1. Introduction 2
2. Lexical analysis 31
3. LL parsing 58
4. LR parsing 110
5. JavaCC and JTB 127
6. Semantic analysis 150
7. Translation and simplification 165
8. Liveness analysis and register allocation 185
9. Activation Records 216

Things to do

- make sure you have a working mentor account
- start brushing up on Java
- review Java development tools
- find http://www.cs.purdue.edu/homes/palsberg/cs352/F00/index.html - add yourself to the course mailing list by writing (on a CS computer) mailer add me to cs352 for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy fee. Request permission to publish from hosking@cs.purdue.edu.

Compilers

What is a compiler?

- a program that translates an executable program in one language into an executable program in another language
- we expect the program produced by the compiler to be better, in some way, than the original

What is an interpreter?

- a program that reads an executable program and produces the results of running that program
- usually, this involves executing the source program in some fashion

This course deals mainly with compilers
Many of the same issues arise in interpreters

Motivation

Why study compiler construction?

Why build compilers?

Why attend class?

Isn't it a solved problem?

Machines are constantly changing

Changes in architecture \Rightarrow changes in compilers

- new features pose new problems
- changing costs lead to different concerns
- old solutions need re-engineering

Changes in compilers should prompt changes in architecture

- New languages and features

Interest

Compiler construction is a microcosm of computer science

artificial intelligence	greedy algorithms learning algorithms
algorithms	graph algorithms union-find dynamic programming
theory	DFAs for scanning parser generators lattice theory for analysis
systems	allocation and naming locality
	pipeline management hierarchy management instruction set use
architecture	

Inside a compiler, all these things come together

Intrinsic Merit

Compiler construction is challenging and fun

- interesting problems
- primary responsibility for performance
(blame)
- new architectures \Rightarrow new challenges
- real results
- extremely complex interactions

Compilers have an impact on how computers are used

Compiler construction poses some of the most interesting problems in computing

Experience

You have used several compilers
What qualities are important in a compiler?

1. Correct code
2. Output runs fast
3. Compiler runs fast
4. Compile time proportional to program size
5. Support for separate compilation
6. Good diagnostics for syntax errors
7. Works well with the debugger
8. Good diagnostics for flow anomalies
9. Cross language calls
10. Consistent, predictable optimization

Each of these shapes your feelings about the correct contents of this course

Implications

- intermediate representation (IR)
- front end maps legal code into IR
- back end maps IR onto target machine
- simplify retargeting
- allows multiple front ends
- multiple passes \Rightarrow better code

Abstract view

Implications:

- recognize legal (and illegal) programs
- generate correct code
- manage storage of all variables and code
- agreement on format for object (or assembly) code

Big step up from assembler — higher level notations

A fallacy

Can we build $n \times m$ compilers with $n+m$ components?

- must encode all the knowledge in each front end
- must represent all the features in one IR
- must handle all the features in each back end

Limited success with low-level IRs

Front end

Responsibilities:

- recognize legal procedure
- report errors
- produce IR
- preliminary storage map
- shape the code for the back end

Much of front end construction can be automated

Front end

Parser:

- recognize context-free syntax
- guide context-sensitive analysis
- construct IR(s)
- produce meaningful error messages
- attempt error correction

[^0]

Scanner:

- maps characters into tokens - the basic unit of syntax
$\mathrm{x}=\mathrm{x}+\mathrm{y}$;
becomes
<id, $\mathrm{x}>=\langle\mathrm{id}, \mathrm{x}\rangle+\langle\mathrm{id}, \mathrm{y}\rangle$;
- character string value for a token is a lexeme
- typical tokens: number, id, +, -, *, /, do, end
- eliminates white space (tabs, blanks, comments)
- a key issue is speed
\Rightarrow use specialized recognizer (as opposed to lex)

Front end

Context-free syntax is specified with a grammar

<sheep noise $>$	$:=$ baa
	$\mid \quad$ baa $<$ sheep noise $>$

This grammar defines the set of noises that a sheep makes under normal circumstances

The format is called Backus-Naur form (BNF)
Formally, a grammar $G=(S, N, T, P)$
S is the start symbol
N is a set of non-terminal symbols
T is a set of terminal symbols
P is a set of productions or rewrite rules $(P: N \rightarrow N \cup T)$

Front end

Context free syntax can be put to better use

```
<goal> ::= <expr>
<expr> ::= <expr> <op> <term>
    | <term>
<term> ::= number
    id
<op> ::= +
```

This grammar defines simple expressions with addition and subtraction over the tokens id and number
$S=<$ goal $>$
$T=$ number, $\mathrm{id},+,-$
$N=$ <goal>, <expr>, <term>, <op>
$P=1,2,3,4,5,6,7$

Front end

A parse can be represented by a tree called a parse or syntax tree

Obviously, this contains a lot of unnecessary information

Front end

Given a grammar, valid sentences can be derived by repeated substitution.

Prod'n.	Result
	$<$ goal $>$
1	$<$ expr $>$
2	$<$ expr $><$ op $><$ term $>$
5	$<$ expr $><$ op $>$ y
7	$<$ expr $>-$ y
2	$<$ expr $><$ op $><$ term $>-$ y
4	$<$ expr $><$ op $>2-$ y
6	$<$ expr $>+2-$ y
3	$<$ term $>+2-$ y
5	x $+2-y$

To recognize a valid sentence in some CFG, we reverse this process and build up a parse

18

Front end

So, compilers often use an abstract syntax tree

This is much more concise

Abstract syntax trees (ASTs) are often used as an IR between front end and back end

Back end

Responsibilities

- translate IR into target machine code
- choose instructions for each IR operation
- decide what to keep in registers at each point
- ensure conformance with system interfaces

Automation has been less successful here

Back end

Register Allocation:

- have value in a register when used
- limited resources
- changes instruction choices
- can move loads and stores
- optimal allocation is difficult

Back end

Instruction selection:

- produce compact, fast code
- use available addressing modes
- pattern matching problem
- ad hoc techniques
- tree pattern matching
- string pattern matching
- dynamic programming

Traditional three pass compiler

Code Improvement

- analyzes and changes IR
- goal is to reduce runtime
- must preserve values

Modern optimizers are usually built as a set of passes
Typical passes

- constant propagation and folding
- code motion
- reduction of operator strength
- common subexpression elimination
- redundant store elimination
- dead code elimination

The Tiger compiler phases

Lex	Break source file into individual words, or tokens
Parse	Analyse the phrase structure of program
Parsing Actions	Build a piece of abstract syntax tree for each phrase
Semantic Analysis	Determine what each phrase means, relate uses of variables to their definitions, check types of expressions, request translation of each phrase
Frame Layout	Place variables, function parameters, etc., into activation records (stack frames) in a machine-dependent way
Translate	Produce intermediate representation trees (IR trees), a notation that is not tied to any particular source language or target machine
Canonicalize	Hoist side effects out of expressions, and clean up conditional branches, for convenience of later phases
Instruction Selection	Group IR-tree nodes into clumps that correspond to actions of target- machine instructions
Control Flow Analysis	Analyse sequence of instructions into control flow graph showing all possible flows of control program might follow when it runs
Data Flow Analysis	Gather information about flow of data through variables of program; e.g., liveness analysis calculates places where each variable holds a still- needed (live) value
Register Allocation	Choose registers for variables and temporary values; variables not si-- multaneously live can share same register
Code Emission	Replace temporary names in each machine instruction with registers

The Tiger compiler

26

A straight-line programming language

- A straight-line programming language (no loops or conditionals):

Stm	\rightarrow Stm ; Stm	CompoundStm
Stm	\rightarrow id := Exp	AssignStm
Stm	\rightarrow print (ExpList $)$	PrintStm
Exp	\rightarrow id	IdExp
Exp	\rightarrow num	NumExp
Exp	\rightarrow Exp Binop Exp	OpExp
Exp \rightarrow (Stm, Exp)	EseqExp	
ExpList \rightarrow Exp, ExpList	PairExpList	
ExpList \rightarrow Exp	LastExpList	
Binop $\rightarrow+$	Plus	
Binop $\rightarrow-$	Minus	
Binop $\rightarrow \times$	Times	
Binop $\rightarrow /$	Div	

- e.g.,
$\mathrm{a}:=5+3 ; \mathrm{b}:=(\operatorname{print}(\mathrm{a}, \mathrm{a}-1), 10 \times \mathrm{a}) ; \operatorname{print}(\mathrm{b})$
prints:
87
80

Tree representation

$$
\mathrm{a}:=5+3 ; \mathrm{b}:=(\operatorname{print}(\mathrm{a}, \mathrm{a}-1), 10 \times \mathrm{a}) ; \operatorname{print}(\mathrm{b})
$$

This is a convenient internal representation for a compiler to use.

Scanner

- maps characters into tokens - the basic unit of syntax
$x=x+y$;
becomes
<id, x$\rangle=\langle i d, \mathrm{x}\rangle+\langle i d, \mathrm{y}\rangle$;
- character string value for a token is a lexeme
- typical tokens: number, id, +, -, *, /, do, end
- eliminates white space (tabs, blanks, comments)
- a key issue is speed \Rightarrow use specialized recognizer (as opposed to lex)
Copyright (C)2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed fo profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

Specifying patterns

A scanner must recognize various parts of the language's syntax Some parts are easy:
white space
<WS> ::= <ws>, ,

$|$| $<w s>, \backslash t$ |
| :--- |
| , |
| ,$\backslash t$ |

keywords and operators
specified as literal patterns: do, end
comments
opening and closing delimiters: /* \ldots */

Operation	Definition
union of L and M written $L \cup M$	$L \cup M=\{\boldsymbol{s} \mid \boldsymbol{s} \in L$ or $s \in M\}$
concatenation of L and M written LM	$L M=\{s t \mid s \in L$ and $t \in M\}$
Kleene closure of L written L^{*}	$L^{*}=\bigcup_{i=0}^{\infty} L^{i}$
positive closure of L written L^{+}	$L^{+}=\bigcup_{i=1}^{\infty} L^{i}$

Specifying patterns

A scanner must recognize various parts of the language's syntax
Other parts are much harder:
identifiers
alphabetic followed by k alphanumerics ($, \$, \&, \ldots$)
numbers
integers: 0 or digit from 1-9 followed by digits from 0-9
decimals: integer '. ' digits from 0-9
reals: (integer or decimal) 'E' (+ or -) digits from 0-9
complex: '(' real ',' real ')'

We need a powerful notation to specify these patterns

Regular expressions

Patterns are often specified as regular languages
Notations used to describe a regular language (or a regular set) include both regular expressions and regular grammars

Regular expressions (over an alphabet Σ):

1. ε is a RE denoting the set $\{\varepsilon\}$
2. if $a \in \Sigma$, then a is a RE denoting $\{a\}$
3. if r and s are REs, denoting $L(r)$ and $L(s)$, then:
(r) is a RE denoting $L(r)$
$(r) \mid(s)$ is a RE denoting $L(r) \cup L(s)$
$(r)(s)$ is a RE denoting $L(r) L(s)$
$(r)^{*}$ is a RE denoting $L(r)^{*}$

If we adopt a precedence for operators, the extra parentheses can go away. We assume closure, then concatenation, then alternation as the order of precedence.

Examples

```
identifier
    letter }->(a|b|c|\ldots|z|A|B|C|\ldots|Z
    digit }->(0|1|2|3|4|5|6|7|8|9
    id }->\mathrm{ letter (letter | digit )*
```

numbers
integer $\rightarrow(+|-| \varepsilon)\left(0 \mid(1|2| 3|\ldots| 9)\right.$ digit $\left.^{*}\right)$
decimal \rightarrow integer . (digit $)^{*}$
real $\rightarrow($ integer \mid decimal $) \mathrm{E}(+\mid-)$ digit *
complex \rightarrow '(' real, real ')'

Numbers can get much more complicated

Most programming language tokens can be described with REs
We can use REs to build scanners automatically

Examples

Let $\Sigma=\{a, b\}$

1. $a \mid b$ denotes $\{a, b\}$
2. $(a \mid b)(a \mid b)$ denotes $\{a a, a b, b a, b b\}$
i.e., $(a \mid b)(a \mid b)=a a|a b| b a \mid b b$
3. a^{*} denotes $\{\varepsilon, a, a a, a a a, \ldots\}$
4. $(a \mid b)^{*}$ denotes the set of all strings of a 's and b 's (including ε) i.e., $(a \mid b)^{*}=\left(a^{*} b^{*}\right)^{*}$
5. $a \mid a^{*} b$ denotes $\{a, b, a b, a a b, a a a b, a a a a b, \ldots\}$

Recognizers

From a regular expression we can construct a

deterministic finite automaton (DFA)

Recognizer for identifier:


```
identifier
    letter }->(a|b|c|\ldots|z|A|B|C|\ldots|Z
    digit }->(0|1|2|3|4|5|6|7|8|9
    id }->\mathrm{ letter ( letter | digit )*
```


Code for the recognizer

```
char }\leftarrow\mathrm{ next_char()
state }\leftarrow0; /* code for state 0 */
done \leftarrow false;
token_value \leftarrow "" /* empty string */
while( not done ) {
    class }\leftarrow\mathrm{ char_class[char];
    class }\leftarrow\mathrm{ char_class[char];
    state }\leftarrow\mathrm{ next_state[class,state];
    switch(state) {
            case 1: /* building an id */
                token_value }\leftarrow\mathrm{ token_value + char;
                char }\leftarrow\mathrm{ next_char();
            case 2: /* accept state */
                token_type = identifier;
                done = true;
                break
            case 3: /* error */
                token_type = error;
                done = true;
                break;
    }
}
return token_type
```

Tables for the recognizer

Two tables control the recognizer

char_class: \quad		$a-z$	$A-Z$	$0-9$	other
value	letter	letter	digit	other	

class	0	1	2	3
letter	1	1	-	-
digit	3	1	-	-
other	3	2	-	-

To change languages, we can just change tables

Automatic construction

Scanner generators automatically construct code from regular expressionlike descriptions

- construct a dfa
- use state minimization techniques
- emit code for the scanner (table driven or direct code)

A key issue in automation is an interface to the parser

lex is a scanner generator supplied with UNIX

- emits C code for scanner
- provides macro definitions for each token (used in the parser)

Grammars for regular languages

Can we place a restriction on the form of a grammar to ensure that it describes a regular language?

Provable fact:
For any RE r, there is a grammar g such that $L(r)=L(g)$.
The grammars that generate regular sets are called regular grammars
Definition:
In a regular grammar, all productions have one of two forms:

1. $A \rightarrow a A$
2. $A \rightarrow a$
where A is any non-terminal and a is any terminal symbol

These are also called type 3 grammars (Chomsky)

More regular languages

Example: the set of strings containing an even number of zeros and an even number of ones

The RE is $(00 \mid 11)^{*}\left((01 \mid 10)(00 \mid 11)^{*}(01 \mid 10)(00 \mid 11)^{*}\right)^{*}$

Finite automata

A non-deterministic finite automaton (NFA) consists of:

1. a set of states $S=\left\{s_{0}, \ldots, s_{n}\right\}$
2. a set of input symbols Σ (the alphabet)
3. a transition function move mapping state-symbol pairs to sets of states
4. a distinguished start state s_{0}
5. a set of distinguished accepting or final states F

A Deterministic Finite Automaton (DFA) is a special case of an NFA:

1. no state has a ε-transition, and
2. for each state s and input symbol a, there is at most one edge labelled a leaving s.

A DFA accepts x iff. there exists a unique path through the transition graph from the s_{0} to an accepting state such that the labels along the edges spell x.

More regular expressions

What about the RE $(a \mid b)^{*} a b b$?

State s_{0} has multiple transitions on a ! \Rightarrow nondeterministic finite automaton

	a	b
s_{0}	$\left\{s_{0}, s_{1}\right\}$	$\left\{s_{0}\right\}$
s_{1}	-	$\left\{s_{2}\right\}$
s_{2}	-	$\left\{s_{3}\right\}$

1. DFAs are clearly a subset of NFAs
2. Any NFA can be converted into a DFA, by simulating sets of simultaneous states:

- each DFA state corresponds to a set of NFA states
- possible exponential blowup

NFA to DFA using the subset construction: example 1

	\boldsymbol{a}	\boldsymbol{b}
$\left\{s_{0}\right\}$	$\left\{s_{\mathbf{0}}, s_{1}\right\}$	$\left\{s_{0}\right\}$
$\left\{s_{0}, s_{1}\right\}$	$\left\{s_{\mathbf{0}}, s_{1}\right\}$	$\left\{s_{\mathbf{0}}, s_{2}\right\}$
$\left\{s_{0}, s_{2}\right\}$	$\left\{s_{\mathbf{0}}, s_{1}\right\}$	$\left\{s_{0}, s_{3}\right\}$
$\left\{s_{0}, s_{3}\right\}$	$\left\{s_{\mathbf{0}}, s_{1}\right\}$	$\left\{s_{0}\right\}$

Constructing a DFA from a regular expression

RE \rightarrow NFA w/ ε moves
build NFA for each term
connect them with ε moves
NFA w/ ε moves to DFA
construct the simulation the "subset" construction
DFA \rightarrow minimized DFA merge compatible states
DFA \rightarrow RE
construct $R_{i j}^{k}=R_{i k}^{k-1}\left(R_{k k}^{k-1}\right)^{*} R_{k j}^{k-1} \cup R_{i j}^{k-1}$

NFA to DFA: the subset construction
Input: \quad NFA N
Output: A DFA D with states Dstates and transitions Dtrans
such that $L(D)=L(N)$
Method: Let s be a state in N and T be a set of states, and using the following operations:

Operation	Definition
$\boldsymbol{\varepsilon}$-closure (s)	set of NFA states reachable from NFA state s on ε-transitions alone $\boldsymbol{\varepsilon}$-closure (T)
set of NFA states reachable from some NFA state s in T on $\boldsymbol{\varepsilon}$ - transitions alone	
move (T, a)	set of NFA states to which there is a transition on input symbol a from some NFA state s in T

add state $T=\varepsilon$-closure $\left(s_{0}\right)$ unmarked to Dstates
while \exists unmarked state T in Dstates
mark T
for each input symbol a
$U=\varepsilon$-closure $(\operatorname{move}(T, a))$
if $U \notin$ Dstates then add U to Dstates unmarked Dtrans $[T, a]=U$

endfor

endwhile
ε-closure $\left(s_{0}\right)$ is the start state of D
A state of D is accepting if it contains at least one accepting state in N

Limits of regular languages

Not all languages are regular
One cannot construct DFAs to recognize these languages:

- $L=\left\{p^{k} q^{k}\right\}$
- $L=\left\{w c w^{r} \mid w \in \Sigma^{*}\right\}$

Note: neither of these is a regular expression!
(DFAs cannot count!)
But, this is a little subtle. One can construct DFAs for:

- alternating 0 's and 1 's
$(\varepsilon \mid 1)(01)^{*}(\varepsilon \mid 0)$
- sets of pairs of 0 's and 1 's $(01 \mid 10)^{+}$

$$
\begin{array}{lll|l|l}
& & & a & b \\
\cline { 3 - 3 } A=\{0,1,2,4,7\} & D=\{1,2,4,5,6,7,9\} & A & B & C \\
B=\{1,2,3,4,6,7,8\} & E=\{1,2,4,5,6,7,10\} & B & B & D \\
C=\{1,2,4,5,6,7\} & & C & B & C \\
& D & B & E \\
& E & B & C
\end{array}
$$

So what is hard?

Language features that can cause problems:

```
reserved words
    PL/I had no reserved words
    if then then then = else; else else = then;
significant blanks
    FORTRAN and Algol68 ignore blanks
    do 10 i = 1,25
    do 10 i = 1.25
```

string constants
special characters in strings
newline, tab, quote, comment delimiter
finite closures
some languages limit identifier lengths
adds states to count length
FORTRAN $66 \rightarrow 6$ characters

These can be swept under the rug in the language design

How bad can it get?

```
        INTEGERFUNCTIONA
        PARAMETER(A=6,B=2)
        IMPLICIT CHARACTER*(A-B) (A-B)
        INTEGER FORMAT(10),IF(10) ,D09E1
        FORMAT (4H)=(3)
        FORMAT(4 )=(3)
        D09E1=1
        D09E1=1,2
            IF (X)=1
            IF}(\textrm{X})\textrm{H}=
        IF (X) 300,200
            CONTINUE
        END
C this is a comment
$ FILE(1)
END
```

Example due to Dr. F.K. Zadeck of IBM Corporation

The role of the parser

Parser

- performs context-free syntax analysis
- guides context-sensitive analysis
- constructs an intermediate representation
- produces meaningful error messages
- attempts error correction

For the next few weeks, we will look at parser construction
Copyright (C)2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy fee. Request permission to publish from hosking@cs.purdue.edu.

Syntax analysis

Context-free syntax is specified with a context-free grammar.
Formally, a CFG G is a 4-tuple $\left(V_{t}, V_{n}, S, P\right)$, where:
V_{t} is the set of terminal symbols in the grammar.
For our purposes, V_{t} is the set of tokens returned by the scanner.
V_{n}, the nonterminals, is a set of syntactic variables that denote sets of (sub)strings occurring in the language.
These are used to impose a structure on the grammar.
S is a distinguished nonterminal ($S \in V_{n}$) denoting the entire set of strings in $L(G)$.
This is sometimes called a goal symbol.
P is a finite set of productions specifying how terminals and non-terminals can be combined to form strings in the language.
Each production must have a single non-terminal on its left hand side.

The set $V=V_{t} \cup V_{n}$ is called the vocabulary of G

Notation and terminology

- $a, b, c, \ldots \in V_{t}$
- $A, B, C, \ldots \in V_{n}$
- $U, V, W, \ldots \in V$
- $\alpha, \beta, \gamma, \ldots \in V^{*}$
- $u, v, w, \ldots \in V_{t}^{*}$

If $A \rightarrow \gamma$ then $\alpha A \beta \Rightarrow \alpha \gamma \beta$ is a single-step derivation using $A \rightarrow \gamma$

Similarly, \Rightarrow^{*} and \Rightarrow^{+}denote derivations of ≥ 0 and ≥ 1 steps
If $S \Rightarrow^{*} \beta$ then β is said to be a sentential form of G
$L(G)=\left\{w \in V_{t}^{*} \mid S \Rightarrow^{+} w\right\}, w \in L(G)$ is called a sentence of G

Note, $L(G)=\left\{\beta \in V^{*} \mid S \Rightarrow^{*} \beta\right\} \cap V_{t}^{*}$

Scanning vs. parsing

Where do we draw the line?

$$
\begin{array}{ll}
\text { term } & ::=[a-z \mathrm{~A}-\mathrm{z}]([\mathrm{a}-\mathrm{zA}-\mathrm{z}] \mid[0-9])^{*} \\
& \mid \\
& 0 \mid[1-9][0-9]^{*} \\
\text { op } \quad::=+|-|*| / \\
\text { expr } & ::=\text { (term op })^{*} \text { term }
\end{array}
$$

Regular expressions are used to classify:

- identifiers, numbers, keywords
- REs are more concise and simpler for tokens than a grammar
- more efficient scanners can be built from REs (DFAs) than grammars

Context-free grammars are used to count:

- brackets: (), begin...end, if...then...else
- imparting structure: expressions

Syntactic analysis is complicated enough: grammar for C has around 200 productions. Factoring out lexical analysis as a separate phase makes compiler more manageable.

Syntax analysis

Grammars are often written in Backus-Naur form (BNF).
Example:

$$
\begin{array}{|ccl}
\langle\text { goal }\rangle & ::= & \langle\text { expr }\rangle \\
\langle\text { expr }\rangle & ::= & \text { expr }\rangle\langle\text { op }\rangle\langle\text { expr }\rangle \\
& & \text { num } \\
& 1 & \text { id } \\
\langle\text { op }\rangle & ::= & + \\
& & - \\
& & * \\
& & /
\end{array}
$$

This describes simple expressions over numbers and identifiers.
In a BNF for a grammar, we represent

1. non-terminals with angle brackets or capital letters
2. terminals with typewriter font or underline
3. productions as in the example

Derivations

We can view the productions of a CFG as rewriting rules.

Using our example CFG:

$$
\begin{aligned}
& \langle\text { goal }\rangle \Rightarrow\langle\text { expr }\rangle \\
& \Rightarrow\langle\text { expr }\rangle\langle\mathrm{op}\rangle\langle\mathrm{expr}\rangle \\
& \Rightarrow\langle\text { expr }\rangle\langle\mathrm{op}\rangle\langle\text { expr }\rangle\langle\mathrm{op}\rangle\langle\mathrm{expr}\rangle \\
& \Rightarrow\langle\mathrm{id}, \mathrm{x}\rangle\langle\mathrm{op}\rangle\langle\mathrm{expr}\rangle\langle\mathrm{op}\rangle\langle\mathrm{expr}\rangle \\
& \Rightarrow\langle\mathrm{id}, \mathrm{x}\rangle+\langle\mathrm{expr}\rangle\langle\mathrm{op}\rangle\langle\mathrm{expr}\rangle \\
& \Rightarrow\langle\mathrm{id}, \mathrm{x}\rangle+\langle\text { num, } 2\rangle\langle\mathrm{op}\rangle\langle\mathrm{expr}\rangle \\
& \Rightarrow\langle\mathrm{id}, \mathrm{x}\rangle+\langle\text { num, } 2\rangle *\langle\mathrm{expr}\rangle \\
& \Rightarrow\langle\mathrm{id}, \mathrm{x}\rangle+\langle\mathrm{num}, 2\rangle *\langle\mathrm{id}, \mathrm{y}\rangle
\end{aligned}
$$

We have derived the sentence $\mathrm{x}+2 * \mathrm{y}$.
We denote this \langle goal $\rangle \Rightarrow^{*}$ id + num $*$ id.
Such a sequence of rewrites is a derivation or a parse.
The process of discovering a derivation is called parsing

Derivations

At each step, we chose a non-terminal to replace.

This choice can lead to different derivations.

Two are of particular interest:
leftmost derivation
the leftmost non-terminal is replaced at each step
rightmost derivation the rightmost non-terminal is replaced at each step

The previous example was a leftmost derivation.

Precedence

Treewalk evaluation computes $(\mathrm{x}+2) * \mathrm{y}$

- the "wrong" answer!

Should be $\mathrm{x}+(2 * \mathrm{y})$

Rightmost derivation

For the string $\mathrm{x}+2$ * y : \langle goal $\rangle \Rightarrow\langle$ expr \rangle
$\Rightarrow\langle\operatorname{expr}\rangle\langle o p\rangle\langle\operatorname{expr}\rangle$
$\Rightarrow\langle\mathrm{expr}\rangle\langle\mathrm{op}\rangle\langle\mathrm{id}, \mathrm{y}\rangle$
$\Rightarrow\langle\mathrm{expr}\rangle *\langle\mathrm{id}, \mathrm{y}\rangle$
$\Rightarrow\langle\operatorname{expr}\rangle\langle\mathrm{op}\rangle\langle\mathrm{expr}\rangle *\langle\mathrm{id}, \mathrm{y}\rangle$
$\Rightarrow\langle$ expr $\rangle\langle\mathrm{op}\rangle\langle\mathrm{num}, 2\rangle *\langle\mathrm{id}, \mathrm{y}\rangle$
$\Rightarrow\langle\mathrm{expr}\rangle+\langle$ num, 2$\rangle *\langle\mathrm{id}, \mathrm{y}\rangle$
$\Rightarrow\langle\mathrm{id}, \mathrm{x}\rangle+\langle\mathrm{num}, 2\rangle *\langle\mathrm{id}, \mathrm{y}\rangle$

Again, \langle goal $\rangle \Rightarrow^{*}$ id + num $*$ id

66

Precedence

These two derivations point out a problem with the grammar.
It has no notion of precedence, or implied order of evaluation.
To add precedence takes additional machinery:

\langle goal \rangle	$::=$	\langle expr \rangle
\langle expr \rangle	$::=$	\langle expr $\rangle+\langle$ term \rangle
	\mid	\langle expr $\rangle-\langle$ term \rangle
	\mid	\langle term \rangle
\langle term \rangle	$::=$	\langle term $\rangle *\langle$ factor \rangle
	\mid	\langle term \rangle /\langle factor \rangle
	\mid	\langle factor \rangle
\langle factor \rangle	$::=$	num
		id

This grammar enforces a precedence on the derivation:

- terms must be derived from expressions
- forces the "correct" tree

Precedence

Now, for the string $\mathrm{x}+2 * \mathrm{y}$:

$$
\begin{aligned}
\langle\text { goal }\rangle & \Rightarrow\langle\text { expr }\rangle \\
& \Rightarrow\langle\text { expr }\rangle+\langle\text { term }\rangle \\
& \Rightarrow\langle\text { expr }\rangle+\langle\text { term }\rangle *\langle\text { factor }\rangle \\
& \Rightarrow\langle\text { expr }\rangle+\langle\text { term }\rangle *\langle\text { id,y }\rangle \\
& \Rightarrow\langle\text { expr }\rangle+\langle\text { factor }\rangle *\langle\text { id,y }\rangle \\
& \Rightarrow\langle\text { expr }\rangle+\langle\text { num, } 2\rangle *\langle\text { id,y }\rangle \\
& \Rightarrow\langle\text { term }\rangle+\langle\text { num, } 2\rangle *\langle\text { id,y }\rangle \\
& \Rightarrow\langle\text { factor }\rangle+\langle\text { num }, 2\rangle *\langle\text { id,y }\rangle \\
& \Rightarrow\langle\text { id, }\rangle\rangle+\langle\text { num }, 2\rangle *\langle\text { id,y }\rangle
\end{aligned}
$$

Again, \langle goal $\rangle \Rightarrow^{*}$ id + num * id, but this time, we build the desired tree.

Ambiguity

If a grammar has more than one derivation for a single sentential form, then it is ambiguous

Example:

\langle stmt $\rangle \quad::=$ if \langle expr \rangle then \langle stmt \rangle
| if \langle expr \rangle then \langle stmt \rangle else \langle stmt \rangle
other stmts
Consider deriving the sentential form:

$$
\text { if } E_{1} \text { then if } E_{2} \text { then } S_{1} \text { else } S_{2}
$$

It has two derivations.
This ambiguity is purely grammatical.
It is a context-free ambiguity.

Precedence

Treewalk evaluation computes $\mathrm{x}+(2 * \mathrm{y})$

This is most likely the language designer's intent.

This generates the same language as the ambiguous grammar, but applies the common sense rule:
match each else with the closest unmatched then

Ambiguity

Ambiguity

Ambiguity is often due to confusion in the context-free specification.
Context-sensitive confusions can arise from overloading
Example:

$$
a=f(17)
$$

In many Algol-like languages, f could be a function or subscripted variable.
Disambiguating this statement requires context:

- need values of declarations
- not context-free
- really an issue of type

Rather than complicate parsing, we will handle this separately.

Top-down versus bottom-up

Top-down parsers

- start at the root of derivation tree and fill in
- picks a production and tries to match the input
- may require backtracking
- some grammars are backtrack-free (predictive)

Bottom-up parsers

- start at the leaves and fill in
- start in a state valid for legal first tokens
- as input is consumed, change state to encode possibilities (recognize valid prefixes)
- use a stack to store both state and sentential forms

Parsing: the big picture

Our goal is a flexible parser generator system
74

Top-down parsing

A top-down parser starts with the root of the parse tree, labelled with the start or goal symbol of the grammar.

To build a parse, it repeats the following steps until the fringe of the parse tree matches the input string

1. At a node labelled A, select a production $A \rightarrow \alpha$ and construct the appropriate child for each symbol of α
2. When a terminal is added to the fringe that doesn't match the input string, backtrack
3. Find the next node to be expanded (must have a label in V_{n})

The key is selecting the right production in step 1
\Rightarrow should be guided by input string

Simple expression grammar

Recall our grammar for simple expressions：

1	＜goal＞	：：＝	〈expr〉
2	〈expr＞	$::=$	$\langle\mathrm{expr}\rangle+\langle$ term \rangle
3			$\langle\mathrm{expr}\rangle-\langle$ term \rangle
4		，	＜term＞
5	＜term＞	$::=$	\langle term $\rangle *\langle$ factor \rangle
6			〈term $/ /\langle$ factor \rangle
7			＜factor＞
8	＜factor＞	：：＝	num
9			id

Consider the input string $\mathrm{x}-2 * \mathrm{y}$

Example

Prod＇n	Sentential form	Input				
－	＜goal＞	$\uparrow \mathrm{x}$	－	2	＊	y
1	＜expr〉	$\uparrow \mathrm{x}$	－	2	＊	y
2	\langle expr $\rangle+\langle$ term \rangle	$\uparrow x$	－	2	＊	y
4	\langle term $\rangle+\langle$ term \rangle	$\uparrow \mathrm{x}$	－	2	＊	y
7	\langle factor $\rangle+\langle$ term \rangle	$\uparrow x$	－	2	＊	y
9	id $+\langle$ term \rangle	$\uparrow x$	－	2	＊	y
－	id $+\langle$ term \rangle	x	\uparrow－	2	＊	y
－	＜expr＞	$\uparrow \mathrm{x}$	－	2	＊	y
3	\langle expr $\rangle-\langle$ term \rangle	$\uparrow \mathrm{x}$	－	2	＊	y
4	\langle term $\rangle-\langle$ term \rangle	$\uparrow x$	－	2	＊	y
7	\langle factor $\rangle-\langle$ term \rangle	$\uparrow x$	－	2	＊	y
9	id－\langle term \rangle	$\uparrow x$	－	2	＊	y
－	id－＜term ${ }^{\text {d }}$	x	\uparrow－	2	＊	y
－	id－\langle term〉	x	－	$\uparrow 2$	＊	y
7	id－＜factor＞	x	－	$\uparrow 2$	＊	y
8	id－num	x	－	$\uparrow 2$	＊	y
－	id－num	x	－	2	$\uparrow *$	y
－	id－\langle term〉	x	－	$\uparrow 2$	＊	y
5	id $-\langle$ term $\rangle *\langle$ factor \rangle	x	－	$\uparrow 2$	＊	y
7	id $-\langle$ factor $\rangle *\langle$ factor \rangle	x	－	$\uparrow 2$	＊	y
8	id－num＊\langle factor〉	x	－	$\uparrow 2$	＊	y
－	id－num＊ factor＞	x	－	2	$\uparrow *$	y
－	id－num＊〈factor〉	x	－	2	＊	†y
9	id－num＊id	x	－	2	＊	†y
－	id－num＊id	x	－	2	＊	y

Example

Another possible parse for $\mathrm{x}-2 * \mathrm{y}$

Prod＇n	Sentential form	Input
-	\langle goal \rangle	$\uparrow \mathrm{x}-2 * \mathrm{y}$
1	\langle expr \rangle	$\uparrow \mathrm{x}-2 * \mathrm{y}$
2	\langle expr $\rangle+\langle$ term \rangle	$\uparrow \mathrm{x}-2 * \mathrm{y}$
2	$\langle\mathrm{expr}\rangle+\langle$ term $\rangle+\langle$ term \rangle	$\uparrow \mathrm{x}-2 * \mathrm{y}$
2	\langle expr $\rangle+\langle$ term $\rangle+\cdots$	$\uparrow \mathrm{x}-2 * \mathrm{y}$
2	\langle expr $\rangle+\langle$ term $\rangle+\cdots$	$\uparrow \mathrm{x}-2 * \mathrm{y}$
2	\cdots	$\uparrow \mathrm{x}-2 * \mathrm{y}$

If the parser makes the wrong choices，expansion doesn＇t terminate．
This isn＇t a good property for a parser to have．

Eliminating left-recursion

To remove left-recursion, we can transform the grammar

Consider the grammar fragment:

$$
\begin{gathered}
\langle\text { foo }\rangle::=\langle\text { foo }\rangle \alpha \\
\mid \quad \beta
\end{gathered}
$$

where α and β do not start with \langle foo \rangle

We can rewrite this as:

$$
\begin{aligned}
\langle\text { foo }\rangle & ::= \\
\langle\text { bar }\rangle & \beta\langle\text { bar }\rangle \\
& \mid=\alpha\langle\text { bar }\rangle \\
& \mid \varepsilon
\end{aligned}
$$

where $\langle b a r\rangle$ is a new non-terminal

This fragment contains no left-recursion

Example

This cleaner grammar defines the same language

1	<goal>		〈expr>
2	<expr>		\langle term $\rangle+\langle\mathrm{expr}\rangle$
3			\langle term $\rangle-\langle$ expr \rangle
4		\|	<term>
5	<term>		
6			〈factor>/ term>
7			<factor>
8	<factor>	: $=$	
9			id

It is

- right-recursive
- free of ε productions

Unfortunately, it generates different associativity

Example

Our expression grammar contains two cases of left-recursion

\langle expr $\rangle::=$ \langle expr $\rangle+\langle$ term \rangle \langle expr $\rangle-\langle$ term \rangle \langle term \rangle \langle term $\rangle::=$ \langle term $\rangle *\langle$ factor \rangle \langle term \rangle /\langle factor \rangle factor \rangle	

Applying the transformation gives

With this grammar, a top-down parser will

- terminate
- backtrack on some inputs

Example

Our long-suffering expression grammar:

1	\langle goal \rangle	$::=$	\langle expr \rangle
2	\langle expr \rangle	$::=$	\langle term $\rangle\left\langle\right.$ expr $\left.^{\prime}\right\rangle$
3	$\left\langle\right.$ expr $\left.^{\prime}\right\rangle$	$::=$	$+\langle$ term $\rangle\left\langle\right.$ expr $\left.^{\prime}\right\rangle$
4		\mid	$-\langle$ term $\rangle\left\langle\right.$ expr $\left.^{\prime}\right\rangle$
5		\mid	ε
6	\langle term \rangle	$::=$	\langle factor $\rangle\left\langle\right.$ term $\left.^{\prime}\right\rangle$
7	$\left\langle\right.$ term $\left.^{\prime}\right\rangle$	$::=$	$*\langle$ factor $\rangle\left\langle\right.$ term $\left.^{\prime}\right\rangle$
8		\mid	$/\langle$ factor $\rangle\left\langle\right.$ term $\left.^{\prime}\right\rangle$
9		\mid	ε
10	\langle factor \rangle	$::=$	num
11		\mid	id

Recall, we factored out left-recursion

How much lookahead is needed？

We saw that top－down parsers may need to backtrack when they select the wrong production

Do we need arbitrary lookahead to parse CFGs？
－in general，yes
－use the Earley or Cocke－Younger，Kasami algorithms Aho，Hopcroft，and Ullman，Problem 2.34 Parsing，Translation and Compiling，Chapter 4

Fortunately
－large subclasses of CFGs can be parsed with limited lookahead
－most programming language constructs can be expressed in a gram－ mar that falls in these subclasses

Among the interesting subclasses are：
LL（1）：left to right scan，left－most derivation，1－token lookahead；and
LR（1）：left to right scan，right－most derivation，1－token lookahead
85

Left factoring

What if a grammar does not have this property？

Sometimes，we can transform a grammar to have this property．

For each non－terminal A find the longest prefix α common to two or more of its alternatives．
if $\alpha \neq \varepsilon$ then replace all of the A productions
$A \rightarrow \alpha \beta_{1}\left|\alpha \beta_{2}\right| \cdots \mid \alpha \beta_{n}$
with
$A \rightarrow \alpha A^{\prime}$
$A^{\prime} \rightarrow \beta_{1}\left|\beta_{2}\right| \cdots \mid \beta_{n}$
where A^{\prime} is a new non－terminal．
Repeat until no two alternatives for a single non－terminal have a common prefix．

Predictive parsing

Basic idea：
For any two productions $A \rightarrow \alpha \mid \beta$ ，we would like a distinct way of choosing the correct production to expand．

For some RHS $\alpha \in G$ ，define $\operatorname{FIRST}(\alpha)$ as the set of tokens that appear first in some string derived from α
That is，for some $w \in V_{t}^{*}, w \in \operatorname{FIRST}(\alpha)$ iff．$\alpha \Rightarrow^{*} w \gamma$ ．
Key property：
Whenever two productions $A \rightarrow \alpha$ and $A \rightarrow \beta$ both appear in the grammar， we would like

$$
\operatorname{FIRST}(\alpha) \cap \operatorname{FIRST}(\beta)=\phi
$$

This would allow the parser to make a correct choice with a lookahead of only one symbol！

The example grammar has this property！ 86

Example

Consider a right－recursive version of the expression grammar：

	〈goal＞	：：$=$	〈expr＞
	＜expr＞	：：＝	\langle term $\rangle+\langle$ expr \rangle
			\langle term $\rangle-\langle$ expr \rangle
			＜term＞
	＜term＞	：	$\left\langle\right.$ factor ${ }^{\text {＊}}$ 〈term＞
			\langle factor \rangle /\langle term \rangle
			＜factor＞
	＜factor＞	：：＝	
			id

To choose between productions 2,3 ，\＆4，the parser must see past the num or id and look at the,,$+- *$ ，or $/$ ．

$$
\operatorname{FIRST}(2) \cap \operatorname{FIRST}(3) \cap \operatorname{FIRST}(4) \neq \phi
$$

This grammar fails the test．
Note：This grammar is right－associative．

Example

There are two nonterminals that must be left factored：

Applying the transformation gives us：

| \langle expr \rangle | $::=$ | \langle term $\rangle\left\langle\right.$ expr $\left.^{\prime}\right\rangle$ |
| :--- | :--- | :--- | :--- |
| $\left\langle\right.$ expr $\left.^{\prime}\right\rangle$ | $::=$ | $+\langle$ expr \rangle |
| | \mid | $-\langle$ expr \rangle |
| | \mid | ε |
| \langle term \rangle | $::=$ | \langle factor $\rangle\left\langle\right.$ term $\left.^{\prime}\right\rangle$ |
| $\left\langle\right.$ term $\left.^{\prime}\right\rangle$ | $::=$ | $*\langle$ term \rangle |
| | \mid | $/\langle$ term \rangle |
| | \mid | ε |

Example

Substituting back into the grammar yields

1	＜goal＞	：＝	〈expr〉
2	〈expr＞	：＝	〈term＞ expr $\left.^{\prime}\right\rangle$
3	＜expr＇〉	：：＝	＋＜expr＞
4			－＜expr＞
5			ε
6	＜term＞	：：＝	\langle factor $\rangle\left\langle\right.$ term $\left.{ }^{\prime}\right\rangle$
7	$\left\langle\right.$ term $\left.^{\prime}\right\rangle$	：：$=$	＊\langle term＞
8			／＜term＞
9			ε
0	＜factor＞		num
			id

Now，selection requires only a single token lookahead．

Note：This grammar is still right－associative

Back to left－recursion elimination

Given a left－factored CFG，to eliminate left－recursion：
if $\exists A \rightarrow A \alpha$ then replace all of the A productions

$$
A \rightarrow A \alpha|\beta| \ldots \mid \gamma
$$

with
$A \rightarrow N A^{\prime}$
$N \rightarrow \beta|\ldots| \gamma$
$A^{\prime} \rightarrow \alpha A^{\prime} \mid \varepsilon$
where N and A^{\prime} are new productions．

Repeat until there are no left－recursive productions．

The next symbol determined each choice correctly．

Generality

Question:
By left factoring and eliminating left-recursion, can we transform an arbitrary context-free grammar to a form where it can be predictively parsed with a single token lookahead?

Answer:
Given a context-free grammar that doesn't meet our conditions, it is undecidable whether an equivalent grammar exists that does meet our conditions.

Many context-free languages do not have such a grammar:

$$
\left\{a^{n} 0 b^{n} \mid n \geq 1\right\} \bigcup\left\{a^{n} 1 b^{2 n} \mid n \geq 1\right\}
$$

Must look past an arbitrary number of a 's to discover the 0 or the 1 and so determine the derivation.

Recursive descent parsing

Now, we can produce a simple recursive descent parser from the (rightassociative) grammar.

```
goal:
    token \(\leftarrow\) next_token();
    if \((\operatorname{expr}()=\) ERROR \(\mid\) token \(\neq\) EOF) then
        return ERROR;
expr:
        if (term() = ERROR) then
            return ERROR;
        else return expr_prime();
expr_prime:
    if (token = PLUS) then
        token \(\leftarrow\) next_token();
        return expr();
    else if (token = MINUS) then
        token \(\leftarrow\) next_token();
        return expr();
        else return OK ;
```


Recursive descent parsing

```
    term:
        if (factor() = ERROR) then
        return ERROR;
        else return term_prime();
    term_prime:
        if (token = MULT) then
            token \leftarrow next_token();
            return term();
        else if (token = DIV) then
            token \leftarrow next_token();
            return term();
        else return OK;
    factor:
        if (token = NUM) then
        token \leftarrow next_token();
        return OK;
    else if (token = ID) then
        token \leftarrow next_token();
        return OK;
    else return ERROR;
```


Building the tree

One of the key jobs of the parser is to build an intermediate representation of the source code.

To build an abstract syntax tree, we can simply insert code at the appropriate points:

- factor() can stack nodes id, num
- term_prime() can stack nodes $*$, /
- term() can pop 3, build and push subtree
- expr_prime() can stack nodes +, -
- expr() can pop 3, build and push subtree
- goal() can pop and return tree

Non-recursive predictive parsing

Observation:
Our recursive descent parser encodes state information in its runtime stack, or call stack.

Using recursive procedure calls to implement a stack abstraction may not be particularly efficient.

This suggests other implementation methods:

- explicit stack, hand-coded parser
- stack-based, table-driven parser

Non-recursive predictive parsing

Now, a predictive parser looks like:

Rather than writing code, we build tables.

Building tables can be automated!

Non-recursive predictive parsing

Input: a string w and a parsing table M for G

tos $\leftarrow 0$
Stack[tos] \leftarrow EOF
Stack [++tos] \leftarrow Start Symbol
token \leftarrow next_token()
repeat
$\mathrm{X} \leftarrow$ Stack[tos]
if X is a terminal or EOF then
if $\mathrm{X}=$ token then pop X token \leftarrow next_token()
else error()
else /* X is a non-terminal */
if M [X,token $]=X \rightarrow Y_{1} Y_{2} \cdots Y_{k}$ then pop X
push $Y_{k}, Y_{k-1}, \cdots, Y_{1}$
else error()
until $X=$ EOF

Non－recursive predictive parsing

What we need now is a parsing table M．
Our expression grammar：
Its parse table：

〈goal〉〈expr〉 \langle expr＇\rangle	$\begin{aligned} ::= & \langle\text { expr }\rangle \\ ::= & \langle\text { term }\rangle\left\langle\text { expr }^{\prime}\right\rangle \\ ::= & +\langle\text { expr }\rangle \\ \mid & -\langle\text { expr }\rangle \end{aligned}$		id	num	$+$	－	＊	／	\＄${ }^{\dagger}$
		＜goal \rangle	1	1	－	－	－	－	－
		＜expr〉	2	2	－	－	－	－	－
		$\left\langle\operatorname{expr}^{\prime}\right\rangle$	－	－	3	4	－	－	5
＜term＞ $\left\langle\right.$ term $\left.^{\prime}\right\rangle$	$\begin{array}{cl} ::= & \langle\text { factor }\rangle\left\langle\text { term }^{\prime}\right\rangle \\ ::= & *\langle\text { term }\rangle \\ \mid & /\langle\text { term }\rangle \end{array}$	〈term＞	6	6	－	－	－	－	－
		$\left\langle\right.$ term $\left.^{\prime}\right\rangle$	－	－	9	9	7	8	9
		〈factor）	11	10	－	－	－	－	－

${ }^{\dagger}$ we use \＄to represent EOF

FOLLOW

For a non－terminal A ，define $\operatorname{FOLLOW}(A)$ as
the set of terminals that can appear immediately to the right of A in some sentential form

Thus，a non－terminal＇s FOLLOW set specifies the tokens that can legally appear after it．

A terminal symbol has no FOLLOW set．
To build FOLLOW (\boldsymbol{A}) ：
1．Put $\$$ in FOLLOW $(\langle$ goal $\rangle)$
2．If $A \rightarrow \alpha B \beta$ ：
（a）Put $\operatorname{FIRST}(\beta)-\{\varepsilon\}$ in $\operatorname{FOLLOW}(B)$
（b）If $\beta=\varepsilon$（i．e．，$A \rightarrow \alpha B$ ）or $\varepsilon \in \operatorname{FIRST}(\beta)$（i．e．，$\beta \Rightarrow^{*} \varepsilon$ ）then put FOLLOW (A) in FOLLOW (B)

Repeat until no more additions can be made

FIRST

For a string of grammar symbols α ，define $\operatorname{FIRST}(\alpha)$ as：
－the set of terminal symbols that begin strings derived from α ： $\left\{a \in V_{t} \mid \alpha \Rightarrow^{*} a \beta\right\}$
－If $\alpha \Rightarrow^{*} \varepsilon$ then $\varepsilon \in \operatorname{FIRST}(\alpha)$
FIRST (α) contains the set of tokens valid in the initial position in α To build $\operatorname{FIRST}(X)$ ：

1．If $X \in V_{t}$ then $\operatorname{FIRST}(X)$ is $\{X\}$
2．If $X \rightarrow \varepsilon$ then add ε to $\operatorname{FIRST}(X)$ ．
3．If $X \rightarrow Y_{1} Y_{2} \cdots Y_{k}$ ：
（a）Put $\operatorname{FIRST}\left(Y_{1}\right)-\{\varepsilon\}$ in $\operatorname{FIRST}(X)$
（b）$\forall i: 1<i \leq k$ ，if $\varepsilon \in \operatorname{FIRST}\left(Y_{1}\right) \cap \cdots \cap \operatorname{FIRST}\left(Y_{i-1}\right)$ （i．e．，$Y_{1} \cdots Y_{i-1} \Rightarrow^{*} \varepsilon$ ） then put $\operatorname{FIRST}\left(Y_{i}\right)-\{\varepsilon\}$ in $\operatorname{FIRST}(X)$
（c）If $\varepsilon \in \operatorname{FIRST}\left(Y_{1}\right) \cap \cdots \cap \operatorname{FIRST}\left(Y_{k}\right)$ then put ε in $\operatorname{FIRST}(X)$
Repeat until no more additions can be made．

LL（1）grammars

Previous definition

A grammar G is $\mathrm{LL}(1)$ iff．for all non－terminals A ，each distinct pair of pro－ ductions $A \rightarrow \beta$ and $A \rightarrow \gamma$ satisfy the condition $\operatorname{FIRST}(\beta) \bigcap \operatorname{FIRST}(\gamma)=\phi$ ．
What if $A \Rightarrow^{*} \varepsilon$ ？
Revised definition
A grammar G is $\operatorname{LL}(1)$ iff．for each set of productions $A \rightarrow \alpha_{1}\left|\alpha_{2}\right| \cdots \mid \alpha_{n}$ ：
1． $\operatorname{FIRST}\left(\alpha_{1}\right), \operatorname{FIRST}\left(\alpha_{2}\right), \ldots, \operatorname{FIRST}\left(\alpha_{n}\right)$ are all pairwise disjoint
2．If $\alpha_{i} \Rightarrow^{*} \varepsilon$ then $\operatorname{FIRST}\left(\alpha_{j}\right) \bigcap \operatorname{FOLLOW}(A)=\phi, \forall 1 \leq j \leq n, i \neq \boldsymbol{j}$ ．
If G is ε－free，condition 1 is sufficient．

LL(1) grammars

Provable facts about LL(1) grammars:

1. No left-recursive grammar is $\mathrm{LL}(1)$
2. No ambiguous grammar is $\operatorname{LL}(1)$
3. Some languages have no $\mathrm{LL}(1)$ grammar
4. A ε-free grammar where each alternative expansion for A begins with a distinct terminal is a simple $\mathrm{LL}(1)$ grammar.

Example

$$
\begin{aligned}
& S \rightarrow a S \mid a \\
& \text { is not } \mathrm{LL}(1) \text { because } \operatorname{FIRST}(a S)=\operatorname{FIRST}(a)=\{a\} \\
& S \rightarrow a S^{\prime} \\
& S^{\prime} \rightarrow a S^{\prime} \mid \varepsilon
\end{aligned}
$$

accepts the same language and is $\operatorname{LL}(1)$

LL(1) parse table construction

Input: Grammar G
Output: Parsing table M

Method:

1. \forall productions $A \rightarrow \alpha$:
(a) $\forall a \in \operatorname{FIRST}(\alpha), \operatorname{add} A \rightarrow \alpha$ to $M[A, a]$
(b) If $\varepsilon \in \operatorname{FIRST}(\alpha)$:
i. $\forall b \in \operatorname{FOLLOW}(A)$, add $A \rightarrow \alpha$ to $M[A, b]$
ii. If $\$ \in \operatorname{FOLLOW}(A)$ then add $A \rightarrow \alpha$ to $M[A, \$]$
2. Set each undefined entry of M to error

If $\exists M[A, a]$ with multiple entries then grammar is not $\operatorname{LL}(1)$.

Example

Our long-suffering expression grammar:

$$
\begin{array}{l|l}
S \rightarrow E & T \rightarrow F T^{\prime} \\
E \rightarrow T E^{\prime} & T^{\prime} \rightarrow * T|/ T| \varepsilon \\
E^{\prime} \rightarrow+E|-E| \varepsilon & F \rightarrow \text { id } \mid \text { num }
\end{array}
$$

	FIRST	FOLLOW
S	$\{$ num,id $\}$	$\{\$\}$
E	$\{$ num, id $\}$	$\{\$\}$
E^{\prime}	$\{\boldsymbol{\varepsilon},+,-\}$	$\{\$\}$
T	$\{$ num,id $\}$	$\{+,-, \$\}$
T^{\prime}	$\{\boldsymbol{\varepsilon}, *, /\}$	$\{+,-, \$\}$
F	$\{$ num,id $\}$	$\{+,-, *, /, \$\}$
id	$\{\mathbf{i d}\}$	-
num	$\{$ num $\}$	-
$*$	$\{*\}$	-
$/$	$\{/\}$	-
+	$\{+\}$	-
-	$\{-\}$	-

	id	num	+	-	$*$	$/$	$\$$
S	$S \rightarrow E$	$S \rightarrow E$	-	-	-	-	-
E	$E \rightarrow T E^{\prime}$	$E \rightarrow T E^{\prime}$	-	-	-	-	-
E^{\prime}	-	-	$E^{\prime} \rightarrow+E$	$E^{\prime} \rightarrow-E$	-	-	$E^{\prime} \rightarrow \boldsymbol{\varepsilon}$
T	$T \rightarrow F T^{\prime}$	$T \rightarrow F T^{\prime}$	-	-	-	-	-
T^{\prime}	-	-	$T^{\prime} \rightarrow \boldsymbol{\varepsilon}$	$T^{\prime} \rightarrow \boldsymbol{\varepsilon}$	$T^{\prime} \rightarrow * T$	$T^{\prime} \rightarrow / T$	$T^{\prime} \rightarrow \boldsymbol{\varepsilon}$
F	$F \rightarrow$ id	$F \rightarrow$ num	-	-	-	-	-

A grammar that is not LL(1)

```
\langlestmt\rangle ::= if \langleexpr\rangle then \langlestmt\rangle
```

 \(\left\lvert\, \begin{aligned} & \text { if }\langle\text { expr }\rangle \text { then }\langle\text { stmt }\rangle \text { else }\langle\text { stmt }\rangle \\ & \end{aligned}\right.\)
 Left-factored:

$$
\begin{array}{ll}
\langle\mathrm{stmt}\rangle & ::=\text { if }\langle\text { expr }\rangle \text { then }\langle\mathrm{stmt}\rangle\left\langle\mathrm{stmt}^{\prime}\right\rangle \mid \ldots \\
\left\langle\text { stmt }^{\prime}\right\rangle::=\text { else }\langle\text { stmt }\rangle \mid \varepsilon
\end{array}
$$

Now, $\operatorname{FIRST}\left(\left\langle\operatorname{stmt}^{\prime}\right\rangle\right)=\{\varepsilon$, else $\}$
Also, $\operatorname{FOLLOW}\left(\left\langle\right.\right.$ stmt $\left.\left.^{\prime}\right\rangle\right)=\{$ else,$\$\}$
But, $\operatorname{FIRST}\left(\left\langle\operatorname{stmt}^{\prime}\right\rangle\right) \bigcap \operatorname{FOLLOW}\left(\left\langle\operatorname{stmt}^{\prime}\right\rangle\right)=\{$ else $\} \neq \phi$
On seeing else, conflict between choosing

$$
\left\langle\operatorname{stmt}^{\prime}\right\rangle::=\text { else }\langle\mathrm{stmt}\rangle \quad \text { and }\left\langle\mathrm{stmt}^{\prime}\right\rangle::=\varepsilon
$$

\Rightarrow grammar is not $\operatorname{LL}(1)$!
The fix:
Put priority on $\left\langle\right.$ stmt $\left.^{\prime}\right\rangle::=$ else \langle stmt \rangle to associate else with closest previous then.

Error recovery

Key notion:

- For each non-terminal, construct a set of terminals on which the parser can synchronize
- When an error occurs looking for A, scan until an element of $\operatorname{SYNCH}(A)$ is found

Building SYNCH:

1. $a \in \operatorname{FOLLOW}(A) \Rightarrow a \in \operatorname{SYNCH}(A)$
2. place keywords that start statements in $\operatorname{SYNCH}(\boldsymbol{A})$
3. add symbols in FIRST (A) to $\operatorname{SYNCH}(A)$

If we can't match a terminal on top of stack:

1. pop the terminal
2. print a message saying the terminal was inserted
3. continue the parse
(i.e., $\operatorname{SYNCH}(a)=V_{t}-\{a\}$)

Some definitions

Recall

For a grammar G, with start symbol S, any string α such that $S \Rightarrow^{*} \alpha$ is called a sentential form

- If $\alpha \in V_{t}^{*}$, then α is called a sentence in $L(G)$
- Otherwise it is just a sentential form (not a sentence in $L(G)$)

A left-sentential form is a sentential form that occurs in the leftmost derivation of some sentence.

A right-sentential form is a sentential form that occurs in the rightmost derivation of some sentence.

Copyright (C)2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy fee. Request permission to publish from hosking@cs.purdue.edu.

Chapter 4: LR Parsing

Bottom-up parsing

Goal:

Given an input string w and a grammar G, construct a parse tree by starting at the leaves and working to the root.

The parser repeatedly matches a right-sentential form from the language against the tree's upper frontier.

At each match, it applies a reduction to build on the frontier:

- each reduction matches an upper frontier of the partially built tree to the RHS of some production
- each reduction adds a node on top of the frontier

The final result is a rightmost derivation, in reverse.

Example

Consider the grammar

$$
\begin{array}{l|lll}
1 & S & \rightarrow & \mathrm{a} A B \mathrm{e} \\
2 & A & \rightarrow & A \mathrm{bc} \\
3 & & \mid & \mathrm{b} \\
4 & B & \rightarrow & \mathrm{~d}
\end{array}
$$

and the input string abbcde

Prod'n.	Sentential Form
3	ab bcde
2	$\mathrm{a} A \mathrm{bc} \mathrm{de}$
4	$\mathrm{aA} \mathrm{d}]$
1	aABe
-	S

The trick appears to be scanning the input and finding valid sentential forms.

Handles

The handle $A \rightarrow \beta$ in the parse tree for $\alpha \beta w$

Handles

What are we trying to find?
A substring α of the tree's upper frontier that
matches some production $A \rightarrow \alpha$ where reducing α to A is one step in the reverse of a rightmost derivation

We call such a string a handle.
Formally:
a handle of a right-sentential form γ is a production $A \rightarrow \beta$ and a position in γ where β may be found and replaced by A to produce the previous right-sentential form in a rightmost derivation of γ
i.e., if $S \Rightarrow_{\mathrm{rm}}^{*} \alpha A w \Rightarrow{ }_{\mathrm{rm}} \alpha \beta w$ then $A \rightarrow \beta$ in the position following α is a handle of $\alpha \beta w$

Because γ is a right-sentential form, the substring to the right of a handle contains only terminal symbols.

114

Handles

Theorem:

If G is unambiguous then every right-sentential form has a unique handle.

Proof: (by definition)

1. G is unambiguous \Rightarrow rightmost derivation is unique
2. \Rightarrow a unique production $A \rightarrow \beta$ applied to take γ_{i-1} to γ_{i}
3. $\Rightarrow \mathrm{a}$ unique position k at which $A \rightarrow \beta$ is applied
4. \Rightarrow a unique handle $A \rightarrow \beta$

Example

The left－recursive expression grammar（original form）

				Prod＇n．	Sentential Form
1	＜goal＞	：：＝	＜expr＞	－	〈goal＞
2	〈expr〉	：：＝	\langle expr $\rangle+\langle$ term \rangle	1	$\underline{\text {＜expr }\rangle}$
3			\langle expr $\rangle-\langle$ term \rangle	3	$\overline{\langle\text { expr }\rangle}-\langle$ term \rangle
4		1	＜term＞	5	$\overline{\langle\text { expr }\rangle-\langle\text { term }\rangle *\langle\text { factor }\rangle}$
5	＜term＞	：$=$	\langle term $\rangle *\langle$ factor \rangle	9	$\langle\mathrm{expr}\rangle-\left\langle\right.$ term ＊$^{\text {id }}$
6			＜term＞／ factor＞	7	$\langle\mathrm{expr}\rangle-\langle$ factor \rangle＊id
7			〈factor＞	8	\langle expr \rangle－num＊id
8	＜factor＞	：：＝	num	4	\langle term \rangle－num＊id
9		｜	id	7	$\overline{\text { 〈factor }}$－num＊id
				9	$\overline{\text { id－num }} *$ id

Stack implementation

One scheme to implement a handle－pruning，bottom－up parser is called a shift－reduce parser．

Shift－reduce parsers use a stack and an input buffer

1．initialize stack with \＄

2．Repeat until the top of the stack is the goal symbol and the input token is \＄
a）find the handle
if we don＇t have a handle on top of the stack，shift an input symbol onto the stack
b）prune the handle
if we have a handle $A \rightarrow \beta$ on the stack，reduce
i）pop $|\beta|$ symbols off the stack
ii）push A onto the stack

LR(k) grammars

Shift-reduce parsing

Shift-reduce parsers are simple to understand

A shift-reduce parser has just four canonical actions:

1. shift - next input symbol is shifted onto the top of the stack
2. reduce - right end of handle is on top of stack;
locate left end of handle within the stack;
pop handle off stack and push appropriate non-terminal LHS
3. accept - terminate parsing and signal success
4. error - call an error recovery routine

The key problem: to recognize handles (not covered in this course).

LR(k) grammars

Formally, a grammar G is $\mathrm{LR}(k)$ iff.:

1. $S \Rightarrow_{\mathrm{rm}}^{*} \alpha A w \Rightarrow{ }_{\mathrm{rm}} \alpha \beta w$, and
2. $S \Rightarrow{ }_{\mathrm{rm}}^{*} \gamma B x \Rightarrow{ }_{\mathrm{rm}} \alpha \beta y$, and
3. $\operatorname{FIRST}_{k}(w)=\operatorname{FIRST}_{k}(y)$
$\Rightarrow \alpha A y=\gamma B x$
i.e., Assume sentential forms $\alpha \beta w$ and $\alpha \beta y$, with common prefix $\alpha \beta$ and common k-symbol lookahead $\operatorname{FIRST}_{k}(y)=\operatorname{FIRST}_{k}(w)$, such that $\alpha \beta w$ reduces to $\alpha A w$ and $\alpha \beta y$ reduces to $\gamma B x$.

But, the common prefix means $\alpha \beta$ also reduces to $\alpha A y$, for the same result.

Thus $\alpha A y=\gamma B x$.

Informally, we say that a grammar G is $\mathrm{LR}(k)$ if, given a rightmost derivation

$$
S=\gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \cdots \Rightarrow \gamma_{n}=w,
$$

we can, for each right-sentential form in the derivation,

1. isolate the handle of each right-sentential form, and
2. determine the production by which to reduce
by scanning γ_{i} from left to right, going at most k symbols beyond the right end of the handle of γ_{i}.

Why study LR grammars?

$L R(1)$ grammars are often used to construct parsers.
We call these parsers $L R(1)$ parsers.

- everyone's favorite parser
- virtually all context-free programming language constructs can be expressed in an $\operatorname{LR}(1)$ form
- LR grammars are the most general grammars parsable by a deterministic, bottom-up parser
- efficient parsers can be implemented for LR(1) grammars
- LR parsers detect an error as soon as possible in a left-to-right scan of the input
- LR grammars describe a proper superset of the languages recognized by predictive (i.e., LL) parsers
$\operatorname{LL}(k)$: recognize use of a production $A \rightarrow \beta$ seeing first k symbols of β
$\mathbf{L R}(k)$: recognize occurrence of β (the handle) having seen all of what is derived from β plus k symbols of lookahead

Left versus right recursion

Right Recursion:

- needed for termination in predictive parsers
- requires more stack space
- right associative operators

Left Recursion:

- works fine in bottom-up parsers
- limits required stack space
- left associative operators

Rule of thumb:

- right recursion for top-down parsers
- left recursion for bottom-up parsers

The Java Compiler Compiler

- Can be thought of as "Lex and Yacc for Java."
- It is based on $\operatorname{LL}(\mathrm{k})$ rather than $\operatorname{LALR}(1)$.
- Grammars are written in EBNF.
- The Java Compiler Compiler transforms an EBNF grammar into an LL(k) parser.
- The JavaCC grammar can have embedded action code written in Java, just like a Yacc grammar can have embedded action code written in C.
- The lookahead can be changed by writing LOOKAHEAD (...)
- The whole input is given in just one file (not two).

The JavaCC input format

```
Example of a token specification:
TOKEN :
{
    < INTEGER_LITERAL: ( ["1"-"9"] (["0"-"9"])* | "0" ) >
}
Example of a production:
void StatementListReturn() :
{}
{
    ( Statement() )* "return" Expression() ";"
}
```


The Visitor Pattern

For object-oriented programming,
the Visitor pattern enables
the definition of a new operation
on an object structure
without changing the classes
of the objects.

Gamma, Helm, Johnson, Vlissides:
Design Patterns, 1995.

First Approach: Instanceof and Type Casts

Sneak Preview

When using the Visitor pattern,

- the set of classes must be fixed in advance, and
- each class must have an accept method.

First Approach: Instanceof and Type Casts

```
```

List l; // The List-object

```
```

List l; // The List-object
int sum = 0;
int sum = 0;
boolean proceed = true;
boolean proceed = true;
while (proceed) {
while (proceed) {
if (l instanceof Nil)
if (l instanceof Nil)
proceed = false;
proceed = false;
else if (l instanceof Cons) {
else if (l instanceof Cons) {
sum = sum + ((Cons) l).head;
sum = sum + ((Cons) l).head;
l = ((Cons) l).tail;
l = ((Cons) l).tail;
// Notice the two type casts!
// Notice the two type casts!
}

```
    }
```

}

```

Advantage: The code is written without touching the classes Nil and Cons.

Drawback: The code constantly uses type casts and instanceof to determine what class of object it is considering.

The running Java example: summing an integer list.
```

interface List {}
class Nil implements List {}
class Cons implements List {
int head;
List tail;
}

```

133

\section*{Second Approach: Dedicated Methods}

The first approach is not object-oriented!
To access parts of an object, the classical approach is to use dedicated methods which both access and act on the subobjects.
interface List \{
int sum();
\}

We can now compute the sum of all components of a given List-object 1 by writing 1 . sum().

\section*{Second Approach: Dedicated Methods}
```

class Nil implements List {
public int sum() {
return 0;
}
}
class Cons implements List {
int head;
List tail;
public int sum() {
return head + tail.sum();
}
}

```

Advantage: The type casts and instanceof operations have disappeared, and the code can be written in a systematic way.
Disadvantage: For each new operation on List-objects, new dedicated methods have to be written, and all classes must be recompiled.

137

Third Approach: The Visitor Pattern
- The purpose of the accept methods is to invoke the visit method in the Visitor which can handle the current object.
```

class Nil implements List {
public void accept(Visitor v) {
v.visit(this);
}
}
class Cons implements List {
int head;
List tail;
public void accept(Visitor v) {
v.visit(this);
}
}

```

\section*{Third Approach: The Visitor Pattern}

\section*{The Idea:}
- Divide the code into an object structure and a Visitor (akin to Functional Programming!)
- Insert an accept method in each class. Each accept method takes a Visitor as argument.
- A Visitor contains a visit method for each class (overloading!) A method for a class \(C\) takes an argument of type \(C\).
```

interface List {
void accept(Visitor v);
}
interface Visitor {
void visit(Nil x);
void visit(Cons x);
}

```

Third Approach: The Visitor Pattern
- The control flow goes back and forth between the visit methods in the Visitor and the accept methods in the object structure.
```

class SumVisitor implements Visitor {
int sum = 0;
public void visit(Nil x) {}
public void visit(Cons x) {
sum = sum + x.head;
x.tail.accept(this);
}
}
SumVisitor sv = new SumVisitor();
l.accept(sv);
System.out.println(sv.sum);
Notice: The visit methods describe both

```

1 ) actions, and 2) access of subobjects.

\section*{Comparison}

The Visitor pattern combines the advantages of the two other approaches.
\begin{tabular}{l|c|c} 
& \begin{tabular}{c} 
Frequent \\
type casts?
\end{tabular} & \begin{tabular}{c} 
Frequent \\
recompilation?
\end{tabular} \\
\hline Instanceof and type casts & Yes & No \\
Dedicated methods & No & Yes \\
The Visitor pattern & No & No
\end{tabular}

The advantage of Visitors: New methods without recompilation! Requirement for using Visitors: All classes must have an accept method.

\section*{Tools that use the Visitor pattern:}
- JJTree (from Sun Microsystems) and the Java Tree Builder (from Purdue University), both frontends for The Java Compiler Compiler from Sun Microsystems.

\section*{The Java Tree Builder}

The Java Tree Builder (JTB) has been developed here at Purdue in my group.

JTB is a frontend for The Java Compiler Compiler.

JTB supports the building of syntax trees which can be traversed using visitors.

JTB transforms a bare JavaCC grammar into three components:
- a JavaCC grammar with embedded Java code for building a syntax tree;
- one class for every form of syntax tree node; and
- a default visitor which can do a depth-first traversal of a syntax tree
- Visitor makes adding new operations easy. Simply write a new visitor.
- A visitor gathers related operations. It also separates unrelated ones.
- Adding new classes to the object structure is hard. Key consideration: are you most likely to change the algorithm applied over an object structure, or are you most like to change the classes of objects that make up the structure.

\section*{- Visitors can accumulate state.}
- Visitor can break encapsulation. Visitor's approach assumes that the interface of the data structure classes is powerful enough to let visitors do their job. As a result, the pattern often forces you to provide public operations that access internal state, which may compromise its encapsulation.

\section*{The Java Tree Builder}

The produced JavaCC grammar can then be processed by the Java Compiler Compiler to give a parser which produces syntax trees.

The produced syntax trees can now be traversed by a Java program by writing subclasses of the default visitor.


\section*{Example (simplified)}

For example, consider the Java 1.1 production
```

void Assignment() : {}
{ PrimaryExpression() AssignmentOperator()
Expression() }
JTB produces:
Assignment Assignment () :
{ PrimaryExpression n0;
AssignmentOperator n1;
Expression n2; {} }
{ n0=PrimaryExpression()
n1=AssignmentOperator()
n2=Expression()
{ return new Assignment(n0,n1,n2); }
}

```

Notice that the production returns a syntax tree represented as an Assignment object.

\section*{Example (simplified)}

JTB produces a syntax-tree-node class for Assignment:
```

public class Assignment implements Node {
PrimaryExpression f0; AssignmentOperator f1;
Expression f2;
public Assignment(PrimaryExpression n0,
AssignmentOperator n1,
Expression n2)
{ f0 = n0; f1 = n1; f2 = n2; }
public void accept(visitor.Visitor v) {
v.visit(this);
}
}

```

Notice the accept method; it invokes the method visit for Assignment in the default visitor.

\section*{Example (simplified)}

The default visitor looks like this:
```

public class DepthFirstVisitor implements Visitor {
//
// f0 -> PrimaryExpression()
// f1 -> AssignmentOperator()
// f2 -> Expression()
//
public void visit(Assignment n) {
n.f0.accept(this);
n.f1.accept(this);
n.f2.accept(this);
}
}

```

Notice the body of the method which visits each of the three subtrees of the Assignment node.

\section*{Example (simplified)}

Here is an example of a program which operates on syntax trees for Java 1.1 programs. The program prints the right-hand side of every assignment. The entire program is six lines:
```

public class VprintAssignRHS extends DepthFirstVisitor {
void visit(Assignment n) {
VPrettyPrinter v = new VPrettyPrinter();
n.f2.accept(v); v.out.println();
n.f2.accept(this);
}
}

```

When this visitor is passed to the root of the syntax tree, the depth-first traversal will begin, and when Assignment nodes are reached, the method visit in VprintAssignRHS is executed.

Notice the use of VPrettyPrinter. It is a visitor which pretty prints Java 1.1 programs.

JTB is bootstrapped.

\section*{Semantic Analysis}

The compilation process is driven by the syntactic structure of the program as discovered by the parser

Semantic routines:
- interpret meaning of the program based on its syntactic structure
- two purposes
- finish analysis by deriving context-sensitive information
- begin synthesis by generating the IR or target code
- associated with individual productions of a context free grammar or subtrees of a syntax tree

\section*{Chapter 6: Semantic Analysis}

Symbol tables

For compile-time efficiency, compilers often use a symbol table:
- associates lexical names (symbols) with their attributes

What items should be entered?
- variable names
- defined constants
- procedure and function names
- literal constants and strings
- source text labels
- compiler-generated temporaries
(we'll get there)
Separate table for structure layouts (types) (field offsets and lengths)

A symbol table is a compile-time structure

\section*{Symbol table information}

What kind of information might the compiler need?
- textual name
- data type
- dimension information
(for aggregates)
- declaring procedure
- lexical level of declaration
- storage class
(base address)
- offset in storage
- if record, pointer to structure table
- if parameter, by-reference or by-value?
- can it be aliased? to what other names?
- number and type of arguments to functions

\section*{Nested scopes: block-structured symbol tables}

What information is needed?
- when we ask about a name, we want the most recent declaration
- the declaration may be from the current scope or some enclosing scope
- innermost scope overrides declarations from outer scopes

Key point: new declarations (usually) occur only in current scope
What operations do we need?
- void put (Symbol key, Object value) - binds key to value
- Object get (Symbol key) - returns value bound to key
- void beginScope() - remembers current state of table
- void endScope() - restores table to state at most recent scope that has not been ended

May need to preserve list of locals for the debugger

\section*{Attribute information}

Attributes are internal representation of declarations
Symbol table associates names with attributes
Names may have different attributes depending on their meaning:
- variables: type, procedure level, frame offset
- types: type descriptor, data size/alignment
- constants: type, value
- procedures: formals (names/types), result type, block information (local decls.), frame size

\section*{Type descriptors}

Type descriptors are compile-time structures representing type expressions
e.g., char \(\times\) char \(\rightarrow\) pointer \((\) integer \()\)


Type expressions are a textual representation for types:
1. basic types: boolean, char, integer, real, etc.
2. type names
3. constructed types (constructors applied to type expressions):
(a) \(\operatorname{array}(I, T)\) denotes array of elements type \(T\), index type \(I\) e.g., array ( \(1 \ldots 10\), integer \()\)
(b) \(T_{1} \times T_{2}\) denotes Cartesian product of type expressions \(T_{1}\) and \(T_{2}\)
(c) records: fields have names e.g., record \(((\mathrm{a} \times\) integer \(),(\mathrm{b} \times\) real \())\)
(d) \(\operatorname{pointer}(T)\) denotes the type "pointer to object of type \(T\) "
(e) \(D \rightarrow R\) denotes type of function mapping domain \(D\) to range \(R\) e.g., integer \(\times\) integer \(\rightarrow\) integer

\section*{Type compatibility}

Type checking needs to determine type equivalence
Two approaches:
Name equivalence: each type name is a distinct type
Structural equivalence: two types are equivalent iff. they have the same structure (after substituting type expressions for type names)
- \(s \equiv t\) iff. \(s\) and \(t\) are the same basic types
- \(\operatorname{array}\left(s_{1}, s_{2}\right) \equiv \operatorname{array}\left(t_{1}, t_{2}\right)\) iff. \(s_{1} \equiv t_{1}\) and \(s_{2} \equiv t_{2}\)
- \(s_{1} \times s_{2} \equiv t_{1} \times t_{2}\) iff. \(s_{1} \equiv t_{1}\) and \(s_{2} \equiv t_{2}\)
- \(\operatorname{pointer}(s) \equiv \operatorname{pointer}(t)\) iff. \(s \equiv t\)
- \(s_{1} \rightarrow s_{2} \equiv t_{1} \rightarrow t_{2}\) iff. \(s_{1} \equiv t_{1}\) and \(s_{2} \equiv t_{2}\)

Consider:
\begin{tabular}{llll} 
type & link & \(=\uparrow c e l l ;\) \\
var & next & \(:\) & link; \\
& last & \(:\) & link; \\
& \(p\) & \(:\) & \(\uparrow c e l l ;\) \\
& q, r & \(:\) 个cell;
\end{tabular}

Under name equivalence:
- next and last have the same type
- \(\mathrm{p}, \mathrm{q}\) and r have the same type
- \(p\) and next have different type

Under structural equivalence all variables have the same type
Ada/Pascal/Modula-2/Tiger are somewhat confusing: they treat distinct type definitions as distinct types, so
p has different type from q and r

\section*{Type compatibility: recursive types}

Consider:
```

type link = \uparrowcell;
cell = record
info : integer;
next : link;
end;

```

We may want to eliminate the names from the type graph
Eliminating name link from type graph for record:


\section*{Chapter 7: Translation and Simplification}

Tiger IR trees: Statements
\begin{tabular}{|c|c|}
\hline  & Evaluate \(e\) into temporary \(t\) \\
\hline  & Evaluate \(e_{1}\) yielding address \(a, e_{2}\) into word at \(\boldsymbol{a}\) \\
\hline \[
\begin{gathered}
\mathrm{EXP} \\
e \\
\hline
\end{gathered}
\] & Evaluate \(e\) and discard result \\
\hline \[
\begin{aligned}
& \text { JUMP } \\
& e \quad\left[l_{1}, \ldots, l_{n}\right] \\
& \hline
\end{aligned}
\] & Transfer control to address \(e ; l_{1}, \ldots, l_{n}\) are all possible values for \(e\) \\
\hline \[
\begin{aligned}
& \text { CJUMP } \\
& o e_{1} e_{2} t f
\end{aligned}
\] & Evaluate \(e_{1}\) then \(e_{2}\), yielding \(a\) and \(b\), respectively; compare \(a\) with \(b\) using relational operator \(\boldsymbol{o}\) : \\
\hline \[
\begin{aligned}
& \hline \mathrm{SEQ} \\
& s_{1} s_{2} \\
& \hline
\end{aligned}
\] & Statement \(s_{1}\) followed by \(s_{2}\) \\
\hline \[
\begin{gathered}
\text { LABEL } \\
n
\end{gathered}
\] & Define constant value of name \(n\) as current code address; NAME(n) can be used as target of jumps, calls, etc. \\
\hline
\end{tabular}

\section*{Tiger IR trees: Expressions}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
CONST
\(\qquad\) \\
\(i\)
\end{tabular} & Integer constant \(i\) \\
\hline \begin{tabular}{l}
NAME \\
\(n\)
\end{tabular} & Symbolic constant \(n \quad\) [a code label] \\
\hline TEMP & Temporary t [one of any number of "registers"] \\
\hline BINOP
\[
\boldsymbol{o} e_{1} e_{2}
\] & \begin{tabular}{l} 
Application of binary operator \(o\) : \\
PLUS, MINUS, MUL, DIV \\
AND, OR, XOR \\
LSHHFT, RSHIFT \\
[bitwise logical] \\
ARSHIFT \\
to integer operands \(e_{1}\) (evaluated first) and \(e_{2}\) (evaluated second) \\
\hline
\end{tabular} \\
\hline \begin{tabular}{l}
MEM \\
\(e\)
\end{tabular} & Contents of a word of memory starting at address \(e\) \\
\hline \[
\begin{gathered}
\text { CALL } \\
f\left[e_{1}, \ldots, e_{n}\right]
\end{gathered}
\] & Procedure call; expression \(f\) is evaluated before arguments \(e_{1}, \ldots, e_{n}\) \\
\hline \[
\begin{gathered}
\mathrm{ESEQ} \\
\underset{s e}{C}
\end{gathered}
\]
Copyright ©2000
\[
\text { for personal or } \mathrm{c}
\]
profit or commer
otherwise, to rep
fee. Request per & \begin{tabular}{l}
Expression sequence; evaluate \(s\) for side-effects, then \(e\) for result \\
Antony L. Hosking. Permission to make digital or hard copies of part or all of this work sroom use is granted without fee provided that copies are not made or distributed for advantage and that copies bear this notice and full citation on the first page. To copy ish, to post on servers, or to redistribute to lists, requires prior specific permission and/or ssion to publish from hosking@cs.purdue.edu.
\end{tabular} \\
\hline
\end{tabular}

166

\section*{Kinds of expressions}

Expression kinds indicate "how expression might be used"
Ex(exp) expressions that compute a value
Nx(stm) statements: expressions that compute no value
Cx conditionals (jump to true and false destinations)

\section*{ReICx(op, left, right)}

IfThenElseExp expression/statement depending on use
Conversion operators allow use of one form in context of another:
unEx convert to tree expression that computes value of inner tree
unNx convert to tree statement that computes inner tree but returns no value
unCx(t, f) convert to statement that evaluates inner tree and branches to true destination if non-zero, false destination otherwise

\section*{Translating Tiger}

Simple variables: fetch with a MEM
MEM
BINOP
Ex(MEM(+(TEMP fp, CONST \(k))\) )

\section*{PLUS TEMP fp CONST \(k\)}
where \(f p\) is home frame of variable, found by following static links; \(k\) is offset of variable in that level

Tiger array variables: Tiger arrays are pointers to array base, so fetch with a MEM like any other variable:

Ex(MEM(+(TEMP fp, CONST \(k))\) )

\section*{Thus, for \(e[i]\) :}
\[
\operatorname{Ex}(\mathrm{MEM}(+(e . \mathrm{unEx}, \times(i . \mathrm{unEx}, \mathrm{CONST} w))))
\]
\(i\) is index expression and \(w\) is word size - all values are word-sized (scalar) in Tiger
Note: must first check array index \(i<\operatorname{size}(e)\); runtime will put size in word preceding array base

\section*{Control structures}

\section*{Basic blocks:}
- a sequence of straight-line code
- if one instruction executes then they all execute
- a maximal sequence of instructions without branches
- a label starts a new basic block

Overview of control structure translation:
- control flow links up the basic blocks
- ideas are simple
- implementation requires bookkeeping
- some care is needed for good code

\section*{Translating Tiger}

Tiger record variables: Again, records are pointers to record base, so fetch like other variables. For e.f
\(\operatorname{Ex}(\mathrm{MEM}(+(e . \mathrm{unEx}, \mathrm{CONST} o)))\)
where \(o\) is the byte offset of the field f in the record
Note: must check record pointer is non-nil (i.e., non-zero)
String literals: Statically allocated, so just use the string's label Ex(NAME(label))
where the literal will be emitted as:
word 11
label: .ascii "hello world"
Record creation: \(\mathrm{t}\left\{f_{1}=e_{1}, f_{2}=e_{2}, \ldots f_{n}=e_{n}\right\}\) in the (preferably GC'd) heap, first allocate the space then initialize it:

Ex( ESEQ(SEQ(MOVE(TEMP r, externalCall("allocRecord", [CONST n])), SEQ(MOVE(MEM(TEMP r), \(e_{1}\).unEx)), SEQ(..
\(\operatorname{MOVE}(\operatorname{MEM}(+(\operatorname{TEMP}\) r, CONST \((\boldsymbol{n}-1) w))\) \(e_{n} \cdot\) unEx)) ,
TEMP r))
where \(w\) is the word size
Array creation: \(\mathrm{t}\left[e_{1}\right]\) of \(e_{2}\) : Ex(externalCall("initArray", [ \(e_{1}\).unEx, \(e_{2}\).unEx]))

\section*{while loops}

\section*{while \(c\) do \(s\) :}
1. evaluate \(c\)
2. if false jump to next statement after loop
3. if true fall into loop body
4. branch to top of loop
e.g.
test:
if not( \(c\) ) jump done
\(s\)
jump test
done:
Nx ( SEQ(SEQ(SEQ(LABEL test, c.unCx(body, done)), SEQ(SEQ(LABEL body, s.unNx), JUMP(NAME test))),
LABEL done))

\section*{for loops}
for \(\mathrm{i}:=e_{1}\) to \(e_{2}\) do \(s\)
1. evaluate lower bound into index variable
2. evaluate upper bound into limit variable
3. if index > limit jump to next statement after loop
4. fall through to loop body
5. increment index
6. if index \(\leq\) limit jump to top of loop body
\(t_{1} \leftarrow e_{1}\)
\(t_{2} \leftarrow e_{2}\)
if \(t_{1}>t_{2}\) jump done

\section*{body:}
\(t_{1} \leftarrow t_{1}+1\)
if \(t_{1} \leq t_{2}\) jump body

\section*{done:}

For break statements:
- when translating a loop push the done label on some stack
- break simply jumps to label on top of stack
- when done translating loop and its body, pop the labe

\section*{Comparisons}

Translate \(a\) op \(b\) as:

RelCx(op, \(a\).unEx, \(b\).unEx)

When used as a conditional unCx \((t, f)\) yields:

CJUMP(op, \(a\). unEx, \(b . \operatorname{unEx}, t, f)\)
where \(t\) and \(f\) are labels.
When used as a value unEx yields:
ESEQ(SEQ(MOVE(TEMP r, CONST 1),
SEQ(unCx(t, f),
SEQ(LABEL f, SEQ(MOVE(TEMP r, CONST 0), LABEL t)))),
TEMP r)
(EMP r)

\section*{Function calls}
```

f(e, (,.,e,):
Ex(CALL(NAME label }\mp@subsup{f}{f}{},[s/,\mp@subsup{e}{1}{},···\mp@subsup{e}{n}{}])

```
where \(\boldsymbol{s} /\) is the static link for the callee \(f\), found by following \(n\) static links from the caller, \(n\) being the difference between the levels of the caller and the callee

\section*{Conditionals}

The short-circuiting Boolean operators have already been transformed into if-expressions in Tiger abstract syntax:
e.g., \(x<5 \& a>b\) turns into if \(x<5\) then \(a>b\) else 0

Translate if \(e_{1}\) then \(e_{2}\) else \(e_{3}\) into: IfThenEIseExp \(\left(e_{1}, e_{2}, e_{3}\right)\)
When used as a value unEx yields:
ESEQ(SEQ(SEQ( \(e_{1}\).unCx(t, f),
SEQ(SEQ(LABEL t,
SEQ(MOVE(TEMP r, \(\left.e_{2} . u n E x\right)\), JUMP join)),
SEQ(LABEL f,
SEQ(MOVE(TEMP r, \(e_{3}\).unEx), JUMP join)))),
LABEL join),
TEMP r)
As a conditional unCx \((t, f)\) yields:
\(\operatorname{SEQ}\left(e_{1} . \mathrm{unCx}(\mathrm{tt}, \mathrm{ff}), \operatorname{SEQ}\left(\operatorname{SEQ}\left(\operatorname{LABEL} \mathrm{tt}, e_{2} \cdot \mathrm{unCx}(t, f)\right)\right.\right.\),
SEQ(LABEL ff, \(e_{3}\).unCx \(\left.\left.(t, f)\right)\right)\) )

\section*{One-dimensional fixed arrays}

\section*{Conditionals: Example}

Applying unCx \((t, f)\) to if \(x<5\) then \(a>b\) else 0 :
SEQ(CJUMP(LT, \(x\).unEx, CONST 5, tt, ff),
SEQ(SEQ(LABEL tt, CJUMP(GT, \(a\).unEx, \(b\).unEx, \(t, f)\) ), SEQ(LABEL ff, JUMP f)))
or more optimally:
SEQ(CJUMP(LT, x.unEx, CONST 5, tt, \(f\) ),
SEQ(LABEL tt, CJUMP(GT, \(a\).unEx, \(b\).uneX, \(t, f)\) ))

\section*{Multidimensional arrays}

Array allocation:
constant bounds
- allocate in static area, stack, or heap
- no run-time descriptor is needed
dynamic arrays: bounds fixed at run-time
- allocate in stack or heap
- descriptor is needed
dynamic arrays: bounds can change at run-time
- allocate in heap
- descriptor is needed
var a : ARRAY [2..5] of integer;
[e]
translates to:

MEM \((+(\) TEMP fp,\(+(\) CONST \(k-2 w, \times(\) CONST \(w, e . u n E x))))\)
where \(k\) is offset of static array from \(\mathrm{fp}, w\) is word size
In Pascal, multidimensional arrays are treated as arrays of arrays, so A [i, j] is equivalent to \(A[i][j]\), so can translate as above.

\section*{Multidimensional arrays}

\section*{Array layout:}
- Contiguous:
1. Row major

Rightmost subscript varies most quickly:
\(\mathrm{A}[1,1], \mathrm{A}[1,2], \ldots\)
A \([2,1], A[2,2], \ldots\)
Used in PL/1, Algol, Pascal, C, Ada, Modula-3
2. Column major

Leftmost subscript varies most quickly:
A \([1,1], A[2,1], \ldots\)
\(A[1,2], A[2,2], \ldots\)
Used in FORTRAN
- By vectors

Contiguous vector of pointers to (non-contiguous) subarrays
```

array [1..N,1..M] of T
\equiv array [1..N] of array [1..M] of T

```
no. of elt's in dimension \(\boldsymbol{j}\) :
\[
D_{j}=U_{j}-L_{j}+1
\]
position of \(\mathrm{A}\left[i_{1}, \ldots, i_{n}\right]\) :
\[
\begin{aligned}
& \left(i_{n}-L_{n}\right) \\
& +\left(i_{n-1}-L_{n-1}\right) D_{n} \\
& +\left(i_{n-2}-L_{n-2}\right) D_{n} D_{n-1} \\
& +\cdots \\
& +\left(i_{1}-L_{1}\right) D_{n} \cdots D_{2}
\end{aligned}
\]
which can be rewritten as
\[
\begin{aligned}
& \overbrace{i_{1} D_{2} \cdots D_{n}+i_{2} D_{3} \cdots D_{n}+\cdots+i_{n-1} D_{n}+i_{n}}^{\text {variable part }} \\
& -\underbrace{\left(L_{1} D_{2} \cdots D_{n}+L_{2} D_{3} \cdots D_{n}+\cdots+L_{n-1} D_{n}+L_{n}\right)}_{\text {constant part }}
\end{aligned}
\]
address of \(\mathrm{A}\left[i_{1}, \ldots, i_{n}\right]\) :
\(\operatorname{address}(\mathrm{A})+((\) variable part - constant part \() \times\) element size \()\)

\section*{case statements}
case \(E\) of \(V_{1}: S_{1} \ldots V_{n}: S_{n}\) end
One translation approach:
\[
t:=\text { expr }
\]
jump test
\(L_{1}\) : code for \(S_{1}\)
jump next
\(L_{2}\) : code for \(S_{2}\)
jump next
\(L_{n}: \quad\) code for \(S_{n}\)
jump next
test:
\(t=V_{1}\) jump \(L_{1}\)
if \(t=V_{2}\) jump \(L_{2}\)
if \(t=V_{n}\) jump \(L_{n}\)
code to raise run-time exception
next:

183

\section*{case statements}
case \(E\) of \(V_{1}: S_{1} \ldots V_{n}: S_{n}\) end
1. evaluate the expression
2. find value in case list equal to value of expression
3. execute statement associated with value found
4. jump to next statement after case

Key issue: finding the right case
- sequence of conditional jumps (small case set) \(\mathbf{O}(\mid\) cases \(\mid)\)
- binary search of an ordered jump table (sparse case set) \(\mathbf{O}\left(\log _{2} \mid\right.\) cases \(\left.\mid\right)\)
- hash table (dense case set)
\(\mathbf{O}(1)\)

\section*{Simplification}
- Goal 1: No SEQ or ESEQ.
- Goal 2: CALL can only be subtree of EXP(...) or MOVE(TEMP \(t, \ldots)\).

Transformations:
- lift ESEQs up tree until they can become SEQs
- turn SEQs into linear list
\begin{tabular}{|c|c|}
\hline \(\operatorname{ESEQ}\left(s_{1}, \operatorname{ESEQ}\left(s_{2}, e\right)\right)\) & \(=\operatorname{ESEQ}\left(\operatorname{SEQ}\left(s_{1}, s_{2}\right), e\right)\) \\
\hline BINOP(OP, ESEQ(s, \(\left.\left.e_{1}\right), e_{2}\right)\) & \(\left.=E S E Q\left(s, \operatorname{BINOP}(O)^{\prime}, e_{1}, e_{2}\right)\right)\) \\
\hline \(\operatorname{MEM}\left(\operatorname{ESEQ}\left(s, e_{1}\right)\right)\) & \(=\operatorname{ESEQ}\left(s, \mathrm{MEM}\left(e_{1}\right)\right)\) \\
\hline \(\operatorname{JUMP}\left(\operatorname{ESEQ}\left(\boldsymbol{s}, e_{1}\right)\right)\) & \(=\operatorname{SEQ}\left(s, \operatorname{JUMP}\left(e_{1}\right)\right)\) \\
\hline CJUMP (op,
\[
\left.\operatorname{ESEQ}\left(s, e_{1}\right), e_{2}, l_{1}, l_{2}\right)
\] & \[
=\operatorname{SEQ}\left(s, \operatorname{CJUMP}\left(o p, e_{1}, e_{2}, l_{1}, l_{2}\right)\right)
\] \\
\hline \(\operatorname{BINOP}\left(O P^{\prime}, e_{1}, \operatorname{ESEQ}\left(s, e_{2}\right)\right)\) & \(\left.=\operatorname{ESEQ} \underset{\operatorname{ESEQ}(\mathrm{MOV}(\mathrm{s},}{\mathrm{ES}} \mathrm{t}, e_{1}\right)\), \\
\hline CJUMP(op,
\[
\left.e_{1}, \operatorname{ESEQ}\left(s, e_{2}\right), l_{1}, l_{2}\right)
\] & \[
\begin{aligned}
& =\operatorname{SEQ}\left(\operatorname{MOVE} \operatorname{BINOP}\left(\text { TEMP } \mathrm{t}, e_{1}\right),\right. \\
& \left.\left.\operatorname{SEQ}\left(s_{,} \operatorname{CUMMP}\left(o p, \operatorname{TEMP} \mathrm{t}, e_{2}, l_{1}, l_{2}\right)\right)\right)\right)
\end{aligned}
\] \\
\hline \(\operatorname{MOVE}\left(E S E Q(s, e 1), e_{2}\right)\) & \(=\operatorname{SEQ}\left(s, \operatorname{MOVE}\left(e_{1}, e_{2}\right)\right)\) \\
\hline CALL \((f, a)\) & \(=\operatorname{ESEQ}(\operatorname{MOVE}(\operatorname{TEMP} \mathrm{t}, \operatorname{CALL}(f, a))\), \\
\hline
\end{tabular}

\section*{Register allocation}


Register allocation:
- have value in a register when used
- limited resources
- changes instruction choices
- can move loads and stores
- optimal allocation is difficult \(\Rightarrow\) NP-complete for \(k \geq 1\) registers

Copyright (c) 2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

\section*{Liveness analysis}

Problem:
- IR contains an unbounded number of temporaries
- machine has bounded number of registers

Approach:
- temporaries with disjoint live ranges can map to same register
- if not enough registers then spill some temporaries (i.e., keep them in memory)

The compiler must perform liveness analysis for each temporary:
It is live if it holds a value that may be needed in future

\section*{Control flow analysis}

Before performing liveness analysis, need to understand the control flow by building a control flow graph (CFG):
- nodes may be individual program statements or basic blocks
- edges represent potential flow of control

Out-edges from node \(n\) lead to successor nodes, succ[ \(n]\)
In-edges to node \(n\) come from predecessor nodes, pred[ \(n\) ]

Example:
\[
\begin{aligned}
L_{1}: & a \leftarrow 0 \\
& b \leftarrow a+1 \\
& c \leftarrow c+b \\
& a \leftarrow b \times 2 \\
& \text { if } a<N \text { goto } L_{1} \\
& \text { return } c
\end{aligned}
\]

\section*{Liveness analysis}

Gathering liveness information is a form of data flow analysis operating over the CFG:
- liveness of variables "flows" around the edges of the graph
- assignments define a variable, \(v\) :
\(-\operatorname{def}(v)=\) set of graph nodes that define \(v\)
\(-\operatorname{def}[n]=\) set of variables defined by \(n\)
- occurrences of \(v\) in expressions use it:
- use \((v)=\) set of nodes that use \(v\)
- use \([n]=\) set of variables used in \(n\)

Liveness: \(v\) is live on edge \(e\) if there is a directed path from \(e\) to a use of \(v\) that does not pass through any \(\operatorname{def}(v)\)
\(v\) is live-in at node \(n\) if live on any of \(n\) 's in-edges
\(v\) is live-out at \(\boldsymbol{n}\) if live on any of \(n\) 's out-edges
\(v \in u s e[n] \Rightarrow v\) live-in at \(n\)
\(v\) live-in at \(n \Rightarrow v\) live-out at all \(m \in \operatorname{pred}[n]\)
\(v\) live-out at \(n, v \notin \operatorname{def}[n] \Rightarrow v\) live-in at \(n\)

\section*{Iterative solution for liveness}
\[
\begin{aligned}
& \text { foreach } n\{\text { in }[n] \leftarrow \phi ; \text { out }[n] \leftarrow \phi\} \\
& \text { repeat } \\
& \text { foreach } n \\
& \qquad \text { in }^{\prime}[n] \leftarrow \text { in }[n] ; \\
& \quad \text { out }^{\prime}[n] \leftarrow \text { out }[n] ; \\
& \quad \text { in }[n] \leftarrow \text { use }[n] \cup(\text { out }[n]-\operatorname{def}[n]) \\
& \text { out }[n] \leftarrow \bigcup_{s \in \operatorname{succ}[n]} \text { in }[s] \\
& \text { until } \text { in }^{\prime}[n]=\text { in }[n] \wedge \text { out } t^{\prime}[n]=\text { out }[n], \forall n
\end{aligned}
\]

Notes:
- should order computation of inner loop to follow the "flow"
- liveness flows backward along control-flow arcs, from out to in
- nodes can just as easily be basic blocks to reduce CFG size
- could do one variable at a time, from uses back to defs, noting liveness along the way

\section*{Iterative solution for liveness}

Complexity: for input program of size \(N\)
- \(\leq N\) nodes in CFG
\(\Rightarrow \leq N\) variables
\(\Rightarrow N\) elements per in/out
\(\Rightarrow \mathrm{O}(N)\) time per set-union
- for loop performs constant number of set operations per node \(\Rightarrow \mathrm{O}\left(N^{2}\right)\) time for for loop
- each iteration of repeat loop can only add to each set sets can contain at most every variable \(\Rightarrow\) sizes of all in and out sets sum to \(2 N^{2}\), bounding the number of iterations of the repeat loop
\(\Rightarrow\) worst-case complexity of \(\mathrm{O}\left(N^{4}\right)\)
- ordering can cut repeat loop down to 2-3 iterations \(\Rightarrow \mathrm{O}(N)\) or \(\mathrm{O}\left(N^{2}\right)\) in practice

\section*{Register allocation}

\section*{Iterative solution for liveness}

Least fixed points
There is often more than one solution for a given dataflow problem (see example).
Any solution to dataflow equations is a conservative approximation:
- \(v\) has some later use downstream from \(n\) \(\Rightarrow v \in \operatorname{out}(n)\)
- but not the converse

Conservatively assuming a variable is live does not break the program; just means more registers may be needed.
Assuming a variable is dead when it is really live will break things.
May be many possible solutions but want the "smallest": the least fixpoint. The iterative liveness computation computes this least fixpoint.


Register allocation:
- have value in a register when used
- limited resources
- changes instruction choices
- can move loads and stores
- optimal allocation is difficult \(\Rightarrow\) NP-complete for \(k \geq 1\) registers

Copyright (c) 2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

\section*{194}

\section*{Register allocation by simplification}
1. Build interference graph \(G\) : for each program point
(a) compute set of temporaries simultaneously live
(b) add edge to graph for each pair in set
2. Simplify: Color graph using a simple heuristic
(a) suppose \(G\) has node \(m\) with degree \(<K\)
(b) if \(G^{\prime}=G-\{m\}\) can be colored then so can \(G\), since nodes adjacent to \(m\) have at most \(K-1\) colors
(c) each such simplification will reduce degree of remaining nodes leading to more opportunity for simplification
(d) leads to recursive coloring algorithm
3. Spill: suppose \(\nexists m\) of degree \(<K\)
(a) target some node (temporary) for spilling (optimistically, spilling node will allow coloring of remaining nodes)
(b) remove and continue simplifying

\section*{Register allocation by simplification (continued)}
4. Select: assign colors to nodes
(a) start with empty graph
(b) if adding non-spill node there must be a color for it as that was the basis for its removal
(c) if adding a spill node and no color available (neighbors already Kcolored) then mark as an actual spill
(d) repeat select
5. Start over: if select has no actual spills then finished, otherwise
(a) rewrite program to fetch actual spills before each use and store after each definition
(b) recalculate liveness and repeat

\section*{Coalescing}
- Can delete a move instruction when source \(s\) and destination \(d\) do not interfere:
- coalesce them into a new node whose edges are the union of those of \(s\) and \(d\)
- In principle, any pair of non-interfering nodes can be coalesced
- unfortunately, the union is more constrained and new graph may no longer be \(K\)-colorable
- overly aggressive

\section*{Simplification with aggressive coalescing}


197

\section*{Iterated register coalescing}

Interleave simplification with coalescing to eliminate most moves while without extra spills
. Build interference graph \(G\); distinguish move-related from non-move-related nodes
Simplify: remove non-move-related nodes of low degree one at a time
. Coalesce: conservatively coalesce move-related nodes
- remove associated move instruction
- if resulting node is non-move-related it can now be simplified
- repeat simplify and coalesce until only significant-degree or uncoalesced moves
4. Freeze: if unable to simplify or coalesce
(a) look for move-related node of low-degree
(b) freeze its associated moves (give up hope of coalescing them)
(c) now treat as a non-move-related and resume iteration of simplify and coalesce
5. Spill: if no low-degree nodes
(a) select candidate for spilling
(b) remove to stack and continue simplifying
6. Select: pop stack assigning colors (including actual spills)
7. Start over: if select has no actual spills then finished, otherwise
(a) rewrite code to fetch actual spills before each use and store after each definition
(b) recalculate liveness and repeat

\section*{Iterated register coalescing}


\section*{Precolored nodes}

Precolored nodes correspond to machine registers (e.g., stack pointer, arguments, return address, return value)
- select and coalesce can give an ordinary temporary the same color as a precolored register, if they don't interfere
- e.g., argument registers can be reused inside procedures for a temporary
- simplify, freeze and spill cannot be performed on them
- also, precolored nodes interfere with other precolored nodes

So, treat precolored nodes as having infinite degree
This also avoids needing to store large adjacency lists for precolored nodes; coalescing can use the George criterion

\section*{Spilling}
- Spills require repeating build and simplify on the whole program
- To avoid increasing number of spills in future rounds of build can simply discard coalescences
- Alternatively, preserve coalescences from before first potential spill, discard those after that point
- Move-related spilled temporaries can be aggressively coalesced, since (unlike registers) there is no limit on the number of stack-frame locations

\section*{Temporary copies of machine registers}

Since precolored nodes don't spill, their live ranges must be kept short:
1. use move instructions
2. move callee-save registers to fresh temporaries on procedure entry, and back on exit, spilling between as necessary
3. register pressure will spill the fresh temporaries as necessary, otherwise they can be coalesced with their precolored counterpart and the moves deleted

\section*{Caller-save and callee-save registers}

Variables whose live ranges span calls should go to callee-save registers, otherwise to caller-save
This is easy for graph coloring allocation with spilling
- calls interfere with caller-save registers
- a cross-call variable interferes with all precolored caller-save registers, as well as with the fresh temporaries created for callee-save copies, forcing a spill
- choose nodes with high degree but few uses, to spill the fresh calleesave temporary instead of the cross-call variable
- this makes the original callee-save register available for coloring the cross-call variable

\section*{Example (cont.)}
- Interference graph:

- No opportunity for simplify or freeze (all non-precolored nodes have significant degree \(\geq K\) )
- Any coalesce will produce a new node adjacent to \(\geq K\) significantdegree nodes
- Must spill based on priorities:

- Node c has lowest priority so spill it

\section*{Example}

\section*{enter:}
c : \(=r 3\)
a \(:=r 1\)
b : \(=\mathrm{r} 2\)
\(\mathrm{d}:=0\)
e := a
loop:
\(d:=d+b\)
e :=e-1
if e > 0 goto loop
r1 \(:=\mathrm{d}\)
r3 := c
return [ r1, r3 live out ]
- Temporaries are a, b, c, d, e
- Assume target machine with \(K=3\) registers: r1, r2 (caller-save/argument/resul r3 (callee-save)
- The code generator has already made arrangements to save r3 explicitly by copying into temporary a and back again

206

\section*{Example (cont.)}
- Interference graph with c removed:

- Only possibility is to coalesce a and e : ae will have \(<K\) significantdegree neighbors (after coalescing d will be low-degree, though highdegree before)


\section*{Example (cont.)}
- Can now coalesce b with r2 (or coalesce ae and r1):

- Coalescing ae and r1 (could also coalesce d with r1):


\section*{Example (cont.)}
- Cannot coalesce r1ae with d because the move is constrained: the nodes interfere. Must simplify d:

- Graph now has only precolored nodes, so pop nodes from stack coloring along the way
\(-\mathrm{d} \equiv \mathrm{r} 3\)
- a, b, e have colors by coalescing
- c must spill since no color can be found for it
- Introduce new temporaries c1 and c2 for each use/def, add loads before each use and stores after each def

\section*{Example (cont.)}
enter:
c1 := r3
M[c_loc] := c1
a := r1
b := r2
\(\mathrm{d}:=0\)
e : \(=\mathrm{a}\)
loop:
\(\mathrm{d}:=\mathrm{d}+\mathrm{b}\)
e :=e-1
if e > 0 goto loop
r1 := d
c2 := M[c_loc]
r3 := c2
return [ r1, r3 live out ]

\section*{Example (cont.)}
- New interference graph

- Coalesce c1 with r3, then c2 with r3:

- As before, coalesce a with e, then b with r 2 :


\section*{Example (cont.)}
- As before, coalesce ae with r1 and simplify d:

- Pop d from stack: select r3. All other nodes were coalesced or precolored. So, the coloring is:
\(-\mathrm{a} \equiv \mathrm{r} 1\)
\(-\mathrm{b} \equiv \mathrm{r} 2\)
\(-\mathrm{c} \equiv \mathrm{r} 3\)
\(-\mathrm{d} \equiv \mathrm{r} 3\)
- \(\mathrm{e} \equiv \mathrm{r} 1\)

\section*{Example (cont.)}
- Rewrite the program with this assignment:
enter: r3 := r3 M[c_loc] := r3 r1 := r1 r2 := r2 r3 := 0 r1 := r1
loop: r2 := r3 + r2 r1 := r1 - 1 if r1 > 0 goto loop r1 := r3 r3 := M[c_loc] r3 := r3 return [ r1, r3 live out ]

\section*{Example (cont.)}
- Delete moves with source and destination the same (coalesced):
    enter:
        M[c_loc] := r3
        r3 := 0
    loop:
        r2 := r3 + r2
        r1 := r1 - 1
        if \(\mathrm{r} 1>0\) goto loop
        r1 := r3
        r3 := M[c_loc]
        return [ r1, r3 live out ]
- One uncoalesced move remains

Chapter 9: Activation Records

\section*{The procedure abstraction}

Separate compilation:
- allows us to build large programs
- keeps compile times reasonable
- requires independent procedures

The linkage convention:
- a social contract
- machine dependent
- division of responsibility

The linkage convention ensures that procedures inherit a valid run-time environment and that they restore one for their parents.
Linkages execute at run time
Code to make the linkage is generated at compile time
Copyright (C)2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

\section*{Procedure linkages}

Assume that each procedure activation has an associated activation record or frame (at run time)
Assumptions:
- RISC architecture
- can always expand an allocated block
- locals stored in frame


\section*{The procedure abstraction}

The essentials:
- on entry, establish p's environment
- at a call, preserve p's environment
- on exit, tear down p's environment
- in between, addressability and proper lifetimes


Each system has a standard linkage

\section*{Procedure linkages}

The linkage divides responsibility between caller and callee
\begin{tabular}{|c|c|c|}
\hline & Caller & Callee \\
\hline \multirow[t]{2}{*}{Call} & pre-call & prologue \\
\hline & \begin{tabular}{l}
1. allocate basic frame \\
2. evaluate \& store params. \\
3. store return address \\
4. jump to child
\end{tabular} & \begin{tabular}{l}
1. save registers, state \\
2. store FP (dynamic link) \\
3. set new FP \\
4. store static link \\
5. extend basic frame (for local data) \\
6. initialize locals \\
7. fall through to code
\end{tabular} \\
\hline \multirow[t]{2}{*}{Return} & post-call & epilogue \\
\hline & \begin{tabular}{l}
1. copy return value \\
2. deallocate basic frame \\
3. restore parameters (if copy out)
\end{tabular} & \begin{tabular}{l}
1. store return value \\
2. restore state \\
3. cut back to basic frame \\
4. restore parent's FP \\
5. jump to return address
\end{tabular} \\
\hline
\end{tabular}

At compile time, generate the code to do this
At run time, that code manipulates the frame \& data areas

\section*{Run-time storage organization}

To maintain the illusion of procedures, the compiler can adopt some conventions to govern memory use.

Code space
- fixed size
- statically allocated
(link time)

\section*{Data space}
- fixed-sized data may be statically allocated
- variable-sized data must be dynamically allocated
- some data is dynamically allocated in code

\section*{Control stack}
- dynamic slice of activation tree
- return addresses
- may be implemented in hardware

\section*{Run-time storage organization}

Where do local variables go?
When can we allocate them on a stack?
Key issue is lifetime of local names
Downward exposure:
- called procedures may reference my variables
- dynamic scoping
- lexical scoping

Upward exposure:
- can I return a reference to my variables?
- functions that return functions
- continuation-passing style

With only downward exposure, the compiler can allocate the frames on the run-time call stack

\section*{Run-time storage organization}

Typical memory layout


The classical scheme
- allows both stack and heap maximal freedom
- code and static data may be separate or intermingled

\section*{Storage classes}

Each variable must be assigned a storage class
(base address)

Static variables:
- addresses compiled into code
(relocatable)
- (usually) allocated at compile-time
- limited to fixed size objects
- control access with naming scheme

Global variables:
- almost identical to static variables
- layout may be important
(exposed)
- naming scheme ensures universal access

Link editor must handle duplicate definitions

\section*{Storage classes (cont.)}

Procedure local variables
Put them on the stack -
- if sizes are fixed
- if lifetimes are limited
- if values are not preserved

Dynamically allocated variables
Must be treated differently -
- call-by-reference, pointers, lead to non-local lifetimes
- (usually) an explicit allocation
- explicit or implicit deallocation

\section*{Access to non-local data}

Two important problems arise
- How do we map a name into a (level,offset) pair?

Use a block-structured symbol table (remember last lecture?)
- look up a name, want its most recent declaration
- declaration may be at current level or any lower level
- Given a (level,offset) pair, what's the address?

Two classic approaches
- access links
(or static links)
- displays

\section*{Access to non-local data}

How does the code find non-local data at run-time?

\section*{Real globals}
- visible everywhere
- naming convention gives an address
- initialization requires cooperation

\section*{Lexical nesting}
- view variables as (level,offset) pairs (compile-time)
- chain of non-local access links
- more expensive to find
(at run-time)

\section*{Access to non-local data}

To find the value specified by \((l, o)\)
- need current procedure level, \(k\)
- \(k=l \Rightarrow\) local value
- \(k>l \Rightarrow\) find \(l\) 's activation record
- \(k<l\) cannot occur

Maintaining access links:
(static links )
- calling level \(k+1\) procedure
1. pass my FP as access link
2. my backward chain will work for lower levels
- calling procedure at level \(l<k\)
1. find link to level \(l-1\) and pass it
2. its access link will work for lower levels

226

\section*{The display}

To improve run-time access costs, use a display:
- table of access links for lower levels
- lookup is index from known offset
- takes slight amount of time at call
- a single display or one per frame
- for level \(k\) procedure, need \(k-1\) slots

Access with the display
assume a value described by \((l, o)\)
- find slot as display \([l]\)
- add offset to pointer from slot (display \([l][o]\) )
"Setting up the basic frame" now includes display manipulation

\section*{Call/return}

Assuming callee saves:
1. caller pushes space for return value
2. caller pushes SP
3. caller pushes space for:
return address, static chain, saved registers
4. caller evaluates and pushes actuals onto stack
5. caller sets return address, callee's static chain, performs call
6. callee saves registers in register-save area
7. callee copies by-value arrays/records using addresses passed as actuals
8. callee allocates dynamic arrays as needed
9. on return, callee restores saved registers
10. jumps to return address

Caller must allocate much of stack frame, because it computes the actual parameters
Alternative is to put actuals below callee's stack frame in caller's: common when hardware supports stack management (e.g., VAX)

Calls: Saving and restoring registers
\begin{tabular}{|c|c|c|c|}
\hline & caller's registers & callee's registers & all registers \\
\hline callee saves & 1 & 3 & 5 \\
caller saves & 2 & 4 & 6 \\
\hline
\end{tabular}
1. Call includes bitmap of caller's registers to be saved/restored (best with save/restore instructions to interpret bitmap directly)
2. Caller saves and restores its own registers

Unstructured returns (e.g., non-local gotos, exceptions) create some problems, since code to restore must be located and executed
3. Backpatch code to save registers used in callee on entry, restore on exit e.g., vax places bitmap in callee's stack frame for use on call/return/non-local goto/exception Non-local gotos and exceptions must unwind dynamic chain restoring callee-saved registers
4. Bitmap in callee's stack frame is used by caller to save/restore (best with save/restore instructions to interpret bitmap directly) Unwind dynamic chain as for 3
5. Easy Non-local gotos and exceptions must restore all registers from "outermost callee"
6. Easy (use utility routine to keep calls compact) Non-local gotos and exceptions need only restore original registers from caller

Top-left is best: saves fewer registers, compact calling sequences

\section*{MIPS procedure call convention}

Registers:
\begin{tabular}{|c|c|l|}
\hline Number & Name & Usage \\
\hline \hline 0 & zero & Constant 0 \\
\hline 1 & at & Reserved for assembler \\
\hline 2,3 & v0, v1 & Expression evaluation, scalar function results \\
\hline \(4-7\) & a0-a3 & first 4 scalar arguments \\
\hline \(8-15\) & t0-t7 & \begin{tabular}{l} 
Temporaries, caller-saved; caller must save to pre- \\
serve across calls
\end{tabular} \\
\hline \(16-23\) & s0-s7 & Callee-saved; must be preserved across calls \\
\hline 24,25 & t8, t9 & \begin{tabular}{l} 
Temporaries, caller-saved; caller must save to pre- \\
serve across calls
\end{tabular} \\
\hline 26,27 & k0, k1 & Reserved for OS kernel \\
\hline 28 & gp & Pointer to global area \\
\hline 29 & sp & Stack pointer \\
\hline 30 & s8 (fp) & Callee-saved; must be preserved across calls \\
\hline 31 & ra & Expression evaluation, pass return address in calls \\
\hline
\end{tabular}

\section*{MIPS procedure call convention}

Philosophy:
Use full, general calling sequence only when necessary; omit portions of it where possible (e.g., avoid using fp register whenever possible)

Classify routines as:
- non-leaf routines: routines that call other routines
- leaf routines: routines that do not themselves call other routines
- leaf routines that require stack storage for locals
- leaf routines that do not require stack storage for locals

\section*{MIPS procedure call convention}

The stack frame


\section*{MIPS procedure call convention}

Pre-call:
1. Pass arguments: use registers \(\mathrm{a} 0 \ldots \mathrm{a}\); remaining arguments are pushed on the stack along with save space for a0 . . a3
2. Save caller-saved registers if necessary
3. Execute a jal instruction: jumps to target address (callee's first instruction), saves return address in register ra

\section*{MIPS procedure call convention}

Prologue:
1. Leaf procedures that use the stack and non-leaf procedures:
(a) Allocate all stack space needed by routine:
- local variables
- saved registers
- sufficient space for arguments to routines called by this routine subu \$sp,framesize
(b) Save registers (ra, etc.)
e.g.,

Sw \$31,framesize+frameoffset(\$sp)
sw \$17,framesize+frameoffset-4(\$sp)
sw \$16,framesize+frameoffset-8(\$sp)
where framesize and frameoffset (usually negative) are compiletime constants
2. Emit code for routine

MIPS procedure call convention
Epilogue:
1. Copy return values into result registers (if not already there)
2. Restore saved registers
lw reg,framesize+frameoffset-N(\$sp)
3. Get return address
lw \$31,framesize+frameoffset (\$sp)
4. Clean up stack
addu \$sp,framesize
5. Return
j \$31```


[^0]:    Parser generators mechanize much of the work

