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1 Introduction

What is a Type?
A type is an invariant. For example, the Java declaration

int v;

specifies that v may only contain integer values in a certain range.

Why Types?
An untyped program may be:

• Unreadable.

Types provide documentation;

“Well-typed programs are more readable”

• Unreliable.

Types provide a safety guarantee;

“Well-typed programs cannot go wrong”

• Inefficient.

Types enable optimizations;

“Well-typed programs are faster”
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2 Simple Types

Our example language is a λ-calculus where the only two kinds of data are
functions and integers. The language is generated by the following grammar:

e ∈ Expression

e ::= x | λx.e | e1e2 | c | succ e

x ∈ V ar (infinite set of variables)

c ∈ IntegerConstant

We will use the standard convention that when writing λx.e, then e is every-
thing until the next “)” (or until the end of the whole λ term). The slogan is,
“the body of a λ extends as long as possible.” We will also use the standard
convention that e1e2e3 should be grouped as (e1e2)e3. An expression is closed
if it does not contain free variables.

We need two kinds of type: function types and an integer type. Types
are generated from the grammar:

t ::= t1 → t2 | Int

Such types are called simple types. The basic idea is that we can assign
natural types to expressions, for example:

0 : Int

λx.(succ x) : Int→ Int .

Notice that there are infinitely many types. Notice also that each type can
be viewed as a tree: the syntax tree of the type.

A type environment is a partial function with finite domain which maps
elements of V ar to types. We use A to range over type environments. We
use ∅ to denote the type environment with empty domain. We use A[x : t]
to denote a partial function which maps x to t, and maps y, where y 6= x, to
A(y).

Let us now consider a formal system for assigning types to λ-terms. If e
is a λ-term, t is a type, and A is a type environment, then the judgment

A ` e : t

means that e has the type t in the environment A. Formally, this holds when
the judgment is derivable by a finite derivation tree using the following five
rules:
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A ` x : t (A(x) = t) (1)

A[x : s] ` e : t

A ` λx.e : s→ t
(2)

A ` e1 : s→ t A ` e2 : s

A ` e1e2 : t
(3)

A ` 0 : Int (4)

A ` e : Int

A ` succ e : Int
(5)

An expression e is well typed if there exist A, t such that A ` e : t is derivable.
Notice that there is one rule for each of the five constructs in the language.

The hypotheses, if any, are written above the line, and the conclusion is
written below the line. Two of the rules have no hypotheses so we call them
axioms.

We can now use these rules to derive the typings of 0 and λx.(succ x)
from above. The first case is easy:

∅ ` 0 : Int

The judgment is indeed an instance of the axiom for 0. The second case
requires the use of the rules for abstraction, succ, and variable:

∅[x : Int] ` x : Int

∅[x : Int] ` succ x : Int

∅ ` λx.succ x : Int→ Int

Here are some more examples of the use of the five rules. The identity
function:

∅[x : Int] ` x : Int

∅ ` λx.x : Int→ Int

The apply function:

∅[f : s→ t][x : s] ` f : s→ t ∅[f : s→ t][x : s] ` x : s

∅[f : s→ t][x : s] ` fx : t

∅[f : s→ t] ` λx.fx : s→ t

∅ ` λf.λx.fx : (s→ t)→ (s→ t)
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The K combinator:

∅[x : s][y : t] ` x : s

∅[x : s] ` λy.x : t→ s

∅ ` λx.λy.x : s→ (t→ s)

The following λ-term does not have a simple type:

succ (λx.e)

The problem is that λx.e is not an integer. If we try to build a type derivation,
then may start with Rule (5):

∅ ` λx.e : Int

∅ ` succ (λx.e) : Int

There is no rule with which we can derive the hypothesis ∅ ` λx.e : Int, so
we conclude that succ (λx.e) does not have a simple type.
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3 Type Soundness

A type system for a programming language is sound if well-typed programs
cannot cause type errors.

A program is a closed expression. A value is either a λ-abstraction λx.e
or an integer constant c. We use v to range over values. We use dce to denote
the integer represented by an integer constant c.

A small-step call-by-value operational semantics for the language is given
by the reflexive, transitive closure of the relation →V :

→V ⊆ Expression× Expression

(λx.e)v →V e[x := v] (6)

e1 →V e
′
1

e1e2 →V e′1e2

(7)

e2 →V e
′
2

v e2 →V v e′2
(8)

succ c1 →V c2 (dc2e = dc1e+ 1) (9)

e1 →V e2

succ e1 →V succ e2

(10)

The notation e[x := M ] denotes e with M substituted for every free occur-
rence of x.

x[x := M ] ≡ M

y[x := M ] ≡ y (x 6≡ y)

(λx.e1)[x := M ] ≡ λx.e1

(λy.e1)[x := M ] ≡ λz.((e1[y := z])[x := M ]) (x 6≡ y and z fresh)

(e1 e2)[x := M ] ≡ (e1[x := M ]) (e2[x := M ])

c[x := M ] ≡ c

(succ e1)[x := M ] ≡ succ (e1[x := M ])

An expression e is stuck if it is not a value and there is no expression e′

such that e→V e
′. Intuitively, a stuck expression is just about to produce a

run-time error. A program e goes wrong if e→∗V e′ and e′ is stuck.
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Examples of stuck expressions include cv and succ (λx.e). Intuitively,
these expressions are stuck because c is not a function, and succ cannot be
applied to functions.

We will now prove that well-typed programs cannot go wrong (Corol-
lary 3.7). The proof technique is standard. For example, several research
groups have produced a similar theorem and proof for a considerable subset
of Java, for example, Flatt, Krishnamurthi and Felleisen, “A Programmer’s
Reduction Semantics for Classes and Mixins ”, Rice University, Department
of Computer Science, TR 97–293, revised June 1999. Many such big type
soundness proofs have been checked by automatic proof checkers.

Lemma 3.1 (Useless Assumption) If A[x : s] ` e : t, and x does not
occur free in e, then A ` e : t.

Proof. Left to the reader! 2

Lemma 3.2 (Substitution) If A[x : s] ` e : t and A ` M : s, then
A ` e[x := M ] : t.

Proof. We proceed by induction on the structure of the size of e. There
are now five subcases depending on which one of Rules (1)–(5) was the last
one used in the derivation of A[x : s] ` e : t.

• Rule (1). We have e ≡ y. There are two subcases.

– x ≡ y. We have y[x := M ] ≡ M . From A[x : s] ` e : t, e ≡ y,
x ≡ y, and Rule (1), we have (A[x : s])(x) = t, so s = t. From
A `M : s and s = t, we conclude A `M : t.

– x 6≡ y. We have y[x := M ] ≡ y. From A[x : s] ` e : t, e ≡ y, and
Rule (1), it follows that A(y) = t, so A ` y : t.

• Rule (2). We have e ≡ λy.e1. There are two subcases.

– x ≡ y. We have (λy.e1)[x := M ] ≡ λy.e1. Since x does not
occur free in λy.e1, we can from Lemma 3.1 and the derivation of
A[x : s] ` λy.e1 : t produce a derivation of A ` λy.e1 : t.
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– x 6≡ y. We have (λy.e1)[x := M ] ≡ λz.((e1[y := z])[x := M ]).
The last step in the derivation of A[x : s] ` e : t is of the form

A[x : s][y : t2] ` e1 : t1
A[x : s] ` λy.e1 : t2 → t1

From A[x : s][y : t2] ` e1 : t1 and a renaming of y to z, we have
A[x : s][z : t2] ` e1[y := z] : t1. Notice that the expressions e1 and
e1[y := z] have the same size. From the induction hypothesis we
have A[z : t2] ` ((e1[y := z])[x := M ]) : t1, so from Rule (2) we
can derive A ` λz.((e1[y := z])[x := M ]) : t2 → t1.

• Rule (3). We have e ≡ e1 e2, and (e1 e2)[x := M ] ≡ (e1[x :=
M ]) (e2[x := M ]). The last step in the derivation of A[x : s] ` e : t is
of the form

A[x : s] ` e1 : t2 → t A[x : s] ` e2 : t2
A[x : s] ` e1 e2 : t

From the induction hypothesis we have A ` e1[x := M ] : t2 → t and
A ` e2[x := M ] : t2, and from Rule (3) we get A ` e1[x := M ] e2[x :=
M ] : t.

• Rule (4). We have e ≡ c, and c[x := M ] ≡ c. The entire derivation of
A[x : s] ` e : t is of the form

A[x : s] ` c : Int

and from Rule (4) we have A ` c : Int.

• Rule (5). This case is similar to the case of Rule (3).

2

Theorem 3.3 (Type Preservation) If A ` e : t and e →V e′, then A `
e′ : t.

Proof. We proceed by induction on the structure of the derivation of
A ` e : t. There are now five subcases depending on which one of Rules
(1)–(5) was the last one used in the derivation of A ` e : t.
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• Rule (1). We have e ≡ x, so e→V e
′ is not possible.

• Rule (2). We have e ≡ λx.e1, so e→V e
′ is not possible.

• Rule (3). We have e ≡ e1e2. There are now three subcases depending
on which one of Rules (6)–(8) was the last one used in the derivation
of e→V e

′.

– Rule (6). We have e ≡ (λx.e1)v and e′ ≡ e1[x := v]. The last part
of the derivation of A ` e : t is of the form

A[x : s] ` e1 : t

A ` λx.e1 : s→ t
A ` v : s

A ` (λx.e1)v : t

From Lemma 3.2, A[x : s] ` e1 : t, and A ` v : s we get A `
e1[x := v] : t.

– Rules (7)–(8). In each case A ` e′ : t follows from the induction
hypothesis, and Rule (3).

• Rule (4). We have e ≡ c, so e→V e
′ is not possible.

• Rule (5). We have e ≡ succ e1. There are now two subcases depending
on which one of Rules (9)–(10) was the last one used in the derivation
of e→V e

′.

– Rule (9). We have e ≡ succ c1 and e′ ≡ c2, where dc2e = dc1e+ 1.
The last judgment in the derivation of A ` e : t is of the form
A ` succ c1 : Int, and from Rule (4) we have A ` c2 : Int.

– Rule (10). We have e ≡ succ e1 and e′ ≡ succ e2, and e1 →V e2.
The last part of the derivation of A ` e : t is of the form

A ` e1 : Int

A ` succ e1 : Int

From the induction hypothesis we have A ` e2 : Int, and from
Rule (10) we derive A ` succ e2 : Int.

2

Lemma 3.4 (Typable Value) If A ` v : Int, then v is of the form c. If
A ` v : s→ t, then v is of the form λx.e.
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Proof. Immediate from Rule (2) and Rule (4). 2

The following lemma states that a well-typed program is not stuck.

Lemma 3.5 (Progress) If e is a closed expression, and A ` e : t, then
either e is a value, or there exists e′ such that e→V e

′.

Proof. We proceed by induction on the structure of the derivation of
A ` e : t. There are now five subcases depending on which one of Rules
(1)–(5) was the last one used in the derivation of A ` e : t.

• Rule (1). We have e ≡ x, and x is not closed.

• Rule (2). We have e ≡ λx.e1, so e is a value.

• Rule (3). We have e ≡ e1e2. We have that e is closed, so also e1, e2 are
closed. The last step in the derivation of A ` e : t is of the form

A ` e1 : s→ t A ` e2 : s

A ` e1e2 : t

From the induction hypothesis we have that (1) either e1 is a value, or
there exists e′1 such that e1 →V e

′
1 and (2) either e2 is a value, or there

exists e′2 such that e2 →V e
′
2. We proceed by case analysis.

– If there exists e′1 such that e1 →V e′1, then e1e2 →V e′1e2 by
Rule (7).

– If e1 is a value, and there exists e′2 such that e2 →V e′2, then
e1e2 →V e1e

′
2 by Rule (8).

– If e1, e2 are values, then from A ` e1 : s → t and Lemma 3.4 we
have that e1 is of the form λx.e3, and hence e1e2 →V e3[x := e2]
by Rule (6).

• Rule (4). We have e ≡ c, so e is a value.

• Rule (5). We have e ≡ succ e1. We have that e is closed, so also e1 is
closed. The last step in the derivation of A ` e : t is of the form

A ` e1 : Int

A ` succ e1 : Int
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From the induction hypothesis we have that either e1 is a value, or
there exists e′1 such that e1 →V e

′
1. We proceed by case analysis.

– If e1 is a value, then from A ` e1 : Int and Lemma 3.4 we have that
e1 is of the form c1, and hence succ c1 →V c2 where dc2e = dc1e+1
by Rule (9).

– If there exists e′1 such that e1 →V e
′
1, then succ e1 →V succ e′1 by

Rule (10).

2

Lemma 3.6 (Closedness Preservation) If e is closed, and e→V e
′, then

e′ is closed.

Proof. Left to the reader! 2

Corollary 3.7 Well-typed programs cannot go wrong.

Proof. Suppose we have a well-typed program e, that is, e is closed and
we have A, t such that A ` e : t. Suppose also that e can go wrong, that
is, there exists a stuck expression e′ such that e →∗V e′. From Lemma 3.6
we have that e′ is closed. From Theorem 3.3 we have that A ` e′ : t. From
Lemma 3.5 we have that e′ is not stuck, a contradiction. We conclude that
e′ does not exist so e cannot go wrong. 2
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4 Recursive Types

Simple types are finite. When we draw a simple type as a tree, it is finite.
This is in contrast to Java where the definitions of interfaces and classes
can be mutually recursive. If we unfold a Java class or interface by keeping
replacing occurrences of interface names and class names by their definition,
then we may eventually end up with an infinite tree. For example,

interface I {

void s(boolean a);

int m(J a);

}

interface J {

boolean p(I a);

}
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boolean Interface

s m

→ →
1 0

Void
boolean

1 0

Int

In Java, two types are considered equal if and only if they have the same
name. Similarly, subtyping between interfaces and classes is defined in terms
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of the names of the interfaces and classes. The usual terminology is that
type equality and subtyping in Java are name based. By using the idea
of unfolding, we can abstract away from the names and get structure-based
definitions of type equality and subtyping. This is useful for sending objects
and types from one name space to another. In this section we will look at
the details of unfolding types into infinite trees, and in the following section
we will define a structural notion of subtyping on such infinite trees.

Let us now extend the grammar for simple types such that types are
allowed to be infinite.

t ::= t1 → t2 | Int | α | µα.(t1 → t2)

where α is a variable that ranges over types, and µα.t is a recursive type
which allow the unfolding:

µα.t = t[α := (µα.t)]

For example, let u be the type µα.(α→ Int). By unfolding once, we get that
u = u → Int. By unfolding twice, we get that u = (u → Int) → Int. If we
unfold infinitely, we get an infinite tree. That tree is the meaning of u.

In summary, if we generate something from the grammar above, then
we can unfold into an infinite tree where all the µs have disappeared. That
infinite tree is the type. Such a type will always have only finitely many
distinct subtrees. Trees of that kind are called regular trees. Conversely, any
regular tree can be written as a finite expression with µs.

Let us now return to the λ-calculus. Consider the λ-term λx.xx. With
the type u = µα.(α→ Int) it is easy to build a type derivation:

∅[x : u] ` x : u→ Int ∅[x : u] ` x : u

∅[x : u] ` xx : Int

∅ ` λx.xx : u→ Int

In the left part of the tree we have ∅[x : u] ` u→ Int and this is okay because
u = u→ Int.

Let us consider another application of the type u = µα.(α→ Int). There
is a famous λ-term which is known as the “paradoxical combinator.” This
λ-term has the property that when applied to a function g, then it produces
a fixed point of g. The λ-term is:

Y = λf.(λx.f(xx))(λx.f(xx))
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Notice that for any λ-term E we have

Y (E) ;β (λx.E(xx))(λx.E(xx))

;β E((λx.E(xx))(λx.E(xx)))

=β E(Y (E))

So, Y (E) is a fixed point of E!
Can we type Y ? Not with simple types. But it is easy with recursive

types. Let us again use the type u = µα.(α→ Int). Here is part of the type
derivation:

∅[f : Int→ Int] ` (λx.f(xx))(λx.f(xx)) : Int

∅ ` λf.(λx.f(xx))(λx.f(xx)) : (Int→ Int)→ Int

It is easy to see that if λx.f(xx) has type u, then we can use u = u→ Int to
get the hypothesis of the above derivation. So we must derive

∅[f : Int→ Int] ` λx.f(xx) : u

We will give x the type u→ Int, which is actually u, and we must then show
that f(xx) has type Int. This in turn mean that xx must have type Int. This
is easy to achieve because u = u→ Int. Here is most of the type derivation:

∅[f : Int→ Int][x : u] ` f : Int→ Int ∅[f : Int→ Int][x : u] ` xx : Int

∅[f : Int→ Int][x : u] ` f(xx) : Int

∅[f : Int→ Int] ` λx.f(xx) : u

It is easy to see that we can replace Int with any other type and still have a
valid type derivation.

Not all λ-terms can be typed with recursive types. For example,

λx.x(succ x)

is a quite weird λ-term that we cannot type even with recursive types.
Corollary 3.7 also holds for recursive types: same type rules, and recursive

types instead of simple types.
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Types as Functions
We have seen that we can view a type as a possibly infinite tree. We can
represent such a tree by a function which maps paths to labels from a set
Σ. Such functions are called terms. For example, for the types in Sections
3–4, all paths are in the set {0, 1}∗, where we use 0 to denote Left, and 1 to
denote Right, and all labels are from the set Σ = {Int,→}. A term t over Σ
is a partial function

t : {0, 1}∗ → Σ

with domain D(t) satisfying

• D(t) is nonempty and prefix-closed;

• if t(α) =→, then α0, α1 ∈ D(t).

The set of all terms over Σ is denoted TΣ.
For example, the type

→
�� @@→

�� @@→
�� @@→

�� @@

>

>
⊥

⊥...

can be represented by the term t:

t(0n) = →
t(02n1) = >

t(02n+11) = ⊥

A term t is finite if its domain D(t) is a finite set. We denote the set of
finite terms over Σ by FΣ.

Subterms: t↓α(β) = t(αβ).
A term t is regular if it has only finitely many distinct subterms; i.e., if

{t↓α | α ∈ ω∗} is a finite set.
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Types as Automata

If t is a term, then the following are equivalent:

(i) t is regular;

(ii) t is representable by a term automaton;

(iii) t is describable by a type expression involving µ.

→
�� @@→

�� @@
⊥

⊥...

→
�� @@→

�� @@
>

>...

s s-&%
'$

�
-0

1
→v

⊥ s s-&%
'$

�
-0

1
→u

>
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5 Subtyping

Motivation: the extends keyword in Java.

In general, we will work with an ordering ≤ of the

types, the subtype order.

One extra typing rule, known as “subsumption”:

A ` e : t t ≤ t′

A ` e : t′

Consider this set of types:

t ::= v | ⊥ | > | t→ t | µv.(t→ t) (types)

Representing types as labeled trees:

µu.((u→ u)→ ⊥) ≤ µv.((v → ⊥)→ >)

→
�� @@

→
�� @@

→
�� @@

→
�� @@⊥

⊥
...

... ...

→
�� @@→

�� @@→
�� @@→

�� @@

>

>
⊥

⊥...

The order ≤FIN is the smallest binary relation on FΣ,

with Σ = {⊥,→,>}, such that

(i) ⊥ ≤FIN t ≤FIN > for all finite t;

(ii) if s′ ≤FIN s and t ≤FIN t
′ then s→ t ≤FIN s

′ → t′.
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Parity

The parity of α ∈ {0, 1}∗ is the number mod 2 of 0’s in

α. The parity of α is denoted πα. A string α is said to

be even if πα = 0 and odd if πα = 1.

Let ≤0 be the linear order

⊥ ≤0 → ≤0 >

on Σ, and let ≤1 be its reverse

> ≤1 → ≤1 ⊥ .

The Type Ordering

For s, t ∈ TΣ, define s ≤ t iff s(α) ≤πα t(α) for all

α ∈ D(s) ∩ D(t).

A counterexample to s ≤ t is a path α ∈ D(s)∩D(t)

for which s(α) 6≤πα t(α).

Slogan: Two trees are ordered if no common path

detects a counterexample.

Basic Result: The relation ≤ is a partial order on TΣ,

and agrees with ≤FIN on FΣ.
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6 Decision Procedure for Subtyping

There is an efficient algorithm that decides if one recursive

type is a subtype of another.

t ::= v | ⊥ | > | t→ t | µv.(t→ t) (types)

Given types s, t, a certain product automaton accepts all

counterexamples to s ≤ t, that is, the set

{α ∈ D(s) ∩ D(t) | s(α) 6≤πα t(α)}.

Algorithm

Input: Two types s, t.

Output: Is s ≤ t?

1. Construct the term automata for s and t

(linear time).

2. Construct the product automaton (size O(n2)).

3. Decide, using depth first search, if the

product automaton accepts the empty set

(linear time).

4. If so then s ≤ t else s 6≤ t.

Time complexity: O(n2).
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Example

µv.(v → ⊥) 6≤ µu.(u→ >)

→
�� @@→

�� @@
⊥

⊥...

→
�� @@→

�� @@
>

>...
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�
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1
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Product automaton:
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0

((⊥,>, 1))

(⊥,>, 0)(→v,→u, 1)

(→v,→u, 0)
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7 First-Order Unification

Let us consider equations in which the variables range over finite trees. The
problem of first-order unification is to decide whether a set of such equations
has a solution. Moreover, if there is a solution, then we want the most general
solution. One can solve this unification problem in O(n) time, where n is
the size of the equation set (M. S. Paterson and M. N. Wegman, “Linear
Unification”, Journal of Computer and System Sciences, 16:158–167, 1978.)
Here, we will not cover this linear-time algorithm. Rather we will present a
simpler algorithm with worse worst-case complexity.

For simplicity of notation, we will focus on equations where each side is
a simple-type expression generated from the grammar

t ::= t→ t | Int | α

where α ranges over a set of type variables. A substitution is of the form

[α1 := s1, . . . , αm := sm]

where α1, . . . , αm are type variables, and s1, . . . , sm are type expressions.
When a substitution is applied to a type expression, α1, . . . , αm are replaced
simultaneously. For example

((Int→ α)→ β)[α := Int, β := (Int→ Int)] = (Int→ Int)→ (Int→ Int)

((Int→ α)→ β)[α := Int, β := (Int→ α)] = (Int→ Int)→ (Int→ α)

((Int→ α)→ γ)[α := Int, β := (Int→ α)] = (Int→ Int)→ γ.

Let G be the set of equations

s1 = t1

. . .

sn = tn.

If σ is a substitution, then we denote by Gσ the set of equations

s1σ = t1σ

. . .

snσ = tnσ.
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If for every i ∈ 1..n we have that siσ is identical to tiσ, then we say that G
has solution σ. For example, the two equations

α = β → Int

β = Int→ Int ,

have the solution σ where

σ = [α := ((Int→ Int)→ Int), β := (Int→ Int)].

The equation

α = α→ Int ,

has no solution because of the cycle. In general, the forms of equations we
consider can be unsolvable for two reasons:

1. we encounter a cycle, that is, an equation of one of the forms

α = (. . . α . . .)→ . . . or

α = . . . → (. . . α . . .) ,

or

2. we encounter an equation where neither of the two sides are variables,
and where the two sides have different root symbols, that is, the equa-
tion is of the form Int = s→ t.

Note that although equations with cycles and/or different root symbols may
not be immediately present in an equation set, we may encounter such equa-
tions after replacing equals by equals.

If we have an equation s = t, and a substitution σ such that sσ = tσ,
then σ is called a unifier of s and t, and we say that σ unifies s and t, that
σ solves s = t, and that σ satisfies s = t. If for type expressions s, t, there
exists a unifier σ of s and t, then we say that s and t are unifiable.

We will denote the composition of two substitutions σ, θ by σ◦θ, and this
notation means

t(σ ◦ θ) = (tσ)θ.

A substitution σ which solves an equation system is called a most general
solution of that equation system provided that for any other solution θ, there
exists a substitution τ such that θ = σ ◦ τ .
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A Unification Algorithm

We now present a first-order unification algorithm which either decides that
an equation system has no solution, or produces the most general solution.
The algorithm uses three variables G, Failure, σ:

• G ranges over sets of equations, and it is initially the input set of
equations,

• Failure is a boolean variable which is initially false, and

• σ is a substitution which is initially empty.

After initialization, the algorithm proceeds as follows:

while G 6= ∅ and (not Failure) do

Choose and remove an equation e from G, and let (s = t) be (eσ).
There are now six cases depending on the form of (s = t).

1. If s, t are identical variables, or s, t are both Int,
then do nothing.

2. If s = s1 → s2 and t = t1 → t2,
then G = G ∪ {s1 = t1, s2 = t2}.

3. If (s = Int and t = t1 → t2), or (s = s1 → s2 and t = Int),
then Failure = true.

4. If s is a variable that does not occur in t,
then σ = σ ◦ [s := t].

5. If t is a variable that does not occur in s,
then σ = σ ◦ [t := s].

6. If s 6= t, and either s is a variable that occurs in t, or t is a
variable that occurs in s,
then Failure = true.

end while

If Failure, then output “no solution”, else output σ.

END of algorithm

The loop invariant is:
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If θ is the most general solution of G, then σ◦θ is the most general
solution of the input set of equations.

In case (4) and (5), the phrase “does not occur in” guards against cycles. This
check is expensive computationally; it is widely known as the “occurs-check.”

Examples

The first example has no solution because of a cycle, and the second has a
solution.

Example 1

Equations:

α = Int→ β

β = α→ Int.

Initially we have

G = {(α = Int→ β), (β = α→ Int)}
Failure = false

σ = ∅.

Choose and remove, say, (α = Int→ β) from G. We have (α = Int→ β)σ ≡
(α = Int→ β), so we are in case (4). Change σ to [α := (Int→ β)]. We now
have G = {(β = α → Int)}. Choose(!) and remove (β = α → Int) from G.
We have (β = α → Int)σ ≡ (β = (Int → β) → Int), so there is a cycle and
we are in case (6), and the algorithm outputs that there is no solution.

Example 2

Equations:

α = β → Int

β = Int→ Int.
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Initially we have

G = {(α = β → Int), (β = Int→ Int)}
Failure = false

σ = ∅.

Choose and remove, say, (α = β → Int) from G. We have (α = β → Int)σ ≡
(α = β → Int), so we are in case (4). Change σ to [α := (β → Int)]. We now
have G = {(β = Int→ Int)}. Choose(!) and remove (β = Int→ Int) from G.
We have (β = Int → Int)σ ≡ (β = Int → Int), so we are in case (4). Change
σ to

[α := (β → Int)] ◦ [β := (Int→ Int)] =

[α := (Int→ Int)→ Int, β := (Int→ Int)].

We now have G = ∅, so the algorithm outputs σ as a most general solution
of the initial equations.

25



8 Typed Assembly Language

Here is the grammar for a typed assembly language. We use c to range over
integer constants, and we use l to range over labels.

v ::= c | l (values)
t ::= Int | Γ (types)
e ::= mov rd, rs; e | set rd, v; e | inc r; e | jmp r (code)
R ::= [r 7→ v, . . .] (register file)
Γ ::= [r : t, . . .] (register file type)
H ::= [l 7→ (Γ, e), . . .] (code heap)
Ψ ::= [l : Γ, . . .] (heap type)
s ::= (H,R, e) (program state)

We use dce to denote the integer represented by an integer constant c. A
small-step operational semantics for the language is given by the reflexive,
transitive closure of the relation →:

→ ⊆ program state× program state

(H,R,mov rd, rs; e)→ (H,R[rd 7→ R(rs)], e) (11)

(H,R, set rd, v; e)→ (H,R[rd 7→ v)], e) (12)

(H,R, inc r; e)→ (H,R[r 7→ c′)], e) (13)

where dc′e = dce+ 1, provided R(r) = c.

(H,R, jmp r)→ (H,R, e) (14)

provided R(r) = l and H(l) = (Γ, e).

A program state s is stuck if there is no program state s′ such that s → s′.
A program state s goes wrong if ∃s′ : s→∗ s′ and s′ is stuck.

We will use five forms of judgments and an ordering of register file types
to describe what it means for a program state to be well typed.

26



Values:

Ψ ` c : Int (15)

Ψ ` l : Γ (Ψ(l) = Γ) (16)

Code:

Ψ,Γ[rd : Γ(rs)] ` e
Ψ,Γ ` mov rd, rs; e

(17)

Ψ ` v : t Ψ,Γ[rd : t] ` e
Ψ,Γ ` set rd, v; e

(18)

Γ(r) = Int Ψ,Γ ` e
Ψ,Γ ` inc r; e

(19)

Γ(r) = Γ′ Γ ≤ Γ′

Ψ,Γ ` jmp r
(20)

Register files:

Ψ ` v : t . . .

Ψ,Γ ` [r 7→ v, . . .]
(Γ(r) = t, . . .) (21)

Ordering of register file types:

[r1 : t1, . . . , rn : tn, . . . , rn+m : tn+m] ≤ [r1 : t1, . . . , rn : tn] (22)

where m ≥ 0.

Code heaps:

Ψ,Γ ` e . . .

Ψ ` [l 7→ (Γ, e), . . .]
(Ψ(l) = Γ, . . .) (23)

Program states:

Ψ ` H Ψ,Γ ` R Ψ,Γ ` e
` (H,R, e)

(24)

A program state s is well typed if and only if ` s.
Exercise: prove that a well-typed program state cannot go wrong.
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