-loops), the bound is the number
of loops+1.

e scope : <>:xy+ xp = 1 The nodes A and B cannot
execute on the same iteration of the scope. Corre-
sponds to Park’s nopath(4,B) annotation [21] and
implies an infeasible or false path.

e scope : <>:xy = xg The nodes A and B execute on
the same iterations of the scope. Corresponds to
Park’s samepath(4,B) annotation [21].

e The loop sequence annotations of the MARS sys-
tem [22] is used to indicate that a number of
successive loops shares a total number of itera-
tions. Tt is expressed as scope : <> : Zheader(loop1) +
Theader(loop2) = total, where scope is the scope con-
taining the sequenced loops and total is the total
number of iterations they share.

e scope : <>: x; < xg For every iteration of the scope
an execution of & implies an execution of B (node B
can still be executed on its own).

e scope : <5..10>:zy = 1 Node A must execute on
all the iterations numbered 5 thru 10. This type
of iteration-based facts can be derived using flow
analysis methods like [9, 12].

e scope : [1..2,1..10]: 25 < 2 Node A cannot be
executed more than twice over the first ten iterations
of the inner scope for the first two iterations of the
outer scope.

5. Conversion of flow information to
IPET Calculation

Our WCET tool uses the IPET calculation method
to find the WCET and thus we need to convert the flow
information facts to a form appropriate for IPET.

5.1. IPET Calculation

In IPET the flow of a program is modeled as an
assignment of values to execution count variables. The

variables are considered global, and the values reflect
the total number of executions of each node for each
execution of the program.

Each entity with a count variable also has a time
variable (tentity) giving the contribution of that part of
the program to the total execution time for each time
it 1s executed. As shown in our previous work, the
modeling method can handle both individual execution
scenario nodes and sequences of nodes [7].

The flow possible given the structure of the program
is modeled using structural constraints. For each node,
the sum of the incoming flows is equal to the outgoing
flows. For example, for node B in Figure 3 the con-
straints xaz + xgg = xg and zg = xpe + xpp would be
generated. The structural constraints are implicit and
need not be described by the flow facts.

In addition to the structural constraints, we have
constraints given by the flow information facts. We also
generate additional constraints for node sequences, as
shown in [T7].

The WCET estimate is generated by maximizing the
sum of the products of the execution counts and exe-
cution times (subject to the flow constraints):

WCET = mazimize( E Tentity - Lentity)

Ventity

This maximization problem is then solved using a
constraint solver or integer linear programming (ILP)
system.

Observe that TPET will not explicitly find the worst
case execution path but just give the worst case count
on each node. There is no information about the pre-
cise execution order.

5.2. Conversion

The problem in converting flow facts to IPET con-
straints is that our specification language uses scope-
local semantics, while IPET relies on execution-global
variable values: all instances of a certain entity across
an the entire execution path is counted. We need to
join all the local information we have about the flow
into a consistent set of constraints reasoning about the
global variables.

For example, consider the loop nest shown in Fig-
ure 3. A fact such as innerloop: [] : z¢ < 10, stating
that each time the innerloop is entered, block C will
be executed at most 10 times. Thus, globally, we need
to constrain z¢ by z¢ < 10 * Zentry(innertoop), and just
not z¢ < 10. Performing this raising of facts to the
global level 1s the work of our conversion algorithms.

5.3. Converting “All” Facts

For facts with an “all/total” context specification,
([1), the conversion is simply to multiply all constants



for each fact s:c:constr in Facts do
if ¢ == <> then // Convert foreach fact
add constr[constants * Tpeqder(c)] to Csp
remove s:c:constr from Facts
if ¢ == []1 then // Convert total fact
add constr[constants x Tepiry(c)] to Csp
remove s:c:constr from Facts
else // Ranged fact, save it for later
let s:c:constr remain unchanged in Flacts
end for

Figure 8. “All” Conversion

in the constraint by the Zeniry(scope) of the defining
scope. By a constant we mean an integer not part of
any multiplication or division.

For “all/foreach” facts, (<>), we need to consider
the number of iterations executed by the scope. This
1s equal to the number of times the header node of the
scope 1s executed, and thus the conversion is to mul-
tiply all constants by Zheader(scope). For unstructured
scopes, we must USe Theader(scope) + 1, since there ex-
ists an iteration where the header node does not get
executed.

Figure 8 shows the algorithm for converting the “all”
facts. The notation constr[constants * z] indicates that
all constants in the constraint constr are multiplied by
the variable (or constant) z. The constraints generated
are put into the set C'sp. A constant is defined as an
expression containing no variables.

5.4. Converting “Range” Facts

The complex case 1s the range facts, since they only
provide partial information about the value of a vari-
able. For example, given the fact foo : [1..4] :z, <2
in Figure 3, we cannot simply generate the constraint
Ty < 2% Teppry(£oo), Since the node A might be executed
outside the specified range.

The algorithm shown in Figure 9 solves this prob-
lem by treating each range as a virtual scope. A virtual
scope is defined by scope : range (two identical ranges
in different scopes generate different virtual scopes).
The ranges are specified without context type. Each
virtual scope has a header and entry variable, (2%, ;7"°

entry
and z;°°°P°) together with subvariables z!’%°"® which

header entity
holds the number of times entities, like nodes and
edges, gets executed within the virtual scope. For ex-
ample, the fact s: [1..5] : 23 > 3 would generate a
subvariable named z$'1-5 an entry variable mé,}tr‘z and
a header variable z§1-5 .

Each virtual scope is then treated as an “all” scope,
but with subvariables instead of the main variables,
using the same rules for inserting references to entry
and header node variables. The following sections out-
lines how the generated virtual scope variables are con-

strained and related to the global IPET variables.

for each scope s in ScopeTree do

F. := all facts in ScopeTree attached to s

a :=s, F; =0

while Fs # 0 do
// Convert facts with same anchor scope a together
Fy := all facts in F. with anchor = a
Fy := Fy + Fy // Add lifted facts
Fy := Fy, Fs := Fs - Fy,

// Generate set of non-intersecting rangelists

R := all rangelists among facts in Fy
R.up := split R into non-overlapping rangelists
R.up := Rgyp + rangelists not covered by Rgup

// Relate global vars to subrange vars

for each variable v among facts in Fy do
add v=3, v to C'sp

end for

add Theader(s)

TER

— s:T

- ErGRSu?;‘hea)der to Csp
__ _.s:smallest b
add Tentry(s) = Tentry o

// Create constraints from facts
for each fact s:c:constr in F, do
R. := all ranges in Rg,; covered by ¢
for each variable v in consir do
constr := constr[v replaced by > g v*’]

r to Csp

end for
if is_total(c) then

81 1llest (R,
add constr[constants* piisnaies (Re

entry

)] to C'sp
if is_foreach(c) then
add constr[constants ¥, c g il 5.1 to Csp
end for
// Constrain subrange vars and header vars
for each rangelist rl in R,,; do
for each variable v among facts in F, do

m =1
if v belongs to scope lower than s then
m := multiply sizes of lower scopes
add v*7 < zf;;ider *m to Csp
end for
add zf;eréder < sizleof(rl) * zznrtlry to Csp
ST ST
add x> Tiiry O Csp
end for

// Constrain ordering between subrange entry vars
for all rangelists rl; and rl; in R,,; do
if immediate predecessor(rl;,rl;) then

A sirly s:rly sirly
add (51ze°f(rli? l_ 1) * z‘entiy $ Theader — Ient'ry
and 510> 27 w0 Cap

end for
// Lift facts to next anchor scope
u := upperbound(parent_scope(a))

for each fact s:c:constr in Fj do
RIList := rangelist(c)
if is_total(c) then

R. := all ranges in R,,; covered by ¢
c := [1..u,RList]
constr := constr[constants x* Iz;f;":;leSt(Rc)]

if is_foreach(c) then
c = <1..u,RList>
end for
update s:c:constr in F
end while
end for

Figure 9. “Range” Conversion
5.4.1. Virtual Scope Variables
The algorithm loops over all scopes, and for each
scope, over all anchor scopes for the facts attached to



the scope. For each anchor scope, we collect the set of
ranges (potentially multidimensional) used in the facts
with the given anchor scope.

In the case that several ranges for the same scope
overlap, the ranges are split into disjoint subranges.
For example, for the facts s: [1..5] : 2y > 3 and
s:[3..7] : 2y < zp, we get the three virtual scopes
s:1..2, s:3..5, and s:6..7. The subvariables for each
range are then replaced with the sum of the “split”
variables, for example z{1® = 2512 4 2335 and
xz:S..? — IZZS”S + Izz()’..’?.

In the case that the ranges in the facts don’t cover
the complete iteration space of the scope, extra virtual
scopes are created to fill the gaps, so that every iter-
ation number from 1 to the upper bound of the scope
is covered. E.g. assuming the scope s has an upper
bound of 20 we get the set of virtual scopes {s:1..2,
$:3..5,5:6..7, s:8..20}.

In the special case that there exists an iteration zero
(i.e. unstructured loops) it is communicated to the con-
version algorithm by having a range with zero as its
lower bound, since that is going to be used to construct
the set of subranges.

The value of each global variable is set equal to the
sum of the corresponding subvariables, e.g. in our pre-
vious example = (L‘Z:LQ + l,z:B..S + xz:6..7+ 1,29\18..20.
This ties the virtual scope variables to the real, global,
IPET variables.

The facts are converted to constraint by replacing all
variables with the sum of virtual scope variables corre-
sponding to the range of the fact, in a way analogous
to the “all” facts. For “range/total” facts, ([RList]),
the constants are multiplied by the header count vari-
able, and for “range/foreach” facts, (<RList>), the
constants are multiplied by the entry count variable.

5.4.2. Constraining Virtual Scope Variables

All subvariables must constrained so that they can-
not contribute more than the number of iterations
of the virtual scope to the total sum. For an en-
tity in the defining scope, this is done by constraining
the variable by the header node for the virtual scope
(ie. xiniity < Zpeader). For subvariables belonging
to scopes below the defining scope, we must multiply
the subheader variable by the iteration bounds for all
the intervening scopes, since we would otherwise incor-
rectly constrain iterations in lower scopes.

Lower and upper bounds are generated for the sub-
headers, in order to constrain how much the subvari-
ables of each virtual scope can contribute to the to-
tal. The lower bound is given by z,°°"° > Zfliﬁge,
stating that we must take at least one iteration in
the scope each time the virtual scope is entered (for

scopes with a range starting a zero, no constraint is
generated). An upper bound is provided by z}°°"° <
sizeof (vscope) :L‘Z,sli,ofée This states that for every
entry we cannot execute more iterations than the size
of the range for the virtual scope. The size of a range
is the number of iterations covered by the range. E.g.
the virtual scope s : 3..5 has the size 3, generating the
.5:3..5 5:3..5

: 5:3..5 5:3..5 ‘ .
constraints x> > = > Tentry and zj> > < 3* Lentry:

The entry variables must be constrained to ensure
that each virtual scope is only executed if the previous
virtual scope is executed long enough to come to the
start of the virtual scope. E.g. a virtual scope s:3..5
can not be entered unless the preceding virtual scope
s:1..2 was entered and at least two iterations executed
in it.

First, the constraint :L‘Z;i:fy > :L‘Zﬁf,fy is generated,
where prev is the virtual scope preceding next: we
cannot enter a subrange more often than its preceding
subrange.

To ensure that we only enter a subrange if the pre-
ceding subrange has executed all its iterations, the con-
straint (sizeof (prev) — 1) * alefl, < @450, — x50,
is generated. The idea is that we need to “fill up”
the preceding subrange before continuing into the next
subrange, and that we need to compensate for the cases
where we do not. Notice that the constraint both pro-

vides a lower bound for z}'°" = and an upper bound

nexrt

for zg5iry.-

The constraint is based on the observation that exe-
rev
eader

get entered and those where not. The number of iter-
ations spent leading up to next is exactly bounded by

. ~nert
sizeof (prev) * x5, .

cutions of :EZ can be divided into those where nezt

The number of iterations spent not leading up to
next is derived from the entry variables: rggiﬁy —rgﬁf:y
is the number of entries of prev which didn’t lead to an
entry of next. This provides a lower bound (for each
such entry we must iterate at least once in prev). The
upper bound is (sizeof (prev) x (22,57, — 227" ) (each
entry iterates the whole iteration space of prev but does
not enter next). After some algebraic manipulations
the lower bound becomes the constraint above, and
the upper bound is the same as z} %% =~ < J:g;iﬁy
sizeof (prev), which is already given.

The entry variable for a range is equal to the en-
try variable for the (split) subrange entry variable cor-
responding to the first covered subrange, since when
that subrange is entered, the range itself is entered.
Le. mé,?trz = :L‘é,?trz In the same way we can constrain
the global entry variable of a scope with the first sub-
range, i.e. Tentry(s) = :anltr?/ The function smallest ()

returns the first subrange among a set of subranges.



5.4.3. Multidimensional Ranges

Generating constraints for multidimensional ranges
requires some extra consideration. When creat-
ing disjoint virtual scopes all dimensions of the
ranges have to be taken into consideration. For
example, the facts s:[1..5,3..10]:2¢ > 12 and
s:[6..10,1..7]:2¢ < zp + 2 would generate the
following set of virtual scopes (assuming that 10 is
the upper bound for both s and its parent scope
p): {s:1..5,1..2, s:1..5,3..7, s:1..5,8..10, s:6..10, 1..2,
§:6..10,3..7, 5:6..10,8..10}.

The size of a multidimensional range is the
product of the sizes of all the ranges in it (e.g.
sizeof(s:1..5,3..7)= 25). The first virtual scope
among a set of virtual scopes is the one which has all
the smallest ranges, (i.e. s:1..5,1..2in the above exam-
ple).

The relation between entries becomes more complex,
since we do not have a linear order between virtual
scopes. For example, the number of times we are enter-
ing s:6..10, 1..2 can not be constrained by s:1..5,1..2
since we don’t have to enter s during the first five iter-
ations of p to be able to enter s during the remaining
iterations of p.

Instead, we get an ordering between entry variables
which have identical subranges except for the defin-

ing scope. E.g. the above example gives: giilSl2

entry il
.8:1..5,3..7 > Is:l..S,S..lO

$:6..10,1..2 $:6..10,3..7
entry — "entry 7 > 7 z

and mentry — "entry -

fo%zo,s..lo. Also, the first entry variable in the chain

can be constrained by the number of times the cor-
responding range for just the parent scope gets en-

. . . .p:l.5 s:1..5,1..2 p:6..10
tered. This gives us: Tepypy > Tepiry — and Te,in, >
$:6..10,1..2

entry Finally, the parent scope entry variables
are then related to each other and to the global entry
variable: Zepiry(p) = :Eg;}g,;‘z > :L‘Z;%,;LO. Thus, we have
a partial order which lets us relate all entries of all
generated virtual scopes to the global entry variables.
We also need to handle the problem with
facts of different dimension but with the same
defining scope are interacting with each other.
For example, s:[3..7]:2; < 3 interacts with
s:[1..2,1..4] : 2z, > 5. The solution is to lift the
facts defined for lower anchor scopes to the higher
scopes. This is done by prefixing a new range to the
context specification of the fact, which includes the
whole iterations space of the new anchor scope. The
fact should only be valid if the original defining scope
of the fact 1s entered, and therefore all constants in
the constraint is multiplied with the entry variable of
original fact.
Lifting makes the set of constraints for a certain
scope and anchor scope consistent. Note it also ex-

acc_length = 18, len = 35, ptr = start + 17, end = start + 700;
for(i=0;i<700;i++) { /* Outer loop */
for(j=1; j<acc_length;j++) /* Inner loop */
{ /* calculation */ }
if(ptr == end)
acc_length--; /* node A */
else {
if (acc_length < len)
acc_length++; /* node B */
ptr++; /* node C */

}
} /* end of loop */

Basic finiteness  outer : [1: Theader(outer) < 701
inner : [1: Theader(inner) < 35

A taken last 18 outer : <683..700> x4 = 1
B taken first 17 outer : <1..17> :xg =1
C taken first 682 outer : <1..682> :xc =1
Precise inner loop  outer : [1..17] : Tpeader(inner) = 442
outer : <18..683> : Theader(inner) = 39

outer : [684..700] : Theader(inner) = 442

Figure 10. fir kernel with facts
pands the set of facts defined for a certain scope.

5.5. Conversion Example

For an example on how the conversion process
works, consider the code given in Figure 10. It shows
the flow-relevant parts of the kernel of a DSP algo-
rithm, and has the flow as shown below the code. Note
that since we are not doing any heavy compiler op-
timizations in our experiments, the structure of the
source code and object code are the same.

The  (header  of) inner  loop
(18,19...34,35...35,34...19,18) times over the
iterations of the outer loop. This gives a basic finite-
ness bound of 35, and the more precise loop bounds
given in the lower section of the figure. The ramp-up
and ramp-down each contains a total of Z?ilsi = 442
iterations, and are given one fact each.

The conversion to constraints using our algorithm is
illustrated in Figure 11. (A) shows the virtual scopes
resulting from the split operation. Note the virtual
scope outer:701..701 which models the last execution
of the header (the exit from the loop). (B) and (C)
shows the generated subentry variables and subheader
variables and (D) shows the constraints generated be-
tween them.

Figure 11(E) shows the subvariables for the C node
in the fir code, and how they are constrained by the
main variable for z¢ and the subheaders. Finally, (F)
shows how a flow fact was converted.

executes

6. Our WCET Analysis Tool

We have used the low-level module of our WCET
tool [7] to perform experiments with our flow facts.

Figure 12 gives an overview of our WCET analysis
system as implemented today. In order to generate
a WCET estimate, a program is processed through a
number of modules:

The compiler is a modified TAR V850/V850E
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Figure 12. Overview of our current WCET analysis system

A: Disjunct covering virtual scopes
outer:1..17, outer:18..682, outer:683..683,
outer:684..700, outer:701..701

B: Subentry variables
5 gouleri.d7 o outer:s..682
Tentry(outer) 2 Tentry Z Tentry
outer:683..683 outer:684..700 outer:701..701
> entry > Tentry > entry

C: Subheader variables

outer:1..17 outer:18..682

Theader(outer) = Theader T Theader +
outer:683..683 outer:684..700 outer:701..701
Theader + Theader + Theader

D: Relation between subheader and subentry variables

RULE T < ATx aZute T AR AR
22232?8 .682 < 665 * xz;:i; :18..682 zz;zz::ﬂ..ﬁln > xzzzi;:IB..GBZ
I,zz;zzfiﬁ .683 < 1 % xz;:i; :683..683 x23232583..683> xz;ti; :683..683
zz;zzf&l 700< 17 % xz;:i; :684..700 zz:zzf84u700> xz;:i;.GHLJOO

outer:701..701 < 1 *Iouier :701..701 ouier:701“701> xouier:701“701

header entry header entry
(17_ 1) * zz;—::i; :18..682 S Iflz;ed,;:f, _ Z;:i;:lui"
(665 — 1) * xzz:i;:683usﬂ3 S 22232::8.682 _ Zz:i;dﬂuﬁaz
(1 _ 1) * xouter‘:GﬂLJOO S xiz;z’;f83 683 Z;:i;:683“683
(17_ 1) * xzzii;ﬂol..‘lol S xiz:ed:;fell 700 Z;:i;;sequ'[oo

E: Subvariables and constraints for variable o

outer:1..17 outer:18..682
To = To +zs +

outer:683..683 outer:684..700 outer:701..701
+ 2o + 2o

To
outer:1..17 < outer:1..17

z S Theader

outer:18..682 outer:18..682
Tc < Theader
outer:683..683 < outer:683..683
Tc S Theader
outer:684..700 outer:684..700
To < Theader
outer:701..701 outer:701..701
To < Theader

F: Conversion of fact outer : <1..682> :xc =1

outer:1 outer:18..682 outer:1..17
=682 x (

:1..17 outer:18..682
Tc +zo Theader )

+z Theader

Figure 11. Example of Conversion

C/Embedded C++ [26] compiler which emits the ob-

ject code of the program in an accessible format.

The program flow analysis is performed manually
at present. It results in a description of the possi-
ble program flow using our scopes-and-facts represen-
tation. The information facts are converted to IPET
constraints as described above.

We then construct a timing graph, which contains
the same execution scenario nodes and edges as the
scope tree, but without the scopes. In addition to the
execution count variables, the edges and nodes in the
timing graph are given ezecution time variables.

The Pipeline Analysis runs nodes and sequences of
nodes in the simulator, and calculates the values of the
execution time variables accordingly.

The Simulator is fed instructions together with in-
formation about how the instructions execute (pro-
vided by the execution scenarios). It must have a cycle-
accurate model of the CPU, but it does not need to
model the semantics of the object code.

Times for nodes correspond to the execution time
of a basic block in isolation, and times for sequences
to the effect of the processor pipeline when the basic
blocks are executed in sequence (usually an overlap).
Timing effects for sequences of nodes are calculated by
first running the individual nodes in the simulator, and
then the sequence and comparing the execution times.
For details see [7].

We do not include any cache or branch predictors in
the current version of the tool, since our target system
does not have a such features. The analysis method
could easily be extended to include the effects of such
features as outlined in [8].

For this set of experiments, the target system was
the NEC V850E [4] 32-bit embedded microcontroller.
We have designed our own cycle-accurate simulator for
the V850E core using a generic framework, and we plan
to support other architectures in the future.

7. Experiments

In order to demonstrate the effectiveness of our spec-
ification language and conversion to IPET, we have
performed a number of experiments on example pro-
grams containing various types of flow.

The execution times in our experiments are shown
in Figure 13. The column Basic gives the WCET esti-
mate using only basic finiteness constraints. The col-
umn Improved gives the estimate resulting from adding
more flow information facts. The column Actual gives
the actual WCET of the program, as given by a simu-
lation of the target platform. The numbers in the +%
columns give the pessimism of each WCET estimate in
percent.

The better results for the “improved” column indi-



Basic Improved
Program | Cycles | +% | Cycles | +% | Actual
fir 326967 1.1 323277 0.0 323277
insertsort 2077 | 66.3 1249 0.0 1249
duff 1248 1.8 1226 0.0 1226
jfdctint 5550 0.0 5550 0.0 5550

Figure 13. Execution Time Estimates

i=2;
while(i<=10) { /* Outer loop */
= i
;]ahile (aljl < alj-11) { /* Inner loop */
swap(aljl,alj-11);
J==s
}
1++;
}

Basic finiteness

outer : [1: Theader(outer) < 9
inner : [1: Lheader(inner) <9
outer : [1: Lheader(inner) < 45
Figure 14. Triangular loop: insertsort
cates the advantage of using more complex flows that
simple loop bounds in WCET analysis, and shows that
our method 1s able to capture complex flows in an ef-

Triangular

fective and efficient manner.

We choose to present a few example programs in
detail in order to give an understanding of how our
flow modeling works. The fir program was described
above, and insertsort and duff are presented below.
For jfdctint simple loop bounds are sufficient.

7.1. InsertSort

The key problem in insertion sort is a triangular
loop, i.e. a loop where the number of iterations of the
inner loop depends on the iteration of the outer loop.
Figure 14) shows the kernel of the code (from [15]).

The loop iterates nine times in the outer loop, and,
assuming worst-case input, at most nine times in the
inner loop. This gives the basic finiteness facts.

However, we can deduce that the inner loop will
not execute more than 1+ 2+ ... 4+ 9 = 45 times for
each entry to the outer loop. This constant represents
the same information as the results of the summation
formulae used to determine the number of iteration of
nested loops in [3, 11].

7.2. Duff

The core of duff (see Figure 15) is a loop with mul-
tiple entry points. It 1s a benevolent case of unstruc-
tured code. We use this example to show that our
representation and conversion mechanisms are capable
of handling more than just structured loops.

For a multiple-entry loop, the definition of a header
given above allows any of the nodes in the loop be the
header node. We use the last node in the loop as the

void duffcopy(char *to, char *from, int count)

int n=(count+7)/8;
switch (count%8) {
case 0: do{ *to++ = *fromt++;
case *tot++ = *fromt+;
case *tot++ = *fromt+;
case *tot++ = *fromt+;
case *tot++ = *fromt+;
case *tot++ = *fromt+;
case *tot++ = *fromt+;
case *tot++ = *fromt+;
} while (--n>0);

FNWSs o dO

Basic finiteness
Exact bound

loop: ] :zy. <6

loop : [1 : xo. + @7, + 6. + x5,
+24. + T3, + To 2y, =43
Figure 15. Multiple-entry loop: duff

header, since it is always executed when the loop is
executed.

In our test, we use duffcopy to copy 43 bytes. The
basic finiteness constraint is that the loop iterates 6
times, and for greater precision, we sum over the exe-
cution of all the nodes in the loop.

8. Conclusions

This paper has presented a new representation for
program flow information. The representation is strong
enough to handle the types of flow considered by pre-
vious WCET research, and also some additional types
of flow (most notably unstructured code).

The representation allows facts to be presented both
over all iterations and over some specific iterations of
a loop, where previous approaches have choosen one
particular style. It is compact yet expressive.

We have given an algorithm for converting the flow
information facts to a form suitable for IPET WCET
calculation. Without such a conversion, the facts would
not be useful for WCET analysis.

The conversion algorithm and expressiveness of the
representation have been demonstrated using a set of
example programs. In order to further the understand-
ing for our representation, we have given detailed flow
information for a number of programs.

As a side effect, the tighter execution times obtained
show that the IPET calculation method can take ad-
vantage of complex flow information.

9. Future Work

Our research strategy has been to start from the ma-
chine modeling [7] and work upwards in the tool chain.
The next step is to extend our machine modeling to
include caches and to investigate automated program
flow analysis. We plan to investigate how cache and
branch-prediction analysis can take advantage of flow
information.



Furthermore, we would like to investigate how flow
information can be converted to be used in path-based
or tree-based calculation methods, and compare the
effectiveness of various approaches.

The long term goal is to integrate a WCET
analysis tool into the TAR Systems Embedded
Workbench integrated development environment
(http://wuw.iar.com), and thus provide WCET
analysis as a standard and accessible tool for embed-
ded real-time systems developers.
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