
The Fortress Language Specification
Version 1.0 β

Eric Allen
David Chase
Joe Hallett

Victor Luchangco
Jan-Willem Maessen

Sukyoung Ryu
Guy L. Steele Jr.

Sam Tobin-Hochstadt

Additional contributors:
Joao Dias

Carl Eastlund
Christine Flood

Yossi Lev
Cheryl McCosh

c© Sun Microsystems, Inc.

March 6, 2007

Contents

I Preliminaries 14

1 Introduction 15

1.1 Fortress in a Nutshell . 15

1.2 Acknowledgments . 17

1.3 Organization . 17

2 Overview 18

2.1 The Fortress Programming Environment . 18

2.2 Exports, Imports, and Linking Components . 20

2.3 Automatic Generation of APIs . 23

2.4 Rendering . 23

2.5 Some Common Types in Fortress . 24

2.6 Functions in Fortress . 25

2.7 Some Common Expressions in Fortress . 27

2.8 For Loops Are Parallel by Default . 28

2.9 Atomic Expressions . 28

2.10 Dimensions and Units . 28

2.11 Aggregate Expressions . 29

2.12 Comprehensions . 30

2.13 Summations and Products . 31

2.14 Tests and Properties . 31

2.15 Objects and Traits . 32

2.16 Features for Library Development . 35

II Fortress for Application Programmers 37

3 Programs 38

2

4 Evaluation 39

4.1 Values . 39

4.2 Normal and Abrupt Completion of Evaluation . 40

4.3 Memory and Memory Operations . 40

4.4 Threads and Parallelism . 41

4.5 Environments . 44

4.6 Input and Output Actions . 44

5 Lexical Structure 45

5.1 Characters . 45

5.2 Words and Chunks . 48

5.3 Lines, Pages and Position . 48

5.4 ASCII Conversion . 48

5.5 Input Elements and Scanning . 49

5.6 Comments . 50

5.7 Whitespace Elements . 50

5.8 Reserved Words . 50

5.9 Character Literals . 51

5.10 String Literals . 52

5.11 Boolean Literals . 53

5.12 The Void Literal . 53

5.13 Numerals . 53

5.14 Operator Tokens . 54

5.15 Identifiers . 55

5.16 Special Tokens . 55

5.17 Rendering of Fortress Programs . 55

6 Declarations 58

6.1 Kinds of Declarations . 58

6.2 Top-Level Variable Declarations . 60

6.3 Local Variable Declarations . 61

6.4 Local Function Declarations . 62

6.5 Matrix Unpasting . 62

3

7 Names 66

7.1 Namespaces . 66

7.2 Reach and Scope of a Declaration . 66

7.3 Qualified Names . 68

8 Types 69

8.1 Relationships between Types . 69

8.2 Trait Types . 70

8.3 Object Trait Types . 70

8.4 Tuple Types . 70

8.5 Arrow Types . 71

8.6 Bottom Type . 72

8.7 Types in the Fortress Standard Libraries . 72

8.8 Intersection and Union Types . 72

8.9 Type Aliases . 73

9 Traits 74

9.1 Trait Declarations . 74

9.2 Method Declarations . 76

9.3 Abstract Field Declarations . 79

9.4 Method Contracts . 80

9.5 Value Traits . 81

10 Objects 82

10.1 Object Declarations . 82

10.2 Field Declarations . 84

10.3 Value Objects . 84

10.4 Object Equivalence . 85

11 Static Parameters 86

11.1 Type Parameters . 86

11.2 Nat and Int Parameters . 87

11.3 Bool Parameters . 87

11.4 Dimension and Unit Parameters . 87

11.5 Operator and Identifier Parameters . 88

11.6 Where Clauses . 89

4

12 Functions 91

12.1 Function Declarations . 91

12.2 Function Applications . 93

12.3 Abstract Function Declarations . 95

12.4 Function Contracts . 95

13 Expressions 97

13.1 Literals . 97

13.2 Identifier References . 99

13.3 Dotted Field Accesses . 99

13.4 Dotted Method Invocations . 100

13.5 Naked Method Invocations . 100

13.6 Function Calls . 101

13.7 Function Expressions . 101

13.8 Operator Applications . 101

13.9 Object Expressions . 102

13.10Assignments . 103

13.11Do Expressions . 104

13.12Label and Exit . 106

13.13While Loops . 107

13.14Generators . 107

13.15For Loops . 108

13.16Ranges . 108

13.17Summations and Other Reduction Expressions . 109

13.18If Expressions . 110

13.19Case Expressions . 111

13.20Extremum Expressions . 112

13.21Typecase Expressions . 112

13.22Atomic Expressions . 113

13.23Spawn Expressions . 114

13.24Throw Expressions . 115

13.25Try Expressions . 115

13.26Static Expressions . 116

13.27Aggregate Expressions . 118

5

13.28Comprehensions . 121

13.29Type Ascription . 122

13.30Type Assumption . 122

13.31Expression-like Functions . 122

14 Exceptions 125

14.1 Causes of Exceptions . 125

14.2 Types of Exceptions . 125

14.3 Information of Exceptions . 126

15 Overloading and Multiple Dispatch 128

15.1 Terminology and Notation . 128

15.2 Applicability to Named Functional Calls . 129

15.3 Applicability to Dotted Method Calls . 129

15.4 Applicability for Functionals with Varargs and Keyword Parameters 130

15.5 Overloading Resolution . 130

16 Operators 132

16.1 Operator Names . 132

16.2 Operator Precedence . 133

16.3 Operator Fixity . 135

16.4 Chained and Multifix Operators . 136

16.5 Enclosing Operators . 136

16.6 Conditional Operators . 137

16.7 Juxtaposition . 137

16.8 Overview of Operators in the Fortress Standard Libraries . 139

17 Conversions and Coercions 144

17.1 Principles of Coercion . 144

17.2 Coercion Declarations . 145

17.3 Coercion Invocations . 146

17.4 Applicability with Coercion . 147

17.5 Coercion Resolution . 148

17.6 Restrictions on Coercion Declarations . 150

17.7 Coercions for Tuple and Arrow Types . 150

17.8 Automatic Widening . 151

6

18 Dimensions and Units 154

19 Tests and Properties 158

19.1 The Purpose of Tests and Properties . 158

19.2 Test Declarations . 158

19.3 Other Test Constructs . 159

19.4 Running Tests . 159

19.5 Test Suites . 160

19.6 Property Declarations . 160

20 Type Inference 162

20.1 What Is Inferred . 162

20.2 Type Inference Procedure . 162

20.3 Finding “Closest Expressible Types” for Inferred Types . 164

21 Memory Model 165

21.1 Principles . 165

21.2 Programming Discipline . 166

21.3 Read and Write Atomicity . 168

21.4 Ordering Dependencies among Operations . 168

22 Components and APIs 171

22.1 Overview . 171

22.2 Components . 172

22.3 APIs . 175

22.4 Tests in Components and APIs . 176

22.5 Type Inference for Components . 177

22.6 Initialization Order for Components . 177

22.7 Basic Fortress Operations . 177

22.8 Advanced Features of Fortress Operations . 185

III Fortress APIs and Documentation for Application Programmers 189

23 Objects 190

23.1 The Trait Fortress.Core.Any . 190

23.2 The Trait Fortress.Core.Object . 191

23.3 The Trait Fortress.Core.Tuple . 192

7

24 Booleans and Boolean Intervals 193

24.1 The Trait Fortress.Core.Boolean . 193

24.2 The Trait Fortress.Standard.BooleanInterval . 197

24.3 Top-level BooleanInterval Values . 204

25 Numbers 205

25.1 Rational Numbers . 205

25.2 Integers . 213

26 Negated Relational Operators 225

26.1 Negated Equivalence Operators . 225

26.2 Negated Comparison Operators . 226

27 Exceptions 228

27.1 The Trait Fortress.Standard.Exception . 228

27.2 The Trait Fortress.Standard.CheckedException . 228

27.3 The Trait Fortress.Standard.UncheckedException . 229

28 Threads 230

28.1 The Trait Fortress.Standard.Thread . 230

29 Dimensions and Units 231

29.1 Fortress.SIUnits . 231

29.2 Fortress.EnglishUnits . 233

29.3 Fortress.InformationUnits . 234

30 Tests 235

30.1 The Object Fortress.Standard.TestSuite . 235

30.2 Test Functions . 235

31 Convenience Functions and Types 236

31.1 Convenience Functions . 236

31.2 Convenience Types . 237

8

IV Fortress for Library Writers 238

32 Parallelism and Locality 239

32.1 Regions . 239

32.2 Distributed Arrays . 240

32.3 Abortable Atomicity . 240

32.4 Shared and Local Data . 241

32.5 Distributions . 242

32.6 Early Termination of Threads . 243

32.7 Placing Threads . 244

32.8 Use and Definition of Generators . 245

33 Overloaded Functional Declarations 251

33.1 Principles of Overloading . 251

33.2 Subtype Rule . 252

33.3 Incompatibility Rule . 253

33.4 Meet Rule . 253

33.5 Coercion and Overloading Resolution . 255

34 Operator Declarations 256

34.1 Infix/Multifix Operator Declarations . 256

34.2 Prefix Operator Declarations . 257

34.3 Postfix Operator Declarations . 257

34.4 Nofix Operator Declarations . 257

34.5 Bracketing Operator Declarations . 258

34.6 Subscripting Operator Method Declarations . 258

34.7 Subscripted Assignment Operator Method Declarations . 258

34.8 Conditional Operator Declarations . 259

34.9 Big Operator Declarations . 259

35 Dimensions and Units Declarations 260

35.1 Dimensions Declarations . 260

35.2 Units Declarations . 261

35.3 Abbreviating Dimension and Unit Declarations . 262

35.4 Absorbing Units . 263

9

36 Support for Domain-Specific Languages 265

36.1 Definitions of Syntax Expanders . 265

36.2 Declarations of Syntax Expanders . 266

36.3 Restrictions on Delimiters . 266

36.4 Processing Syntax Expanders . 266

36.5 Expanders for Fortress . 268

V Fortress APIs and Documentation for Library Writers 269

37 Algebraic Constraints 270

37.1 Predicates and Equivalence Relations . 270

37.2 Partial and Total Orders . 272

37.3 Operators and Their Properties . 275

37.4 Lattices . 280

37.5 Monoids, Groups, Rings, and Fields . 282

37.6 Boolean Algebras . 287

38 Numbers 289

38.1 The Trait Fortress.Standard.RationalQuantity . 289

38.2 The Trait Fortress.Standard.TotalComparison . 294

38.3 Top-level Total Comparison Values . 295

38.4 The Trait Fortress.Standard.Comparison . 295

38.5 Top-level Comparison Value . 296

39 Components and APIs 297

40 Memory Sequences and Binary Words 299

40.1 The Trait Fortress.Core.LinearSequence . 300

40.2 Constructing Linear Sequences . 304

40.3 The Trait Fortress.Core.HeapSequence . 304

40.4 Constructing Heap Sequences . 306

40.5 The Trait Fortress.Core.BinaryWord . 307

40.6 The Trait Fortress.Core.BinaryEndianWord . 311

40.7 The Trait Fortress.Core.BasicBinaryOperations . 316

40.8 The Trait Fortress.Core.BasicBinaryWordOperations . 320

10

40.9 The Trait Fortress.Core.BinaryLinearEndianSequence . 322

40.10The Trait Fortress.Core.BinaryEndianLinearEndianSequence . 326

40.11The Trait Fortress.Core.BinaryHeapEndianSequence . 331

40.12The Trait Fortress.Core.BinaryEndianHeapEndianSequence . 331

40.13The Trait Fortress.Core.BasicBinaryHeapSubsequenceOperations 332

VI Appendices 340

A Fortress Calculi 341

A.1 Basic Core Fortress . 341

A.2 Core Fortress with Where Clauses . 346

A.3 Core Fortress with Overloading . 353

A.4 Acyclic Core Fortress with Field Definitions . 359

B Overloaded Functional Declarations 365

B.1 Proof of Coercion Resolution for Functions . 365

B.2 Proof of Overloading Resolution for Functions . 366

C Components and APIs 368

D Rendering of Fortress Identifiers 370

E Support for Unicode Input in ASCII 374

E.1 Word Pasting across Line Breaks . 374

E.2 Converting Names of Unicode Characters and ASCII Shorthand . 375

E.3 Apostrophe Replacement within Numerals . 378

E.4 Equivalence under ASCII Conversion . 378

F Operator Precedence, Chaining, and Enclosure 379

F.1 Bracket Pairs for Enclosing Operators . 379

F.2 Vertical-Line Operators . 380

F.3 Arithmetic Operators . 381

F.4 Relational Operators . 384

F.5 Boolean Operators . 391

F.6 Other Operators . 392

11

G Simplified Grammar for Application Programmers and Library Writers 403

G.1 Components and APIs . 404

G.2 Top-level Declarations . 405

G.3 Trait and Object Declarations . 405

G.4 Variable Declarations . 407

G.5 Function Declarations . 407

G.6 Dimension, Unit, Type Alias, Test, Property, and External Syntax Declarations 407

G.7 Headers . 407

G.8 Parameters . 409

G.9 Method Declarations . 410

G.10 Method Parameters . 410

G.11 Field Declarations . 410

G.12 Abstract Field Declarations . 411

G.13 Expressions . 411

G.14 Expressions Enclosed by Keywords . 412

G.15 Local Declarations . 413

G.16 Literals . 414

G.17 Types . 414

G.18 Symbols and Operators . 415

G.19 Identifiers . 415

H Full Grammar for Fortress Implementors 416

H.1 Components and APIs . 416

H.2 Top-level Declarations . 417

H.3 Trait and Object Declarations . 418

H.4 Variable Declarations . 419

H.5 Function Declarations . 420

H.6 Dimension, Unit, Type Alias, Test, Property, and External Syntax Declarations 420

H.7 Headers . 420

H.8 Parameters . 423

H.9 Method Declarations . 424

H.10 Method Parameters . 424

H.11 Field Declarations . 425

H.12 Abstract Field Declarations . 425

12

H.13 Expressions . 425

H.14 Expressions Enclosed by Keywords . 428

H.15 Local Declarations . 429

H.16 Literals . 430

H.17 Expressions without Newlines . 431

H.18 Expressions within Array Expressions . 431

H.19 Types . 432

H.20 Symbols and Operators . 434

H.21 Identifiers . 436

H.22 Spaces and Comments . 436

I Changes between Fortress 1.0 α and 1.0 β Specifications 437

13

Part I

Preliminaries

14

Chapter 1

Introduction

The Fortress Programming Language is a general-purpose, statically typed, component-based programming language
designed for producing robust high-performance software with high programmability.

In many ways, Fortress is intended to be a “growable language”, i.e., a language that can be gracefully extended
and applied in new and unanticipated contexts. Fortress supports state-of-the-art compiler optimization techniques,
scaling to unprecedented levels of parallelism and of addressable memory. Fortress has an extensible component
system, allowing separate program components to be independently developed, deployed, and linked in a modular and
robust fashion. Fortress also supports modular and extensible parsing, allowing new notations and static analyses to
be added to the language.

The name “Fortress” is derived from the intent to produce a “secure Fortran”, i.e., a language for high-performance
computation that provides abstraction and type safety on par with modern programming language principles. Despite
this etymology, the language is a new language with little relation to Fortran other than its intended domain of ap-
plication. No attempt has been made to support backward compatibility with existing versions of Fortran; indeed,
many new language features were invented during the design of Fortress. Many aspects of Fortress were inspired
by other object-oriented and functional programming languages, including The JavaTM Programming Language [5],
NextGen [6], Scala [23], Eiffel [18], Self [1], Standard ML [20], Objective Caml [16], Haskell [25], and Scheme [15].
The result is a language that employs cutting-edge features from the programming-language research community to
achieve an unprecedented combination of performance and programmability.

Fortress is an open source project. An initial interpreter, implementing a core of the language features presented in
this specification, is available at the Fortress project website:

http://fortress.sunsource.net

There you will find source code, supporting documents, and access to many discussion groups related to the Fortress
project.

1.1 Fortress in a Nutshell

Two basic concepts in Fortress are that of object and of trait. An object consists of fields and methods. The fields of
an object are specified in its definition. An object definition may also include method definitions.

Traits are named program constructs that declare sets of methods. They were introduced in the Self programming
language, and their semantic properties (and advantages over conventional class inheritance) were analyzed by Schärli,
Ducasse, Nierstrasz, and Black [8]. In Fortress, a method declared by a trait may be either abstract or concrete:

15

abstract methods have only headers; concrete methods also have definitions. A trait may extend other traits: it inherits
the methods provided by the traits it extends. A trait provides the methods that it inherits as well as those explicitly
declared in its declaration.

Every object extends a set of traits (its “supertraits”). An object inherits the concrete methods of its supertraits and
must include a definition for every method declared but not defined by its supertraits.

object SolarSystem extends {StarSystem,OrbitingObject }
sun = Sol
planets = {Mercury,Venus,Earth,Mars, Jupiter,Saturn,Uranus,Neptune }
position = Polar(25000 lightYears, 0 radians)
ω : R64 AngularVelocity = 2π radians / 226 million years in seconds

variation(ω∆) =
ω += ω∆

end

In this example, the object SolarSystem extends the traits StarSystem and OrbitingObject . The fields ω and
position are defined with appropriate quantities. The field sun is defined to be another object named Sol , and the
field planets is defined to be a set of objects. The method variation is defined to take a single parameter ω∆, and
update the ω field of the object. As this example illustrates, Fortress provides static checking of physical units and
dimensions on quantities.

Note that the identifiers used in this example are not restricted to ASCII character sequences. Fortress allows the
use of Unicode characters [27] in program identifiers, as well as subscripts and superscripts. (See Appendix E for a
discussion of Unicode and support for entering programs in ASCII.) Fortress also includes a set of standard formatting
rules that follow the conventions of mathematical notation. For example, most variable references in Fortress programs
are italicized. Moreover, multiplication can be expressed by simple juxtaposition, as can be seen in the definition of
ω. There is also support for operator overloading, as well as a facility for extending the syntax with domain-specific
languages.

Although Fortress is statically and nominally typed, types are not specified for all fields, nor for all method parameters
and return values. Instead, wherever possible, type inference is used to reconstruct types. In the examples throughout
this specification, we often omit the types when they are clear from context. Additionally, types can be parametric
with respect to other types and values (most notably natural numbers).

These design decisions are motivated in part by our goal of making the scientist/programmer’s life as easy as possible
without compromising good software engineering. In particular, they allow us to write Fortress programs that preserve
the look of standard mathematical notation.

In addition to objects and traits, Fortress allows the programmer to define top-level functions. Functions are first-class
values: They can be passed to and returned from functions, and assigned as values to fields and variables. Functions
and methods can be overloaded, with calls to overloading methods resolved by multiple dynamic dispatch similarly to
the manner described in [19]. Keyword parameters and variable size argument lists are also supported.

Fortress programs are organized into components, which export and import APIs and can be linked together. APIs
describe the “shape” of a component, specifying the types in traits, objects and functions provided by a component.
All external references within a component (i.e., references to traits, objects and functions implemented by other
components) are to APIs imported by the component. We discuss components and APIs in detail in Chapter 22.

To address the needs of modern high-performance computation, Fortress also supports a rich set of operations for
defining parallel execution and distribution of large data structures. This support is built into the core of the language.
For example, for loops in Fortress are parallel by default.

16

1.2 Acknowledgments

With the help of many contributors and supporters, we are in the midst of building an open source interpreter for
Fortress. Many people have contributed to the Fortress project with useful comments and suggestions for both the
specification and implementation, code contributions, and supporting tools. Special thanks go to Mike Atkinson,
Alex Battisti, Steve Brandt, Martin Buchholz, Zoran Budimlic, Bill Callahan, Corky Cartwright, Darren Dale, David
Detlefs, Matthias Felleisen, Robby Findler, Kathi Fisler, Richard Gabriel, Markus Gaisbauer, Alex Garthwaite, Jesse
Glick, Brian Goetz, Robert Grimm, Steve Heller, Maurice Herlihy, Mack Joyner, Miriam Kadansky, Kazuhiko Kakehi,
Ken Kennedy, Alex Kravets, Shriram Krishnamurthi, Eric Lavigne, Doug Lea, Vass Litvinov, Eugene Loh, Daniel MD,
John Mellor-Crummey, Jim Mitchell, Mark Moir, Akhilesh Mritunjai, Dan Nussbaum, Bill Pugh, Doron Rajwan, John
Reppy, Nir Shavit, Bob Sproull, Walid Taha, Peter Vanderbilt, Michael Van de Vanter, Chris Vick, Larry Votta, and
Jim Waldo.

We would also like to thank the anonymous referees of peer-reviewed papers related to the Fortress project, who
have influenced the language design in many ways, as well as the DARPA reviewers from the HPCS project for their
thoughtful feedback throughout the design of the language.

1.3 Organization

This language specification is organized as follows. In Part II, the Fortress language features for application program-
mers are explained, including objects, types, and functions. Relevant parts of the concrete syntax are provided with
many examples. The full concrete syntax of Fortress is described in Appendix G. In Part III, APIs and documenta-
tion of some of the Fortress standard libraries for application programmers are presented. Part IV describes advanced
Fortress language features for library writers and Part V presents APIs and documentation for some of the Fortress
standard libraries for library writers. Finally, in Part VI, the Fortress calculi, support for Unicode characters, and the
Fortress grammars are described.

A note on the presented libraries in Parts III and V: The Fortress standard libraries presented in this draft specification
should not be construed as exhaustive or complete. Presentation of additional libraries is planned for future drafts, as
are modifications to the libraries included here.

17

Chapter 2

Overview

In this chapter, we provide a high-level overview of the entire Fortress language. We present most features in this
chapter through the use of examples, which should be accessible to programmers of other languages. In this chapter,
unlike the rest of the specification, no attempt is made to provide complete descriptions of the various language features
presented. Instead, we intend this overview to provide useful context for reading other sections of this specification,
which provide rigorous definitions for what is merely introduced here.

2.1 The Fortress Programming Environment

Although Fortress is independent of the properties of a particular platform on which it is implemented, it is helpful
to describe a programming model for it that we intend to provide on modern operating systems. In this programming
model, Fortress source code is stored in files and organized in directories, and there is a text-based shell from which
we can store environment variables and issue commands to execute and compile programs.

There are two ways in which to run a Fortress program:

• As a script. The Fortress program is stored in a file with the suffix “.fsx” and executed directly from an
underlying operating system shell by calling the command “fortress script” on it. For example, suppose
we write the following “Hello, world! ” program to a file “HelloWorld.fsx”:

export Executable
run(args) = print “Hello, world!”

The first line is an export statement; we ignore it for the moment. The second line defines a function run , which
takes a parameter named args and prints the string “Hello, world! ”. Note that the parameter args does
not include a declaration of its type. In many cases, types can be elided in Fortress and inferred from context.
(In this case, the type of args is inferred based on the program’s export statement, explained in Section 2.2.)

We can execute this program by issuing the following command to the shell:

fortress script HelloWorld.fsx

• As a compiled file. In this case, the Fortress program is stored in a file with the suffix “.fss” and compiled into
one or more components, which are stored in a persistent database called a fortress. Typically, a single fortress
holds all the components of a user, or group of users sharing programs and libraries. In our examples, we often
refer to the fortress we are issuing commands to as the resident fortress.

For example, we could have written our “Hello, world! ” program in a compiled file “HelloWorld.fss”:

18

component HelloWorld
export Executable
run(args) = print “Hello, world!”

end

We can compile this program, by issuing the command “fortress compile” on it:

fortress compile HelloWorld.fss

As a result of this command, a component named “HelloWorld” is stored in the resident fortress. The name
of this component is provided by the enclosing component declaration surrounding the code. If there is no
enclosing component declaration, then the contents of the file are understood to belong to a single component
whose name is that of the file it is stored in, minus its suffix. For example, suppose we write the following
program in a source file named “HelloWorld2.fss”:

export Executable
run(args) = print “Hi, it’s me again!”

When we compile this file:

fortress compile HelloWorld2.fss

the result is that a new component with the name HelloWorld2 is stored in the resident fortress. Once this
component is compiled, we can execute it by issuing the following command:

fortress run HelloWorld2

In a script file, there must be at most one component declaration. In a compiled file, multiple component declarations
may be included. For example, we could write the following file HelloWorld3.fss:

component HelloWorld
export Executable
run(args) = print “Hello, world!”

end

component HelloWorld2
export Executable
run(args) = print “Hi, it’s me again!”

end

When we compile this file, the result is that both the components HelloWorld and HelloWorld2 are stored in the
resident fortress.

If a fortress already contains a component with the same name as a newly installed component, the new component
shadows the old one. For example, if we first compile the source file HelloWorld3.fss above and then compile the
following file HelloWorld4.fss:

component HelloWorld
export Executable
run(args) = print “I didn’t expect that!”

end

then executing the component HelloWorld on our fortress will result in printing of the following text:

I didn’t expect that!

19

We can also “remove” a component from a fortress. For example:

fortress remove HelloWorld

After issuing this command, we can no longer refer to HelloWorld component when issuing commands to the
fortress. (However, a removed component might still exist as a constituent of other, linked, components; see Sec-
tion 2.2.)

2.2 Exports, Imports, and Linking Components

When a component is defined, it can include export statements. For example, all of the components we have defined
thus far have included the export statement “ export Executable ”. Export statements list various APIs that a com-
ponent implements. Unlike in other languages, APIs in Fortress are themselves program constructs; programmers
can rely on standard APIs, and declare new ones. API declarations are sequences of declarations of variables, func-
tions, and other program constructs, along with their types and other supporting declarations. For example, here is the
definition of API Executable :

api Executable
run: String . . .→ ()

end

This API contains the declaration of a single function run , whose type is String . . .→ () . This type is an arrow type;
it declares the type of a function’s parameter, and its return type. The function run includes a single parameter; the
notion String . . . indicates that it is a varargs parameter; the function run can be called with an arbitrary number of
string arguments. For example, here are valid calls to this function:

run(“a simple”, “ example”)
run(“run(...)”)
run(“Nobody”, “expects”, “that”)

The return type of run is () , pronounced “void”. Type () may be used in Fortress as a return type for functions
that have no meaningful return value. There is a single value with type () : the value () , also pronounced “void”.
References to value () as opposed to type () are resolved by context.

As with components, APIs can be defined in files and compiled. APIs must be defined in files with the suffix .fsi.
An .fsi file contains source code for one or more APIs. If there are no explicit “ api ” headers, the file is understood
to define a single API, whose name is the name of the containing file, minus its suffix.

An API is compiled with the shell command “fortress compile”. When an API is compiled, it is installed in the
resident fortress.

For example, if we store the following API in a file named “Blarf.fsi”:

api Zeepf
foo: String→ ()
baz : String→ String

end

then we can compile this API with the following shell command:

fortress compile Blarf.fsi

This command compiles the API Zeepf and installs it in the resident fortress. If we omit the enclosing API declaration,
so that the file Blarf.fsi consists solely of the following code:

20

foo: String→ ()
baz : String→ String

then the file is assumed to consist of the declaration of a single API named Blarf .

Unlike component compilation, API compilation does not shadow existing elements of a fortress. If we attempt to
compile an API with the same name as an API already defined in the resident fortress, an error is signaled and the
fortress is left unchanged. To remove an API, we must first remove all components referring to the API, and then issue
the shell command “fortress removeApi”.

A component that exports an API must provide a definition for every program construct declared in the API. For
example, because our component HelloWorld:

component HelloWorld
export Executable
run(args) = print “Hello, world!”

end

exports the API Executable , it must include a definition for the function run . The definition of run in HelloWorld
need not include declarations of the parameter type or return type of run , as these can be inferred from the definition
of API Executable .

Components are also allowed to import APIs. A component that imports an API is allowed to use any of the program
constructs declared in that API. For example, the following component imports API Zeepf and calls the function foo
declared in Zeepf :

component Blargh
import Zeepf
export Executable

run(args) = Zeepf.foo(“whatever”)
end

Component Blargh imports the API Zeepf and exports the API Executable . Its run function is defined by calling
function foo , defined in Zeepf . Note that foo must be referred to by the qualified name Zeepf.foo , to distinguish it
from other declarations of foo that are imported by or defined in Blargh . To call foo as an unqualified name, we can
write the following form of import statement:

component Blargh
import foo from Zeepf
export Executable

run(args) = foo(“whatever”)
end

In an import statement of the form:

import S from A

all names in the set of names S are imported from API A, and can be referred to as unqualified names within the
importing component. In the example above, the set of names we have imported consists of a single name: foo . If we
had instead written:

import {foo, baz} from Zeepf

21

then we would have been able to refer to both foo and baz as unqualified names in Blargh .

Note that no component refers directly to another component, or to constructs defined in another component. Instead,
all external references go through APIs. This level of indirection provides us with significant power. As we will see, it
is possible to link together arbitrary components, so long as their APIs match. Programmers are able to link together
components from separate programming teams, swap in revised components into deployed applications, and even test
components that rely on expensive libraries by wiring them up to special mock components that provide just enough
functionality to allow for testing.

Components that contain no import statements and export the API Executable are referred to as executable compo-
nents. They can be compiled and executed directly as stand-alone components. All of our HelloWorld components
are executable components. However, if a component imports one or more APIs, it cannot be executed as a stand-alone
program. Instead, the component must be compiled and then linked with other components that export all of the APIs
it imports, to form a new compound component. For example, we define the following component in a file named
Ralph.fss:

export Zeepf
foo(s) = ()
baz (s) = s

We can now issue the following shell commands:

fortress compile Ralph.fss

fortress compile Blargh.fss

fortress link Gary from Ralph with Blargh

The first two commands compile files Ralph.fss and Blargh.fss, respectively, and install them in the resident
fortress. The third command tells the resident fortress to link components Ralph and Blargh together into a com-
pound component, named Gary . Gary is an executable component; we can execute it directly with the command:

fortress run Gary

All references to API Zeepf in Gary are resolved to the declarations provided in Ralph .

Note that forming the compound component Gary has no effect on the components Ralph and Blargh . These
components remain in the resident fortress, and they can be linked together with other components to form yet more
compound components. Conversely, if Blargh or Ralph is recompiled, deleted, or otherwise updated, there is no
effect on Gary . Conceptually, Gary contains its own copies of the components Blargh and Ralph , and these
copies are not corrupted by actions on other components. For this reason, we say that components in Fortress are
encapsulated. (Of course, there are optimization tricks that a fortress can use to maintain the illusion of encapsulation
without actually copying. But these tricks are beyond the scope of this specification.)

Compound components are upgradable: They can be upgraded with new components that export some of the APIs
used by their constituents. For example, if a new version of Ralph is compiled and installed in the resident fortress,
we can manually upgrade Gary with the new version by performing the following shell command:

fortress upgrade NewGary from Gary with Ralph

This command produces a new component, named NewGary, resulting from an upgrade of Gary with Ralph. The
components referred to as Gary and Ralph are unaffected. An important property of fortress components is that
they are stateless; once constructed, they are never modified. Even if a component is “removed” from a fortress, the
components it is a constituent of are unaffected.

However, we can rebind the name Gary in the resident fortress to our new component with the following command:

fortress upgrade Gary from Gary with Ralph

or simply:

22

fortress upgrade Gary with Ralph

Now, the original component referred to by Gary is shadowed; it cannot be referred to directly from the shell. However,
it might still exist in the fortress as a constituent of other components, which are unmodified by the upgrade. To
upgrade all components in a fortress at once with a new version of Ralph (rebinding all names to the resulting
upgrades), we can issue the command:

fortress upgradeAll Ralph

2.3 Automatic Generation of APIs

Note that the component named Zeepf exports the API Zeepf . Components and APIs exist in separate namespaces,
and therefore it is allowed for a component to have the same name as an API. In fact, if we hadn’t already defined and
compiled API Zeepf , we could generate it automatically from the definition of component Zeepf with the following
shell command:

fortress api Zeepf.fss

This command generates a new source file, Zeepf.fsi, in the same directory as Zeepf.fss, which includes decla-
rations for all program constructs defined in Zeepf.fss.

In general, if a component C exports an API A with the same name as C, it is possible to automatically generate a
source file for the API A from C by issuing the shell command fortress api on the file containing the definition of
C. This API contains declarations for all definitions in C that are not declared in other APIs exported by C, and that
do not include the modifier private . If a source file with the name of A already exists in the same directory as the
source file of C, an error is signaled, and no file is created.

If there is more than one component defined in a file, APIs are generated for all components defined in the file that
export APIs with the same name as the respective component. Each generated API is placed in a separate source file
whose name corresponds to the name of the API it defines.

Note that the API corresponding to an automatically generated source file is not automatically added to the resident
fortress; the source file must still be compiled via a separate action. Often, programmers may want to edit the auto-
generated file before compiling it to the fortress.

It is not always desirable for a component to export an API of the same name. Many components will export only
publicly defined standard APIs. However, automatic generation of APIs from components may be useful, particu-
larly for components defined internally by a development team. Large projects may contain many internally defined
components that are never released externally, except as constituents of compound components.

2.4 Rendering

One aspect of Fortress that is quite different from other languages is that various program constructs are rendered in
particular fonts, so as to emulate mathematical notation. In the examples above, this was evident by the use of italics
when rendering variable names. Many other program constructs have their own rendering rules. For example, the
operator ˆ indicates superscripting in Fortress. A function definition consisting of the following ASCII characters:

f(x) = xˆ2 + sin x - cos 2 x

is rendered as follows:

f(x) = x2 + sinx− cos 2x

23

Array indexing, written with brackets:

a[i]

is rendered as follows:

ai

There are many other examples of special rendering conventions.

Fortress also supports the use of Unicode characters [27] in identifiers. In order to make it easy to enter such characters
with today’s input devices, Fortress defines a convention for keyboard entry: ASCII names (and abbreviations) of
Unicode characters can be written in a program in all caps (with spaces replaced by underscores). Such identifiers are
converted to Unicode characters. For example, the identifier:

GREEK_CAPITAL_LETTER_LAMBDA

is automatically converted into the identifier:

Λ

There are also ASCII abbreviations for writing down commonly used Fortress characters. For example, ASCII iden-
tifiers for all Greek letters are converted to Greek characters (e.g., “lambda” becomes λ and “LAMBDA” becomes Λ).
Here are some other common ASCII shorthands:

BY becomes × TIMES becomes ×
DOT becomes · CROSS becomes ×
CUP becomes ∪ CAP becomes ∩

BOTTOM becomes ⊥ TOP becomes >
SUM becomes

∑
PRODUCT becomes

∏
INTEGRAL becomes

∫
EMPTYSET becomes ∅

SUBSET becomes ⊂ NOTSUBSET becomes 6⊂
SUBSETEQ becomes ⊆ NOTSUBSETEQ becomes 6⊆

EQUIV becomes ≡ NOTEQUIV becomes 6≡
IN becomes ∈ NOTIN becomes 6∈
LT becomes < LE becomes ≤
GT becomes > GE becomes ≥
EQ becomes = NE becomes 6=

AND becomes ∧ OR becomes ∨
NOT becomes ¬ XOR becomes ⊕
INF becomes ∞ SQRT becomes

√

A comprehensive description of ASCII conversion is provided in Appendix E.

2.5 Some Common Types in Fortress

Fortress provides a wide variety of standard types, including String , Boolean , and various numeric types. The
floating-point type R (written in ASCII as RR) is the type of 64-bit precision floating-point numbers. For example,
the following function takes a 64-bit float and returns a 64-bit float:

halve(x : R) : R = x/2

The type R is also written R64 . The following definition of halve is semantically equivalent to the one above:

24

halve(x : R64) : R64 = x/2

Predictably, 32-bit precision floats are written R32 .

64-bit integers are denoted by the type Z64 . 32-bit integers by the type Z32 , and infinite precision integers by the
type Z .

2.6 Functions in Fortress

Fortress allows recursive, and mutually recursive function definitions. Here is a simple definition of a factorial
function in Fortress:

factorial(n) =
if n = 0 then 1
else n factorial(n− 1) end

2.6.1 Juxtaposition and function application

In the definition of factorial , note the juxtaposition of parameter n with the recursive call factorial(n− 1) . In
Fortress, as in mathematics, multiplication is represented through juxtaposition. By default, two expressions of nu-
meric type that are juxtaposed represent a multiplication. On the other hand, juxtaposition of an expression of function
type with another expression to its right represents function application, as in the following example:

sinx

Moreover, juxtaposition of expressions of string type represents concatenation, as in the following example:

“Hi,” “ it’s” “ me” “ again.”

In fact, juxtaposition is an operator in Fortress, just like + and − , that is overloaded based on the runtime types of
its arguments.

There is a special case concerning juxtaposition that is important to mention: When writing a numeric literal, the
digit-group separator, NARROW NO-BREAK SPACE (U+202F), may be included between the digits in order to improve
readability. In ASCII, this character can be abbreviated in the context of a numeric literal (and only in this context)
with the character ’. For example, the number 299,792,458 can be denoted in ASCII by the following numeric literal:

299’792’458

This literal is converted into Unicode by replacing all occurrences of ’ with NARROW NO-BREAK SPACE:

299 792 458

This is not an application of the juxtaposition operator; rather, it is a single token. Note that commas cannot be used
to separate digits because ambiguities would arise with the use of commas in other expressions, such as tuples.

2.6.2 Keyword Parameters

Functions in Fortress can be defined to take keyword arguments by providing default values for parameters. In the
following example:

25

makeColor(red : Z64 = 0, green : Z64 = 0, blue : Z64 = 0) =
if 0 ≤ red ≤ 255 ∧ 0 ≤ green ≤ 255 ∧ 0 ≤ blue ≤ 255
then Color(red , green, blue)
else throw Error end

the function makeColor takes three keyword arguments, all of which default to 0 . If we call it as follows:

makeColor(green = 255)

the arguments red and blue are both given the value 0 .

There are some other aspects of this example worth mentioning. For example, the body of this function consists of an
if expression. The test of the if expression checks that all three parameters have values between 0 and 255 . The
boolean operator ≤ is chained: An expression of the form x ≤ y ≤ z is equivalent to the expression x ≤ y ∧ y ≤ z ,
just as in mathematical notation. The then clause provides an example of a constructor call in Fortress, and the else
clause shows us an example of a throw expression in Fortress.

2.6.3 Varargs Parameters

It is also possible to define functions that take a variable number of arguments. We have already seen such a function:
Executable.run . Here is another:

printFirst(xs : R . . .) =
if |xs| > 0 then print xs0

else throw Error end

This function takes an arbitrary number of floats and prints the first one (unless it is given zero arguments; then it
throws an exception).

2.6.4 Function Overloading

Functions can be overloaded in Fortress by the types of their parameters. Calls to overloaded functions are resolved
based on the runtime types of the arguments. For example, the following function is overloaded based on parameter
type:

size(x : Nil) = 0
size(x : Cons) = 1 + size(rest(x))

If we call size on an object with runtime type Cons , the second definition of size will be invoked regardless of the
static type of the argument. Of course, function applications are statically checked to ensure that some definition will
be applicable at run time, and that the definition to apply will be unambiguous.

2.6.5 Function Contracts

Fortress allows contracts to be included in function declarations. Among other things, contracts allow us to require
that the argument to a function satisfies a given set of constraints, and to ensure that the resulting value satisfies
some constraints. They provide essential documentation for the clients of a function, enabling us to express semantic
properties that cannot be expressed through the static type system.

Contracts are placed at the end of a function header, before the function body. For example, we can place a contract
on our factorial function requiring that its argument be nonnegative as follows:

26

factorial(n) requires {n ≥ 0 }
= if n = 0 then 1

else n factorial(n− 1) end

We can also ensure that the result of factorial is itself nonnegative:

factorial(n)
requires {n ≥ 0 }
ensures { result ≥ 0 }
= if n = 0 then 1

else n factorial(n− 1) end

The variable result is bound in the ensures clause to the return value of the function.

2.7 Some Common Expressions in Fortress

We have already seen an if expression in Fortress. Here’s an example of a while expression:

while x < 10 do
print x
x += 1

end

Blocks in Fortress are delimited by do and end . Here is an example of a function that prints three words:

printThreeWords() = do
print “print”
print “three”
print “words”

end

A tuple expression contains a sequence of elements delimited by parentheses and separated by commas:

(“this”, “is”, “a”, “tuple”, “of”, “mostly”, “strings”, 0)

When a tuple expression is evaluated, the various subexpressions are evaluated in parallel. For example, the following
tuple expression denotes a parallel computation:

(factorial(100), factorial(500), factorial(1000))

The elements in this expression may be evaluated in parallel. This same computation can be expressed in block form
as follows:

do
factorial(100)

also do
factorial(500)

also do
factorial(1000)

end

27

2.8 For Loops Are Parallel by Default

Here is an example of a simple for loop in Fortress:

for i← 1 : 10 do
print(i “ ”)

end

This for loop iterates over all elements i between 1 and 10 and prints the value of i . Expressions such as 1 : 10
are referred to as range expressions. They can be used in any context where we wish to denote all the integers between
a given pair of integers.

A significant difference between Fortress and most other programming languages is that for loops are parallel by
default. Thus, printing in the various iterations of this loop can occur in an arbitrary order, such as:

5 4 6 3 7 2 9 10 1 8

2.9 Atomic Expressions

In order to control interactions of parallel executions, Fortress includes the notion of atomic expressions, as in the
following example:

atomic do
x += 1
y += 1

end

An atomic expression is executed in such a manner that all other threads observe either that the computation has
completed, or that it has not yet begun; no other thread observes an atomic expression to have only partially completed.
Consider the following parallel computation:

do
x: Z := 0
y: Z := 0
z: Z := 0
atomic do

x += 1
y += 1

also atomic do
z := x+ y

end
z

end

Both parallel blocks are atomic; thus the second parallel block either observes that both x and y have been updated,
or that neither has. Thus, possible values of the outermost do expression are 0 and 2, but not 1.

2.10 Dimensions and Units

Numeric types in Fortress can be annotated with physical units and dimensions. For example, the following function
declares that its parameter is a tuple represented in the units kg and m/s , respectively:

28

kineticEnergy(m : R kg, v : R m/s) : R kg m2/s2 = (m v2)/2

A value of type R kg is a 64-bit float representing a measurement in kilograms. When the function kineticEnergy is
called, two values in its tuple argument are statically checked to ensure that they are in the right units.

All commonly used dimensions and units are provided in the Fortress standard libraries. Unit symbols are encoded
with trailing underscores; such identifiers are rendered in roman font. For example the unit m is represented as m_.
For each unit, both longhand and shorthand names are provided (e.g., m , meter , and meters). The various names
of a given unit can be used interchangeably. Also, some units (and dimensions) are defined to be synonymous with
algebraic combinations of other units (and dimensions). For example, the unit N is defined to be synonymous with
the unit kg m/s2 and the dimension Force is defined to be synonymous with Mass Acceleration . Likewise, the
dimension Acceleration is defined to be synonymous with Velocity/Time .

Measurements in the same unit can be compared, added, subtracted, multiplied and divided. Measurements in different
units can be multiplied and divided. For example, we can write the following variable declaration:

v : R m/s = (3meters + 4meters)/5 seconds

However, the following variable declaration is a static error:

v : R m/s = (3meters + 4 seconds)/5 seconds

In addition, the following variable declaration is a static error because the unit of the left hand side of this declaration
is m/s whereas the unit of the right hand side is simply m (or meters):

v : R m/s = (3meters + 4meters)/5

It is also possible to convert a measurement in one unit to a measurement of another unit of the same dimension, as in
the following example:

kineticEnergy(3.14 kg, 32 f/s in m/s)

The second argument to kineticEnergy is a measurement in feet per second, converted to meters per second.

2.11 Aggregate Expressions

As with mathematical notation, Fortress includes special syntactic support for writing down many common kinds of
collections, such as tuples, arrays, matrices, vectors, maps, sets, and lists simply by enumerating all of the collection’s
elements. We refer to an expression formed by enumerating the elements of a collection as an aggregate expression.
The elements of an aggregate expression are computed in parallel.

For example, we can define an array a in Fortress by explicitly writing down its elements, enclosed in brackets and
separated by whitespace, as follows:

a = [0 1 2 3 4]

Two-dimensional arrays can be written down by separating rows by newlines (or by semicolons). For example, we
can bind b to a two-dimensional array as follows:

b = [3 4
5 6]

29

There is also support for writing down arrays of dimension three and higher. We bind c to a three-dimensional array
as follows:

c = [1 2
3 4; ; 5 6

7 8; ; 9 10
11 12]

Various slices of the array along the third dimension are separated by pairs of semicolons. (Higher dimensional arrays
are also supported. When writing a four-dimensional array, slices along the fourth dimension are separating by triples
of semicolons, and so on.)

Vectors are written down just like one-dimensional arrays. Similarly, matrices are written down just like two-dimensional
arrays. Whether an array aggregate expression evaluates to an array, a vector, or a matrix is inferred from context (e.g.,
the static type of a variable that such an expression is bound to). Of course, all elements of vectors and matrices must
be numbers.

Note that there is a syntactic conflict between the use of juxtaposition to represent elements along a row in an array and
the use of juxtaposition to represent applications of the juxtaposition operator. In order to include an application of the
juxtaposition operator as an outermost subexpression of an array aggregate, it is necessary to include extra parentheses.
For example, the following aggregate expression represents a counterclockwise rotation matrix by an angle θ in R2:

[(cos θ)(− sin θ)
(sin θ)(cos θ)]

A set can be written down by enclosing its elements in braces and separating its elements by commas. Here we bind
s to the set of integers 0 through 4 :

s = {0, 1, 2, 3, 4}

The elements of a list are enclosed in angle brackets (written in ASCII as <| and |>):

l = 〈0, 1, 2, 3, 4〉

The elements of a map are enclosed in curly braces, with key/value pairs joined by the arrow 7→ (written in ASCII as
|->):

m = {′a′ 7→ 0,′ b′ 7→ 1,′ c′ 7→ 2}

2.12 Comprehensions

Another way in which Fortress mimics mathematical notation is in its support for comprehensions. Comprehensions
describe the elements of a collection by providing a rule that holds for all of the collection’s elements. The elements
of the collection are computed in parallel by default. For example, we define a set s that consists of all elements of
another set t divided by 2, as follows:

s = {x/2 | x← t}

The expression to the left of the vertical bar explains that elements of s consist of every value x/2 for every valid
value of x (determined by the right hand side). The expression to the right of the vertical bar explains how the elements
x are to be generated (in this case, from the set t). The right hand side of a comprehension can consist of multiple
generators. For example, the following set consists of every element resulting from the sum of an element of s with
an element of t :

30

u = {x+ y | x← s, y ← t}

The right hand side of a comprehension can also contain filtering expressions to constrain the elements provided by
other clauses. For example, we can stipulate that v consists of all nonnegative elements of t as follows:

v = {x | x← t, x ≥ 0}

There is a comprehension expression for every form of aggregate expression except tuple expressions. For example,
here is a list comprehension in Fortress:

〈2x | x← v〉

The elements of this list consist of all elements of the set v multiplied by 2 .

In the case of an array comprehension, the expression to the left of the bar includes a tuple indexing the elements of
the array. For example, the following comprehension describes a 3× 3 array, all of whose elements are zero.

[(x, y) = 0 | x← {0, 1, 2}, y ← {0, 1, 2}]

The collection of elements 0 through 2 can also be expressed via a range expression, as follows:

[(x, y) = 0 | x← 0 : 2, y ← 0 : 2]

An array comprehension can consist of multiple clauses. The clauses are run in the order provided, with declarations
from later clauses shadowing declarations from earlier clauses. For example, the following comprehension describes
a 3× 3 identity matrix:

[(x, y) = 0 | x← 0 : 2, y ← 0 : 2
(x, x) = 1 | x← 0 : 2]

2.13 Summations and Products

As with mathematical notation, Fortress provides syntactic support for summations and productions (and other big
operations) over the elements of a collection. For example, an alternative definition of factorial is as follows:

factorial(n) =
∏

i←1:n

i

This function definition can be written in ASCII as follows:

factorial(n) = PRODUCT[i <- 1:n] i

The character
∏

is written PRODUCT. Likewise,
∑

is written SUM. As with comprehensions, the values in the
iteration are generated from specified collections.

2.14 Tests and Properties

Fortress includes support for automated program testing. New tests in a component can be defined using the test
modifier. For example, here is a test that calls to the factorial function result in values greater than or equal to what
was provided:

test factorialResultLarger [x← 0 : 100] = x ≤ factorial(x)

31

The values for x are generated from the provided range 0 : 100 .

Programs are also allowed to include property declarations, documenting boolean conditions that a program is ex-
pected to obey. Property declarations are similar syntactically to test declarations. Unlike test declarations, property
declarations do not specify explicit finite collections over which the property is expected to hold. Instead, the param-
eters in a property declaration are declared to have types, and the property is expected to hold over all values of those
types. For example, here is a property declaring that factorial is greater than or equal to every argument of type Z :

property factorialResultAlwaysLarger = ∀(x : Z) (x ≤ factorial(x))

When a property declaration includes a name, the property identifier is bound to a function whose parameter and body
are that of the property, and whose return type is Boolean . A function bound in this manner is referred to as a property
function. A property function can be called from within tests to ensure that a property holds at least for all values in
some finite set of values.

2.15 Objects and Traits

A great deal of programming can be done simply through the use of functions, top-level variables, and standard types.
However, Fortress also includes a trait and object system for defining new types, as well as objects that belong to
them. Traits in Fortress exist in a multiple inheritance hierarchy rooted at trait Object . A trait declaration includes a
set of method declarations, some of which may be abstract. For example, here is a declaration of a simple trait named
Moving :

trait Moving extends {Tangible,Object }
position(): (R Length)3

velocity(): (R Velocity)3

end

The set of traits extended by trait Moving are listed in braces after extends . Trait Moving inherits all methods
declared by each trait it extends. The two methods position and velocity declared in trait Moving are abstract; they
contain no body. Their return types are vectors of length 3, whose elements are of types R Length and R Velocity
respectively. As in mathematical notation, a vector of length n with element type T is written Tn .

Traits can also declare concrete methods, as in the following example:

trait Fast extends Moving
velocity() = [0 0 (299 792 458m/s)]

end

Trait Fast extends a single trait, Moving . (Because it extends only one trait, we can elide the braces in its extends
clause.) It inherits both abstract methods defined in Moving , and it provides a concrete body for method velocity .

Trait declarations can be extended by other trait declarations, as well as by object declarations. There are two kinds
of object declarations: singleton declarations and constructor declarations.

A singleton declaration declares a sole, stand-alone, singleton object. For example:

object Sol extends {Moving,Stellar }
spectralClass = G2

position() = [0 0 0]
velocity() = [0 0 0]

end

32

The object Sol extends two traits: Moving and Stellar , and provides definitions for the abstract methods it inherits.
Objects must provide concrete definitions for all abstract methods they inherit. Sol also defines a field spectralClass .
For every field included in an object definition, an implicit getter is defined for that field. Calls to the getter of the field
of an object consist of an expression denoting the object followed by a dot and the name of the field. For example,
here is a call to the getter spectralClass of object Sol:

Sol.spectralClass

If a field includes modifier settable , an implicit setter is defined for the field. Calls to setters look like assignments.
Here is an assignment to field spectralClass of object Sol :

Sol.spectralClass := G3

In fact, all accesses to a field from outside the object to which the field belongs must go through the getter of the field,
and all assignments to it must go through the setter. (There is simply no other way syntactically to refer to the field.)

If a field includes modifier hidden , no implicit getter is defined for the object.

Every method declared in an object or trait includes an implicit self parameter, denoting the receiver of the method
call. If desired, this parameter can be made explicit, by including it before the name of the method, along with a
trailing dot. For example, the following definition of Sol is equivalent to the one above:

object Sol extends {Moving,Stellar}
spectralClass = G2

self.position() = [0 0 0]
velocity() = [0 0 0]

end

In this definition, the self parameter of position is provided explicitly.

In fact, the self parameter of a method can even be given a position other than the default position. For example, here
is a definition of a type where the self parameters appear in nonstandard positions:

trait List
cons(x: Object, self) : List
append(xs: List, self) : List

end

In both methods cons and append , the self parameter occurs as the second parameter. Calls to these methods look
more like function calls than method calls. For example, in the following call to append , the receiver of the call is l2 :

append(l1, l2)

A constructor declaration declares an object constructor. In contrast to singleton declarations, a constructor declaration
includes value parameters in its header, as in the following example:

object Particle(position : (R Length)3,
velocity : (R Velocity)3)

extends Moving
end

Every call to the constructor of Particle yields a new object. For example:

p1 = Particle([3 2 5]m, [1 0 0]m/s)

33

The parameters to an object constructor implicitly define fields of the object, along with their getters (by default).
These parameters can include all of the modifiers that an ordinary field can. For example, a parameter can include the
modifier hidden , in which case a getter is not implicitly defined for the field.

In the definition of Particle , it is the implicitly defined getters of fields position and velocity that provide concrete
definitions for the inherited abstract methods from trait Moving .

In both singleton and constructor declarations, implicitly defined getters and setters can be overridden by defining
explicit getters and setters, using the modifiers getter and setter . For example, we alter the definition of Particle
to include an explicit getter for field velocity as follows:

object Particle(position : (R Length)3,
velocity : (R Velocity)3)

extends Moving
getter velocity() = do

print “velocity getter accessed”
velocity

end
end

The explicitly defined getter first prints a message and then returns the value of the field velocity . Note that the final
variable reference in this getter refers directly to the field velocity , not to the getter. Only within an object definition
can fields be accessed directly. In fact, even in an object definition, fields are only accessed directly when they are
referred to as simple variables. In the following definition of Particle , the getter velocity is recursively accessed
through the special variable self (bound to the receiver of the method call):

object Particle(position : (R Length)3,
velocity : (R Velocity)3)

extends Moving
getter velocity() = do

print “velocity getter accessed”
self.velocity

end
end

Now, the result of a call to getter velocity is an infinite loop (along with a lot of output).

2.15.1 Traits, Getters, and Setters

Although traits do not include field declarations, they can include getter and setter declarations, as in the following
alternative definition of trait Moving :

trait Moving extends {Tangible,Object }
getter position(): (R Length)3

getter velocity(): (R Velocity)3

end

Now, an object extending trait Moving must provide the definitions of getters (as opposed to ordinary methods) for
position and velocity . The advantage of this definition is that we can use getter notation on a variable of static type
Moving :

v : Moving = . . .
v.position

34

In fact, getters can be declared in a trait definition using field declaration syntax, as in the following example (which
is equivalent to the definition of Moving above):

trait Moving extends {Tangible,Object }
position: (R Length)3

velocity : (R Velocity)3

end

Getter declarations in trait definitions must not include bodies. A getter declaration can include the various modifiers
allowed on a field declaration, with similar results. For example, if the modifier settable is used, then a setter is
implicitly declared, in addition to a getter.

2.16 Features for Library Development

The language features introduced above are sufficient for the vast majority of applications programming. However,
Fortress has also designed to be a good language for library programming. In fact, much of the Fortress language as
viewed by applications programmers actually consists of code defined in libraries, written in a small core language.
By defining as much of the language as possible in libraries, our aim is to allow the language to evolve gracefully
as new demands are placed on it. In this section, we briefly mention some of the features that make Fortress a good
language for library development.

2.16.1 Generic Types and Static Parameters

As in other languages, Fortress allows types to be parametric with respect to other types, as well as other “static”
parameters, including integers, booleans, dimensions, units, operators, and identifiers. We have already seen some
standard parametric types, such as Array and Vector . Programmers can also define new traits, objects, and functions
that include static parameters.

2.16.2 Specification of Locality and Data Distribution

Fortress includes a facility for expressing programmer intent concerning the distribution of large data structures at
run time. This intent is expressed through special data structures called distributions. In fact, all arrays and ma-
trices include distributions. These distributions are defined in the Fortress standard libraries. In most cases, the
default distributions will provide programmers with good performance over a variety of machines. However, in some
circumstances, performance can be improved by overriding the default selection of distributions. Moreover, some
programmers might wish to define new distributions, tailored for particular platforms and programs.

2.16.3 Operator Overloading

Operators in Fortress can be overloaded with new definitions. Here is an alternative definition of the factorial func-
tion, defined as a postfix operator:

opr (n)! =
∏

i←1:n

i

As with mathematical notation, Fortress allows operators to be defined as prefix, postfix, and infix. More exotic
operators can even be defined as subscripting (i.e., applications of the operators look like subscripts), and as bracketing
(i.e., applications of the operators look like the operands have been simply enclosed in brackets).

35

2.16.4 Definition of New Syntax

Fortress provides a facility for the definition of new syntax in libraries. This facility is useful for defining libraries for
domain-specific languages, such as SQL, XML, etc. It is also used to encode some of the language constructs seen by
applications programmers.

36

Part II

Fortress for Application Programmers

37

Chapter 3

Programs

A program consists of a finite sequence of Unicode 5.0 abstract characters. (Fortress does not distinguish between
different code-point encodings of the same character.) In order to more closely approximate mathematical notation,
certain sequences of characters are rendered as subscripts or superscripts, italicized or boldface text, or text in special
fonts, according to the rules in Appendix E. For the purposes of entering program text, ASCII encodings of Unicode
characters are also provided in Appendix E. Although much of the program text in this specification is rendered as
formatted Unicode, some text is presented unformatted, or in its ASCII encoding, to aid in exposition.

A program is valid if it satisfies all static constraints stipulated in this specification. Failure to satisfy a static constraint
is a static error. Only valid programs can be executed; the validity of a program must be checked before it is executed.

Executing a valid Fortress program consists of evaluating expressions. Evaluation of an expression may modify the
program state yielding a result. A result is either a value, or an abrupt completion.

The characters of a valid program determine a sequence of input elements. In turn, the input elements of a program
determine the program constructs. Some program constructs may contain other program constructs. The two most
common kinds of constructs in Fortress are declarations and expressions. We explain the structure of input elements,
and of each program construct, in turn, along with accompanying static constraints. We also explain how the outcome
of a program execution is determined from the sequence of constructs in the program.

Programs are developed, compiled, and deployed as encapsulated upgradable components as described in Chapter 22.

Fortress is block-structured: A Fortress program consists of nested blocks of code. The entire program is a single
block. Each component is a block. Any top-level declaration is a block, as is any function declaration. Several
expressions are also blocks, or have blocks as parts of the expression, or both (e.g., a while expression is a block, and
its body is a different block). See Chapter 13 for a discussion of expressions in Fortress. In addition, a local declaration
begins a block that continues to the end of the smallest enclosing block unless it is a local function declaration and is
immediately preceded by another local function declaration. (This exception allows overloaded and mutually recursive
local function declarations.) Because Fortress is block-structured, and because the entire program is a block, the
smallest block that syntactically contains a program construct is always well defined.

Fortress is expression-oriented: What are often called “statements” in other languages are just expressions with type
() in Fortress. They do not evaluate to an interesting value, and are typically evaluated solely for their effects.

Fortress is whitespace-sensitive: Fortress has different contexts influencing the whitespace-sensitivity of expressions
as described in Appendix G.

38

Chapter 4

Evaluation

The state of an executing Fortress program consists of a set of threads, and a memory. Communication with the outside
world is accomplished through input and output actions. In this chapter, we give a general overview of the execution
process and introduce terminology used throughout this specification to describe the behavior of Fortress constructs.

Executing a Fortress program consists of evaluating the body expression of the run function and the initial-value
expressions of all top-level variables and singleton object fields in parallel. All initializations must complete normally
before any reference to the objects or variables being initialized.

Threads evaluate expressions by taking steps. We say evaluation of an expression begins when the first step is taken.
A step may complete the evaluation, in which case no more steps are possible on that expression, or it may result in
an intermediate expression, which requires further evaluation. Dynamic program order is a partial order among the
expressions evaluated in a particular execution of a program. When two expressions are ordered by dynamic program
order, the first must complete execution before any step can be taken in the second. Chapter 13 gives the dynamic
program order constraints for each expression in the language.

Intermediate expressions are generalizations of ordinary Fortress expressions: some intermediate expressions cannot
be written in programs. We say that one expression is dynamically contained within a second expression if all steps
taken in evaluating the first expression are taken between the beginning and completion of the second. A step may also
have effects on the program state beyond the thread taking the step, for example, by modifying one or more locations
in memory, creating new threads to evaluate other expressions, or performing an input or output action. Threads are
discussed further in Section 4.4. The memory consists of a set of locations, which can be read and written. New
locations may also be allocated. The memory is discussed further in Section 4.3. Finally, input actions and output
actions are described in Section 4.6.

4.1 Values

A value is the result of normal completion of the evaluation of an expression. (See Section 4.2 for a discussion of
completion of evaluation.) A value has a type, an environment (see Section 4.5), and a finite set of fields. Every value
is an object (see Chapter 10); it may be a value object, a reference object, or a function. See Chapter 8 for a description
of the types corresponding to these different values. The type of a value specifies the names and types of its fields,
and which names must be bound in its environment (and the types of the locations they are bound to). The type also
specifies the methods (including their bodies) of the object. Only trait types have methods other than those inherited
from the type Any .

In a value object, each field is a value. In a reference object, each field is a location. Every field has a name, which
may be an identifier or an index. Only values of type LinearSequence (defined in Section 40.1) or HeapSequence

39

(defined in Section 40.3) have fields named by indices. Functions and the value () have no fields. Every field in a
value object is immutable. Reference objects may have both mutable and immutable fields. No two distinct values
share any mutable field.

Values are constructed by top-level function declarations (see Section 12.1) and singleton declarations (see Sec-
tion 10.1), and by evaluating an object expression (see Section 13.9), a function expression (see Section 13.7), a
local function declaration (see Section 6.4), a call to an object constructor (declared by a constructor declaration; see
Chapter 10), a literal (see Section 13.1), a spawn expression (see Section 13.23), an aggregate expression (see Sec-
tion 13.27), or a comprehension (see Section 13.28). In the latter case, the constructed value is the result of the normal
completion of such an evaluation.

4.2 Normal and Abrupt Completion of Evaluation

Conceptually, an expression is evaluated until it completes. Evaluation of an expression may complete normally,
resulting in a value, or it may complete abruptly. Each abrupt completion has an associated value, either an exception
value that is thrown and uncaught or the exit value of an exit expression (described in Section 13.12). In addition
to programmer-defined exceptions thrown explicitly by a throw expression (described in Section 13.24), there are
predefined exceptions thrown by the Fortress standard libraries. For example, dividing an integer by zero (using the /
operator) causes a DivideByZeroException to be thrown.

When an expression completes abruptly, control passes to the dynamically immediately enclosing expression. This
continues until the abrupt completion is handled either by a try expression (described in Section 13.25) if an ex-
ception is being thrown or by an appropriately tagged label expression (described in Section 13.12) if an exit
expression was evaluated. If abrupt completion is not handled within a thread and its outermost expression completes
abruptly, the thread itself completes abruptly. If the main thread of a program completes abruptly, the program as a
whole also completes abruptly.

4.3 Memory and Memory Operations

In this specification, the term memory refers to a set of abstract locations; the memory is used to model sharing and
mutation. A location has an associated type, and contains a value of that type (i.e., the type of the value is a subtype
of the type of the location). Locations can have non-object trait types; by contrast, a value always has an object type.

There are three operations that can be performed on memory: allocation, read, and write. Reads and writes are
collectively called memory accesses. Intuitively, a read operation takes a location and returns the value contained in
that location, and a write operation takes a location and a value of the location’s type and changes the contents of the
location so the location contains the given value. Accesses need not take place in the order in which they occur in the
program text; a detailed account of memory behavior appears in Chapter 21.

Allocation creates a new location of a given type. Allocation occurs when a mutable variable is declared, or when a
reference object is constructed. In the latter case, a new location is allocated for each field of the object. Abstractly,
locations are never reclaimed; in practice, memory reclamation is handled by garbage collection.

A freshly allocated location is uninitialized. The type system and memory model in Fortress guarantee that an initial-
izing write is performed to every location if it is ever read, and that this write occurs before any read of the location.
Any location whose value can be written after initialization is mutable. Any location whose value cannot be written
after initialization is immutable. Mutable locations include mutable variables and settable fields of a reference
object. Immutable locations include non- transient , non- settable fields of a reference object.

40

4.4 Threads and Parallelism

There are two kinds of threads in Fortress: implicit threads and spawned (or explicit) threads. Spawned threads are
objects created by the spawn construct, described in Section 13.23.

A thread may be in one of five states: not started, executing, suspended, normally completed or abruptly completed.
We say a thread is not started after it is created but before it has taken a step. This is only important for purposes of
determining whether two threads are executing simultaneously; see Section 32.4. A thread is executing or suspended
if it has taken a step, but has not completed; see below for the distinction between executing and suspended threads.
A thread is complete if its expression has completed evaluation. If the expression completes normally, its value is the
result of the thread.

Every thread has a body and an execution environment. The body is an intermediate expression, which the thread
evaluates in the context of the execution environment; both the body and the execution environment may change when
the thread takes a step. This environment is used to look up names in scope but bound in a block that encloses the
construct that created the thread. The execution environment of a newly created thread is the environment of the thread
that created the new thread.

In Fortress, a number of constructs are implicitly parallel. An implicitly parallel construct creates a group of one or
more implicit threads. The implicitly parallel constructs are:

• Tuple expressions: Each element expression of the tuple expression is evaluated in a separate implicit thread
(see Section 13.27).

• also do blocks: each sub-block separated by an also clause is evaluated in a separate implicit thread (see
Section 13.11.3).

• Method invocations and function calls: The receiver or the function and each of the arguments is evaluated in
a separate implicit thread (see Section 13.4, Section 13.5, and Section 13.6).

• for loops, comprehensions, sums, generated expressions, and big operators: Parallelism in looping con-
structs is specified by the generators used (see Section 13.14). Programmers should assume that generators other
than the sequential generator can execute each iteration of the body expression in a separate implicit thread.
Reduction variables in for loops, and results returned from comprehensions and big operators correspond to
reductions (see Section 4.4.1).

• Extremum expressions: Each guarding expression of the extremum expression is evaluated in a separate im-
plicit thread (see Section 13.20).

• Tests: Each test is evaluated in a separate implicit thread (see Chapter 19).

Implicit threads run fork-join style: all threads in a group are created together, and they all must complete before the
group as a whole completes. There is no way for a programmer to single out an implicit thread and operate upon it
in any way; they are managed purely by the compiler, runtime, and libraries of the Fortress implementation. Implicit
threads need not be scheduled fairly; indeed, a Fortress implementation may choose to serialize portions of any group
of implicit threads, interleaving their operations in any way it likes. For example, the following code fragment may
loop forever:

r : Z64 := 0
(r := 1, while r = 0 do end)

If any implicit thread in a group completes abruptly, the group as a whole will complete abruptly as well. Every
thread in the group will either not run at all, complete (normally or abruptly), or may be terminated early as described
in Section 32.6. The result of the abrupt completion of the group is the result of one of the constituent threads that
completes abruptly. After abrupt completion of a group of implicit threads, each reduction variable (see Section 4.4.1)
may reflect an arbitrary subset of updates performed by the threads in the group. This means in general that reduction

41

variables should not be accessed after abrupt completion. The exact behavior of reduction variables depends on the
supporting generator structure and is described in Section 32.8.

Spawned thread objects are reference objects of type ThreadJT K , where T is the static type of the expression
spawned; this trait has the following methods, each taking no arguments:

• The val method returns the value computed by the subexpression of the spawn expression. If the thread has not
yet completed execution, the invocation of val blocks until it has done so. A spawned thread is not permitted
to exit (discussed in Section 13.12) to a surrounding label (the label is considered to be out of scope), but may
fail to catch an exception and thus complete abruptly. When this happens, the exception is deferred. Any
invocation of the val method on the spawned thread throws the deferred exception. If the spawned thread object
is discarded, the exception will be silently ignored. In particular, if the result of a spawn expression is dropped,
it is impossible to detect completion of the spawned thread or to recover from any deferred exceptions.

• The wait method waits for a thread to complete, but does not return a value and will not throw a deferred
exception.

• The ready method returns true if a thread has completed, and returns false otherwise.

• The stop method attempts to terminate a thread as described in Section 32.6.

We say a spawned thread has been observed to complete after invoking the val or wait methods, or when an invocation
of the ready method returns true .

In the absence of sufficient parallel resources, an attempt is made to run the subexpression of the spawn expression
before continuing succeeding evaluation. We can imagine that it is actually the rest of the evaluation after the parallel
block which is spawned off in parallel. This is a subtle technical point, but makes the sequential execution of parallel
code simpler to understand, and avoids subtle problems with the asymptotic stack usage of parallel code [21, 11].

There are three ways in which a thread can be suspended. First, a thread that begins evaluating an implicitly parallel
construct, creating a thread group, is suspended until that thread group has completed. Second, a thread that invokes
val or wait is suspended until the spawned thread completes. Finally, invoking the abort function from within an
atomic expression may cause a thread to suspend; see Section 32.3.

Threads in a Fortress program can perform operations simultaneously on shared objects. In order to synchronize data
accesses, Fortress provides atomic expressions (see Section 13.22). Chapter 21 describes the memory model which
is obeyed by Fortress programs.

4.4.1 Reduction Variables

To perform computations as locally as possible, and avoid the need to synchronize in the middle of relatively simple
for loops, Fortress gives special treatment to reductions. We say that an operator � is a reduction operator for
type T if T is a subtype of MonoidJT,�K, which implies that � is an associative binary infix operator on T (see
Section 37.5 for details about the Monoid trait).

We say that a variable l is a reduction variable reduced using the reduction operator � for a particular thread group if
it satisfies the following conditions:

• Every assignment to l within the thread group is of the form l ⊕= e , where exactly one operator⊕ or its group
inverse 	 (see below) is used in these assignments.

• The value of l is not otherwise read within the thread group.

• The variable l is not a free variable of a functional. This includes the fields of the receiver object in a method
definition.

42

Other threads which simultaneously reference a reduction variable while a loop is running may see an arbitrary value
for that variable. Any updates performed by those threads may be lost. The association of terms in the reduction is
arbitrary and guided by the loop generators (Section 32.8). The order of terms in the reduction is the natural order of
elements in the generator. When the operator is commutative, the order of terms is also arbitrary.

Several common mathematical operators are declared to be monoids in the Fortress standard libraries. These include
+ , ·, ∧ , ∨ , and ∨ . If a type T extends GroupJT,⊕,	K (see Section 37.5 for details about the Group trait) then
reduction expressions of the following form are also permitted:

x 	= y

Such expressions may be transformed into an algebraic equivalent such as the following:

x ⊕= IdentityJ⊕K	 y

The semantics of reductions enables implementation strategies such as the one used in OpenMP [24]: A reduction
variable l is assigned IdentityJ⊕K at the beginning of each iteration. The original variable value may be read ahead
of time, resulting in the loss of parallel updates to the variable which occur in other threads while the loop is running.
When all iterations are complete, the initial value of the reduction variable and values of the variable at the end of each
implicit thread are reduced and the result is assigned to the reduction variable as the group completes.

In the following example, sum is a reduction variable:

arraySumJnat xK(a : Z64[x]) : Z64 = do
sum : Z64 := 0
for i← a.indices do

sum += a[i]
end
sum

end

The following demonstrates the use of a reduction variable prod in a parallel do :

prod : Z64 := 1
do

prod ·= g(y)
also do

prod ·= f(x)
prod ·= g(x)

also do
h(x, y)

end

The operator associated with a reduction variable can be invoked in several places during evaluation of a thread group.
Most obviously, it can be invoked anywhere the reduction operation occurs textually in the code for that group. The
operator can also be invoked multiple times implicitly and in parallel after the completion of some or all of the threads
in the group. The group as a whole does not complete normally until all these operator invocations have completed
normally and the reduced result has been assigned to the reduction variable for use in subsequent computation. If
any operator invocation completes abruptly, it is treated just as if an ordinary implicit thread in the group completed
abruptly.

Different implicit threads (even different iterations of the same loop body) may execute in very different amounts
of time. A naively parallelized loop will cause processors to idle until every iteration finishes. The simplest way to
mitigate this delay is to expose substantially more parallel work than the number of underlying processors available to
run them. Load balancing can move the resulting (smaller) units of work onto idle processors to balance load.

The ratio between available work and number of threads is called parallel slack [3, 4]. With support for very
lightweight threading and load balancing, slack in hundreds or thousands (or more) proves beneficial; very slack

43

computations easily adapt to differences in the number of available processors. Slack is a desirable property, and the
Fortress programmer should endeavor to expose parallelism where possible.

4.5 Environments

An environment maps names to values or locations. Environments are immutable, and two environments that map
exactly the same names to the same values or locations are identical.

A program starts executing with an empty environment. Environments are extended with new mappings by variable,
function, and object declarations, and functional calls (including calls to object constructors). After initializing all
top-level variables and singleton objects as described in Section 22.6, the top-level environment for each component is
constructed.

The environment of a value is determined by how it is constructed. For all but object expressions, function expressions
and local function declarations, the environment of the constructed value is the top-level environment of the component
in which the expression or declaration occurs. For object and function expressions and local function declarations, the
environment of the constructed value is the lexical environment in which the expression or declaration was evaluated.

We carefully distinguish a spawned thread from its associated spawned thread object. In particular, note that the
execution environment of a spawned thread, in which the body expression is evaluated, is distinct from the environment
of the associated thread object, in which calls to the thread methods are evaluated.

4.6 Input and Output Actions

Certain functionals in Fortress perform primitive input/output (I/O) actions. These actions have an externally visible
effect. Any functional which may perform an I/O action—either because it is a primitive action or because it invokes
other functionals which perform I/O actions—must be declared with the io modifier.

Any primitive I/O action may take many internal steps; each step may read or write any memory locations referred
to either directly or transitively by object references passed as arguments to the action. Each I/O action is free to
complete either normally or abruptly. I/O actions may block and be prevented from taking a step until any necessary
external conditions are fulfilled (input is available, data has been written to disk, and so forth).

Each I/O action taken by an expression is considered part of that expression’s effects. The steps taken by an I/O action
are considered part of the context in which an expression evaluates, in much the same way as effects of simultaneously-
executing threads must be considered when describing the behavior of an expression. For example, we cannot consider
two functionals to be equivalent unless the possible I/O actions they take are the same, given identical internal steps
by each I/O action.

44

Chapter 5

Lexical Structure

A Fortress program consists of a finite sequence of Unicode 5.0 abstract characters [27]. Every character in a program
is part of an input element. The partitioning of the character sequence into input elements is uniquely determined by
the characters themselves. In this chapter, we explain how the sequence of input elements of a program is determined
from a program’s character sequence.

This chapter also describes standard ways to render (that is, display) individual input elements in order to approximate
conventional mathematical notation more closely. Other rules, presented in later chapters, govern the rendering of
certain sequences of input elements; for example, the sequence of three input elements a , ˆ , and b may be rendered
ab . The rules of rendering are “merely” a convenience intended to make programs more readable. Alternatively, the
reader may prefer to think of the rendered presentation of a program as its “true form” and to think of the underlying
sequence of Unicode characters as “merely” a convenient way of encoding mathematical notation for keyboarding
purposes.

Most of the program text in this specification is shown in rendered presentation form. However, sometimes, particu-
larly in this chapter, unformatted code is presented to aid in exposition. In many cases the unformatted form is shown
alongside the rendered form in a table, or following the rendered form in parentheses; as an example, consider the
operator ⊕ (OPLUS).

5.1 Characters

A Unicode 5.0 abstract character is the smallest element of a Fortress program.1 Many characters have standard glyphs,
which are how these characters are most commonly depicted. However, more than one character may be represented
by the same glyph. Thus, Unicode 5.0 specifies a representation for each character as a sequence of code points. Each
character used in this specification maps to a single code point, designated by a hexadecimal numeral preceded by
“U+”. Unicode also specifies a name for each character;2 when introducing a character, we specify its code point and
name, and sometimes the glyph we use to represent it in this specification. In some cases, we use such glyphs without
explicitly introducing the characters (as, for example, with the simple upper- and lowercase letters of the Latin and
Greek alphabets). When the character represented by a glyph is unclear and the distinction is important, we specify the
code point or the name (or both). The Unicode Standard [27] specifies a general category for each character, which
we use to describe sets of characters below.

1Note that a single Unicode abstract character may have multiple encodings. Fortress does not distinguish between different encodings of
the same character that may be used in representing source code, and it treats canonically equivalent characters as identical. See the Unicode
Standard [27] for a full discussion of encoding and canonical equivalence.

2There are sixty-five “control characters”, which do not have proper names. However, many of them have Unicode 1.0 names, or other standard
names specified in the Unicode Character Database, which we use instead.

45

We partition the Unicode 5.0 character set into the following (disjoint) classes:

• special non-operator characters, which are:

U+0026 AMPERSAND & U+0027 APOSTROPHE ’

U+0028 LEFT PARENTHESIS (U+0029 RIGHT PARENTHESIS)
U+002C COMMA , U+002E FULL STOP .
U+0038 SEMICOLON ; U+005C REVERSE SOLIDUS \
U+2026 HORIZONTAL ELLIPSIS . . . U+21A6 RIGHTWARDS ARROW FROM BAR 7→
U+2200 FOR ALL ∀ U+2203 THERE EXISTS ∃
U+2254 COLON EQUALS :=
U+27E6 MATHEMATICAL LEFT WHITE SQUARE BRACKET [[
U+27E7 MATHEMATICAL RIGHT WHITE SQUARE BRACKET]]

• special operator characters, which are

U+003A COLON : U+003D EQUALS SIGN =
U+005B LEFT SQUARE BRACKET [U+005D RIGHT SQUARE BRACKET]
U+005E CIRCUMFLEX ACCENT ˆ U+007B LEFT CURLY BRACKET {
U+007C VERTICAL LINE | U+007D RIGHT CURLY BRACKET }
U+2192 RIGHTWARDS ARROW → U+21D2 RIGHTWARDS DOUBLE ARROW ⇒

• letters, which are characters with Unicode general category Lu, Ll, Lt, Lm or Lo—those with Unicode general
category Lu are uppercase letters—and the following honorary letters:

U+221E INFINITY ∞ U+22A4 DOWN TACK > U+22A5 UP TACK ⊥

• connecting punctuation (Unicode general category Pc);

• digits (Unicode general category Nd);

• prime characters, which are:

U+2032 PRIME U+2033 DOUBLE PRIME

U+2034 TRIPLE PRIME U+2035 REVERSED PRIME

U+2036 REVERSED DOUBLE PRIME U+2037 REVERSED TRIPLE PRIME

• whitespace characters, which are spaces (Unicode general category Zs) and the following characters:

U+0009 CHARACTER TABULATION U+000A LINE FEED

U+000B LINE TABULATION U+000C FORM FEED

U+000D CARRIAGE RETURN

U+001C INFORMATION SEPARATOR FOUR U+001D INFORMATION SEPARATOR THREE

U+001E INFORMATION SEPARATOR TWO U+001F INFORMATION SEPARATOR ONE

U+2028 LINE SEPARATOR U+2029 PARAGRAPH SEPARATOR

• character literal delimiters, which are:

U+0060 GRAVE ACCENT ‘

U+2018 LEFT SINGLE QUOTATION MARK ‘
U+2019 RIGHT SINGLE QUOTATION MARK ’

• string literal delimiters, which are:

U+0022 QUOTATION MARK "

U+201C LEFT DOUBLE QUOTATION MARK “
U+201D RIGHT DOUBLE QUOTATION MARK ”

• ordinary operator characters, enumerated (along with the special operator characters) in Appendix F, which
include the following characters with code points less than U+007F:

46

U+0021 EXCLAMATION MARK ! U+0023 NUMBER SIGN #
U+0024 DOLLAR SIGN $ U+0025 PERCENT SIGN %
U+002B PLUS SIGN + U+002D HYPHEN-MINUS −
U+003F QUESTION MARK ? U+0040 COMMERCIAL AT @
U+002A ASTERISK * U+002F SOLIDUS /
U+003C LESS-THAN SIGN < U+003E GREATER-THAN SIGN >
U+007E TILDE ˜

and most (but not all) Unicode characters specified to be mathematical operators (i.e., characters with code
points in the range 2200-22FF) are operators in Fortress.

• other characters

Some other classes of characters, which overlap with the ones above, are useful to distinguish:

• control characters are those with Unicode general category Cc;

• ASCII characters are those with code points U+007F and below;

• protected characters are the ASCII characters, control characters, and string literal delimiters;

• word characters are letters, digits, connecting punctuation, prime characters, and apostrophe;

• restricted-word characters are ASCII letters, ASCII digits, and the underscore character (i.e., ASCII word
characters other than apostrophe);

• hexadecimal digits are the digits and the ASCII letters A, B, C, D, E, F, a, b, c, d, e and f;

• the digit-group separator is NARROW NO-BREAK SPACE (U+202F);

• operator characters are special operator characters and ordinary operator characters;

• special characters are special non-operator characters and special operator characters;

• enclosing characters are the enclosing operator characters enumerated in Section F.1, left and right parenthesis
characters, and mathematical left and right white square brackets;

Forbidden and Restricted Characters

It is a static error for a Fortress program to contain any control character other than the above-listed whitespace
characters, except that the character SUBSTITUTE (U+001A; also known as “control-Z”) is allowed and ignored if it
is the last character of a program.

It is a static error for the following characters to occur outside a comment:

U+0009 CHARACTER TABULATION U+000B LINE TABULATION

U+001C INFORMATION SEPARATOR FOUR U+001D INFORMATION SEPARATOR THREE

U+001E INFORMATION SEPARATOR TWO U+001F INFORMATION SEPARATOR ONE

Thus, LINE FEED, FORM FEED and CARRIAGE RETURN are the only control characters—and the only whitespace
characters other than spaces, LINE SEPARATOR, and PARAGRAPH SEPARATOR—outside of comments in a valid
Fortress program.

It is a static error for REVERSE SOLIDUS (‘\’;U+005C), any connecting punctuation other than LOW LINE (‘ ’;
U+005F, also known as SPACING UNDERSCORE), any character in the “other characters” class above, or the following
whitespace characters to appear outside of comments and string and character literals:

U+2000 EN QUAD U+2003 EM SPACE U+2006 SIX-PER-EM SPACE

U+2001 EM QUAD U+2004 THREE-PER-EM SPACE U+2007 FIGURE SPACE

U+2002 EN SPACE U+2005 FOUR-PER-EM SPACE U+2008 PUNCTUATION SPACE

47

5.2 Words and Chunks

A chunk of a Fortress program is a nonempty contiguous subsequence of the program.

A word of a Fortress program is a maximal chunk consisting of only word characters (letters, digits, connecting
punctuation, prime characters and apostrophe); that is, a word is one or more consecutive word characters delimited
by characters other than word characters (or the beginning or end of the program).

A restricted word is a maximal chunk that has only restricted-word characters (ASCII letters and digits and underscore
characters). Note that a restricted word is not a word if it is delimited by word characters.

5.3 Lines, Pages and Position

The characters in a Fortress program are partitioned into lines and pages, delimited by line terminators and page
terminators respectively. A page terminator is an occurrence of the character FORM_FEED. A line terminator is an
occurrence of any of the following:

• LINE FEED,

• CARRIAGE RETURN not immediately followed by LINE FEED,

• LINE SEPARATOR, or

• PARAGRAPH SEPARATOR.

A character is on page n (respectively line n) of a program if exactly n − 1 page terminators (respectively line
terminators) precede that character in the program. Thus, for example, the nth line terminator of a program is the
last character on line n. A character is on line k of page n if it is on page n and is preceded by exactly k − 1 line
terminators on page n. A character is at line position k on line n if it is preceded by exactly k − 1 characters on line
n other than page terminators. Note that a page terminator does not terminate a line; thus, the character immediately
following a page terminator need not be at line position 1.

Before any other processing, a Fortress program undergoes ASCII conversion (see Section 5.4), which may replace
chunks of ASCII characters with single (typically non-ASCII) characters and remove some other characters. We
expect that IDEs will typically display a program by rendering the converted sequence of characters rather than the
actual input sequence. Thus, a program may appear to have fewer (and different) characters than it actually does.
Nonetheless, the page, line and position of a character is based on the program before conversion.3

If a character (or any other syntactic entity) x precedes another character y in the program, we say that x is to the left
of y and that y is to the right of x, regardless of how they may appear in a typical rendered display of the program.
Thus, it is always meaningful to speak, for example, of the left-hand and right-hand operands of a binary operator, or
the left-hand side of an assignment expression.

5.4 ASCII Conversion

To facilitate interaction with legacy tools, and particularly to aid in program entry, Fortress provides an ASCII encoding
for programs. To support this encoding, a Fortress program undergoes ASCII conversion, which is described in detail
in Appendix E. This section gives a high-level overview of ASCII conversion.

3Of course, an IDE may instead do the conversion and manipulate the converted program, in which case, the page, line and position of characters
will reflect the conversion.

48

ASCII conversion takes a program and yields an equivalent program. For every valid Fortress program, there is an
equivalent program that contains only ASCII characters.4 ASCII conversion is idempotent: converting a program
resulting from ASCII conversion yields the same program. Unless otherwise specified, all constraints and properties
of Fortress programs stipulated in this specification apply to the programs after ASCII conversion.

ASCII conversion consists of three steps. The first step consists of “pasting” words across line breaks, so that long
identifiers and numerals can be split across lines. Identifiers may be very long because non-ASCII Unicode characters
may be encoded by long chunks of ASCII characters (the actual conversion of such chunks is done in the next step).
Roughly speaking, two consecutive lines are pasted together if the first ends with an ampersand that is immediately
preceded by a word character, and the second begins with an ampersand that is immediately followed by a word
character.

The second step replaces certain restricted words, and sequences of operator and special characters, with single Uni-
code characters. Roughly speaking, if a restricted word is either the official Unicode 5.0 name with underscores
in place of spaces and hyphens, or a specified alternative name, of some character that is not a protected character
(ASCII and control characters and string literal delimiters), then the restricted word is replaced by that character. In
some cases, even a fragment of a restricted word may be replaced by a single character (most commonly a Greek
letter). Some multicharacter sequences of ASCII operator and special characters are also replaced by non-ASCII oper-
ator or special characters; we call such sequences ASCII shorthand. However, within string literals, neither restricted
words nor ASCII shorthand is converted. Instead, we provide escape sequences to get non-ASCII characters within
strings (see Section 5.10).

The third step replaces apostrophes that appear within what would otherwise be numerals with digit-group separators.

Precise descriptions of these steps are given in Appendix E, including the rules for replacing fragments of restricted
words and the specification of alternative names and ASCII shorthand for non-operator characters. Alternative names
and ASCII shorthand for operator characters are given in Appendix F.

The ampersand is particularly important in the ASCII conversion process, and to preserve the idempotence of ASCII
conversion, its use is severely restricted in the converted program. In particular, outside of comments and string and
character literals, its only legitimate use is in “cancelling” line breaks, as described in the Section 5.7. This restriction
is also stated precisely in Appendix E.

5.5 Input Elements and Scanning

After ASCII conversion, a Fortress program is partitioned into input elements by a process called scanning.5 Scanning
transforms a Fortress program from a sequence of Unicode characters to a sequence of input elements. Input elements
are always chunks: the characters that comprise an input element always appear contiguously in the program. Every
input element is a whitespace element (comments are included in whitespace elements) or a token. Every token is a
reserved word, a literal, an identifier, an operator token, or a special token. There are five kinds of literals: boolean
literals, character literals, string literals, the void literal, and numerals (i.e., numeric literals).

Conceptually, we can think of scanning as follows: First, the comments, character literals and string literals are
identified. Then the remaining characters are divided into words (i.e., chunks of letters, digits, connecting punctuation,
primes and apostrophes), whitespace characters, and other characters. In some cases, words separated by a single ‘ . ’
or digit-group separator (and no other characters) are joined to form a single numeral (see Section 5.13). Words
that are not so joined are classified as reserved words, boolean literals, numerals, identifiers, or operator tokens, as
described in later sections in this chapter. It is a static error if any word in a Fortress program cannot be classified
as one of these. All remaining whitespace characters, together with the comments, form whitespace elements, which
may be line-breaking. Finally, chunks of symbols (and a few other special cases) are checked to see whether they

4See Appendix E for the precise notion of equivalence guaranteed by ASCII conversion.
5Fortress has a facility for defining new syntax, discussed in Chapter 36. However, except for that chapter, this specification describes the

Fortress language only for programs that use the standard Fortress syntax.

49

form multicharacter operator tokens, as described in Section 5.14, or the void literal (see Section 5.12). Every other
character is a token by itself, either a special token (if it is a special character) or an operator token.

5.6 Comments

The character sequences “ (∗ ” and “ ∗) ” are referred to as the opening comment delimiter and the closing comment
delimiter respectively. In a valid program, every occurrence of the opening comment delimiter (outside of string
literals) is balanced by a subsequent occurrence of the closing comment delimiter; it is a static error if comment
delimiters are not properly balanced. All the characters between a balanced pair of comment delimiters, including the
comment delimiters themselves, comprise a comment. Comments may be nested.

5.7 Whitespace Elements

A whitespace element is a maximal chunk consisting of comments, whitespace characters that are not within string or
character literals or numerals, and ampersands that are not within string or character literals.

We distinguish line-breaking whitespace from non-line-breaking whitespace using the following terminology:

• A line-terminating comment is a comment that encloses one or more line terminators. All other comments are
called spacing comments.

• Spacing refers to any chunk of spaces, FORM FEED characters and spacing comments.

• A line break is a line terminator or line-terminating comment that is not immediately preceded by an ampersand
(U+0026), possibly with intervening spacing.

• Whitespace refers to any nonempty sequence of spacing, ampersands, line terminators, and line-terminating
comments.

• Line-breaking whitespace is whitespace that contains at least one line break.

It is a static error if an ampersand occurs in a program (after ASCII conversion) unless it is within a character or string
literal or a comment, or it is immediately followed by a line terminator or line-terminating comment (possibly with
intervening spacing).

5.8 Reserved Words

The following tokens are reserved words:

BIG SI unit absorbs abstract also api as
asif at atomic bool case catch coerces
coercion component comprises default dim do elif
else end ensures except excludes exit export
extends finally fn for forbid from getter
hidden ident if import in int invariant
io juxtaposition label largest nat object of
opr or private property provided requires self
settable setter smallest spawn syntax test then
throw throws trait transient try tryatomic type
typecase unit value var where while widening
widens with wrapped

50

The operators on units, namely cubed , cubic , in , inverse , per , square , and squared , are also reserved words.

To avoid confusion, Fortress reserves the following tokens:

goto idiom public pure reciprocal static

They do not have any special meanings but they cannot be used as identifiers.

5.9 Character Literals

A character literal consists of one or more characters enclosed in single quotation marks. The character that begins
a character literal is called the literal’s opening mark; the character that ends it is its closing mark. For convenience,
the marks may be true typographical “curly” single quotation marks (U+2018 and U+2019), a pair of apostrophe
characters (U+0027), or a “backquote” character (U+0060) and an apostrophe character. It is a static error if the
opening and closing marks do not match: a character literal beginning with a left single quotation mark must end with
a right single quotation mark; one beginning with either an apostrophe or a backquote must end with an apostrophe. As
discussed in Section 13.1, a character literal evaluates to a value of type Character (see Section 8.7), which represents
an abstract Unicode character.

A left single quotation mark (U+2018) or a backquote begins a character literal unless it is within a comment, another
character literal, or a string literal. An apostrophe (U+2018) begins a character literal unless it is within a comment,
another character literal, or a string literal, or it is immediately preceded by a word character (i.e., a letter, digit,
connecting punctuation, prime, or apostrophe). In either case, the character literal ends with the nearest apostrophe or
right single quotation mark after the first character following the opening mark. In particular, an apostrophe or right
single quotation mark immediately following the opening mark of a character literal is not a closing mark. Thus, for
example, the sequence ’’’ is a single character literal with one enclosed character ’.

It is a static error if any of the enclosed characters of a character literal is a line feed, form feed, carriage return, or
any character forbidden outside comments in a Fortress program (see Section 5.1), or if there is exactly one enclosed
character and it is a backslash (U+005C). It is also a static error if any of the enclosed characters is a string literal de-
limiter that is not immediately preceded by a backslash (i.e., an unescaped string literal delimiter). This last restriction
is necessary to prevent ASCII conversion from changing the boundaries of string literals (see Appendix E).

The sequence of enclosed characters may be a single character (e.g., ‘a’, ’$’, ‘α’, ‘⊕’), a sequence of four or more
hexadecimal digits identifying the code point of a Unicode character (e.g., ‘001C’, ‘FBAB’, ‘1D11E’), the official Uni-
code 5.0 name or an alternative name of a Unicode character with spaces and hyphens intact (e.g., ‘PLUS-MINUS SIGN’),
a sequence of ASCII characters that would be converted by the second step of ASCII conversion to a single Unicode
character (see Section E.2), or a character-literal escape sequence. The character-literal escape sequences, and the
characters such character literals evaluate to, are:

\b U+0008 BACKSPACE

\t U+0009 CHARACTER TABULATION

\n U+000A LINE FEED

\f U+000C FORM FEED

\r U+000D CARRIAGE RETURN

\" U+0022 QUOTATION MARK

\\ U+005C REVERSE SOLIDUS

\“ U+201C LEFT DOUBLE QUOTATION MARK

\” U+201D RIGHT DOUBLE QUOTATION MARK

It is a static error if the sequence of enclosed characters is not one of the kinds listed above. In particular, it is a static
error if the hexadecimal digits enclosed do not correspond to the code point of a Unicode 5.0 abstract character.

Note that ASCII conversion is performed within character literals. Thus a character literal written as

51

’GREEK CAPITAL LETTER LAMBDA’

is equivalent to a character literal written as

’Λ’

Although names for control and other protected characters are not converted during ASCII conversion, they are permit-
ted within character literals. Both the standard form of such names (i.e., with spaces and hyphens) and the form with
spaces and hyphens replaced by underscore characters are permitted. Thus, for example, the literals ’BACKSPACE’,
’’
¯

and ’U+0008’ all evaluate to the BACKSPACE character.

5.10 String Literals

A string literal is a sequence of characters enclosed in double quotation marks (for example, "Hello, world!" or
“π r2”). The character that begins a string literal is the literal’s opening mark; the character that ends it is its closing
mark. For convenience, the opening and closing marks of a string literal may be either true typographical “curly”
double quotation marks (U+201C and U+201D) or a pair of “neutral” double-quote characters. It is a static error if
the opening and closing marks of a string literal do not “match”, that is, if one is “curly” and the other “neutral”. As
discussed in Section 13.1, a string literal evaluates to a value of type String (see Section 8.7), which represents a finite
sequence of abstract Unicode characters.

A left double quotation mark (U+201C) or “neutral” quotation mark (U+0022) begins a string literal unless it is
within a comment, a character literal, or another string literal. It ends with the nearest following unescaped (i.e., not
immediately preceded by an unescaped backslash) right double quotation mark or “neutral” quotation mark. Therefore,
it is not possible for a string literal to include an unescaped right double quotation mark or “neutral” quotation mark
as an enclosed character. In addition, it is a static error for an unescaped left double quotation mark to be an enclosed
character of a string literal.

Within a string literal, a backslash introduces an escape sequence, unless it is immediately preceded by an odd number
of backslashes, in which case the backslash is itself escaped. There are three kinds of escape sequences recognized
within a string literal: the character-literal escape sequences (see Section 5.9), restricted-word escape sequences, and
quoted-character escape sequences.

A restricted-word escape sequence consists of an unescaped backslash immediately followed by a restricted word not
beginning with a lowercase letter. It is a static error for a string literal to contain any restricted-word escape sequence
other than “\BACKSPACE”, “\TAB”, “\NEWLINE”, “\FORM FEED”, or “\RETURN”.

A quoted-character escape sequence consists of an unescaped backslash immediately followed by an apostrophe and
the sequence of characters immediately following the apostrophe up to and including the next apostrophe. Note that
this kind of escape sequence looks just like a backslash followed by a character literal. It is a static error if such a
sequence with the initial backslash removed would not be a valid character literal (see Section 5.9). Quoted-character
escape sequences are useful for ASCII “shorthands” that begin with a lowercase letter or are not restricted words,
and when the escape sequence is immediately followed in the string by a letter, digit, or underscore. For example,
"\beta" evaluates to a string containing a backspace character (indicated by \b) followed by the letters e, t, and a,
but "\’beta’" evaluates to a string containing the single letter β. As another example, "x\AND\’NOT’y" becomes
"x∧¬y", but "x\AND\NOTy" is a static error, because the name “NOTy” does not correspond to a Unicode character.
Also, the string "Foo\’[\’T\’\]’" becomes "FooJTK".

It is a static error if an unescaped backslash is immediately followed by a character other than another backslash, an
apostrophe, a string literal delimiter, or a restricted-word character. In addition, it is also a static error if an unescaped
backslash within a string literal is followed by any lowercase letter other than ‘b’, ‘t’, ‘n’, ‘f’ or ‘r’. This rule
preserves a certain level of compatibility with the C and Java programming languages.

52

Unlike elsewhere in a program, the enclosed characters of a string literal are not subject to the second or third step
of ASCII conversion (word pasting across line terminators still occurs within string literals). Also, the formatting of
identifiers and numerals described in Section 5.17 is not performed within string literals.

5.11 Boolean Literals

The boolean literals are false and true .

5.12 The Void Literal

The void literal is () (pronounced “void”).

5.13 Numerals

A numeric literal, or numeral, in Fortress is a maximal chunk consisting one or more words (and the intervening
characters) satisfying the following properties:

• each word consists of only digits and letters, except that the last word may have one underscore as part of a
radix specifier, defined below;

• consecutive words are separated by exactly one character, either a digit-group separator or a ‘ . ’ character; and

• either the first word begins with a digit or the last word has a radix specifier.

A radix specifier is a word suffix consisting of an underscore and then either by a sequence of one or more digits or
by the English name in all uppercase ASCII letters of an integer from 2 to 16. The radix of a numeral with a radix
specifier is the number denoted by the sequence of digits (interpreted in base 10) or named by the ASCII letters of the
radix specifier. It is a static error if the radix of a numeral is not an integer from 2 to 16. It is also a static error if any
of the following conditions hold:

• the numeral contains letters and does not have a radix specifier;

• the numeral contains letters other than A, B, C, D, E, F, a, b, c, d, e or f, and has a radix other than 12;

• the numeral has radix 12 and contains letters other than A, B, X, E a, b, x or e, or contains at least one A, B, a or
b and at least one X, E, x or e;

• the numeral has a radix specifier and contains a digit or letter that denotes a value greater than or equal to the
numeral’s radix;6 or

• the numeral contains both uppercase and lowercase letters.

A numeral is simple if it does not contain a ‘.’ character; otherwise, the number is compound. It is a static error if a
numeral contains more than one ‘.’ character.

Here are some examples of valid numerals, shown in unformatted form:

17 7fff_16 0fff_SIXTEEN 10101101_2 XE_12 3.14159265 DEAD.BEEF_16

On the other hand, the following would be classified as numerals but then rejected as static errors:

0.a 0x6A35 FF_EIGHT 12.52.23 57_50 PI_FIFTEEN dead.BEEF_16
6The value denoted by a digit is specified by the Unicode Standard [27]. The value denoted by the letters are as follows: A or a: 10; B or b: 11;

C or c: 12; D or d: 13; E or e: 11 if the radix is 12, 14 otherwise; F or f: 15; X or x: 10.

53

5.14 Operator Tokens

In this section, we describe how to determine the operator tokens of a program. Because operator tokens do not occur
within comments, string literals and character literals, we henceforth in this section consider only characters that are
outside these constructs.

An operator word of a program is a word that is not reserved, consists only of uppercase letters and underscores (no
digits or non-uppercase letters), does not begin or end with an underscore, and has at least two different letters.

A base operator is an ordinary operator character,7 the two-character sequence “**”, an operator word, a (contiguous)
sequence of two or more vertical-line characters (U+007C), or a multicharacter enclosing operator, as defined in
Section 5.14.1. A base operator is maximal of a program if it is not contained within any other base operator of that
program. It is a static error if two maximal base operators overlap (which is only possible if both are multicharacter
enclosing operators). A simple operator is a maximal base operator that is an operator character, the two-character
sequence “**”, or an operator word.

A maximal base operator is an operator token unless it is a simple operator other than an enclosing or vertical-line
operator character, and it is immediately preceded by ‘ˆ’ or immediately followed by ‘=’. Such an operator is an
enclosing operator if it is an enclosing operator character (see Section F.1) or a multicharacter enclosing operator; it
is a vertical-line operator if it has only vertical-line operator characters (see Section F.2); otherwise, it is an ordinary
operator.

If a simple operator is immediately preceded by ‘ˆ’ then the ‘ˆ’ followed by the simple operator is an operator token;
such an operator token is called a superscripted postfix operator. In addition, “ ˆT ” is also a superscripted postfix
operator provided that it is not immediately followed by a word character. It is a static error for a superscripted postfix
operator to be immediately followed by a word character other than apostrophe.

Finally, if a simple operator is not immediately preceded by ‘ˆ’ and is immediately followed by ‘=’ then the simple
operator followed by the ‘=’ is an operator token; such an operator token is called a compound assignment operator.

5.14.1 Multicharacter Enclosing Operators

The following multicharacter sequences (in which there must be no other characters, and particularly no whitespace)
can be used as brackets as described below:

1. Any chunk of vertical-line characters is a vertical-line operator. Such an operator can be used in an enclosing
pair matching itself.

2. Any of ‘(’ or ‘[’ or ‘{’ may be immediately followed by any number of ‘/’ characters or by any number of ‘\’
characters. Such a token is a left bracket, and it is matched by the multicharacter token consisting of the same
number and kind of ‘/’ or ‘\’ characters followed immediately by a matching ‘)’ or ‘]’ or ‘}’, as appropriate.
Thus, for example, “(////” and “////)” are matching left and right brackets respectively. (In the future,
we may allow tokens with mixtures of ‘/’ and ‘\’, in which case the left and right brackets should match from
outside in. But for now, such tokens are simply illegal.)

3. One or more ‘<’ characters may be followed immediately by one or more ‘|’ characters. Such a token is a left
bracket, and it is matched by the multicharacter token consisting of the same number of ‘|’ characters followed
by as many ‘>’ characters as there are ‘<’ characters in the left bracket.

4. One or more ‘<’ characters, or one or more ‘|’ characters may be followed immediately by one or more ‘/’
characters or by one or more ‘\’ characters. Such a token is a left bracket, and it is matched by the multicharacter
token consisting of the same number and opposite kind of ‘/’ or ‘\’ characters followed immediately by as

7The operator characters are enumerated in Appendix F, less the special operator characters listed in Section 5.1.

54

many matching ‘>’ or ‘|’ characters as appropriate. Thus, for example, “<<//” matches “\\>>’, and “|\\\”
matches “///|”. (As in case 2 above, we may allow tokens with mixtures of ‘/’ and ‘\’ in the future.)

5. Finally, any number of ‘*’ (U+002A) or ‘.’ (U+002E) characters may be placed within any of the above
multicharacter sequences, except those that contain ‘(’ or ‘)’, as long as no ‘*’ or ‘.’ is the first or last character
in the sequence, and no ‘*’ or ‘.’ characters are adjacent. The rule for matching is as above, except that in
addition, the positions of the ‘*’ and the ‘.’ characters must match from the outside in.

Note that some of the character sequences described above cannot occur in programs after ASCII conversion. For
example, “||” is converted to ‘‖’ (U+2016). Note also that [\ \] (which are converted to J K) are not operators;
they play a special role in the syntax of Fortress, and their behavior cannot be redefined by a library.

5.14.2 Special Operators

Note that in the preceding discussion, a single operator character can be an operator token only if it is an ordinary oper-
ator character. In some cases, some of the special operator characters (and even some special non-operator characters)
form part of an operator token. However, most of the special operator characters cannot be determined to be operators
before parsing the program because they are also used for various parts of Fortress syntax. The one exception is ‘ˆ’:
if an occurence of this character is not part of a superscripted postfix operator, then it is an operator token by itself:
the special superscripting operator. This operator is always an infix operator, and it is a static error if it appears in a
context in which a prefix or postfix operator is expected.

Every other special operator character, when not part of an operator token, is a special token that may be used as an
operator. There is also a special juxtaposition operator (described in Section 16.7), which is also always infix,
but this operator is a reserved word rather than an operator token. Occurrences of this operator are determined by
the Fortress grammar. The reserved words in , cubed , cubic , in , inverse , per , square , and squared , are used as
operators on units.

5.15 Identifiers

A word is an identifier if it begins with a letter and is not a reserved word, an operator, or all or part of a numeral.

5.16 Special Tokens

Every special character (operator or non-operator) that is not part of a token (or within a comment) as described above
is a special token by itself. The special operator characters may be operators in the appropriate context.

5.17 Rendering of Fortress Programs

In order to more closely approximate mathematical notation, Fortress mandates standard rendering for various input
elements, particularly for numerals and identifiers, as specified in this section. In the remainder of this specification,
programs are presented formatted unless stated otherwise.

55

5.17.1 Fonts

Throughout this section, we refer to different fonts or styles in which certain characters are rendered, with names
suggestive of their appearance.

• roman

• italic

• math (often identical to italic)

• script

• fraktur

• sans-serif

• italic sans-serif

• monospace

• double-struck

Additionally, the following fonts may be specified to be bold: roman, italic, script, fraktur, sans-serif, italic sans-serif.

However, a particular environment may substitute different fonts either because of local practice or because the desired
fonts are not available.

5.17.2 Numerals

A numeral is rendered in roman type, with the radix, if present, as a subscript.

27 is rendered as 27
7FFF 16 is rendered as 7FFF16

10101101 TWO is rendered as 10101101TWO
37X8E2 12 is rendered as 37X8E212

deadbeef SIXTEEN is rendered as deadbeefSIXTEEN
dead.beef 16 is rendered as dead.beef16
3.143159265 is rendered as 3.143159265
3.11037552 8 is rendered as 3.11375528

3.243f6b 16 is rendered as 3.243f6b16

11.001001000011111101101010 2 is rendered as 11.0010010000111111011010102

Note: the elegant way to write Avogadro’s number is 6.02 TIMES 10ˆ23, which is not a single token but is a
constant expression; its rendered form is 6.02× 1023 .

5.17.3 Identifiers

Fortress has rather complicated rules for rendering an identifier; as in other parts of Fortress, the rules are complicated
so that the simple cases will be very simple, but also so that difficult cases of interest will be possible.

It is conventional in mathematical notation to make use of variables, particularly single-letter variables, in a number
of different fonts or styles, with italic being the most common, then boldface, and roman: a , b , c . Frequently such
variables are also decorated with accents and subscripts: p̄ , q′ , r̂ , Tmax , ~u , vx , w17 , z̄ ′17 . Fortress provides
conventions for typing such variables using plain ASCII characters: for example, the unformatted presentations of
these same variables are a , _b , c_ , p_bar , q’ or q_prime , r_hat , T_max , _u_vec , _v_x , w17 ,

56

and z17_bar’ . The rules are also intended to accommodate the typical use of multicharacter variable names for
computer programming, such as count , isUpperCase , and Boolean .

The most important rules of thumb are that simple variables are usually italic z (z), a leading underscore usually
means boldface font z (_z), a trailing underscore usually means roman font z (z_), and a doubled capital letter
means double-struck (or “blackboard bold”) font Z (ZZ). However, mixed-case variable names that begin with
a capital letter, which are usually used as names of types, are rendered in roman font even if there is no trailing
underscore.

The detailed rules are described in Appendix D.

5.17.4 Other Formatting Rules

Reserved words are rendered in monospace, except that the reserved words that are used as operators on units, namely
cubed , cubic , in , inverse , per , square , and squared , are rendered in roman type. Operator words are rendered in
monospace. Comments are rendered in roman font. Any character within a character literal or string literal is rendered
in monospace if possible. Delimiters of syntax expanders (described in Section 36.1) are rendered in monospace.

57

Chapter 6

Declarations

Declarations introduce named entities; we say that a declaration declares an entity and a name by which that entity
can be referred to, and that the declared name refers to the declared entity. As discussed later, there is not a one-one
correspondence between declarations and named entities: some declarations declare multiple named entities, some
declare multiple names, and some named entities are declared by multiple declarations.

Some declarations contain other declarations. For example, a trait declaration may contain method declarations, and a
function declaration may contain parameter declarations.

The positions in which a declaration may legally appear are determined by the nonterminal Decl in the simplified
Fortress grammar in Appendix G.

6.1 Kinds of Declarations

Syntax:
Decl ::= TraitDecl

| ObjectDecl
| VarDecl
| FnDecl
| DimUnitDecl
| TypeAlias
| TestDecl
| PropertyDecl

There are two kinds of declarations: top-level declarations and local declarations.

Top-level declarations occur at the top level of a component, not within any other declaration or expression. A top-level
declaration is one of the following:1

• trait declarations (see Chapter 9);

• object declarations (see Chapter 10), which may be singleton declarations or constructor declarations;

• top-level variable declarations (see Section 6.2);

• top-level function declarations (see Chapter 12), including top-level operator declarations (see Chapter 16);
1The Fortress component system, defined in Chapter 22, includes declarations of components and APIs. Because component names are not used

in a Fortress program and API names are used only in qualified names and import and export statements, we do not discuss them in this chapter.

58

• dimension declarations (see Chapter 18);

• unit declarations (see Chapter 18);

• top-level type aliases (see Section 8.9);

• test declarations (see Chapter 19);

• top-level property declarations; (see Chapter 19)

Local declarations occur in another declaration or in some expression (or both). These may be one of the following:

• field declarations (see Section 10.2), which occur in object declarations and object expressions, and include field
declarations in the parameter list of a constructor declaration;

• method declarations (see Section 9.2), which occur in trait and object declarations and object expressions;

• coercion declarations (see Chapter 17), which occur in trait and object declarations;

• local variable declarations (see Section 6.3), which occur in block expressions;

• local function declarations (see Section 6.4), which occur in block expressions;

• local property declarations (see Chapter 19), which occur in trait and object declarations and object expressions;

• labeled blocks (see Section 13.12), which are expressions;

• static-parameter declarations, which may declare type parameters, nat parameters, int parameters, bool
parameters, dim parameters, unit parameters, opr parameters, or ident parameters (see Chapter 11), and
occur in static-parameter lists of trait and object declarations, top-level type aliases, top-level function declara-
tions, and method declarations

• hidden-type-variable declarations, which occur in where clauses (see Section 11.6) of trait and object declara-
tions, top-level function declarations, and method declarations;

• type aliases in where clauses, of trait and object declarations, top-level function declarations, and method
declarations;

• (value) parameter declarations, which occur in parameter lists of constructor declarations, top-level function
declarations, method declarations, local function declarations, and function expressions (but do not include non-
transient parameter declarations in the parameter list of a constructor declaration, which are field declarations)

Some declarations are syntactic sugar for other declarations. Throughout this chapter, we consider declarations after
they have been desugared. Thus, apparent field declarations in trait declarations are actually method declarations (as
described in Section 9.2), and a dimension and unit declaration may desugar into several separate declarations (as
described in Section 35.3). After desugaring, the kinds of declarations listed above are disjoint.

In addition to these explicit declarations, there are two cases in which names are declared implicitly:

• the special name self is implicitly declared as a parameter of dotted methods whose declarations do not
provide an explicit declaration for the self parameter (see Section 9.2 for details); and

• the name result is implicitly declared as a variable for the ensures clause of a contract (see Section 12.4 for
details).

Trait declarations, object declarations, top-level type aliases, type-parameter declarations, and hidden-type-variable
declarations are collectively called type declarations; they declare names that refer to types (see Chapter 8). Dimension
declarations and dim -parameter declarations are dimension declarations, and unit declarations and unit -parameter
declarations are unit declarations. Constructor declarations, top-level function declarations, method declarations,
and local function declarations are collectively called functional declarations. Singleton declarations, top-level vari-
able declarations, field declarations, local variable declarations (including implicit declarations of result) and (value)

59

parameter declarations (including implicit declarations of self) are collectively called variable declarations. Static-
parameter declarations and hidden-type-variable declarations are collectively called static-variable declarations. Note
that static-variable declarations are disjoint from variable declarations.

The groups of declarations defined in the previous paragraph are neither disjoint nor exhaustive. For example, labeled
blocks are not included in any of these groups, and an object declaration is both a type declaration and either a function
or variable declaration, depending on whether it is singleton.

Most declarations declare a single name given explicitly in the declaration (though, as discussed in Section 7.1, they
may declare this name in multiple namespaces). There is one exception: wrapped field declarations (described in
Section 9.3) in object declarations and object expressions declare both the field name and names for methods provided
by the declared type of the field.

Method declarations in a trait may be either abstract or concrete. Abstract declarations do not have bodies; concrete
declarations, sometimes called definitions, do.

6.2 Top-Level Variable Declarations

Syntax:
VarDecl ::= VarWTypes InitVal

| VarWoTypes = Expr
| VarWoTypes : TypeRef ... InitVal
| VarWoTypes : SimpleTupleType InitVal

VarWTypes ::= VarWType
| (VarWType(, VarWType)+)

VarWType ::= VarMods? Id IsType
VarWoTypes ::= VarWoType

| (VarWoType(, VarWoType)+)
VarWoType ::= VarMods? Id
InitVal ::= (= | :=) Expr
SimpleTupleType ::= (TypeRef , TypeRefList)
TypeRefList ::= TypeRef (, TypeRef)∗

VarMods ::= VarMod+

VarMod ::= var | UniversalMod
IsType ::= : TypeRef

A variable’s name can be any valid Fortress identifier. There are three forms of variable declarations. The first form:

id : Type = expr

declares id to be an immutable variable with static type Type whose value is computed to be the value of the initializer
expression expr . The static type of expr must be a subtype of Type .

The second (and most convenient) form:

id = expr

declares id to be an immutable variable whose value is computed to be the value of the expression expr ; the static
type of the variable is the static type of expr .

The third form:

var id : Type = expr

60

declares id to be a mutable variable of type Type whose initial value is computed to be the value of the expression
expr . As before, the static type of expr must be a subtype of Type . The modifier var is optional when ‘ := ’ is used
instead of ‘ = ’ as follows:

var? id : Type := expr

In short, immutable variables are declared and initialized by ‘ = ’ and mutable variables are declared and initialized by
‘ := ’ except when they are declared as the third form above with the modifier var .

All forms can be used with tuple notation to declare multiple variables together. Variables to declare are enclosed in
parentheses and separated by commas, as are the types declared for them:

(id(, id)+) : (Type(,Type)+)

Alternatively, the types can be included alongside the respective variables, optionally eliding types that can be inferred
from context (see Chapter 20 for a discussion of type inference in Fortress):

(id(: Type)?(, id(: Type)?)+)

Alternatively, a single type followed by ‘ . . . ’ can be declared for all of the variables:

(id(, id)+): Type . . .

This notation is especially helpful when a function application returns a tuple of values.

The initializer expressions of top-level variable declarations can refer to variables declared later in textual order.
Evaluation of top-level initializer expressions cannot call functionals with the modifier io .

Here are some simple examples of variable declarations:

π = 3.141592653589793238462643383279502884197169399375108209749445923078

declares the variable π to be an approximate representation of the mathematical object π . It is also legal to write:

π : R64 = 3.141592653589793238462643383279502884197169399375108209749445923078

This definition enforces that π has static type R64 .

The following example declares multiple variables using tuple notation:

var (x, y) : Z64 . . . = (5, 6)

The following three declarations are equivalent:

(x, y, z) : (Z64,Z64,Z64) = (0, 1, 2)
(x: Z64, y: Z64, z: Z64) = (0, 1, 2)
(x, y, z) : Z64 . . . = (0, 1, 2)

6.3 Local Variable Declarations

Syntax:

61

LocalVarDecl ::= LocalVarWTypes InitVal
| LocalVarWTypes
| LocalVarWoTypes = Expr
| LocalVarWoTypes : TypeRef ... InitVal?
| LocalVarWoTypes : SimpleTupleType InitVal?

LocalVarWTypes ::= LocalVarWType
| (LocalVarWType(, LocalVarWType)+)

LocalVarWType ::= var ? Id IsType
LocalVarWoTypes ::= LocalVarWoType

| (LocalVarWoType(, LocalVarWoType)+)
LocalVarWoType ::= var ? Id

| Unpasting

Variables can be declared within block expressions (described in Section 13.11) via the same syntax as is used for
top-level variable declarations (described in Section 6.2) except that local variables must not include modifiers and
additional syntax is allowed as follows:

• The form:

var? id : Type

declares a variable without giving it an initial value (where mutability is determined by the presence of the var
modifier). It is a static error if a variable is referred to before it has been given a value; an immutable variable
is initialized by another variable declaration and a mutable variable is initialized by assignment. It is also a
static error if an immutable variable is initialized more than once. Whenever a variable bound in this manner
is assigned a value, the type of that value must be a subtype of its declared type. This form allows declaration
of the types of variables to be separated from definitions, and it allows programmers to delay assigning to a
variable before a sensible value is known. In the following example, the declaration of the type of a variable and
its definition are separated:

π : Float
π = 3.141592653589793238462643383279502884197169399375108209749445923078

• Special syntax for declaring local variables as parts of a matrix is provided as described in Section 6.5.

6.4 Local Function Declarations

Syntax:
LocalFnDecl ::= LocalFnMods? FnHeaderFront FnHeaderClause = Expr
LocalFnMod ::= atomic | io
LocalFnMods ::= LocalFnMod+

Functions can be declared within block expressions (described in Section 13.11) via the same syntax as is used for
top-level function declarations (described in Chapter 12) except that locally declared functions must not include the
modifiers private and test . As with top-level function declarations, locally declared functions in a single scope
are allowed to be overloaded and mutually recursive.

6.5 Matrix Unpasting

Syntax:

62

Unpasting ::= [UnpastingElems]
UnpastingElems ::= UnpastingElem RectSeparator UnpastingElems

| UnpastingElem
UnpastingElem ::= Id ([UnpastingDim])?

| Unpasting
UnpastingDim ::= ExtentRange (× ExtentRange)+

ExtentRange ::= StaticArg?# StaticArg?
| StaticArg? : StaticArg?
| StaticArg

RectSeparator ::= ; +
| Whitespace

Matrix unpasting is an extension of local variable declaration syntax as a shorthand for breaking a matrix into parts.
On the left-hand side of a declaration, what looks like a matrix pasting of unbound variables is actually a declaration of
several new variables. This syntax serves to break the right-hand side into pieces and bind the pieces to the variables.
Matrix unpastings are concise, eliminate several opportunities for fencepost errors, guarantee unaliased parts, and
avoid overspecification of how the matrix should be taken apart.

The motivating example for matrix unpasting is cache-oblivious matrix multiplication. The general plan in a cache
oblivious algorithm is to break the input apart on its largest dimension, and recursively attack the resulting smaller and
more compact problems.

mmJnat m, nat n, nat pK(left : Rm×n, right : Rn×p, result : Rm×p) : () =
case largest of

1⇒ result0,0 += (left0,0right0,0)
m⇒ [lefttop

leftbottom] = left
[resulttop
resultbottom] = result
t1 = spawn mm(lefttop, right , resulttop)
mm(leftbottom, right , resultbottom)
t1.wait()

p⇒ [rightleft rightright] = right
[resultleft resultright] = result
t1 = spawn mm(left , rightleft , resultleft)
mm(left , rightright , resultright)
t1.wait()

n⇒ [leftleft leftright] = left
[righttop
rightbottom] = right

mm(leftleft , righttop, result)
mm(leftright , rightbottom, result)

end

In unpasting, the element syntax is slightly enhanced both to permit some specification of the split location and to
receive information about the split that was performed. For example, perhaps only the upper left square of a matrix is
interesting. The programmer can annotate bounds to the square unpasted element:

fooJnat m, nat nK(A : Rm×n) : () =
if m < n then

[squareShapem×mrest] = A
. . .

elif m > n then

63

[squareShapen×n

rest] = A
. . .

else (∗ A already square ∗)
squareShape = A
. . .

end

The types of the elements of the newly declared matrix variables on the left-hand side of an unpasting are inferred
(trivially) to be the type of the elements on the right-hand side.

If an unpasting into explicitly sized pieces does not exactly cover the right-hand-side matrix, an UnpastingException
is thrown.

Each element of the left-hand-side of unpasting includes an optional extent specification. An extent specification
low #num describes the indexing and the size of the given part of the matrix. The lower extent must be bound, either
before the unpasting, or earlier (left-or-above) in the unpasting. For example, suppose that an algorithm chooses to
break a matrix into 4 pieces, but retain the original indices for each piece:

barJnat p, nat qK(X : Rr0#p×c0#q) : () = do
[Ar0#m ×c0#n Br0#m ×c0+n#q−n

Cr0+m#p−m×c0#n Dr0+m#p−m×c0+n#q−n] = X

. . .
end

Unpasting does not directly support non-uniform decomposition, and does not provide any sort of constraint satisfac-
tion between the extents of the parts. For example, the following decomposition is not legal because it constrains the
split sizes to be equal with respect to unbound nat parameters:

(∗ Not allowed! ∗)
fubarJnat m, nat nK(X : Rm×n) : () = do

(∗ p and q unbound ∗)
[Ap×q Bp×q

Cp×q Dp×q] = X
. . .

end

To get this effect, the programmer should compute the constrained values:

fubarJnat m, nat nK(X : R2m×2n) : () = do
[Am×n Bm×n

Cm×n Dm×n] = X
. . .

end

Some non-uniform unpastings can be obtained with composition, which can be expressed either by repeated unpasting:

unequalRowsJnat m, nat nK(X :R4m×2n) = do
[c14m×n c24m×n] = X
[Am×n

C3m×n] = c1
[B3m×n

Dm×n] = c2
. . .

end

64

or simply by nesting matrices in the unpasting:

unequalRowsJnat m, nat nK(X :R2m×4n) = do
[[Am×nBm×3n]
[Cm×3nDm×n]] = X
. . .

end

65

Chapter 7

Names

Names1 are used to refer to certain kinds of entities in a Fortress program. Names may be simple or qualified. A simple
name is either an identifier or an operator. An operator may be an operator token, a special token corresponding to a
special operator character, or a matching pair of enclosing operator tokens. A qualified name consists of an API name
followed by “ . ”, followed by an identifier, where an API name consists of a sequence of identifiers separated by “ . ”
tokens. Note that operators cannot be qualified. Except in Section 7.3, we consider only simple names in this chapter.

Simple names are typically introduced by declarations, which bind the name to an entity. In some cases, the declaration
is implicit. Every declaration has a scope, in which the declared name can be used to refer to the declared entity.

7.1 Namespaces

Fortress supports three namespaces, one for types, one for values, and one for labels. (If we consider the Fortress
component system, there is another namespace for APIs.) These namespaces are logically disjoint: names in one
namespace do not conflict with names in another.

Type declarations, of course, declare names in the type namespace. Function and variable declarations declare names
in the value namespace. (This implies that object names are declared in both the type and value namespaces.) Labeled
blocks declare names in the label namespace. Although they are not all type declarations, all the static-variable
declarations declare names in the type namespace, as do dimension declarations. In addition, nat parameters, int
parameters, bool parameters, unit parameters, opr parameters, and ident parameters are also declared in the
value namespace. Section 11.5 describes opr parameters and ident parameters in more detail.

A reference to a name is resolved to the entity that the name refers to the namespace appropriate to the context in
which the reference occurs. For example, a name refers to a label if and only if it occurs immediately following the
reserved word exit . It refers to a type if and only if it appears in a type context (described in Chapter 8). Otherwise,
it refers to a value.

7.2 Reach and Scope of a Declaration

In this section, we define the reach and scope of a declaration, which determine where a declared name may be used
to refer to the entity declared by the declaration. It is a static error for a reference to a name to occur at any point in a
program at which the name is not in scope in the appropriate namespace (as defined below), except immediately after

1A name described in this chapter does not syntactically correspond to the nonterminal Name in the Fortress grammar, defined in Appendix G.

66

the ‘.’ of a dotted field access or dotted method invocation when the name is the name of the field or dotted method
of the static type of the receiver expression, whose name must be in scope in the type namespace (see Sections 13.3
and 13.4).

We first define a declaration’s reach. The reach of a labeled block is the block itself. The reach of a functional method
declaration is the component containing that declaration. A dotted method declaration not in an object expression or
declaration must be in the declaration of some trait T , and its reach is the declaration of T and any trait or object
declarations or object expressions that extend T ; that is, if the declaration of trait T contains a method declaration,
and trait S extends trait T , then the reach of that method declaration includes the declaration of trait S. The reach
of any other declaration is the smallest block strictly containing that declaration (i.e., not just the declaration itself).
For example, the reach of any top-level declaration (including any imported declaration) is the component containing
(or importing) that declaration; the reach of a field declaration is the enclosing object declaration or expression; the
reach of a parameter declaration is the constructor declaration, functional declaration, or function expression in whose
parameter list it occurs; and the reach of a local variable declaration is the smallest block in which that declaration
occurs (recall from Chapter 3 that a local variable declaration always starts a new block). The reach of an implicit
declaration of self for a dotted method declaration is the method declaration, and the reach of an implicit declaration
of result for an ensures clause is the ensures clause. We say that a declaration reaches any point within its reach.

It is a static error for two (explicit) declarations with overlapping reaches to declare the same name, even if the name
is declared in different namespaces, unless one of the following (disjoint) conditions holds:

• both declarations are functional declarations with the same reach;

• one is an abstract function declaration in the form of a top-level variable declaration and the other a top-level
function declaration or a functional method declaration;

• both declarations are dotted method declarations that occur in different trait declarations;

• one declaration is a field declaration in an object declaration or expression and the other is a getter or setter
declaration that is provided by (i.e., occurs in or is inherited by) that object declaration or expression;

• one declaration is a keyword-parameter declaration whose reach is strictly contained in the reach of the other
declaration;

• one declaration is a field or dotted method declaration that is provided by (i.e., occurs in or is inherited by) some
trait or object declaration and the other is a top-level declaration or a functional method declaration; or

• one declaration is a field or dotted method declaration that is provided by (i.e., occurs in or is inherited by) some
object expression that is strictly contained in the reach of the other declaration, and the other declaration is not
a dotted method declaration provided by a trait that is extended by the object expression.

If any of the first four conditions holds, or if one declaration is a field or method declaration that occurs in an object
declaration or expression that inherits the other declaration (which therefore must be a method declaration), then the
two declarations are overloaded, and subject to the overloading rules (see Chapter 33).

If two declarations with overlapping reaches declare the same name in the same namespace, and the declarations are
not overloaded, then at any point that their reaches overlap, one declaration shadows the other for that name in that
namespace; references at such points resolve to the entity declared by the shadowing declaration. We often elide
mentioning the name and namespace when they are clear from context. Shadowing is permitted only in the following
cases:

• In a trait or object declaration, any top-level declaration or functional method declaration is shadowed if it
declares a name of a field or dotted method provided (declared or inherited) by the trait or object.

• In an object expression, any declaration in a block enclosing the expression is shadowed if it declares a name
of a field or dotted method provided (declared or inherited) by the object expression unless the declaration is a
method declaration of a trait extended by the object expression.

67

• In a method declaration that does not give an explicit name other than self for the self parameter, any declara-
tion of self (including implicit declarations) in a block enclosing the field or method declaration is shadowed.

• In the ensures clause of a contract, any declaration of result in a block enclosing the ensures clause is
shadowed.

• In a function or method declaration with keyword parameters, any declaration in a block enclosing the declara-
tion is shadowed if it declares the name of any of the keyword parameters.

• Any immutable local variable declaration without an initial-value expression is shadowed if the variable is
initialized later in the enclosing block.

We say that a name is in scope in a namespace at any point in the program within the reach of any declaration that
declares that name in that namespace unless one of the following conditions holds:

• the declaration is shadowed at the program point for the name in that namespace;

• the declaration is a type alias (top-level or not), a dimension declaration or a unit declaration, and the program
point is in the declaration;

• the declaration is a field, local variable or parameter declaration, and the program point is in the declaration or
lexically precedes the declaration;

• the declaration is a (transient) parameter declaration of an object (constructor) declaration and the program point
is in the body of a method declaration of that object declaration; or

• the declaration is a labeled block, and the program point is in a spawn expression in the labeled block.

Note that the last condition applies to the method names declared by a wrapped field declaration.

We say that the scope of a declaration for a name in a namespace consists of those points at which the name is in scope
for the namespace and the declaration is not shadowed for that name and that namespace. Again, when it is clear from
context, we may omit the name and namespace.

7.3 Qualified Names

Syntax:
DottedId ::= Id(. Id)∗

Fortress provides a component system in which the entities declared in a component are described by an API. A
component may import APIs, allowing it to refer to these entities declared by the imported APIs. In some cases,
references to these entities must be qualified by the API name. These qualified names can be used in any place that a
simple name would be used had the entity been declared directly in the component rather than being imported. Note
that qualified names are distinguished from simple names by the inclusion of a “ . ” token, so they never shadow, nor
are they shadowed by, simple names. For further discussion on APIs and the component system, see Chapter 22.

68

Chapter 8

Types

Fortress provides several kinds of types: trait types, tuple types, arrow types, BottomType , and other types provided
in the Fortress standard libraries. Some types have names. Some types may be parameterized by types and values;
we call these types generic types. Two types are identical if and only if they are the same kind and their names and
arguments (if any) are identical. Types are related by several relationships as described in Section 8.1.

Syntactically, the positions in which a type may legally appear (type context) is determined by the nonterminal TypeRef
in the Fortress grammar, defined in Appendix G.

8.1 Relationships between Types

Types in Fortress may be related by a subtyping relation, an exclusion relation, or a coercion.

A subtyping relation is reflexive, transitive, and antisymmetric, and is defined by the extends clause of trait and object
declarations and object expressions. Every expression has a static type. Every value has a runtime type (dynamic type).
Fortress programs are checked before they are executed to ensure that if an expression e evaluates to a value v, the
runtime type of v is a subtype of the static type of e. Sometimes we abuse terminology by saying that an expression has
the runtime type of the value it evaluates to (see Section 4.2 for a discussion about evaluation of expressions). Thus, in
the execution of a valid Fortress program, an expression’s runtime type is always a subtype of its static type. We say
that a value is an instance of its runtime type and of every supertype of its runtime type. Every type is a subtype of
Any ; immediate subtypes of Any comprises of Tuple , () , and Object . For types T and U , we write T � U when T
is a subtype of U , and T ≺ U when T � U and T 6= U .

Fortress defines an exclusion relation between types, which relates two disjoint types: no value can have a type that is
a subtype of two types that exclude each other. The exclusion relation is irreflexive and symmetric, and is defined by
the excludes and comprises clauses of trait declarations, and what is implied from these by the subtyping relation
(including the fact that object trait types have no strict subtypes, and so exclude all types other than their supertypes).
For example, suppose the following:

trait S comprises {U, V } end
trait T comprises {V,W} end
object U extends S end
object V extends {S, T} end
objectW extends T end

Because of the comprises clauses of S and T and the fact that U , V , and W are objects, S and T exclude each
other. We write T ♦ U if T excludes U . If a type excludes another type, it excludes all its subtypes as well:

69

T ♦ U =⇒ ∀T ′ � T : T ′ ♦ U .

Fortress also allows coercion between types (see Chapter 17). A coercion from T to U is defined in the declaration of
U . We write T→U if U defines a coercion from T . We say that T can be coerced to U , and write T U , if U defines
a coercion from T or any supertype of T : T U ⇐⇒ ∃T ′ : T � T ′ ∧ T ′→U .

The Fortress type hierarchy is acyclic with respect to both subtyping and coercion relations except for the following:

• There exists a bidirectional coercion between two tuple types if and only if they have the same sorted form.

8.2 Trait Types
Syntax:

TypeRef ::= TraitType

Traits are declared by trait declarations (described in Chapter 9). A trait has a trait type of the same name. A significant
portion of Fortress types are trait types.

8.3 Object Trait Types

Named objects are declared by object declarations (described in Chapter 10) and anonymous objects are described
by object expressions (described in Section 13.9). A named object has an object trait type of the same name and an
anonymous object has an anonymous object trait type. An object trait type is a special kind of trait type. An object trait
type extends all of the declared supertraits of the object. No other objects can have the object trait type and no trait type
can extend an object trait type (i.e., an object trait type implicitly has the comprises clause, “ comprises {. . .} ”).

8.4 Tuple Types

Syntax:
TypeRef ::= TupleType
TupleType ::= ((TypeRef ,)∗ (TypeRef ... ,)? KeywordType(, KeywordType)∗)

| ((TypeRef ,)∗ TypeRef ...)
| SimpleTupleType

KeywordType ::- Id = TypeRef
SimpleTupleType ::= (TypeRef , TypeRefList)

A tuple is an ordered sequence of keyword-value pairs. See Section 13.27 for a discussion of tuple expressions. A
tuple type consists of a parenthesized, comma-separated list of element types where each element type is one of the
following kinds:

• A plain type “T ”

• A varargs type “T . . . ”

• A keyword-type pair “ identifier = T ”

The following restrictions apply: No two keyword-type pairs may have the same keyword. No keyword-type pair may
precede a plain type. No varargs type may follow a keyword-type pair or precede a plain type. There must be at least
one element type. If there is exactly one element type, it must be a varargs type or a keyword-type pair (because “ (T) ”
is simply a type in parentheses, not a tuple type). Also, there can be at most one element type with varargs type.

An element type in tuple type X corresponds to one in tuple type Y if and only if:

70

• both are plain types in the same position,

• both are varargs types, or

• both are keyword-type pairs with the same keyword.

Every tuple type is a subtype of Tuple which is a subtype of Any . Tuple types are not subtypes of Object . They
cannot be extended by other trait types. Tuple types are covariant; a tuple type X is a subtype of tuple type Y if and
only if:

• the correspondence between their element types is bijective;

• for each element type in X , the type in the element type is a subtype of the type in the corresponding element
type in Y ; and

• the keyword-type pairs in X and Y appear in the same order.

Note that, unlike record types in some other programming languages, the tuple type (foo = P, bar = Q, baz = R)
is not a subtype of (foo = P, bar = Q) , nor is (P,Q,R) a subtype of (P,Q) . While (Z,Z) is not a subtype of
(Z . . .) , there exists a coercion from the former to the latter (as described in Section 17.7).

For every tuple type X there is a tuple type X ′ that is the “sorted form” of the type, created by simply reordering the
keyword-type pairs so that their keywords are in lexicographically ascending order. X ′ may be the same as X (as,
for example, if X contains fewer than two keyword-type pairs). There is a coercion from tuple type X to tuple type
Y if and only if X and Y have the same sorted form.

A tuple type excludes any nontuple type other than Any . Two tuple types exclude each other unless the correspondence
between their element types is bijective. Two tuple types with a bijective correspondence between their element types
exclude each other if either any type in an element type in one excludes the type in the corresponding element type in
the other, or their keyword-type pairs do not appear in the same order.

Intersection of nonexclusive tuple types are defined elementwise; the intersection of nonexclusive tuple type X and
Y is a tuple type with exactly corresponding elements, where the type in each element type is the intersection of the
types in the corresponding element types of X and Y . Note that intersection of any exclusive types is BottomType
as described in Section 8.6.

8.5 Arrow Types

Syntax:
TypeRef ::= ArrowType
ArrowType ::= TypeRef → TypeRef Throws?

Functions can be passed as arguments and returned as values. See Chapter 12 for a discussion of functions. The types
of function values are called arrow types. Every arrow type is a subtype of Object . Arrow types are not trait types.
They cannot be extended by other trait types. Syntactically, an arrow type consists of the type of a parameter to the
function followed by the token → , followed by the type of a return value, and optionally a throws clause which
specifies thrown checked exceptions. Here are some examples:

(R64,R64)→ R64
N→ (N,N) throws IOException
(String,N . . . , p = Printer)→ N

Parameter types are contravariant but return types are covariant; arrow type “A→ B throws C ” is a subtype of
arrow type “D → E throws F ” if and only if:

• D is a subtype of A and

71

• B is a subtype of E and

• for all X in C, there exists Y in F such that X is a subtype of Y .

Coercion between arrow types are described in Section 17.7.

An arrow type excludes any nonarrow type other than Any . However, arrow types do not exclude other arrow types
because of overloading as described in Chapter 33.

8.6 Bottom Type

Fortress provides a special bottom type, BottomType , which is an uninhabited type. No value in Fortress has the
bottom type; throw and exit expressions have the bottom type. The bottom type is a subtype of every type.
Intersection of any exclusive types is the bottom type.

8.7 Types in the Fortress Standard Libraries

The Fortress standard libraries define simple standard types for literals such as BooleanLiteralJbK , () (pronounced
“void”), Character , String , and NumeralJn,m, r, vK for appropriate values of b , n , m , r , and v (See Section 13.1
for a discussion of Fortress literals). Moreover, there are several simple standard numeric types. These types are
mutually exclusive; no value has more than one of them. Values of these types are immutable.

The numeric types share the common supertype Number . Fortress includes types for arbitrary-precision integers (of
type Z), their unsigned equivalents (of type N), rational numbers (of type Q), fixed-size representations for integers
including the types Z8, Z16, Z32, Z64, Z128, their unsigned equivalents N8, N16, N32, N64, N128, floating-point
numbers (described below), intervals (of type IntervalJXK , abbreviated as 〈|X|〉 , where X can be instantiated with
any number type), and imaginary and complex numbers of fixed size (in rectangular form with types Cn for n =
16, 32, 64, 128, 256 and polar form with type PolarJXK where X can be instantiated with any real number type).

For floating-point numbers, Fortress supports types R32 and R64 to be 32 and 64-bit IEEE 754 floating-point numbers
respectively, and defines two functions on types: DoubleJF K is a floating-point type twice the size of the floating-
point type F , and ExtendedJF K is a floating-point type sufficiently larger than the floating-point type F to perform
summations of “reasonable” size.1

The Fortress standard libraries also define other simple standard types such as Any , Object , Exception , Boolean ,
and BooleanInterval as well as low-level binary data types such as LinearSequence , HeapSequence , and BinaryWord .
See Parts III and V for discussions of the Fortress standard libraries.

8.8 Intersection and Union Types

For every finite set of types, there is a type denoting a unique intersection of those types. The intersection of a set of
types S is a subtype of every type T ∈ S and of the intersection of every subset of S. There is also a type denoting a
unique union of those types. The union of a set of types S is a supertype of every type T ∈ S and of the union of every
subset of S. Neither intersection types nor union types are first-class types; they are used solely for type inference (as
described in Chapter 20) and they cannot be expressed directly in programs.

The intersection of a set of types S is equal to a named type U when any subtype of every type T ∈ S and of the
intersection of every subset of S is a subtype of U . Similarly, the union of a set of types S is equal to a named type U
when any supertype of every type T ∈ S and of the union of every subset of S is a supertype of U . For example:

1 This formulation of floating-point types follows a proposal under consideration by the IEEE 754 committee.

72

trait S comprises {U, V } end
trait T comprises {V,W} end
trait U extends S excludesW end
trait V extends {S, T} end
traitW extends T end

because of the comprises clauses of S and T and the excludes clause of U , any subtype of both S and T must be
a subtype of V . Thus, V = S ∩ T .

Intersection types (denoted by ∩) possess the following properties:

• Commutativity: T ∩ U = U ∩ T .

• Associativity: S ∩ (T ∩ U) = (S ∩ T) ∩ U .

• Subsumption: If S � T then S ∩ T = S.

• Preservation of shared subtypes: If T � S and T � U then T � S ∩ U .

• Preservation of supertype: If S � T then ∀U. S ∩ U � T .

• Distribution over union types: S ∩ (T ∪ U) = (S ∩ T) ∪ (S ∩ U).

Union types (denoted by ∪) possess the following properties:

• Commutativity: T ∪ U = U ∪ T .

• Associativity: S ∪ (T ∪ U) = (S ∪ T) ∪ U .

• Subsumption: If S � T then S ∪ T = T .

• Preservation of shared supertypes: If S � T and U � T then S ∪ U � T .

• Preservation of subtype: If T � S then ∀U. T � S ∪ U .

• Distribution over intersection types: S ∪ (T ∩ U) = (S ∪ T) ∩ (S ∪ U).

8.9 Type Aliases

Syntax:
TypeAlias ::= type Id StaticParams? = TypeRef

Fortress allows names to serve as aliases for more complex type instantiations. A type alias begins with type followed
by the name of the alias type, followed by optional static parameters, followed by = , followed by the type it stands
for. Parameterized type aliases are allowed but recursively defined type aliases are not. Here are some examples:

type IntList = ListJZ64K
type BinOp = Float× Float→ Float
type SimpleFloatJnat e, nat sK = DetailedFloatJUnity, e, s, false, false, false, false, trueK

All uses of type aliases are expanded before type checking. Type aliases do not define new types nor nominal equiva-
lence relations among types.

73

Chapter 9

Traits

Traits are declared by trait declarations. Traits define new named types. A trait specifies a collection of methods
(described in Section 9.2). One trait can extend others, which means that it inherits the methods from those traits, and
that the type defined by that trait is a subtype of the types of traits it extends.

9.1 Trait Declarations

Syntax:
TraitDecl ::= TraitHeader GoInATrait? end
TraitHeader ::= TraitMods? trait Id StaticParams? Extends? TraitClauses?
TraitClauses ::= TraitClause+

TraitClause ::= Excludes
| Comprises
| Where

GoInATrait ::= GoFrontInATrait GoBackInATrait?
| GoBackInATrait

GoFrontInATrait ::= GoesFrontInATrait+

GoesFrontInATrait ::= AbsFldDecl
| GetterSetterDecl
| PropertyDecl

GoBackInATrait ::= GoesBackInATrait+

GoesBackInATrait ::= MdDecl
| PropertyDecl

TraitMods ::= TraitMod+

TraitMod ::= value | UniversalMod
UniversalMod ::= private | test
Extends ::= extends TraitTypes
Excludes ::= excludes TraitTypes
Comprises ::= comprises ComprisingTypes
TraitTypes ::= TraitType

| { TraitTypeList }
TraitTypeList ::= TraitType(, TraitType)∗

74

ComprisingTypes ::= TraitType
| { ComprisingTypeList }

ComprisingTypeList ::= . . .
| TraitType(, TraitType)∗ (, . . .)?

TraitType ::= DottedId (JStaticArgList K)?
| { TypeRef 7→ TypeRef }
| 〈 TypeRef 〉
| TypeRef [ArraySize?]
| TypeRef ˆ StaticArg
| TypeRef ˆ (ExtentRange (× ExtentRange)∗)

StaticArgList ::= StaticArg(, StaticArg)∗

StaticArg ::= Number
| Op
| true
| false
| Unity
| dimensionless
| StaticArg + StaticArg
| StaticArg · StaticArg
| StaticArg StaticArg
| StaticArg / StaticArg
| 1 / StaticArg
| StaticArg ˆ StaticArg
| StaticArg per StaticArg
| DUPreOp StaticArg
| StaticArg DUPostOp
| NOT StaticArg
| StaticArg OR StaticArg
| StaticArg AND StaticArg
| StaticArg IMPLIES StaticArg
| TypeRef
| (StaticArg)

Number ::= IntLiteral
ArraySize ::= ExtentRange(, ExtentRange)∗

Syntactically, a trait declaration starts with an optional sequence of modifiers followed by trait , followed by the
name of the trait, an optional sequence of static parameters (described in Chapter 11), an optional set of extended
traits, an optional set of excluded traits, an optional set of comprises on the trait, an optional where clause (described
in Section 11.6), zero or more declarations of abstract fields, getter methods, and setter methods, and zero or more
declarations of methods that are not getter or setter, and finally end . Property declarations (described in Section 19.6)
can be freely commingled with the abstract field and method declarations. An extends clause comes first, if any, and
excludes , comprises , and where clauses come in any order.

Each of extends , excludes , and comprises clauses consists of extends , excludes , and comprises respec-
tively followed by a set of trait references separated by commas and enclosed in braces ‘{’ and ‘}’. If such a clause
contains only one trait, the enclosing braces may be elided. A comprises clause may include “ . . . ”. A trait reference
listed in the comprises clause is either a declared trait identifier (within the same component or an API imported by
the component) or an abbreviated type for aggregate expressions (discussed in Section 13.27).

Every trait extends the trait Object . A trait with an extends clause extends every trait listed in its extends clause.
If a trait T extends trait U , we call T a subtrait of U and U a supertrait of T . Extension is transitive; if T extends
U it also extends all supertraits of U . The extension relation induced by a program is the smallest relation satisfying
these conditions. This relation must form an acyclic hierarchy rooted at trait Object .

75

We say that trait T strictly extends trait U if and only if (i) T extends U and (ii) T is not U . We say that trait T
immediately extends trait U if and only if (i) T strictly extends U and (ii) there is no trait V such that T strictly
extends V and V strictly extends U . We call U an immediate supertrait of T and T an immediate subtrait of U .

A trait with an excludes clause excludes every trait listed in its excludes clause. If a trait T excludes a trait U ,
the two traits are mutually exclusive. No third trait can extend them both and neither can extend the other. A trait U
can optionally have an excludes clause.

If a trait declaration of T includes a comprises clause and the comprises clause does not include “ . . . ”, the trait
must not be extended with immediate subtraits other than those that listed in its comprises clause. If the comprises
clause of a trait T includes “ . . . ”, any subtrait of T is not exposed by an API (as described in Section 22.3).

For example, the following trait declaration:

trait Catalyst extends Object
self.catalyze(reaction: Reaction): ()

end

declares a trait Catalyst with no modifiers, no static parameters, no excludes clauses, no comprises clauses, and
no where clauses. Trait Catalyst extends a trait named Object . A single method (named catalyze) is declared,
which has a parameter of type Reaction and the return type () . The special name self is explicitly declared as a
parameter. See Section 9.2 for details about when self is implicitly declared, and to which entity it refers.

The following example trait:

trait Molecule comprises {OrganicMolecule, InorganicMolecule }
mass():Mass

end

comprises of two traits: OrganicMolecule and InorganicMolecule . Therefore, the following trait declaration is not
allowed:

(∗ Not allowed! ∗)
trait ExclusiveMolecule extends Molecule end

Traits OrganicMolecule and InorganicMolecule may be exclusive:

trait OrganicMolecule extends Molecule excludes InorganicMolecule end

trait InorganicMolecule extends Molecule end

OrganicMolecule and InorganicMolecule exclude each other, even though only OrganicMolecule has an excludes
clause. For example, the following trait declaration is not allowed:

(∗ Not allowed! ∗)
trait InclusiveMolecule extends { InorganicMolecule,OrganicMolecule } end

A trait is allowed to have multiple immediate supertraits. The following trait has two immediate supertraits:

trait Enzyme extends {OrganicMolecule,Catalyst } end

9.2 Method Declarations

Syntax:

76

MdDecl ::= MdDef
| AbsMdDecl

MdDef ::= FnMods? MdHeaderFront FnHeaderClause = Expr
| Coercion

AbsMdDecl ::= abstract ? FnMods? MdHeaderFront FnHeaderClause
FnMods ::= FnMod+

FnMod ::= LocalFnMod | UniversalMod
LocalFnMods ::= LocalFnMod+

LocalFnMod ::= atomic | io
GetterSetterDecl ::= GetterSetterDef

| AbsGetterSetterDecl
GetterSetterDef ::= FnMods? GetterSetterMod MdHeaderFront FnHeaderClause = Expr
AbsGetterSetterDecl ::= abstract ? FnMods? GetterSetterMod MdHeaderFront FnHeaderClause
GetterSetterMod ::= getter | setter
MdHeaderFront ::= (Receiver .)?Id StaticParams? MdValParam

| OpHeaderFront
Receiver ::= Id

| self
MdValParam ::= (MdParams?)
MdParams ::= (MdParam ,)∗ (Varargs ,)? MdKeyword(,MdKeyword)∗

| (MdParam ,)∗ Varargs
| MdParam(, MdParam)∗

MdKeyword ::= MdParam = Expr
MdParam ::= Param

| self
Param ::= PlainParam
PlainParam ::= BindId IsType?

| TypeRef
BindId ::= Id

|
FnHeaderClause ::= IsType? FnClauses
IsType ::= : TypeRef
FnClauses ::= Throws? Where? Contract
Throws ::= throws MayTraitTypes
MayTraitTypes ::= {}

| TraitTypes

A trait declaration contains a set of method declarations. Syntactically, a method declaration begins with an optional
sequence of modifiers followed by the method’s name optionally prefixed by a self parameter, optional static param-
eters (described in Chapter 11), the value parameter with its (optionally) declared type, an optional type of a return
value, an optional declaration of thrown checked exceptions (discussed in Chapter 14), an optional where clause (dis-
cussed in Section 11.6), a contract for the method (discussed in Section 9.4), and finally an optional body expression
preceded by the token = . A throws clause does not include naked type variables. Every element in a throws
clause is a subtype of CheckedException . A trait declaration may contain coercions discussed in Chapter 17.

Method declarations can include the following special modifiers:

getter : A method declaration with the modifier getter explicitly declares a getter method for a field, even in the
absence of an actual field. If such a field exists, there is no implicit getter for the field. An explicitly declared getter
method must take no arguments and return an appropriately typed result. A getter method must not throw any checked
exception. Getter names may not overlap ordinary method names. A getter method must be invoked with the field
access syntax:

77

expr .id

where id is the name of the getter method.

setter : A method declaration with the modifier setter explicitly declares a setter method for a field, even in
the absence of an actual field. If such a field exists, there is no implicit setter for the field. An explicitly declared
setter method must take a single argument—the value being set—and return () . A setter method must not throw any
checked exception. Setter names may not overlap ordinary method names. A setter method must be invoked with the
assignment syntax:

expr1.id := expr2

We say that a method declaration occurs in a trait declaration. A trait declaration declares a method declaration that
occurs in that trait declaration. A trait declaration inherits method declarations from the declarations of its supertraits.
Note that a trait declaration inherits all method declarations declared by all of its supertraits–there’s no real notion of
overriding, just overloading (as discussed in Chapter 15). A trait declaration provides the method declarations that it
declares or inherits.

There are two sorts of method declarations: dotted method declarations and functional method declarations. Syntacti-
cally, a dotted method declaration is identical to a function declaration, except that a special self parameter is provided
immediately before the name of the method. When a method is invoked, the self parameter is bound to the object
on which it is invoked. If no self parameter is provided explicitly, it is implicitly a parameter with name self . An
explicit self parameter may be an identifier other than self , in which case self is not necessarily declared within
that method.

A functional method declaration does not have a self parameter before the method name. Instead, it has a parameter
named self at an arbitrary position in its parameter list. This parameter is not given a type and implicitly has the
type of the enclosing declaration. Semantically, functional method declarations can be viewed as top-level functions.
For example, the following overloaded functional method f declared within a trait declaration A :

trait A
f(self, t :T) = e1
f(s :S, self) = e2

end

f(a, t)

may be rewritten as top-level functions as follows:

trait A
internalF (t :T) = e1
internalF (s :S) = e2

end

f1(a :A, t :T) = a.internalF (t)
f2(s :S, a :A) = a.internalF (s)

f1(a, t)

where internalF is a freshly generated name. Functional method declarations may be overloaded with top-level
function declarations. An abstract function declaration (described in Section 12.3) can be provided also for overloaded
functional method declarations. See Chapter 15 for a discussion of overloaded functionals in Fortress.

A non- self self parameter can be used within nested object expressions (described in Section 13.9) to name the outer
object in methods of the inner:

object
m() = object

78

notSelf .getOuterSelf () = self(∗ “self” declared in outer scope ∗)
getInnerSelf () = self(∗ regular inner “self” ∗)

end
end

When a method declaration includes a body expression, it is called a method definition. A method declaration that
does not have its body expression is referred to as an abstract method declaration. An abstract method declaration
declares an abstract method; any object inheriting an abstract method must define a body expression for the method.
An abstract method declaration may include the modifier abstract . It may elide parameter names but parameter
types cannot be omitted except for the self parameter.

Here is an example trait Enzyme which provides methods mass , catalyze , and reactionSpeed :

trait Enzyme extends {OrganicMolecule,Catalyst }
reactionSpeed(): Speed
catalyze(reaction) = reaction.accelerate(reactionSpeed())

end

Enzyme inherits the abstract method mass from OrganicMolecule , declares the abstract method reactionSpeed ,
and declares the concrete method catalyze which is inherited as an abstract method from its supertrait Catalyst .

9.3 Abstract Field Declarations

Syntax:
AbsFldDecl ::= AbsFldWTypes

| AbsFldWoTypes : TypeRef ...
| AbsFldWoTypes : SimpleTupleType

AbsFldWTypes ::= AbsFldWType
| (AbsFldWType(, AbsFldWType)+)

AbsFldWType ::= AbsFldMods? Id IsType
AbsFldWoTypes ::= AbsFldWoType

| (AbsFldWoType(, AbsFldWoType)+)
AbsFldWoType ::= AbsFldMods? Id
AbsFldMods ::= AbsFldMod+

AbsFldMod ::= hidden | settable | wrapped | UniversalMod

Traits may also include abstract field declarations that are implicit declarations of abstract getter methods. Syntacti-
cally, an abstract field declaration consists of an optional sequence of modifiers followed by the field name, followed
by the token ‘ : ’, and the type of the field.

By default, a field declaration implicitly declares a getter method for the field unless there is an explicit getter declared
in the enclosing trait. An implicit getter method takes no arguments, has the same name as the field, and has a return
type equal to the field type. When called, the implicit getter returns the value of the field when called.

Abstract field declarations can include the following special modifiers:

hidden : A field declaration with the modifier hidden has no implicit getter method.

settable : A field declaration with the modifier settable has an implicit setter method unless there is an explicit
setter declared in the enclosing trait. An implicit setter method takes a parameter (with no default expression) whose
type is the type of the field, and returns () . When called, the implicit setter rebinds the corresponding field to its

79

argument. If a field declaration includes the modifier settable and hidden , only an abstract setter is declared. If a
field declaration includes the modifier hidden without settable , it is a static error.

wrapped : If a field declaration of f has the modifier wrapped and the type of f is trait type T , and T is not a naked
type variable, then the enclosing trait S implicitly includes “forwarding methods” for all methods in T that are also
inherited from any supertrait of S. Each of these methods simply calls the corresponding method on the trait referred to
by field f . If the trait declaration enclosing f explicitly declares a method m that conflicts with an implicitly declared
forwarding method m′, then the enclosing trait contains only method m, not m′. If the trait declaration enclosing f
inherits a concrete method m that conflicts with an implicitly declared forwarding method m′, then the enclosing trait
contains only methodm, notm′. Because wrapped fields do not change declarations of methods but change definitions
of methods, they only affect implementations; APIs do not include wrapped fields.

For example, in the following declarations:

trait DictionaryJT K
put(T): ()
get():T

end

trait WrappedDictionaryJT K extends DictionaryJT K
wrapped val : DictionaryJT K
get():T

end

the parametric trait WrappedDictionary implicitly includes the following forwarding method:

put(x) = val .put(x)

If get were not explicitly declared in WrappedDictionary , then WrappedDictionary would also include the for-
warding method:

get() = val .get()

9.4 Method Contracts

Syntax:
Contract ::= Requires? Ensures? Invariant?
Requires ::= requires { ExprList? }
Ensures ::= ensures { ProvidedList? }
ProvidedList ::= Provided(, Provided)∗

Provided ::= Expr (provided Expr)?
Invariant ::= invariant { ExprList? }

Method contracts consist of three optional clauses: a requires clause, an ensures clause, and an invariant
clause. All three clauses are evaluated in the scope of the method body. See Section 12.4 for a discussion of each
clause.

Method contracts are handled similarly to the manner described in [10]. In particular, substitutability under subtyping
is preserved. For a call to a method m with receiver e , we use the term static contract of m to refer to a contract
declared in the statically most applicable method declaration provided by the static type of e and the term dynamic
contract of m to refer to a contract declared in the dynamically most applicable method declaration provided by the
runtime type of e. Three exceptions may be thrown due to a method contract violation: CallerViolation is thrown
when the requires clause of the static contract fails, CalleeViolation is thrown when the ensures or invariant

80

clause of the dynamic contract fails, and ContractHierarchyViolation is thrown when the requires clause of the
dynamic contract or the ensures or invariant clause of the static contract fails.

Evaluation of a call to a method m with receiver e proceeds as follows. First, e is evaluated to a value v with runtime
type U . Let C and C ′ be the static and dynamic contracts of m, respectively. If the requires clause of C fails, a
CallerViolation exception is thrown. Otherwise, if the requires clause of C ′ fails, a ContractHierarchyViolation
exception is thrown. Otherwise, the provided subclauses of C and C ′ are evaluated. For every provided subclause
that evaluates to true , the corresponding ensures subclause is recorded in a table E for later comparison. Simi-
larly, the invariant clauses of C and C ′ are evaluated and the results are stored in E for later comparison. Then
the body of m provided by U is evaluated. After evaluation of the body, all ensures subclauses of the dynamic
contract recorded in E are checked to ensure that they evaluate to true , and all invariant clauses of the dy-
namic contract recorded in E are checked to ensure that they evaluate to values equal to the values they evaluated
to before evaluation of the body. If any such check fails, a CalleeViolation exception is thrown. Otherwise, all
ensures subclauses and invariant clauses of the static contract in E are checked. If any of these checks fails, a
ContractHierarchyViolation exception is thrown.

9.5 Value Traits

Syntax:
TraitMod ::= value

If a trait declaration has the modifier value , all subtraits of that trait must also have the modifier value , and all
objects extending that trait are required to be value objects (described in Section 10.3). If a field declaration of a value
trait has the modifier settable , the return type of its implicit setter method is the value trait type. If a value trait has
an explicit setter method, the setter must be an abstract method and its return type must be the value trait type. See
Section 10.3 for a discussion of updating fields of value objects.

81

Chapter 10

Objects

An object is a value object, a reference object, or a function object: It is a function object if it has an arrow type, a
reference object if it has an object trait type that is not declared with the value modifier (see Section 10.3), and a
value object otherwise (i.e., if it has a tuple type, the type (), or an object trait type declared with the value modifier).

A value object cannot have mutable fields, and it is completely determined by its type, environment and its fields:
Value objects with the same type, environment and fields are indistinguishable. Thus, an implementation may freely
copy value objects. Most objects with simple standard types, such as booleans, numeric literals, IEEE floating-point
numbers, and integers are value objects. In contrast, reference objects are thought to “reside in memory”, and are
identified by an object reference. A new object reference is created whenever a reference object is constructed, so that
reference objects constructed separately are always distinct. Reference objects include arbitrary-precision numbers
and aggregates such as arrays, lists and sets. Function objects are immutable and have no fields. Identity is not well-
defined for function objects, and attempting to check whether two functions are equivalent returns an approximate
result. Section 10.4 describes object equivalence in further detail.

10.1 Object Declarations

Syntax:
ObjectDecl ::= ObjectHeader GoInAnObject? end
ObjectHeader ::= ObjectMods? object Id StaticParams? ObjectValParam? Extends? FnClauses
ObjectMods ::= TraitMods
ObjectValParam ::= (ObjectParams?)
ObjectParams ::= (ObjectParam ,)∗ (ObjectVarargs ,)? ObjectKeyword(,ObjectKeyword)∗

| (ObjectParam ,)∗ ObjectVarargs
| ObjectParam (, ObjectParam)∗

ObjectVarargs ::= transient Varargs
ObjectKeyword ::= ObjectParam = Expr
ObjectParam ::= FldMods? Param

| transient Param
FldMods ::= FldMod+

FldMod ::= var | AbsFldMod
AbsFldMod ::= hidden | settable | wrapped | UniversalMod
GoInAnObject ::= GoFrontInAnObject GoBackInAnObject?

| GoBackInAnObject

82

GoFrontInAnObject ::= GoesFrontInAnObject+

GoesFrontInAnObject ::= FldDecl
| GetterSetterDef
| PropertyDecl

GoBackInAnObject ::= GoesBackInAnObject+

GoesBackInAnObject ::= MdDef
| PropertyDecl

FnClauses ::= Throws? Where? Contract
Throws ::= throws MayTraitTypes

Object declarations declare both object values and object trait types. Object declarations extend a set of traits from
which they inherit methods. An object declaration inherits the concrete methods of its supertraits and must include
a definition for every method declared but not defined by its supertraits. Especially, an object declaration must not
include abstract methods (discussed in Section 9.2); it must define all abstract methods inherited from its supertraits.
It is also allowed to define overloaded declarations of concrete methods inherited from its supertraits.

Syntactically, an object declaration begins with an optional sequence of modifiers followed by object , followed by
the identifier of the object, optional static parameters (described in Chapter 11), optional value parameters, optional
traits the object extends, an optional declaration of thrown checked exceptions (discussed in Chapter 14), an optional
where clause (discussed in Section 11.6), a contract for the object (discussed in Section 12.4), zero or more decla-
rations of fields, getter methods, and setter methods, and zero or more declarations of methods that are not getter or
setter, and finally end . Property declarations (described in Section 19.6) can be freely commingled with the field
and method declarations. Method declarations in object declarations are syntactically identical to method declara-
tions in trait declarations. If an object declaration has no extends clause, the object implicitly extends only trait
Object . A throws clause does not include naked type variables. Every element in a throws clause is a subtype
of CheckedException . A contract of an object declaration is evaluated when the object is created, as with a function
contract (see Section 12.4).

There are two kinds of object declarations: singleton declarations and constructor declarations. A singleton declara-
tion declares a sole, stand-alone, singleton object. It may have static parameters but it does not have a list of value
parameters; every instantiation of such an object with the same static arguments yields the same singleton object. A
constructor declaration declares an object constructor. It may have static parameters and it includes a list of value
parameters; every call to the constructor of such an object with the same argument yields a new object. Initialization
of singleton objects is nondeterministic as described in Chapter 4.

A constructor declaration has a (possibly empty) parenthesized list of value parameters. Each value parameter of a
constructor declaration may be preceded by the special modifier transient or by a sequence of field modifiers. A
value parameter preceded by the modifier transient does not correspond to a field in an instantiation of the object:
transient parameters are not in scope in the object’s method declarations, but are in scope when the initial-value
expressions of the fields are evaluated during object creation.

For example, the following empty list object extending trait List :

object Empty extends List
first() = throw Error
rest() = throw Error
cons(x) = Cons(x, self)
append(xs) = xs

end

has no fields and four methods.

Here is an example of a Cons object constructor extending trait ListJT K :

object ConsJT K(first :T, rest : ListJT K)
extends ListJT K

83

cons(x) = Cons(x, self)
append(xs) = Cons(first , rest .append(xs))

end

Note that this declaration implicitly introduces the “factory” function ConsJT K(first :T, rest : ListJT K) : ConsJT K
which is used in the body of the object declaration to define the cons and append methods. Multiple factory functions
can be defined by overloading a object constructor with functions. For example: Cons(first :T) = Cons(first ,Empty) .

10.2 Field Declarations

Syntax:
FldDecl ::= FldWTypes InitVal

| FldWoTypes = Expr
| FldWoTypes : TypeRef ... InitVal
| FldWoTypes : SimpleTupleType InitVal

FldWTypes ::= FldWType
| (FldWType(, FldWType)+)

FldWType ::= FldMods? Id IsType
FldWoTypes ::= FldWoType

| (FldWoType(, FldWoType)+)
FldWoType ::= FldMods? Id

Fields are variables local to an object. They must not be referred to outside their enclosing object declarations. Each
field is either a non-transient value parameter of a constructor declaration, or it is explicitly defined by a field declara-
tion within the body of a constructor declaration, a singleton declaration, or an object expression. A field declaration
in an object declaration is syntactically identical to a top-level variable declaration (described in Section 6.2), with
the same meanings attached to the form of variable declarations. Additional modifiers apply to fields, as described
in Section 9.3. Unlike with an abstract field in a trait declaration, an object declaration may declare a hidden field
which is not settable .

Each field declaration includes an initial-value expression, which specifies the initial value of that field. Field initial-
ization occurs in textual program order: evaluation of each initial-value expression must complete before evaluation of
the next initial-value expression, and all previous field names (and the parameters of the constructor, in a constructor
declaration) are in scope when evaluating an initial-value expression (see Section 7.2). All fields of an object are
initialized before that object is made available for subsequent computation; thus, it is illegal to invoke methods on an
object being initialized: self is not implicitly declared by a field declaration.

Within an object declaration or object expression, a field can be accessed by a “naked” identifier reference (see Sec-
tion 13.2). Unlike within trait declarations, such a reference does not invoke the getter or setter method of that name.
To invoke a getter or setter of that name, it is necessary to use dotted field access (see Section 13.3).

10.3 Value Objects

An object declaration with the modifier value declares a value object that is called in many languages a primitive
value. The object trait type declared by a value object implicitly has the modifier value .

The fields of a value object are immutable; they cannot be changed directly or it is a static error. However, Fortress
allows value objects to have settable fields as an abbreviation for constructing a new value object with a different
value for one field. If a value object has a setter method or a subscripted assignment operator method (described in
Section 34.7), then the return type of the method must be the value object trait type instead of () . When such a method
is invoked, the receiver must itself be assignable, and the value returned by the method is assigned to the receiver.

84

For example, here is a value object Complex number:

value object Complex(settable real : Double, settable imaginary : Double = 0)
opr +(self, other : Complex) = Complex(real + other .real , imaginary + other .imaginary)

end

When a mutable variable z :

var z : Complex = Complex(0)

updates its imaginary field, the following syntax:

z.imaginary := v

can be used as an abbreviation for:

z := Complex(z.real , v)

So the setter for the field imaginary in Complex would do the work of constructing and returning Complex(z.real , v) ,
and the assignment:

z.imaginary := v

would be construed to mean:

z := z.imaginary(v)

Note that modifying a settable field directly within the value object is not allowed. For example, the following:

imaginary := 3

within the Complex object means:

self.imaginary := 3

and because self is not mutable, the assignment is disallowed.

10.4 Object Equivalence

The trait Any declares the object equivalence operator == . This operator is automatically defined for all objects; it
is a static error for the programmer to override it. The == operator is used to decide whether its two arguments refer
to “the same object” in the strictest sense possible. If the arguments have different dynamic types—including the
instantiations of all static parameters—the result is always false . If both arguments are value objects with the same
type, then the result is true if and only if corresponding fields of the objects are themselves equivalent as defined by
this operator; in particular, two binary words are strictly equivalent if and only if they contain the same bit pattern. If
both arguments are object references, then the result is true if and only if the two object references refer to the identical
reference object (in implementation terms, occupying the same memory locations in the heap). If both arguments are
functions, the result is true only if the functions behave identically for any choice of type-correct arguments. Even if
two functions behave identically, the fortress implementation is free to return false when they are compared for object
equivalence.

85

Chapter 11

Static Parameters

Trait, object, and functional declarations may be parameterized with static parameters. Static parameters are static
variables listed in white square brackets J and K immediately after the name of a trait, object, or functional and
they are in scope of the entire body of the declaration. Static parameters may be instantiated with static expressions
discussed in Section 13.26. In this chapter, we describe the forms that these static parameters can take.

Syntax:
StaticParams ::= JStaticParamListK
StaticParamList ::= StaticParam(, StaticParam)∗

11.1 Type Parameters

Syntax:
StaticParam ::= Id Extends? (absorbs unit)?

Static parameters may include one or more type parameters. Syntactically, a type parameter consists of an identifier fol-
lowed by an optional extends clause, followed by an optional “ absorbs unit ” clause (described in Section 35.4).
If a type parameter does not have an extends clause, it has an implicit “ extends Object ” clause.

Type parameters are instantiated with types such as trait types, tuple types, and arrow types (See Chapter 8 for a
discussion of Fortress types). We use the term naked type variable to refer to an occurrence of a type variable as
a stand-alone type (rather than as a parameter to another type). Type parameters can appear in any context that an
ordinary type can appear, except that a naked type variable must not appear in the extends clause of a trait or object
declaration nor as the type of a wrapped field (discussed in Section 10.2).

Here is a parameterized trait List:

trait ListJT K
first():T
rest(): ListJT K
cons(T): ListJT K
append(ListJT K): ListJT K

end

86

11.2 Nat and Int Parameters

Syntax:
StaticParam ::= nat Id

| int Id

Static parameters may include one or more nat and int parameters. Syntactically, a nat parameter consists of
nat followed by an identifier. An int parameter consists of int followed by an identifier. These parameters are
instantiated at runtime with numeric values. A nat parameter may be used to instantiate other nat parameters, or to
appear in any context that a variable of type N can appear, except that it cannot be assigned to. An int parameter
may be used to instantiate other int parameters, or to appear in any context that a variable of type Z can appear,
except that it cannot be assigned to.

For example, the following function f :

fJnat nK(x : Length2n) : Lengthn = sqrt(x)

declares a nat parameter n , which appears in both the parameter type and return type of f .

11.3 Bool Parameters

Syntax:
StaticParam ::= bool Id

Static parameters may include one or more bool parameters. Syntactically, a bool parameter consists of bool
followed by an identifier. These parameters are instantiated at runtime with boolean values. They may be used to
instantiate other bool parameters, or to appear in any context that a variable of type Boolean can appear, except that
they cannot be assigned to.

For example, the following coercion declared in the trait Boolean:

trait Boolean
coercion Jbool bK(x: BooleanLiteralJbK)

end

declares a bool parameter b , which appears in the parameter type. See Chapter 24 for a full declaration of Boolean .

11.4 Dimension and Unit Parameters

Syntax:
StaticParam ::= dim Id

| unit Id (: DimRef)? (absorbs unit)?

Static parameters may include one or more dim and unit parameters. Syntactically, a dim parameter begins with
dim followed by an identifier. A unit parameter begins with unit followed by an identifier, optionally followed
by the token ‘ : ’ and a dimension, and the unit is thereby restricted to be a unit of the specified dimension. A unit
parameter may include the clause “ absorbs unit ”; the meaning of this is described in Section 35.4. A dim param-
eter is allowed to appear in any context that a dimension can appear. A unit parameter is allowed to appear in any
context that a unit can appear.

For example, here is a function that is parameterized with a unit:

sqrtJunit UK(x: R64 U2): R64 U = numericalsqrt(x/U2) U

87

11.5 Operator and Identifier Parameters

Syntax:
StaticParam ::= opr Op

| ident Id

Static parameters may include one or more operator names and identifiers denoting method names. Syntactically,
an operator parameter begins with opr followed by an operator name. An identifier parameter begins with ident
followed by an identifier.

Operator and identifier parameters may be freely intermixed with other static parameters. For example, the following
trait HasLeftZeroes:

trait HasLeftZeroesJT extends HasLeftZeroesJT,�, isLeftZeroK, opr �, ident isLeftZeroK
extends {BinaryOperatorJT,�K }

abstract isLeftZero(): Boolean
property ∀(a:T, b:T) a.isLeftZero()→: ((a� b) = a)

end

is parameterized with a type parameter T , an operator parameter � , and an identifier parameter isLeftZero .

Unlike other static parameters, operator and identifier parameters may be used in both type context and value context.
The following example operator parameter � :

trait IdentityOpJT extends IdentityOpJT,�K, opr �K
opr �(self):T = self

end

is declared as the second static parameter of IdentityOp , instantiated as a static argument in IdentityOpJT,�K which
is the bound of T , and declared as an operator method in IdentityOp .

Operator parameters and identifier parameters are instantiated with operators and identifiers respectively. They may
be used to instantiate other operator and identifier parameters and the names of method declarations. For example, the
following trait MyIdentity :

object MyIdentity extends IdentityOpJMyIdentity, IDENTITYK end

instantiates the operator parameter of its supertrait IdentityOp with the operator name IDENTITY . It inherits the
IDENTITY operator from IdentityOp . One restriction applies to instantiations of operator and identifier parameters:
one operator (or identifier) name cannot instantiate two or more operator (or identifier) parameters of a single trait or
object.

An operator method declaration whose name is one of the operator parameters of its enclosing trait or object may be
overloaded with other operator declarations in the same component; the operator parameter may be instantiated with
any operator in the same component. Therefore, such an operator method declaration must satisfy the overloading rules
(described in Chapter 33) with every operator declaration in the same component. For example, the above IDENTITY
operator declaration is overloaded with the following IDENTITY operator declaration:

opr IDENTITY(x: Z) = x
opr +(x: Z) = x

where both IDENTITY and + are top-level operator declarations in the same component. Therefore, the declaration
of the operator � in IdentityOp must satisfy the overloading rules with IDENTITY and with + .

Many interesting examples are described in Section 37.3.

88

11.6 Where Clauses

Syntax:
Where ::= where { WhereClauseList }
WhereClauseList ::= WhereClause(, WhereClause)∗

WhereClause ::= Id Extends
| TypeAlias
| NatConstraint
| IntConstraint
| BoolConstraint
| UnitConstraint
| TypeRef coerces TypeRef
| TypeRef widens TypeRef

Static parameters may have constraints placed on them in a where clause. A where clause begins with where ,
followed by a sequence of static parameter constraints enclosed in braces { and } , and separated by commas.

A where clause may introduce new static variables, i.e., identifiers for types and other static entities that may not
be static parameters. We use the term where -clause variables to refer to static variables that are not also static
parameters. The where -clause variables must be bound in a where clause.

A static parameter constraint is one of the following forms:

• a trait constraint consisting of the identifier of a naked type variable, followed by extends followed by a set of
trait references which may include naked type variables,

• a type alias (described in Section 8.9),

• an arithmetic constraint,

• a boolean constraint,

• a unit equality constraint,

• a coerces constraint (described in Section 17.2), or

• a widens constraint (described in Section 17.2).

A where clause may include mutually recursive constraints. All static variables in a trait, object, or functional
declaration must occur either as a static parameter or as a where -clause variable. Appendix A.2 describes a Fortress
core calculus with where clauses.

Trait declarations are allowed to extend other instantiations of themselves. For example, we can write:

trait CJSK extends CJT K
where {S extends T, T extends Object}

end

In this declaration, for every subtype S of T , CJSK is a subtype of CJT K . Effectively, we have expressed the fact
that the static parameter S of C is covariant.

Trait declarations need not have any static parameters in order to have a where clause. For example, the following
trait declaration is legal:

trait C extends DJT K
where {T extends Object}

end

89

In this declaration, trait C is a subtrait of every instantiation of parametric trait D . Thus, trait C has all of the methods
of every instantiation of D . By thinking of the declaration this way, we can see what restrictions we need to impose
on the trait C in order for it to be sensible. If trait C inherits a method declaration that refers to T , it really contains
infinitely many methods (one for each instantiation of T). However, instantiations of the where -clause variables are
not explicit from the program text as static parameters are. It must be possible to infer which method is referred to
at the call site. If there is not enough information to infer which method is called, type checking rejects the program
and requires more type information from the programmer. Programmers always can provide more type information
by using type ascription as described in Section 13.29.

Object or functional declarations may include where clauses. Here is an example declaration of an Empty list:

object Empty extends ListJT K where {T extends Object}
first() = throw Error
rest() = throw Error
cons(x) = Cons(x, self)
append(xs) = xs

end

where Cons is declared in Section 10.1.

90

Chapter 12

Functions

Functions are values that have arrow types described in Section 8.5. Each function takes exactly one argument, which
may be a tuple, and returns exactly one result, which may be a tuple. A function may be declared as top level or
local as described in Section 6.1. Fortress allows functions to be overloaded (as described in Chapter 15); there may
be multiple function declarations with the same function name in a single lexical scope. Functions can be passed as
arguments and returned as values. Single variables may be bound to functions including overloaded functions.

12.1 Function Declarations

Syntax:
FnDecl ::= FnDef

| AbsFnDecl
FnDef ::= FnMods? FnHeaderFront FnHeaderClause = Expr
FnMods ::= FnMod+

FnMod ::= atomic | io | UniversalMod
FnHeaderFront ::= Id StaticParams? ValParam

| OpHeaderFront
ValParam ::= BindId

| (Params?)
BindId ::= Id

|
Params ::= (Param ,)∗ (Varargs ,)? Keyword(,Keyword)∗

| (Param ,)∗ Varargs
| Param(, Param)∗

VarargsParam ::= Id : TypeRef ...
Varargs ::= VarargsParam
Keyword ::= Param = Expr
PlainParam ::= BindId IsType?

| TypeRef
Param ::= PlainParam
FnHeaderClause ::= IsType? FnClauses
FnClauses ::= Throws? Where? Contract
Throws ::= throws MayTraitTypes

91

Syntactically, a function declaration consists of an optional sequence of modifiers followed by the name of the function,
optional static parameters (described in Chapter 11), the value parameter with its (optionally) declared type, an optional
type of a return value, an optional declaration of thrown checked exceptions (discussed in Chapter 14), an optional
where clause (discussed in Section 11.6), a contract for the function (discussed in Section 12.4), and finally an optional
body expression preceded by the token = . A throws clause does not include naked type variables. Every element
in a throws clause is a subtype of CheckedException . When a function declaration includes a body expression, it
is called a function definition. Function declarations can be mutually recursive.

Function declarations can include the following special modifiers:

atomic : A function with the modifier atomic acts as if its entire body were surrounded in an atomic expression
discussed in Section 13.22.

io : Functions that perform externally visible input/output actions are said to be io functions. An io function
must not be invoked from a non- io function.

A function takes exactly one argument, which may be a tuple. When a function takes a tuple argument, we abuse
terminology by saying that the function takes multiple arguments. Value parameters cannot be mutated inside the
function body.

A function’s value parameter consists of a parenthesized, comma-separated list of bindings where each binding is one
of:

• A plain binding “identifier ” or “ identifier :T ”

• A varargs binding “ identifier :T . . . ”

• A keyword binding “ identifier = e ” or “ identifier :T = e ”

When the parameter is a single plain binding without a declared type, enclosing parentheses may be elided. The
following restrictions apply: No two bindings may have the same identifier. No keyword binding may precede a plain
binding. No varargs binding may follow a keyword binding or precede a plain binding. Note that it is permitted to
have a single plain binding, or to have no bindings. The latter case, “()”, is considered equivalent to a single plain
binding of the ignored identifier “ ” of type (), that is, “ (: ()) ”. Also, there can be at most one varargs binding.

A parameter declared by keyword binding is called a keyword parameter; a keyword parameter must be declared with
a default expression, which is used when no argument is bound to the parameter explicitly. Syntactically, the default
expression is specified after an = sign. The default expression of a parameter x of function f is evaluated each time
the function is called without a value provided for x at the call site. All parameters occurring to the left of x are in scope
of its default expression. All parameters following x must include default expressions as well; x is in scope of their
default expressions and the body of the function. When an argument is passed explicitly for a keyword parameter, that
argument must be passed as a keyword argument. (See Section 12.2.) If no type is declared for a keyword parameter,
the type is inferred from the static type of its default expression.

A parameter declared by varargs binding is called a varargs parameter; it is used to pass a variable number of argu-
ments to a function as a single heap sequence. The type of a varargs parameter is HeapSequenceJT K where T is
the type mentioned in (or inferred for) that binding. See Section 40.3 for a discussion of HeapSequence . Note that
the type of a varargs parameter cannot be omitted. If a function does not have a varargs parameter then the number of
arguments is fixed by the function’s type. Note that a varargs parameter is not allowed to have a default expression.

For example, here is a simple polymorphic function for creating lists:

ListJT extends Object, nat lengthK(rest :T [length]) =
if length = 0 then Empty
else Cons(rest0,List(rest1:(length−1)))
end

92

The following function:

swap(x : Object, y : Object) : (Object,Object) = (y, x)

has no static parameters, throws no checked exceptions, and has no contract. It takes a tuple of two elements of type
Object and returns a tuple of two values. Namely, it returns its arguments in reverse order. If the return type is elided,
it is inferred to be the static type of the body. The following declaration of swap has the same return type as the above
declaration:

swap(x : Object, y : Object) = (y, x)

Similarly, function parameter type can often be inferred from the body of the function. When a type can be inferred
for a parameter from the body of the function, that parameter type need not be declared explicitly. Thus, the following
declaration of swap has the same parameter type and return type as the above declarations:

swap(x, y) = (y, x)

See Chapter 20 for a discussion of type inference in Fortress.

The following function wrap :

wrap(xs, ys = xs) = [xs ys]

returns an array containing its parameters. If a value for only the parameter xs is given to wrap at a call site, the value
of xs is bound to ys as well, and an array that contains xs as both of its indices is returned.

12.2 Function Applications

Fortress provides overloaded functions (as described in Chapter 15); there may be multiple function declarations
with the same function name in a single lexical scope. Thus, we need to determine which function declarations are
applicable to a function application.

If a function’s argument type is () , then function declarations with the following forms of parameter lists are consid-
ered to be applicable:

• () which means the same thing as (: ())

• (x : ()) which is something programmers don’t ordinarily write

• (x :T . . .)

In the last case, x is bound to an empty HeapSequenceJT K .

If a function’s argument type A is neither () nor a tuple type, then function declarations with the following forms of
parameter lists are considered to be applicable:

• (x :T) where A is a subtype of T

• (x :T . . .) where A is a subtype of T

In the last case, x is bound to a HeapSequenceJT K of length 1 , containing the actual argument value.

If a function’s argument type A is a tuple type, then function declarations with the following forms of parameter lists
are considered to be applicable:

• (x :T) where A is a subtype of T

• (x :T . . .) where A is a subtype of T

• a parameter list with no varargs binding, provided that

93

– type A has exactly as many plain types as the parameter list has plain bindings, and

– for every keyword-type pair (described in Section 8.4) in A , the parameter list has a binding with the same
keyword, and

– for every element type in A , the type in the element type is a subtype of the type of the corresponding
binding in the parameter list.

• a parameter list with a varargs binding, provided that

– type A has at least as many plain types as the parameter list has plain bindings, and

– for every keyword-type pair in A , the parameter list has a binding with the same keyword, and

– for every element type in A , the type in the element type is a subtype of the type of the corresponding
binding in the parameter list—but if there is no corresponding binding, then the type in the element type
must be a subtype of the type in the varargs binding.

In the latter case, the parameter named by the identifier in the varargs binding is bound to a HeapSequenceJT K that
contains, in order, all the values of the tuple that did not correspond to plain bindings, followed by all the values in the
varargs HeapSequence of the tuple, if any.

When an argument is passed explicitly for a keyword parameter, that argument must be passed as a keyword argument.
Syntactically, a keyword argument is a keyword-value pair “ identifier = e ”. Keyword parameters not explicitly
bound are bound to their default values. If a parameter that has no default value is not explicitly bound to an argument,
it is a static error. Because a keyword-value pair shares a syntax with an equality expression, we provide rules for
disambiguation in Section 13.27.6.

When a function is called (See Section 13.6 for a discussion of function call expressions), explicit arguments are
evaluated in parallel, keyword parameters not explicitly bound are bound to their default values sequentially, and the
body of the function is evaluated in a new environment, extending the environment in which it is defined with all
parameters bound to their arguments.

If the application of a function f ends by calling another function g , tail-call optimization must be applied. Storage
used by the new environments constructed for the application of f must be reclaimed.

Here are some examples:

sqrt(x)
arctan(y, x)
makeColor(red = 5, green = 3, blue = 43)
processString(s, start = 5,finish = 43)

If the function’s argument is not a tuple, then the argument need not be parenthesized:

sqrt 2
sinx
log log n

Here are a few varargs and keyword examples:

f(x : Z, y : Z . . . , z : Z = 0) = 〈x, 〈q | q ← y〉, z〉

f(1) returns 〈1, 〈〉, 0〉
f(1, 2, 3) returns 〈1, 〈2, 3〉, 0〉
f(1, [2 3] . . .) returns 〈1, 〈2, 3〉, 0〉
f(1, 2, 3, [4 5] . . .) returns 〈1, 〈2, 3, 4, 5〉, 0〉
f(1, 2, 3, 17# 3 . . .) returns 〈1, 〈2, 3, 17, 18, 19〉, 0〉
f(1, 2, 3, z = 8) returns 〈1, 〈2, 3〉, 8〉
f([2 3] . . .) declaration not applicable

94

12.3 Abstract Function Declarations

Syntax:
AbsFnDecl ::= FnMods? FnHeaderFront FnHeaderClause

| Name : ArrowType

A function with a single principal type may be declared separately from its definitions using an abstract function
declaration. It is a static error if there are two abstract function declarations with the same name. For an abstract
function declaration with name f , argument type T , and return type U (T and U may be tuple types), any concrete
declaration for f must be for a function whose argument type is a subtype of T and whose return type is a subtype
of U . Furthermore, the union of the argument types of the concrete declarations for f must be equal to T . Concrete
function declarations must satisfy the overloading rules. Unless T has a comprises clause (or is a tuple type, at least
one of whose entries has a comprises clause), this implies that some concrete declaration for f must have argument
type T .

Syntactically, an abstract function declaration is a function declaration without a body. Parameter names may be elided
but parameter types cannot be omitted. Additionally, when a function’s type is not parameterized, Fortress provides
an alternative mathematical notation for an abstract function declaration: function name followed by the token ‘ : ’,
followed by an arrow type.

For example, after the following abstract function declaration:

printMolecule(Molecule): ()

where trait Molecule is defined as follows:

trait Molecule comprises {OrganicMolecule, InorganicMolecule} end

the programmer could write:

printMolecule(molecule:Molecule) = . . .

or could write:

printMolecule(molecule: OrganicMolecule) = . . .
printMolecule(molecule: InorganicMolecule) = . . .

For the latter, the programmer must provide a definition for every immediate subtype of Molecule , or it is a static
error.

12.4 Function Contracts

Syntax:
Contract ::= Requires? Ensures? Invariant?
Requires ::= requires { ExprList? }
Ensures ::= ensures { ProvidedList? }
ProvidedList ::= Provided(, Provided)∗

Provided ::= Expr (provided Expr)?
Invariant ::= invariant { ExprList? }

Function contracts consist of three optional clauses: a requires clause, an ensures clause, and an invariant
clause. All three clauses are evaluated in the scope of the function body.

The requires clause consists of a sequence of expressions of type Boolean separated by commas and enclosed
in curly braces. The requires clause is evaluated during a function call before the body of the function. If any
expression in a requires clause does not evaluate to true , a CallerViolation exception is thrown.

95

The ensures clause consists of a sequence of ensures subclauses. Each such subclause consists of an expression
of type Boolean , optionally followed by a provided subclause. A provided subclause begins with provided
followed by an expression of type Boolean . For each subclause in the ensures clause of a contract, the provided
subclause is evaluated immediately after the requires clause during a function call (before the function body is
evaluated). If a provided subclause evaluates to true , then the expression preceding this provided subclause is
evaluated after the function body is evaluated. If the expression evaluated after function evaluation does not evaluate
to true , a CalleeViolation exception is thrown. The expression preceding the provided subclause can refer to the
return value of the function. A result variable is implicitly bound to a return value of the function and is in scope
of the expression preceding the provided subclause. The implicitly declared result shadows any other declaration
with the same name in scope.

The invariant clause consists of a sequence of expressions of any type enclosed by curly braces. These expressions
are evaluated before and after a function call. For each expression e in this sequence, if the value of e when evaluated
before the function call is not equal to the value of e after the function call, a CalleeViolation exception is thrown.

Here are some examples:

factorial(n : Z64) requires {n ≥ 0 } =
if n = 0 then 1
else n factorial(n− 1)
end

mangle(input : List) ensures { sorted(result) provided sorted(input) } =
if input 6= Empty
then mangle(first(input))

mangle(rest(input))
end

Overloaded function contracts are handled similarly with method contracts described in Section 9.4. In particular,
substitutability is preserved: the statically most applicable function to a call should be substitutable with the dynam-
ically most applicable function to the call. For a call of function f , we use the term static contract of f to refer to a
contract declared in the statically most applicable function declaration and the term dynamic contract of f to refer to
a contract declared in the dynamically most applicable function declaration. Three exceptions may be thrown due to
an overloaded function contract violation: CallerViolation is thrown when the requires clause of the static con-
tract fails, CalleeViolation is thrown when the ensures or invariant clause of the dynamic contract fails, and
ContractOverloadingViolation is thrown when the requires clause of the dynamic contract or the ensures or
invariant clause of the static contract fails.

Evaluation of a call of function f proceeds as follows. Let C and C ′ be the static and dynamic contracts of f ,
respectively. If the requires clause of C fails, a CallerViolation exception is thrown. Otherwise, if the requires
clause of C ′ fails, a ContractOverloadingViolation exception is thrown. Otherwise, the provided subclauses of C
and C ′ are evaluated. For every provided subclause that evaluates to true , the corresponding ensures subclause is
recorded in a tableE for later comparison. Similarly, the invariant clauses ofC andC ′ are evaluated and the results
are stored in E for later comparison. Then the body of the dynamically most applicable function declaration of f is
evaluated. After evaluation of the body, all ensures subclauses of the dynamic contract recorded in E are checked
to ensure that they evaluate to true , and all invariant clauses of the dynamic contract recorded in E are checked
to ensure that they evaluate to values equal to the values they evaluated to before evaluation of the body. If any such
check fails, a CalleeViolation exception is thrown. Otherwise, all ensures subclauses and invariant clauses
of the static contract in E are checked. If any of these checks fails, a ContractOverloadingViolation exception is
thrown.

96

Chapter 13

Expressions

Fortress is an expression-oriented language. The positions in which an expression may legally appear (value context)
are determined by the nonterminal Expr in the Fortress grammar defined in Appendix G. We say that an expression is
a subexpression of any expression (or any other program construct) that (syntactically) contains it. When evaluation
of one subexpression must complete before another subexpression is evaluated, those subexpressions are ordered by
dynamic program order (see Chapter 4). This constrains the memory behavior of program constructs, as described in
Chapter 21. Unless otherwise specified, abrupt completion of the evaluation of a subexpression causes the evaluation
of the expression as a whole to complete abruptly in the same way. Also, if one expression precedes another by
dynamic program order, and the evalution of the first expression completes abruptly, the second is not evaluated at all.

13.1 Literals

Syntax:
Literal ::= ()

| NumericLiteral
| CharLiteral
| StringLiteral

Fortress provides boolean literals, () literal, character literals, string literals, and numeric literals. Literals are values;
they do not require evaluation.

The literal false has type BooleanLiteralJfalseK . The literal true has type BooleanLiteralJtrueK .

The literal () is the only value with type () . Whether any given occurrence of () refers to the value () or to the type
() is determined by context.

A character literal has type Character . Each character literal consists of an abstract character in Unicode 5.0 [27],
enclosed in single quotation marks (for example, ‘a’, ‘A’, ‘$’, ‘α’, ‘⊕’). For convenience, the single quotes may be
either true typographical “curly” single quotation marks or a pair of ordinary apostrophe characters (for example, ’a’,
’A’, ’$’, ’α’, ’⊕’). See Section 5.9 for a description of how names of characters may be used rather than actual
characters within character literals, for example ‘APOSTROPHE’ and ‘GREEK CAPITAL LETTER GAMMA’.

A string literal has type String . Each string literal is a sequence of Unicode 5.0 characters enclosed in double quotation
marks (for example, “Hello, world!” or “π r2”). For convenience, the double quotes may be either true typograph-
ical “curly” double quotation marks or a pair of “neutral” double-quote characters (for example, "Hello, world!"

or "π r2"). Section 5.10 also describes how names of characters may be used rather than actual characters within
string literals. One may also use the escape sequences \b and \t and \n and \f and \r as described in [5].

97

Numeric literals in Fortress are referred to as numerals, corresponding to various expressible numbers. Numerals may
be either simple or compound (as described in Section 5.13).

A numeral containing only digits (let n be the number of digits) has type NaturalNumeralJn, 10, vK where v is the
value of the numeral interpreted in radix ten. If the numeral has no leading zeros, or is the literal 0 , then it also has
type LiteralJvK .

A numeral containing only digits (let n be the number of digits) then an underscore, then a radix indicator (let r be the
radix) has type NaturalNumeralWithExplicitRadixJn, r, vK where v is the value of the n-digit numeral interpreted
in radix r.

A numeral containing only digits (let n be the total number of digits) and a radix point (let m be the number of digits
after the radix point) has type RadixPointNumeralJn,m, 10, vK where v is the value of the numeral, with the radix
point deleted, interpreted in radix ten.

A numeral containing only digits (let n be the total number of digits) and a radix point (let m be the number of digits
after the radix point), then an underscore, then a radix indicator (let r be the radix) has the following type:

RadixPointNumeralWithExplicitRadixJn,m, r, vK

where v is the value of the n-digit numeral, with the radix point deleted, interpreted in radix r.

Every numeral also has type NumeralJn,m, r, vK for appropriate values of n , m , r , and v .

Numerals are not directly converted to any of the number types because, as in common mathematical usage, we expect
them to be polymorphic. For example, consider the numeral 3.1415926535897932384 ; converting it immediately to
a floating-point number may lose precision. If that numeral is used in an expression involving floating-point intervals,
it would be better to convert it directly to an interval. Therefore, numerals have their own types as described above.
This approach allows library designers to decide how numerals should interact with other types of objects by defining
coercion operations (see Section 17.1 for an explanation of coercion in Fortress). The Fortress standard libraries define
coercions from numerals to integers (for simple numerals) and rational numbers (for compound numerals).

In Fortress, dividing two integers using the / operator produces a rational number; this is true regardless of whether
the integers are of type Z (or ZZ), Z64 (or ZZ64), N32 (or NN32), or whatever. Addition, subtraction, multiplication,
and division of rationals are always exact; thus values such as 1/3 are represented exactly in Fortress.

Numerals containing a radix point are actually rational literals; thus 3.125 has the rational value 3125/1000 . The
quotient of two integer literals is a static expression (described in Section 13.26) whose value is rational. Similarly, a
sequence of digits with a radix point followed by the symbol × and an integer literal raised to an integer literal, such
as 6.0221415× 1023 is a static expression whose value is rational. If such static expressions are mentioned as part
of a floating-point computation, the compiler performs the rational arithmetic exactly and then converts the result to
a floating-point value, thus incurring at most one floating-point rounding error. But in general rational computations
may also be performed at run time, not just at compile time.

A rational number can be thought of as a pair of integers p and q that have been reduced to “standard form in lowest
terms”; that is, q > 0 and there is no nonzero integer k such that p

k and q
k are integers and

∣∣ p
k

∣∣ +
∣∣ q
k

∣∣ < |p|+ |q|. The
type Q includes all such rational numbers.

The type Q∗ relaxes the requirement q > 0 to q ≥ 0 and includes two extra values, 1/0 and −1/0 (sometimes
called “the infinite rational” and “the indefinite rational”). The advantage of Q∗ is that it is closed under the rational
operations +, −, ×, and /. If a value of type Q∗ is assigned to a variable of type Q, a DivideByZeroException is
thrown at run time if the value is 1/0 or −1/0 . The type Q# includes all of 1/0 , −1/0 , and 0/0 . In ASCII, Q ,
Q∗ , and Q# are written as QQ, QQ star, and QQ splat, respectively. See Section 38.1 for definitions of Q , Q∗ ,
and Q# .

98

13.1.1 Pi

The object named π (or pi) may be used to represent the ratio of the circumference of a circle to its diameter rather
than a specific floating-point value or interval value. In Fortress, π has type RationalValueTimesPiJfalse, 1, 1K .
When used in a floating-point computation, it becomes a floating-point value of the appropriate precision; when used
in an interval computation, it becomes an interval of the appropriate precision.

13.1.2 Infinity and Zero

The object named ∞ has type ExtendedIntegerValueJtrue, 0, trueK . One can negate ∞ to get a negative infinity.

Negating the literal 0 produces a special negative-zero object, which refuses to participate in compile-time arithmetic
(discussed in Section 13.26). It has type NegativeZero . The main thing it is good for is coercion to a floating-point
number (discussed in Chapter 17). (Negating any other zero-valued expression simply produces zero.)

13.2 Identifier References

Syntax:
Primary ::= IdJStaticArgList K
BaseExpr ::= Id

| self

A name that is not an operator appearing in an expression context is called an identifier reference. It evaluates to the
value of the name in the enclosing scope in the value namespace. The type of an identifier reference is the declared
type of the name. See Chapter 7 for a discussion of names. An identifier reference performs a memory read operation.
Note in particular that if a name is not in scope, it is a static error (as described in Section 7.2).

An identifier reference which denotes a polymorphic function may include explicit static arguments (described in
Chapter 12) but most identifier references do not include them; the static arguments are statically inferred from the
context of the method invocation (as described in Chapter 20). For example, identityJStringK is an identifier reference
with an explicit static argument where the function identity is defined as follows:

identityJT extends AnyK(x:T):T = x

The special name self is declared as a parameter of a method. When the method is invocated, its receiver is bound
to the self parameter; the value of self is the receiver. The type of self is the type of the trait or object being
declared by the innermost enclosing trait or object declaration or object expression. See Section 9.2 for details about
self parameters.

13.3 Dotted Field Accesses

Syntax:
Primary ::= Primary . Id

An expression consisting of a single subexpression (called the receiver expression), followed by ‘.’, followed by an
identifier, not immediately followed by a parenthesis, is a field access. If the receiver expression denotes an object
(called the receiver), the field access is evaluated to a call to a getter mapped from that identifier by the receiver. The
type of the field access is the return type of its getter. The static type of the receiver indicates whether a getter mapped
from that identifier is provided by the denoted object. If a getter is not provided, it is a static error. See Section 9.2

99

for a discussion of getters. The evaluation of the receiver must complete normally before the body of the getter is
evaluated.

13.4 Dotted Method Invocations

Syntax:
Primary ::= Primary . Id (JStaticArgList K)? TupleExpr

| Primary . Id (JStaticArgList K)?()
| TraitType . coercion (JStaticArgList K)?(Expr)

A dotted method invocation consists of a subexpression (called the receiver expression), followed by ‘.’, followed by
an identifier, an optional list of static arguments (described in Chapter 12) and a subexpression (called the argument
expression). Unlike in function calls (described in Section 13.6), the argument expression must be parenthesized, even
if it is not a tuple. There must be no whitespace on either side of the ‘.’, and there must be no whitespace on the
left-hand side of the left parenthesis of the argument expression. The receiver expression evaluates to the receiver
of the invocation (bound to the self parameter (discussed in Section 9.2) of the method). A coercion invocation
(discussed in Chapter 17) has a similar syntax to a dotted method invocation. A method invocation may include
explicit instantiations of static parameters but most method invocations do not include them; the static arguments are
statically inferred from the context of the method invocation (as described in Chapter 20).

The receiver and arguments of a method invocation are each evaluated in parallel in a separate implicit thread (see
Section 4.4). After this thread group completes normally, the body of the method is evaluated with the parameter of
the method bound to the value of the argument expression (thus evaluation of the body occurs after evaluation of the
receiver and arguments in dynamic program order). The value and the type of a dotted method invocation are the value
and the type of the method body.

We say that methods or functions (collectively called as functionals) may be applied to (also “invoked on” or “called
with”) an argument. We use “call”, “invocation”, and “application” interchangeably.

Here are some examples:

myString .toUppercase()
myString .replace(“foo”, “few”)
SolarSystem.variation((π/2 radian)/452million year)
myNum.add(otherNum) (∗ NOT myNum.add otherNum ∗)

13.5 Naked Method Invocations

Syntax:
Primary ::= Id TupleExpr

| Id()
| Id Primary

Method invocations that are not prefixed by receivers are naked method invocations. A naked method invocation is
either a functional method call (See Section 9.2 for a discussion of functional methods) or a method invocation within
a trait or object that provides the method declaration. Syntactically, a naked method invocation is same as a function
call except that the method name is used instead of an arbitrary expression denoting the applied method. Like function
calls, an argument expression need not be parenthesized unless it is a tuple. After the evaluation of the argument
expression completes normally, the body of the method is evaluated with the parameter of the method bound to the
value of the argument expression. The value and the type of a naked method invocation are the value and the type of
the method body.

100

13.6 Function Calls

Syntax:
Primary ::= Primary TupleExpr

| Primary()
| Primary Primary

A function call consists of two subexpressions: an expression denoting the applied function and an argument expres-
sion. The argument expression and the expression denoting the applied function are evaluated in parallel in separate
implicit threads (see Section 4.4. As with languages such as Scheme and the Java Programming Language, function
calls in Fortress are call-by-value. After the evaluation of the function and its arguments completes normally, the body
of the function is evaluated with the parameter of the function bound to the value of the argument expression. The
value and the type of a function call are the value and the type of the function body.

Here are some examples:

sqrt(x)
arctan(y, x)

If the function’s argument is not a tuple, then the argument need not be parenthesized:

sqrt 2
sinx
log log n

13.7 Function Expressions

Syntax:
Expr ::= fn ValParam IsType? Throws? ⇒ Expr

Function expressions denote function values; they do not require evaluation. Syntactically, they start with fn followed
by a parameter, optional return type, optional throws clause, ⇒, and finally an expression. The type of a function
expression is an arrow type consisting of the function’s parameter type followed by the token → , followed by the func-
tion’s return type, and the function’s optional throws clause. Unlike declared functions (described in Chapter 12),
function expressions are not allowed to include static parameters nor where clauses (described in Chapter 11).

Here is a simple example:

fn (x : Double)⇒ if x < 0 then −x else x end

13.8 Operator Applications

Syntax:
OpExpr ::= EncloserOp OpExpr? EncloserOp?

| OpExpr EncloserOp OpExpr?
| Primary

Primary ::= LeftEncloser ExprList? RightEncloser
| Primary[ExprList?]
| Primary ˆ BaseExpr
| Primary ExponentOp

EncloserOp ::= Encloser
| Op

101

To support a rich mathematical notation, Fortress allows most Unicode characters that are specified to be mathematical
operators to be used as operators in Fortress expressions, as well as various tokens described in Chapter 16. Most of
the operators can be used as prefix, infix, postfix, or nofix operators as described in Section 16.3; the fixity of an
operator is determined syntactically, and the same operator may have definitions for multiple fixities.

Syntactically, an operator application consists of an operator and its argument expressions. If the operator is a prefix
operator, it is followed by its argument expression. If the operator is an infix operator, its two argument expressions
come both sides of the operator. If the operator is a postfix operator, it comes right after its argument expression.
Like function calls, argument expressions are evaluated in parallel in separate implicit threads. After evaluation of
arguments completes normally, the body of the operator definition is evaluated with the parameters of the operator
bound to the values of the argument expressions. The value and the type of an operator application are the value and
the type of the operator body.

Here are some examples:

(−b+ sqrt(b2 − 4ac))/2a
nne(−n)sqrt(2πn)
akbn−k

x1y2 − x2y1
1/2gt2

n(n+ 1)/2
(j + k)!/(j!k!)
1/3 3/5 5/7 7/9 9/11
17.3 meter/second
17.3 m/s
u · (v × w)
(A ∪B) INTERSECT C
(A ∪B) ∩ C
i < j ≤ k ∧ p ≺ q
print(“The answers are ” (p+ q) “ and ” (p− q))
〈2, 3, 4, 5〉

13.9 Object Expressions

Syntax:
DelimitedExpr ::= object Extends? GoInAnObject end

Object expressions denote object values. Syntactically, they start with object , followed by an optional extends
clause, a series of field declarations, method declarations, or property declarations, and finally end . The type of an
object expression is an anonymous object trait type that extends the traits listed in the extends clause of the object
expression. The object trait type does not include the methods introduced by the object expression (i.e., those methods
not provided by any supertraits of the object expression). Each object trait type is associated with a program location;
every evaluation of a given object expression has the same anonymous object trait type. Two object expressions at
different program locations with the same extends clause have different object trait types.

Unlike object declarations (described in Chapter 10), object expressions are not allowed to include modifiers, value
parameters, static parameters, or where clauses (described in Chapter 11). Unlike object declarations, which must
not include any free static variables (i.e., all static variables in an object declaration must occur either as a static
parameter or as a where -clause variable), object expressions may include free static variables. Field initializers and
methods may refer to any variables that are in scope in the context in which the object expression occurs. As with
object declarations, initializers are evaluated in textual program order and may refer to previous fields; the object being
constructed may not be referred to in any way.

102

For example, the following object expression:

fJT K(x :T) = object f :T = x end

has a static variable T that is not its static parameter nor its where -clause variable.

The following example expression evaluates to a new object extending trait List :

object extends {List }
first() = throw Error
rest() = throw Error
cons(x) = Cons(x, self)
append(xs) = xs

end

13.10 Assignments

Syntax:
Expr ::= AssignLefts AssignOp Expr
AssignLefts ::= (AssignLeft(, AssignLeft)∗)

| AssignLeft
AssignLeft ::= SubscriptExpr

| FieldSelection
| BindId

SubscriptExpr ::= Primary [ExprList?]
FieldSelection ::= Primary . Id
BindId ::= Id

|
AssignOp ::= := | Op =

An assignment expression consists of a left-hand side (AssignLefts) indicating one or more variables, subscripted
expressions (as described in Section 34.7), or field accesses to be updated, an assignment token, and a right-hand-
side expression. Multiple left-hand sides must be grouped using tuple notation (comma-separated and parenthesized).
Variables updated in an assignment expression must already be declared.

The assignment token ‘ := ’ indicates ordinary assignment. Ordinary assignment proceeds in two phases. In the first,
the evaluation phase, the right-hand-side expression is evaluated in parallel with each of the left-hand-side subexpres-
sions, forming an implicit thread group. Evaluating a left-hand variable does nothing. Evaluating a left-hand field
reference evaluates the receiving object. Evaluating a left-hand subscripting operation evaluates the receiving object
and the index in parallel in a nested thread group. After the outer implicit thread group completes normally, the assign-
ment phase begins. Each component of the right-hand-side value is assigned to the corresponding component of the
left-hand side in parallel, forming an implicit thread group. Assigning a left-hand variable simply changes the bind-
ing for the variable’s location to contain the new value. Assigning a left-hand field reference calls the corresponding
setter method on the reiver object, passing the new value. Assigning a left-hand subscript simply calls the subscripted
assignment operation on the corresponding object with the new value.

Any operator (other than ‘ : ’ or ‘ = ’ or ‘< ’ or ‘> ’) followed by ‘ = ’ with no intervening whitespace indicates
compound (updating) assignment. This adds an additional phase to assignment between the two phases of ordinary
assignment. In the first phase, a left-hand field reference invokes the getter for the corresponding field after the
receiving object has been evaluated. A left-hand subscripting operation invokes the subscripting operator on the
receiving object once receiver and index have been evaluated. A left-hand variable simply returns the current value of
the location associated with that variable. In the new second phase, the operator indicated in the assignment is invoked.
The left-hand argument is the value of the left-hand expression evaluated in the first phase; the right-hand argument

103

is the value evaluated for the right-hand side of the assignment expression. When the operator evaluation completes
normally, the assignment phase is run as in ordinary assignment.

The important point to understand is that compound assignment evaluates its subexpressions exactly once, and that the
parts of assignment proceed implicitly in parallel where possible.

Consider the following assignment:

(a[i], b.x, c)UPD = f(t, u, v)

Here in the first phase we evaluate a and i in parallel, then when this completes we invoke the indexing method
of a to evaluate a[i] . In parallel we evaluate b and then call the getter method b.x . In parallel we look up the
value of variable c . Finally, we evaluate f(t, u, v) in parallel with all of these left-hand sides. In the second phase,
we combine the results using the UPD operator, to evaluate (ai, b.x, c) UPD f(t, u, v) . This must return a tuple of
three values (p, q, r) . In the final phase, in parallel we call the indexed assignment operator a[i] := p , call the setter
b.x := q , and perform the local assignment c := r .

Here are some simpler and more commonplace examples of assignment:

x := f(0)
cij := cij + aikbkj

(a, b, c) := (b, c, a) (∗ Permute a, b, and c ∗)
x += 1
(x, y) += (δx, δy)
myBag = myBag ∪ newItems
myBag ∪= newItems

13.10.1 Definite Assignment

References to uninitialized variables are statically forbidden. As with the Java Programming Language, this static
constraint is ensured with a specific conservative flow analysis. In essence, an initialization of a variable must occur
on every possible execution path to each reference to a variable.

13.11 Do Expressions

Syntax:
Do ::= (DoFront also)∗ DoFront end
DoFront ::= (at Expr)? atomic ? do BlockElems?
BlockElems ::= BlockElem+

BlockElem ::= LocalVarFnDecl
| Expr(, GeneratorList)?

LocalVarFnDecl ::= LocalFnDecl+

| LocalVarDecl

A do expression consists of a series of block expressions separated by also and terminated by end . Each block
expression is preceded by an optional at expression (described in Section 32.7), an optional atomic , and do .
When prefixed by at or atomic , it is as though that block expression were evaluated as the body expression of an
at or atomic expression respectively. A block expression consists of a series of elements: expressions, generated
expressions (described in Section 13.11.2), local variable declarations, or local function declarations.

A single block expression evaluates its elements in order: each element must complete before evaluation of the next
can begin, and the block expression as a whole does not complete until the final element completes. If the last element

104

of the block expression is an expression, the value and type of this expression are the value and type of the block
expression as a whole. Otherwise, the value and type of the block expression is () . Each block expression introduces
a new scope. Some compound expressions have clauses that are implicitly block expressions.

Here are examples of function declarations whose bodies are do expressions:

f(x : R64) = do
(sin(x) + 1)2

end

foo(x : R64) = do
y = x
z = 2x
y + z

end

mySum(i : Z64) : Z64 = do
acc : Z64 := 0
for j ← 0 : i do

acc := acc + j
end
acc

end

13.11.1 Distinguishing a Local Declaration from an Equality Expression

Because a local declaration shares a syntax with an equality expression, we provide rules for disambiguation:

• If an expression of the form “ e = e ” occurs as a proper subexpression in any non-block expression, it is an
equality expression.

• If such an expression occurs as an immediate subexpression of a block expression, it is a local declaration.
Adding parentheses makes the expression an equality expression.

13.11.2 Generated Expressions

If a subexpression of a do expression has type () , the expression may be followed by a ‘ , ’ and a generator list
(described in Section 13.14). Writing “ expr , gens ” is equivalent to writing “ for gens do expr end ”. See Sec-
tion 13.15 for the semantics of the for expression. Note in particular that expr can be a reducing assignment of the
form “ var OP= expr ”.

13.11.3 Parallel Do Expressions

A series of blocks may be run in parallel using the also construct. Any number of contiguous blocks may be
joined together by also . Each block is run in a separate implicit thread; these threads together form a group. The
expression as a whole completes when the group is complete. A thread can be placed in a particular region by using
an at expression as described in Section 32.7. When multiple block expressions are separated by also , each block
expression must have type () ; the result and type of the parallel do expression is also () .

For example:

105

treeSum(t : TreeLeaf) = 0
treeSum(t : TreeNode) = do

var accum := 0
do

accum += treeSum(t.left)
also do

accum += treeSum(t.right)
also do

accum += t.datum
end
accum

end

Note the use of the reduction variable accum (Section 4.4.1) within the threads in the group.

13.12 Label and Exit

Syntax:
DelimitedExpr ::= label Id BlockElems end Id
FlowExpr ::= exit Id? (with Expr)?

A block expression may be labeled using a label expression, which consists of label , an identifier (the block’s
name), a block expression (its body), end , and finally its name again (it is a static error if the identifier after end is
not the name). The name of a label expression is in scope in the label namespace at any point in its body that is not
within a spawn subexpression of the body. A label expression is evaluated by evaluating its body.

An exit expression consists of exit , an optional identifier (the target) and an optional with clause, which consists
of with followed by an expression. If a target is specified, it is a static error if the target is not in scope in the label
namespace at the exit expression. That is, the target must be the name of a statically enclosing label expression,
and the exit expression must not be within a spawn expression that is contained in the label expression. If no
target is specified, the target is implicitly the name of the smallest statically enclosing label expression; it is a static
error if there is no such expression.

An exit expression with a with clause evaluates its with clause expression to yield an exit value. The exit
expression completes abruptly with the exit value (see Section 4.2). An exit expression with no with clause has an
implicit with clause whose expression is () . The type of an exit expression is BottomType .

If the evaluation of the body of a label expression completes normally, its value is the value of the body. If the
evaluation of the body completes abruptly with an exit expression whose target is the name of the label expression,
then the evaluation of the label expression completes normally and its value is the exit value of the exit expression.
The type of a label expression is the union of the type of the last expression of its block expression and the types of
the values of any exit expressions within the label expression whose target is the label expression’s name.

If one or more try expressions are nested between an exit expression and the targeted label block, the finally
clauses of these expressions are run in order, from innermost to outermost, as described in Section 13.25. If any
finally clause completes abruptly by throwing an exception, the exit expression fails to exit, the evaluation of the
label expression completes abruptly, and the exception is propagated.

Here is a simple example:

label I95
if goingTo(Sun)
then exit I95 with x32B

106

else x32A
end

end I95

The expression exit I95 with x32B completes abruptly and attempts to transfer control to the end of the targeted
labeled block label I95 . The targeted labeled block completes normally with value x32B .

13.13 While Loops

Syntax:
DelimitedExpr ::= while Expr Do

A while loop consists of a condition expression of type Boolean followed by a simple do expression (see Sec-
tion 13.11). An iteration of a while loop evaluates the condition expression; if it completes normally and returns
true it then evaluates the body block expression to completion. When one iteration completes a new one is run until
either an iteration completes abruptly (in which case the evaluation of the while expression completes abruptly), or
the condition expression has the value false (in which case the while loop completes normally with value ()).

13.14 Generators

Syntax:
GeneratorList ::= Generator(, Generator)∗

Generator ::= Id←Expr
| (Id , IdList)←Expr
| Expr

IdList ::= Id(, Id)∗

Fortress makes extensive use of comma-separated generator lists to express parallel iteration. Generator lists occur in
generated expressions (described in Section 13.11.2), for loops (described in Section 13.15), sums and big operators
(described in Section 13.17), and comprehensions (described in Section 13.28). We refer to these collectively as
expressions with generators. Every expression with generators contains a body expression which is evaluated for each
combination of values bound in the generator list (each such combination yields an iteration of the body).

An element of a generator list is either a generator binding or a boolean expression. A generator binding consists of
one or more comma-separated identifiers followed by the token ← , followed by a subexpression (called the generator
expression). A generator expression evaluates to an object whose type is Generator . A generator encapsulates zero
or more generator iterations. By default, the programmer must assume that generator iterations are run in parallel in
separate implicit threads unless the special sequential generator is used; the actual behavior of generators is dictated
by library code, as described in Section 32.8. No generator iterations are run until the generator expression completes.
For each generator iteration, a generator object produces a value or a tuple of values. These values are bound to the
identifiers to the left of the arrow, which are in scope of subsequent generator list elements and of the body of the
construct containing the generator list.

A boolean expression in a generator list is interpreted as a filter. A generator iteration is performed only if the result
of the filter expression is true . If the filter is false , subsequent expressions in the generator list will not be evaluated.

The order of nesting of generators need not imply anything about the relative order of nesting of iterations. In most
cases, multiple generators can be considered equivalent to multiple nested loops. However, the compiler will make an
effort to choose the best possible iteration order it can for a multiple-generator loop, and may even combine generators
together; there may be no such guarantee for nested loops. Thus loops with multiple generators are preferable in

107

general. Note that the early termination behavior of nested looping is subtly different from a single multi-generator
loop, since nested loops give rise to nested thread groups; see Section 32.6.

Each generator iteration of the innermost generator list element corresponds to a body iteration, or simply an iteration
of the generator list. Each iteration is run in its own implicit thread. Each expression in the generator list can each be
considered to evaluate in a separate implicit thread. Together these implicit threads form a thread group. Evaluation
of an expression with generators completes only when this thread group has completed.

Some common Generators include:

l :u Any range expression
a.indices The index set of an array a
{0, 1, 2, 3} The elements of an aggregate expression
sequential(g) A sequential version of generator g

The generator sequential(g) forces the iterations using distinct values from g to be performed in order. Every
generator has an associated natural order which is the order obtained by sequential . For example, a sequential for
loop starting at 1 and going to n can be written as follows:

for i← sequential(1 :n) do
· · ·

end

The sequential generator respects generator list ordering; it will always nest strictly inside preceding generator list
elements and outside succeeding ones.

Given a multidimensional array, the indices generator returns a tuple of values, which can be bound by a tuple of
variables to the left of the arrow:

(i, j)← my2DArray .indices

The parallelism of a loop on this generator follows the spatial distribution (discussed in Section 32.5) of my2DArray
as closely as possible.

13.15 For Loops

Syntax:
DelimitedExpr ::= for GeneratorList DoFront end
DoFront ::= (at Expr)? (atomic)? do BlockElems?

A for loop consists of for followed by a generator list (discussed in Section 13.14), followed by a non-parallel
do expression (the loop body; see Section 13.11). Parallelism in for loops is specified by the generators used (see
Section 13.14); in general the programmer must assume that each loop iteration will occur independently in parallel
unless every generator is explicitly sequential . For each iteration, the body expression is evaluated in the scope of
the values bound by the generators. The body of a for expression can make use of reduction variables as dscribed in
Section 4.4.1. The value and type of a for loop is () .

13.16 Ranges

Syntax:
Range ::= Expr? : Expr?(: Expr?)?

| Expr # Expr

108

A range expression is used to create a special kind of Generator for a set of integers, called a Range , useful for
indexing an array or controlling a for loop. Generators in general are discussed further in Section 13.14.

An explicit range is self-contained and completely describes a set of integers. Assume that a, b, and c are expressions
that produce integer values.

• The range a : b is the set of n = max(0, b − a + 1) integers {a, a + 1, a + 2, . . . , b − 2, b − 1, b}. This is a
nonstrided range. If a and b are both static expressions (described in Section 13.26), then it is a static range of
type StaticRangeJa, n, 1K and therefore also a range of static size) of type RangeOfStaticSizeJnK .

• The range a : b : c is the set of n = max
(
0,

⌊
b−a+c

c

⌋)
integers {a, a+ c, a+ 2c, . . . , a+

⌊
b−a

c

⌋
c}, unless c is

zero, in which case it throws an exception. (If c is a static expression, then it is a static error if c is zero.) This is
a strided range. If a , b , and c are all static expressions, then it is a static range of type StaticRangeJa, n, cK
and therefore also a range of static size) of type RangeOfStaticSizeJnK .

• The range a#n is the set of max(0, n) integers {a, a+1, a+2, . . . , a+n−3, a+n−2, a+n−1}. This is a
nonstrided range. If a and n are both static expressions, then it is a static range of type StaticRangeJa, n, 1K
If n is a static expression, then it is a range of static size of type RangeOfStaticSizeJnK , even if a is not a
static expression.

Non-static components of a range expression are computed in separate implicit threads. The range is constructed when
all components have completed normally.

An implicit range may be used only in certain contexts, such as array subscripts, that can supply implicit information.
Suppose an implicit range is used as a subscript for an axis of an array for which the lower bound is l and the upper
bound is u.

• The implicit range : is treated as l :u .

• The implicit range : : c is treated as l :u : c .

• The implicit range : b is treated as l : b .

• The implicit range : b : c is treated as l : b : c .

• The implicit range a : is treated as a :u .

• The implicit range a : : c is treated as a :u : c .

One may test whether an integer is in a range by using the operator ∈:

if j ∈ a : b then print “win” end

Ranges may be compared as if they were sets of integers by using ⊂ (SUBSET) and ⊆ (SUBSETEQ) and = and
⊇ (SUPSETEQ) and ⊃ (SUPSET).

Ranges may be intersected using the operator ∩ (INTERSECTION).

The size of a range (the number of integers in the set) may be found by using the set-cardinality operator |. . .| . For
example, the value of |3 : 7| is 5 and the value of |1 : 100 : 2| is 50 .

Note that a range is very different from an interval with integer endpoints. The range 3 : 5 contains only the values 3,
4, and 5, whereas the interval [3, 5] contains all real numbers x such that 3 ≤ x ≤ 5 .

13.17 Summations and Other Reduction Expressions

Syntax:

109

FlowExpr ::= Accumulator ([GeneratorList])? Expr
Accumulator ::=

∑
|
∏
| BIG Op

A reduction expression begins with a big operator such as
∑

or
∏

followed by an optional generator list (described
in Section 13.14), followed by a body expression. A complete list of these operators are described in Section 16.8.1;
each reduction operator corresponds to a binary operator OP which extends MonoidJT, OPK , which is + in the case
of

∑
, juxtaposition in case of

∏
, and Op in the case of BIG Op . When a generator list is provided, generators

produce values and bind the values to the identifiers that are used in the subexpression. Each iteration of the body
expression is assumed to be evaluated in a separate implicit thread as described in Section 13.14. The resulting values
are combined together using OP as with reduction variables (see Section 4.4.1). The value of a reduction expression is
this combined value. The type of a reduction expression is the return type of the big operator used (which will match
the argument and return types of OP).

When no generator list is provided, the body is taken to be an object of type Generator and the elements it generates
are combined. Thus, the reduction expression

∑
a is equivalent to

∑
x←a

x .

A reduction expression with a generator list:∑
[v1 ← g1, v2 ← g2, . . .]e

is equivalent to the following code:

do
result = 0
for v1 ← g1, v2 ← g2, . . . do

result += e
end
result

end

where result is a fresh variable. A reduction expression without a generator list:∑
g

is equivalent to the following:∑
[x← g]x

Note that reduction expressions without generator lists can be used to conveniently sum any aggregate expression
(described in Section 13.27), since every aggregate expression is a generator.

13.18 If Expressions

Syntax:
DelimitedExpr ::= if Expr then BlockElems Elifs? Else? end

| (if Expr then BlockElems Elifs? Else end ?)
Elifs ::= Elif +

Elif ::= elif Expr then BlockElems
Else ::= else BlockElems

An if expression consists of if followed by a condition expression of type Boolean , followed by then , a block
expression, an optional sequence of elif clauses (each consisting of elif followed by a condition expression,
then , and a block expression), an optional else clause (consisting of else followed by a block expression), and
finally end . Each clause forms a block expression and has the various properties of block expressions (described

110

in Section 13.11). An if expression first evaluates its condition expression. If the condition expression completes
normally and results in true , the then clause is evaluated. If the condition expression results in false , the next clause
(either elif or else), if any, is evaluated. An elif clause works just as the original if , evaluating its condition
expression and continuing with its then clause if the condition is true . An else clause simply evaluates its block
expression. The type of an if expression is the union of the types of the block expressions of each clause. If there
is no else clause in an if expression, then every clause must have type () . The result of the if expression is
the result of the block expression which is evaluated; if no block expression is evaluated it is () . The reserved word
end may be elided if the if expression is immediately enclosed by parentheses. In such a case, an else clause is
required.

For example,

if x ∈ {0, 1, 2} then 0
elif x ∈ {3, 4, 5} then 3
else 6 end

13.19 Case Expressions

Syntax:
DelimitedExpr ::= case Expr Op? of CaseClauses CaseElse? end
CaseClauses ::= CaseClause+

CaseClause ::= Expr ⇒ BlockElems
CaseElse ::= else ⇒ BlockElems

A case expression begins with case followed by a condition expression, followed by an optional operator, of , a
sequence of case clauses (each consisting of a guarding expression followed by the token ⇒, followed by a block
expression), an optional else clause (consisting of else followed by the token⇒, followed by a block expression),
and finally end .

A case expression evaluates its condition expression and checks each case clause to determine which case clause
matches. To find a matched case clause, the guarding expression of each case clause is evaluated in order and compared
to the value of the condition expression. For the first clause, the condition expression and guarding expression are
evaluated in separate implicit threads; for subsequent clauses the value of the condition expression is retained and only
the guarding expression is evaluated. Once both guard and condition expressions have completed normally, the two
values are compared according to an optional operator specified. If the operator is omitted, it defaults to = or ∈. If
the condition expression has type Generator or if the guarding expression does not, then the default operator is = ;
otherwise, it is ∈. It is a static error if the specified operator is not defined for these types or if the operator’s return
type is not Boolean .

If the operator completes normally and returns true , the corresponding block expression is evaluated (see Sec-
tion 13.11) and its value is returned. If the operator returns false matching continues with the next clause. If no
matched clause is found, a MatchFailure exception is thrown. The optional else clause always matches without
requiring a comparison. The value of a case expression is the value of the right-hand side of the matched clause. The
type of a case expression is the union type of the types of all right-hand sides of the case clauses.

For example, the following case expression specifies the operator ∈:

case planet ∈ of
{Mercury,Venus,Earth,Mars } ⇒ “inner”
{ Jupiter,Saturn,Uranus,Neptune } ⇒ “outer”
else⇒ “remote”

end

but the following does not:

111

case 2 + 2 of
4⇒ “it really is 4”
5 : 7⇒ “we were wrong again”

end

13.20 Extremum Expressions

Syntax:
DelimitedExpr ::= case (largest | smallest) Op? of CaseClauses end
CaseClauses ::= CaseClause+

CaseClause ::= Expr ⇒ BlockElems

An extremum expression uses the same syntax as a case expression (described in Section 13.19) except that largest
or smallest is used where a case expression would have a condition expression and an extremum expression does
not have an optional else clause.

All guarding expressions of an extremum expression are evaluated in separate implicit threads. To find the largest (or
smallest) quantity, the values of the guarding expressions are compared in parallel according to an optional operator
specified. If the operator is omitted, it defaults to CMP . The union of the types of all the candidate expressions must
be a subtype of TotalOrderOperatorsJT,<,≤,≥, >, CMPK for some T , < , ≤ , ≥ , and > , if a default operator is
used (see Section 37.2 for details about the TotalOrderOperators trait). If an explicit operator is used, the explicit
operator replaces CMP in TotalOrderOperatorsJT,<,≤,≥, >, CMPK . The invocations of CMP occur in parallel in
separate implicit threads as part of the same group in which the guarding expressions themselves are evaluated, in a
manner analogous to reduction (see Section 4.4.1). Which pairs of guarding expressions are compared is unspecified,
except that the pairwise comparisons performed will be sufficient to determine that the chosen clause is indeed largest
or smallest assuming a total order. Any or all pairwise comparisons may be considered.

The block expression of the clause with the largest (smallest) guarding expression (and only that clause) is evaluated.
If more than one guarding expressions are tied for largest (smallest), the first clause in textual order is evaluated to
yield the result of the extremum expression. The type of an extremum expression is the union of the types of all
right-hand sides of the clauses.

For example, the following code:

case largest of
1 mile⇒ “miles are larger”
1 kilometer⇒ “we were wrong again”

end

evaluates to “miles are larger” . A more interesting example is described in Section 6.5.

13.21 Typecase Expressions

Syntax:

112

DelimitedExpr ::= typecase TypecaseBindings of TypecaseClauses CaseElse? end
TypecaseBindings ::= (BindingList)

| Binding
| Id

BindingList ::= Binding(, Binding)∗

Binding ::= BindId = Expr
TypecaseClauses ::= TypecaseClause+

TypecaseClause ::= TypecaseTypeRefs ⇒ BlockElems
TypecaseTypeRefs ::= (TypeRefList)

| TypeRef
CaseElse ::= else ⇒ BlockElems

A typecase expression begins with typecase followed by a sequence of bindings (either an identifier or a sequence
of an identifier followed by the token = , followed by an expression), followed by of , a sequence of typecase clauses
(each consisting of a sequence of guarding types followed by the token ⇒ , followed by a block expression), an
optional else clause (consisting of else followed by the token ⇒ , followed by a block expression), and finally
end .

A typecase expression evaluates its bindings in separate implicit threads; if they complete normally, each subex-
pression is bound to the corresponding identifier and the first matching typecase clause is chosen. A typecase clause
matches if the type of every identifier bound in the bindings is a subtype of the corresponding type in the clause.
The block expression of the first matched clause (and only that clause) is evaluated (see Section 13.11) to yield the
value of the typecase expression. If no matched clause is found, a MatchFailure exception is thrown. The type of a
typecase expression is the union type of the types of all right-hand sides of the typecase clauses. When typechecking
a clause, an identifiers bound in the binding is assumed to have the static type specified by the corresponding type in
the clause. This type will in general be more specific than the static type of the expression to which the variable was
bound.

For example:

typecase x = myLoser .myField of
String⇒ x.append(“foo”)
Number⇒ x+ 3
Object⇒ yogiBerraAutograph

end

Note that “x ” has a different type in each clause.

13.22 Atomic Expressions

Syntax:
FlowExpr ::= atomic AtomicBack

| tryatomic AtomicBack
AtomicBack ::= AssignLefts AssignOp Expr

| OpExpr
| DelimitedExpr

As Fortress is a parallel language, an executing Fortress program consists of a set of threads (See Section 4.4 for a
discussion of parallelism in Fortress). In multithreaded programs, it is often convenient for a thread to evaluate some
expressions atomically. For this purpose, Fortress provides atomic expressions.

An atomic expression consists of atomic followed by a body expression. Evaluating an atomic expression is
simply evaluating the body expression. All reads and all writes which occur as part of this evaluation will appear to

113

occur simultaneously in a single atomic step with respect to any action performed by any thread which is dynamically
outside. This is specified in detail in Chapter 21. The value and type of an atomic expression are the value and type
of its body expression.

A tryatomic expression consists of tryatomic followed by an expression. See Section 32.3 for a discussion of
tryatomic expressions.

A function or method with the modifier atomic acts as if its entire body were surrounded in an atomic expression.
However, it is a static error if an API declares a functional f with the modifier atomic but a component implementing
the API defines f whose body is an atomic expression without the modifier. Functionals with the modifier io cannot
be called within an atomic expression. Thus, a functional must not have both atomic and io modifiers.

When the body of an atomic expression completes abruptly, the atomic expression completes abruptly in the same
way. If it completes abruptly by exiting to an enclosing label expression, writes within the block are retained
and become visible to other threads. If it completes abruptly by throwing an uncaught exception, all writes to objects
allocated before the atomic expression began evaluation are discarded. Writes to newly allocated objects are retained.
Any variable reverts to the value it held before evaluation of the atomic expression began. Thus, the only values
retained from the abruptly completed atomic expression will be reachable from the exception object through a chain
of newly allocated objects.

Atomic expressions may be nested arbitrarily; the above semantics imply that an inner atomic expression is atomic
with respect to evaluations which occur dynamically outside the inner atomic expression but dynamically inside an
enclosing atomic .

Implicit threads may be created dynamically within an atomic expression. These implicit threads will complete
before the atomic expression itself does so. The implicit threads may run in parallel, and will see one another’s
writes; they may synchronize with one another using nested atomic expressions.

Note that atomic expressions may be evaluated in parallel with other expressions. An atomic expression expe-
riences conflict when another thread attempts to read or write a memory location which is accessed by the atomic
expression. The evaluation of such an expression must be partially serialized with the conflicting memory operation
(which might be another atomic expression). The exact mechanism by which this occurs will vary; the necessary
serialization is provided by the implementation. In general, the evaluation of a conflicting atomic expression may
be abandoned, forcing the effects of execution to be discarded and execution to be retried. The longer an atomic
expression evaluates and the more memory it touches the greater the chance of conflict and the larger the bottleneck a
conflict may impose.

For example, the following code uses a shared counter atomically:

sum :N := 0
accumArrayJN extends Additive, nat xK(a :N [x]) : () =

for i← a.indices do
atomic sum += a[i]

end

The loop body reads a[i] and sum , then adds them and writes the result back to sum ; this will appear to occur
atomically with respect to all other threads—including both other iterations of the loop body and other simultaneous
calls to accumArray . Note in particular that the atomic expression will appear atomic with respect to reads and
writes not in atomic expressions of a[i] and sum .

13.23 Spawn Expressions

Syntax:
FlowExpr ::= spawn Expr

114

A spawned thread is created using a spawn expression. A spawn expression consists of spawn followed by an
expression. A spawn expression spawns a thread which evaluates its subexpression in parallel with any succeeding
evaluation. The value of a spawn expression is the spawned thread and the type of the expression is ThreadJT K ,
where T is the static type of the expression spawned. A spawn expression constitutes an io action, and thus cannot
be run within the body of an atomic expression. The semantics of spawned threads are discussed in Section 4.4.

13.24 Throw Expressions

Syntax:
FlowExpr ::= throw Expr

A throw expression consists of throw followed by a subexpression. The subexpression must have the type Exception
(see Chapter 14). A throw expression evaluates its subexpression to an exception value and throws the exception
value; the expression completes abruptly and has BottomType .

The type Exception has exactly two direct mutually exclusive subtypes, CheckedException and UncheckedException .
Every CheckedException that is thrown must be caught or forbidden by an enclosing try expression (see Sec-
tion 13.25), or it must be declared in the throws clause of an enclosing functional declaration (see Section 12.1).
Similarly, every CheckedException declared to be thrown in the static type of a functional called must be either
caught or forbidden by an enclosing try expression, or declared in the throws clause of an enclosing functional
declaration.

13.25 Try Expressions

Syntax:
DelimitedExpr ::= try BlockElems Catch? (forbid TraitTypes)? (finally BlockElems)? end
Catch ::= catch Id CatchClauses
CatchClauses ::= CatchClause+

CatchClause ::= TraitType ⇒ BlockElems

A try expression starts with try followed by a block expression (the try block), followed by an optional catch
clause, an optional forbid clause, an optional finally clause, and finally end . A catch clause consists of catch
followed by an identifier, followed by a sequence of subclauses (each consisting of an exception type followed by the
token ⇒ followed by a block expression). A forbid clause consists of forbid followed by a set of exception
types. A finally clause consists of finally followed by a block expression. Note that the try block and the
clauses form block expressions and have the various properties of block expressions (described in Section 13.11).

The expressions in the try block are first evaluated in order until they have all completed normally, or until one of
them completes abruptly. If the try block completes normally, the provisional value of the try expression is the
value of the last expression in the try block. In this case, and in case of exiting to an enclosing label expression,
the catch and forbid clauses are ignored.

If an expression in the try block completes abruptly by throwing an exception, the exception value is bound to the
identifier specified in the catch clause, and the type of the exception is matched against the subclauses of the catch
clause in turn, exactly as in a typecase expression (Section 13.21). The right-hand-side block expression of the first
matching subclause is evaluated. If it completes normally, its value is the provisional value of the try expression. If
the catch clause completes abruptly, the try expression completes abruptly. If a thrown exception is not matched
by the catch clause (or this clause is omitted), but it is a subtype of the exception type listed in a forbid clause, a
new ForbiddenException is created with the thrown exception as its argument and thrown. The exception thrown by
the try block is chained to the ForbiddenException as described in Section 14.3.

115

If an exception thrown from a try block is matched by both catch and forbid clauses, the exception is caught by
the catch clause. If an exception thrown from a try block is not matched by any catch or forbid clause, the
try expression completes abruptly.

The finally clause is evaluated after completion of the try block and any catch or forbid clause. The ex-
pressions in the finally clause are evaluated in order until they have all completed normally, or until one of them
completes abruptly. In the latter case, the try expression completes abruptly exactly as the subexpression in the
finally clause does.

If the finally clause completes normally, and the try block or the catch clause completes normally, then the
try expression completes normally with the provisional value of the try expression. Otherwise, the try expression
completes abruptly as specified above.

For example, the following try expression:

try
inp = read(file)
write(inp,newFile)

forbid IOException
end

is equivalent to:

try
inp = read(file)
write(inp,newFile)

catch e
IOException⇒ throw ForbiddenException(e)

end

The following example ensures that file is closed properly even if an IO error occurs:

try
open(file)
inp = read(file)
write(inp,newFile)

catch e
IOException⇒ throw ForbiddenException(e)

finally
close(file)

end

13.26 Static Expressions

Static expressions denote static values. Conceptually, a static expression is not evaluated while a program is running,
and thus its evaluation cannot complete abruptly. Given instantiations of all static parameters (described in Chapter 11)
in scope of a static expression, the value of the static expression can be determined statically. Static expressions which
use a restricted subset of operations can occur as static arguments which instantiate static parameters and where -
clause constraints (described in Section 11.6). We define the set of static expressions by first defining the types
of static expressions, and distinguishing static values from the closely related literal values. We then describe the
expressions that evaluate to the various kinds of static values.

116

13.26.1 Types of Static Expressions

There are three groups of traits that describe literals and static expressions:

1. The literal traits, which describe boolean, character, string, and numerals. For example, the literal true has trait
BooleanLiteralJtrueK and a character literal has trait Character . See Section 13.1 for a discussion of Fortress
literals.

2. The constant traits, which describe values denoted by expressions composed from literals and operators (de-
scribed in Section 13.26.2); the type of a constant expression encodes the value of the expression. For example,
the type of a constant expression 3 + 5 , IntegerConstantJfalse, 3 + 5K , encodes the value of the expression;
the operator + is used in the static arguments. When an operator is not supported in static arguments, the
Fortress standard libraries can still encode the value of the expression by providing a specific constant trait such
as RationalValueTimesPiJfalse, 1, 1K (described in Section 13.1.1).

3. The static traits, which describe values denoted by expressions composed from literals, operators (described
in Section 13.26.2), and bool , nat , and int parameters; here the type does not encode the value of the
expression, but the value of the expression can nevertheless be known statically if specific values are specified
for the static parameters. Also, in situations where the type of an expression composed solely from literals
and operators nevertheless cannot be described by a constant trait, then a static trait may be used to describe it
instead. For example, a static expression 2(3 +m) where m is a nat parameter has trait NaturalStatic .

The only operation on literals that produces a new literal (as opposed to a constant) is concatenation by using the opera-
tor ‖ . One may concatenate mixed string and character literals, producing a string literal. For example, “foo” ‖ ”bar”
yields “foobar”. One may also concatenate two natural numerals of the same radix, producing a new natural numeral
of that radix. For example, deadc16‖0de16 yields deadc0de16 .

Every literal trait extends an appropriate constant trait, and every constant trait extends an appropriate static trait. So
every literal is also a constant expression, and every constant expression is a static expression.

13.26.2 Static Expressions and Values

Static parameters are static expressions. A nat parameter denotes a value that has type NaturalStatic (which extends
IntegerStatic). An int parameter denotes a value that has type IntegerStatic . A bool parameter denotes a value
that has type BooleanStatic .

Boolean static expressions may be combined using the operators ∧ , ∨ , ⊕ , ≡ , ↔ , NAND , NOR , = , 6= , and →
(See Appendix F for a discussion of Fortress operators.) to produce other static expressions denoting boolean static
expressions. If both operands are boolean constant expressions, then the result is also a boolean constant expression.

Character static expressions may be compared using the operators < , ≤ , ≥ , > , = , and 6= to produce boolean static
expressions. If both operands are character constant expressions, then the result is a boolean constant expression.

Numeric static expressions may be compared using the operators < , ≤ , ≥ , > , = , and 6= to produce boolean static
expressions. If both operands are numeric constant expressions, then the result is a boolean constant expression.

Numeric static expressions may be combined using the operators and functions + , − , × , · , / , ! , MIN , MAX ,
√

,
floor , ceiling , hyperfloor , hyperceiling , gcd , lcm , sin , cos , tan , arcsin , arccos , and arctan to produce new
numeric static expressions. If the result is indeed a numeric static expression, and both operands are numeric constant
expressions, then the result is also a numeric constant expression as long as the constant traits provided by the Fortress
standard libraries can encode the value of the expression.

117

13.27 Aggregate Expressions

Syntax:
Primary ::= LeftEncloser ExprList? RightEncloser
ExprList ::= Expr(, Expr)∗

Literal ::= { Entry (, Entry)∗ }
| [RectElements]

Entry ::= Expr 7→ Expr
RectElements ::= Expr MultiDimCons∗

MultiDimCons ::= RectSeparator Expr
RectSeparator ::= ; +

| Whitespace

TupleExpr ::= ((Expr ,)∗ (Expr ... ,)? Binding (, Binding)∗)
| NoKeyTuple

NoKeyTuple ::= ((Expr ,)∗ Expr ...)
| ((Expr ,)∗ Expr)

Binding ::= BindId = Expr
BindId ::= Id

|

Aggregate expressions evaluate to values that are themselves homogeneous collections of values. Each subexpression
of an aggregate expression is evaluted in parallel in a separate implicit thread (see Section 4.4). With the exception of
array expressions, map expressions, and tuple expressions, the resulting values are passed to the appropriate bracketing
operator, which is a function with a varargs parameter constructing the aggregate. The former three aggregate oper-
ations construct the aggregate directly, after all subexpressions have completed normally. Any aggregate expression
may reserve storage for its result before its elements complete evaluation.

Functions defining aggregate expressions are provided in the Fortress standard libraries for sets, maps, lists, tuples,
matrices, vectors, and arrays.

13.27.1 Set Expressions

Set element expressions are enclosed in braces and separated by commas. The type of a set expression is SetJT K ,
where T is the union type of the types of all element expressions of the set expression.

Set containment is checked with the operator ∈ and the subset relationship is checked with the operator ⊆ . For
example:

3 ∈ {0, 1, 2, 3, 4, 5}

evaluates to true and

{0, 1, 2} ⊆ {0, 3, 2}

evaluates to false .

13.27.2 Map Expressions

Map entries are enclosed in curly braces, separated by commas, and matching pairs are separated by 7→. The type of
a map expression is MapJS, T K where S is the union type of the types of all left-hand-side expressions of the map

118

entries, and T is the union type of the types of all right-hand-side expressions of the map entries. This type can be
abbreviated as {S 7→ T} .

A map m is indexed by placing an element in the domain of m enclosed in brackets immediately after an expression
evaluating to m . Thus, the index is rendered as a subscript. For example, if:

m = {’a’ 7→ 0,’b’ 7→ 1,’c’ 7→ 2}

then m’b’ evaluates to 1 . In contrast, m’x’ throws a NotFound exception, as ’x’ is not an index of m .

13.27.3 List Expressions

List element expressions are enclosed in angle brackets 〈 and 〉 and are separated by commas. The type of a list
expression is ListJT K where T is the union type of the types of all element expressions. This type can be abbreviated
as 〈T 〉 .

A list l is indexed by placing an index enclosed in square brackets immediately after an expression evaluating to l .
Thus, the index is rendered as a subscript. Lists are always indexed from 0 . For example:

〈3, 2, 1, 0〉2

evaluates to 1 .

13.27.4 Array Expressions

Array element expressions are enclosed in brackets. Element expressions along a row are separated only by whites-
pace. Two dimensional array expressions are written by separating rows with newlines or semicolons. If a semicolon
appears, whitespace before and after the semicolon is ignored. The parts of higher-dimensional array expressions are
separated by repeated-semicolons, where the dimensionality of the result is equal to one plus the number of repeated
semicolons. The type of a k-dimensional array expression is ArrayJT K[n0, · · · , nk−1] , where T is the union type of
the types of the element expressions and n0, ..., nk−1 are the sizes of the array in each dimension. This type can be
abbreviated as T [n0, · · · , nk−1] .

A k-dimensional array A is indexed by placing a sequence of k indices enclosed in brackets, and separated by commas,
after an expression evaluating to A . Thus, the index is rendered as a subscript. By default arrays are indexed from 0.
The horizontal dimension of an array is the last dimension mentioned in the array index. For example:

A = [1 2 3; 4 5 6; 7 8 9]

then A1,0 evaluates to 4 .

An array of two dimensions whose elements are a subtype of Number can be coerced to a matrix. Matrix types
are written MatrixJT K[n0 × . . .× nk−1] , where k > 1. A type of this form can be abbreviated as Tn0×...×nk−1 .
Matrices are indexed in the same manner as arrays.

A one-dimensional array whose elements are a subtype of Number can be coerced to a vector. Vector types are written
VectorJT K[n] . A type of this form can be abbreviated as Tn , unless T is declared in the enclosing scope to be a
physical dimension or unit.

The element expressions in an array expression may be either scalars or array expressions themselves. If an element is
an array expression, it is “flattened” (pasted) into the enclosing expression. This pasting works because arrays never
contain other arrays as elements. The elements along a row (or column) must have the same number of columns
(or rows), though two elements in different rows (columns) need not have the same number of columns (rows). See
Section 6.5 for a discussion of matrix unpasting.

The following four examples are all equivalent:

119

[3 4
5 6]

[3 4 ;
5 6]

[3 4

; 5 6]
[3 4 ; 5 6]

Here is a 3× 3× 3× 2 matrix example:

[1 0 0
0 1 0
0 0 1 ; ; 0 1 0

1 0 1
0 1 0 ; ; 1 0 1

0 1 0
1 0 1

; ; ;

1 0 0
0 1 0
0 0 1 ; ; 0 1 0

1 0 1
0 1 0 ; ; 1 0 1

0 1 0
1 0 1]

13.27.5 Tuple Expressions

Tuple element expressions are enclosed in parentheses and separated by commas. Each element is one of:

• A plain expression “ e ”

• A varargs expression “ e . . . ”

• A keyword-value pair “ identifier = e ”

The following restrictions apply: No two keyword-value pairs may have the same keyword. No keyword-value pair
may precede a plain expression. No varargs expression may follow a keyword-value pair or precede a plain expression.
There must be at least one item. If there is exactly one item, it must be a varargs expression or a keyword-value pair
(because an expression “ (e) ” is simply a parenthesized expression, not a tuple.) Also, there can be at most one item
with a varargs expression. In a varargs expression, the expression “ e ” must be of type OrderedGeneratorJT K for
some T .

The type of a tuple expression is a tuple type (as discussed in Section 8.4), which may be described by taking the
tuple expression and replacing each element expression with its type, except that a varargs expression having type
OrderedGeneratorJT K is replaced by T . . . (for the most specific T possible). The element expressions are all
evaluated before the tuple is constructed, and if there is a varargs expression then the generator is used to construct a
HeapSequence (described in Section 40.3) containing all the generated values; this HeapSequence then becomes an
element of the tuple. Tuples are value objects. There are no explicit deconstructors for tuples except multiple variable
declarations as discussed in Section 6.3.

13.27.6 Distinguishing a Keyword-Value Pair from an Equality Expression

Because a keyword-value pair shares a syntax with an equality expression, we provide rules for disambiguation:

• If an expression “ identifier = e ” has no parentheses around it, then it is an equality expression unless it is part
of a tuple expression with more than one element expression.

120

• If the expression is in immediately surrounding parentheses with no other expression in the parentheses, then
it is an equality expression unless the parenthesized expression is part of a juxtaposition sequence and is to be
used as an argument to a function, in which case the parenthesized expression is a tuple expression.

• Adding parentheses makes the expression an equality expression.

• In the rare situations where “ (identifier = e) ” is treated as an equality expression and it must be a tuple
expression, “ tuple(identifier = e) ” makes it a tuple expression where “tuple ” is an identity function defined
in the Fortress standard libraries (as described in Section 13.31.4).

13.28 Comprehensions

Syntax:
Comprehension ::= { Expr | GeneratorList }

| { Entry | GeneratorList }
| 〈 Expr | GeneratorList 〉
| [ArrayComprehensionClause+]

Entry ::= Expr 7→ Expr
ArrayComprehensionClause ::= ArrayComprehensionLeft | GeneratorList
ArrayComprehensionLeft ::= IdOrInt 7→ Expr

| (IdOrInt , IdOrIntList) 7→ Expr
IdOrInt ::= Id

| IntLiteral
IdOrIntList ::= IdOrInt(, IdOrInt)∗

Fortress provides comprehension syntax for several aggregate expressions (described in Section 13.27). A generator
list binds values used in the body expression on the left-hand side of the token | . As described in Section 13.14, each
iteration of the body expression must be assumed to execute in its own implicit thread. Comprehensions evaluate to
aggregate values and have corresponding aggregate types. The rules for evaluation of a comprehension are similar to
those for a reduction expression (see Section 13.17); examples can be found in Section 32.8.

A set comprehension is enclosed in braces, with a left-hand body separated by the token | from a generator list. For
example, the comprehension:

{x2 | x← {0, 1, 2, 3, 4, 5}, x MOD 2 = 0 }

evaluates to the set

{0, 4, 16}

Map comprehensions are like set comprehensions, except that the left-hand body must be of the form e1 7→ e2 . An
exception is thrown if e1 produces the same value but e2 a different value on more than one iteration of the generator
list. For example:

{x2 7→ x3 | x← {0, 1, 2, 3, 4, 5}, x MOD 2 = 0 }

evaluates to the map

{0 7→ 0, 4 7→ 8, 16 7→ 64}

List comprehensions are like set comprehensions, except that they are syntactically enclosed in angle brackets. For
example:

〈x2 | x← {0, 1, 2, 3, 4, 5}, x MOD 2 = 0〉

evaluates to the list

121

〈0, 4, 16〉

Array comprehensions are like set comprehensions, except that they are syntactically enclosed in brackets, and the
left-hand body must be of the form (index1, index2, ..., indexn) 7→ e. Moreover an array comprehension may
have multiple clauses separated by semicolons or line breaks. Each clause conceptually corresponds to an independent
loop. Clauses are run in order. The result is an n-dimensional array. For example:

a = [(x, y, 1) 7→ 0.0 | x← 1 : xSize, y ← 1 : ySize
(1, y, z) 7→ 0.0 | y ← 1 : ySize, z ← 2 : zSize
(x, 1, z) 7→ 0.0 | x← 2 : xSize, z ← 2 : zSize
(x, y, z) 7→ x+ y · z | x← 2 : xSize, y ← 2 : ySize, z ← 2 : zSize]

13.29 Type Ascription

Syntax:
Expr ::= Expr as TypeRef

An expression consisting of a single subexpression, followed by as , followed by a type, is a type ascription. The
value of the expression is the value of the subexpression. The static type of the expression is the ascripted type. The
type of the subexpression must be a subtype of the ascripted type. A type ascription does not affect the dynamic type
of the value the expression evaluates to (unlike a type assumption described in Section 13.30). Type ascription can be
used to provide type information when type inference (see Chapter 20) cannot infer a type for an expression.

13.30 Type Assumption

Syntax:
Expr ::= Expr asif TypeRef

An expression consisting of a single subexpression, followed by asif , followed by a type, is a type assumption. The
value of the expression is the value of the subexpression. The static type of the expression is the given type. The type
of the subexpression must be a subtype of the given type. A type assumption considers both the static and the dynamic
type of the value of the expression to be the specified type for the purposes of the immediately enclosing function,
method, or operator invocation or field access. This is in contrast to type ascription, which only gives a static type to
an expression. Type assumption is used to access a method provided by a supertrait when multiple supertraits provide
different methods with the same name. Fortress thus provides a richer version of type assumption operations such as
super in the Java Programming Language.

13.31 Expression-like Functions

For convenience, the Fortress standard libraries provide functions such as cast and instanceOf that are often provided
by other programming languages.

13.31.1 Casting

Although there is no “casting” operator (equivalent to casts in the Java Programming Language) built into Fortress,
the effect of a cast can be provided by the following function:

122

castJT extends AnyK(x: Any) :T =
typecase x of
T ⇒ x
else⇒ throw CastException

end

The function converts the type of its argument to a given type. If the static type of the argument is not a subtype of
the given type, a CastException is thrown. For convenience, the function cast is included in the Fortress standard
libraries.

13.31.2 Instanceof Testing

Although there is no “instanceof” operator (equivalent to instanceof testing in the Java Programming Language) built
into Fortress, the effect of an instanceof testing can be provided by the following function:

instanceOf JT extends AnyK(x: Any) : Boolean =
typecase x of
T ⇒ true
else⇒ false

end

The function tests whether its argument has a given type and returns a boolean value. For convenience, the function
instanceOf is included in the Fortress standard libraries.

13.31.3 Ignoring Values

For convenience, the function ignore (equivalent to the ignore function in the Objective Caml programming lan-
guage) is included in the Fortress standard libraries:

ignore(x: Any) = ()

The function discards the value of its argument and returns () . For example, the following:

ignore(f x)

is equivalent to:

f x; ()

13.31.4 Enforcing Tuples

An identity function tuple is defined in the Fortress standard libraries to make “ (identifier = e) ” a tuple expression
(as discussed in Section 13.27.6):

tupleJT extends TupleK(x:T) = x

The function returns its argument as a tuple expression.

13.31.5 Identity

An identity function identity is defined in the Fortress standard libraries:

123

identityJT extends AnyK(x:T) = x

The function returns its argument as it is.

13.31.6 Coercion

An identity function coerce is defined in the Fortress standard libraries to convert the type of its argument to its type
argument:

coerceJT K(x:T) = x

The function returns its argument as the given type. Unlike coercions described in Chapter 17, the coerce function
can apply to an argument whose type is a subtype of the type being coerced to.

124

Chapter 14

Exceptions

Exceptions are values that can be thrown and caught, via throw expressions (described in Section 13.24) and catch
clauses of try expressions (described in Section 13.25). When a throw expression “ throw e ” is evaluated, the
subexpression e is evaluated to an exception. The static type of e must be a subtype of Exception . Then the throw
expression tries to transfer control to its dynamically containing block (described in Chapter 4), from the innermost
outward, until either (i) an enclosing try expression is reached, with a catch clause matching a type of the thrown
exception, or (ii) the outermost dynamically containing block is reached.

If a matching catch clause is reached, the right-hand side of the first matching subclause is evaluated. If no matching
catch clause is found before the outermost dynamically containing block is reached, the outermost dynamically
containing block completes abruptly whose cause is the thrown exception.

If an enclosing try expression of a throw expression includes a finally clause, and the try expression completes
abruptly, the finally clause is evaluated before control is transferred to the dynamically containing block.

14.1 Causes of Exceptions

Every exception is thrown for one of the following reasons:

1. A throw expression is evaluated.

2. An implementation resource is exceeded (e.g., an attempt is made to allocate beyond the set of available loca-
tions).

14.2 Types of Exceptions

All exceptions have type Exception declared as follows:

trait Exception comprises {CheckedException,UncheckedException }
settable message:MaybeJStringK
settable chain:MaybeJExceptionK
printStackTrace(): ()

end

Every exception has either type CheckedException or UncheckedException:

125

trait CheckedException
extends {Exception }
excludes {UncheckedException }

end

trait UncheckedException
extends {Exception }
excludes {CheckedException }

end

A functional declaration (described in Section 9.2 and Section 12.1) includes an optional throws clause in its header
listing the CheckedExceptions (also written checked exceptions) that can be thrown by invocation of the functional.
If a throws clause is not explicitly provided, the throws clause of the functional declaration is empty. The body
of a functional is statically checked to ensure that no checked exceptions are thrown by any subexpression of the
functional body other than those listed in the throws clause. This static check is performed by examining each throw
expression and functional invocation I , determining the static type of the functional f invoked in I , and determining
the throws clause of f . (If f is polymorphic, or occurs in a polymorphic context, instantiations of type variables
free in the throws clause of f are substituted for formal type variables). For each checked exception thrown in I ,
the enclosing expressions of I are checked for a matching catch clause. The set A of all checked exceptions thrown
by all invocations without a matching catch clause in the functional body is accumulated and compared against the
throws clause of the enclosing functional declaration. If an exception that is not a subtype of an exception listed in
the throws clause occurs in A, it is a static error.

A similar analysis is performed on top-level variable declarations. If it is determined that their initialization expressions
can throw a checked exception, it is a static error.

14.3 Information of Exceptions

Every exception has optional fields: a message and a chained exception. These fields are default to Nothing as
follows:

trait Exception comprises {CheckedException,UncheckedException }
getter message():MaybeJStringK = Nothing
setter message(String) : ()
getter chain():MaybeJExceptionK = Nothing
setter chain(Exception) : ()
printStackTrace(): ()

end

where an optional value v is either Nothing or Just(v) as declared in Section 31.2. The chain field can be set at
most once. If it is set more than once, an InvalidChainException is thrown. It is generally set when the exception is
created.

When an exception is created, the execution stack of its thread at the time of the exception creation is captured in the
exception. The invocation of printStackTrace prints the captured stack trace. There is no way to update the captured
stack trace. If a programmer wants to catch a thrown exception and rethrow it, and capture the stack trace at the time
of the second throwing of the exception, the programmer has to create a new exception (perhaps with the original
exception as its chain field).

When an exception is thrown, its message and chain fields may be set. For example, if a checked exception is
caught in a catch clause, and the catch clause in turn throws an unchecked exception, the unchecked exception can
be chained so that an examination of the unchecked exception reveals information about the original exception. For
example:

126

read(fileName) =
try

readFile(fileName)
catch e

IOException⇒ throw Error(“This code can’t handle IOExceptions”, e)
end

where the message and chain fields of Error are set to “This code can’t handle IOExceptions” and
IOException respectively.

By default, a forbid clause in a try expression throws a new ForbiddenException by chaining the exception
thrown by the try block in the try expression that is a subtype of the exception type listed in the forbid clause.
For example, the following read function:

read(fileName) =
try

readFile(fileName)
forbid IOException
end

is equivalent to:

read(fileName) =
try

readFile(fileName)
catch e

IOException⇒throw ForbiddenException(e)
end

where the chain of ForbiddenException is set to IOException .

127

Chapter 15

Overloading and Multiple Dispatch

Fortress allows functions and methods (collectively called as functionals) to be overloaded; that is, there may be
multiple declarations for the same functional name visible in a single scope (which may include inherited method
declarations), and several of them may be applicable to any particular functional call.

Calls to overloaded functionals are resolved by determining the most-specific applicable declaration. Fortress provides
overloading rules (described in Chapter 33) for functional declarations that ensure there exists a unique most specific
declaration for every call. Thus, it is unambiguous which declaration should be applied at run time.

In this chapter, we describe how to determine which declarations are applicable to a particular functional call, and
when several are applicable, how to select among them. Section 15.1 introduces some terminology and notation. In
Section 15.2, we show how to determine which declarations are applicable to a named functional call (a function
call described in Section 13.6 or a naked method invocation described in Section 13.5) when all declarations have
only ordinary parameters (without varargs or keyword parameters). We discuss how to handle dotted method calls
(described in Section 13.4) in Section 15.3, and declarations with varargs and keyword parameters in Section 15.4.
Determining which declaration is applied, if several are applicable, is discussed in Section 15.5.

15.1 Terminology and Notation

When there are two or more function declarations of the same name within a single lexical scope, we say that the
function name is overloaded within that lexical scope; we also say that each of the function declarations is overloaded,
and that any pair of the function declarations are mutually overloaded. Top-level function declarations in a component
are permitted to be overloaded with function declarations imported from APIs (using “ import functionName from
APIName”). Likewise, it is permitted to have two or more method declarations (declared or inherited) of the same
method name within a single trait or object declaration or object expression; we say that the method name is overloaded
within that trait or object declaration or object expression, and we also say that each of the method declarations is
overloaded, and that any pair of the method declarations are mutually overloaded.

We assume throughout this chapter that all static variables have been instantiated or inferred. Although there may
be multiple declarations with the same functional name, it is a static error for their static parameters to differ (up to
α-equivalence), or for one declaration to have static parameters and another to not have them. Hence, static parameters
do not enter into the determination of which declarations are applicable, so we ignore them for most of this chapter.

An operator method declaration whose name is one of the operator parameters (described in Section 11.5) of its
enclosing trait or object may be overloaded with other operator declarations in the same component. Therefore,
such an operator method declaration must satisfy the overloading rules (described in Chapter 33) with every operator
declaration in the same component.

128

Recall from Chapter 8 that we write T � U when T is a subtype of U , and T ≺ U when T � U and T 6= U .

15.2 Applicability to Named Functional Calls

In this section, we show how to determine which declarations are applicable to a named functional call when all
declarations have only ordinary parameters (i.e., neither varargs nor keyword parameters).

For the purpose of defining applicability, a named functional call can be characterized by the name of the functional
and its argument type. Recall that a functional has a single parameter, which may be a tuple (a dotted method has a
receiver as well). We abuse notation by using static call f (A) to refer to a named functional call with name f and
whose argument has static type A, and dynamic call f (X) to refer to a named functional call with name f and whose
argument, when evaluated, has dynamic type X . (Note that if the type system is sound—and we certainly hope that
it is!—then X � A for all well-typed calls to f .) We use the term call f (C) to refer to static and dynamic calls
collectively.

We also use function declaration f (P) : U to refer to a function declaration with function name f , parameter type P ,
and return type U .

For method declarations, we must take into account the self parameter, which we do as follows:

A dotted method declaration P0.f (P) : U is a dotted method declaration with name f , where P0 is the trait or
object type in which the declaration appears, P is the parameter type, and U is the return type. (Note that despite
the suggestive notation, a dotted method declaration need not explicitly list its self parameter. If the self parameter is
listed then it must occur before the name of the method.)

A functional method declaration f (P) : U with self parameter at i is a functional method declaration with name f ,
with the parameter self in the ith position, parameter type P , and return type U . Note that the static type of the self
parameter is the trait or object trait type in which the declaration f (P) : U occurs. In the following, we will use Pi to
refer to the ith element of P .

We elide the return type of a declaration, writing f (P) and P0.f (P), when the return type is not relevant to the
discussion.

A declaration f (P) is applicable to a call f (C) if the call is in the scope of the declaration and C � P . (See Chapter 7
for the definition of scope.)

Note that a named functional call f (C) may invoke a dotted method declaration if the declaration is provided by the
trait or object enclosing the call. To account for this let C0 be the trait or object declaration immediately enclosing the
call. Then we rewrite a named functional call f (C) to C0.f (C) if there are no declarations applicable to f (C). We
then use the rule for applicability to dotted method calls (described in Section 15.3) to determine which declarations
are applicable to C0.f (C).

15.3 Applicability to Dotted Method Calls

Dotted method applications can be characterized similarly to named functional applications, except that, analogously
to dotted method declarations, we use A0 to denote the static type of the receiver object, and, as for named functional
calls, A to denote the static type of the argument of a static dotted method call; we use X0 and X similarly for dynamic
dotted method calls. We write A0.f (A) and X0.f (X) to refer to the static and dynamic calls respectively. A dotted
method call C0.f (C) refers to static and dynamic calls collectively.

A dotted method declaration P0.f (P) is applicable to a dotted method call C0.f (C) if C0 � P0 and C � P .

129

15.4 Applicability for Functionals with Varargs and Keyword Parameters

The basic idea for handling varargs and keyword parameters is that we can think of a functional declaration that
has such parameters as though it were (possibly infinitely) many declarations, one for each set of arguments it may
be called with. In other words, we expand these declarations so that there exists a declaration for each number of
arguments that can be passed to it.

A declaration with k keyword parameters corresponds to 2k declarations which cannot be called with elided arguments,
one for each subset of the keyword parameters. For example, the following declaration:

f(x = 5, y = 6, z = 7) : Z

would be expanded into:

f(x = 5, y = 6, z = 7) : Z
f(x = 5, y = 6) : Z
f(x = 5, z = 7) : Z
f(y = 6, z = 7) : Z
f(x = 5) : Z
f(y = 6) : Z
f(z = 7) : Z
f() : Z

Note that even though expanded declarations still have keyword parameters, they cannot be called with elided argu-
ments any more. A declaration with keyword parameters is applicable to a call if any one of the expanded declarations
is applicable.

A declaration with a varargs parameter corresponds to an infinite number of declarations, one for every number of
arguments that may be passed to the varargs parameter. In practice, we can bound that number by the maximum
number of arguments that the functional is called with anywhere in the program (in other words, a given program
will contain only a finite number of calls with different numbers of arguments). The expansion described here is a
conceptual one to simplify the description of the semantics; we do not expect a real implementation to actually expand
these declarations at compile time. For example, the following declaration:

f(x : Z, y : Z, z : Z . . .) : Z

would be expanded into:

f(x : Z, y : Z, z : Z . . .) : Z
f(x : Z, y : Z) : Z
f(x : Z, y : Z, z1 : Z) : Z
f(x : Z, y : Z, z1 : Z, z2 : Z) : Z
f(x : Z, y : Z, z1 : Z, z2 : Z, z3 : Z) : Z
. . .

Notice that the expansion includes the original declaration. This declaration is retained to account for the case when a
tuple expression with a varargs expression is passed as an argument to a call; even though this declaration still has a
varargs parameter, it’s called with a fixed number of arguments. A declaration with a varargs parameter is applicable
to a call if any one of the expanded declarations is applicable.

15.5 Overloading Resolution

Several declarations may be applicable to a given functional call. Therefore, it is necessary to determine which
declaration is dispatched to. The basic principle is that, for any functional call, we wish to identify a unique declaration

130

that is the most specific among all declarations applicable to the call at run time. If there is no such declaration, then
the call is undefined, which is a static error. If there are two or more such declarations, no one of which is more specific
than all the others, the call is said to be ambiguous, which is also a static error. As discussed in Chapter 33, it is a
static error for overloaded declarations to admit ambiguous calls at run time, whether such calls actually appear in the
program or not.

If several declarations are applicable to a particular call, we determine which is most specific by using the subtype
relation to compare parameter types. Formally, a declaration f (P) is more specific than a declaration f (Q) if P ≺ Q .
Similarly, a declaration P0.f (P) is more specific than a declaration Q0.f (Q) if (P0,P) ≺ (Q0,Q).

131

Chapter 16

Operators

Operators are like functions or methods; operator declarations are described in Chapter 34 and operator applications
are described in Section 13.8. Just as functions or methods may be overloaded (see Chapter 15 for a discussion of
overloading), so operators may have overloaded declarations, of the same or differing fixities. Calls to overloaded
operators are resolved first via the fixity of the operators based on the context of the calls. Then, among the applicable
declarations with that fixity, the most specific declaration is chosen.

Most operators can be used as prefix, infix, postfix, or nofix operators as described in Section 16.3; the fixity of an
operator is determined syntactically, and the same operator may have declarations for multiple fixities. A simple
example is that ‘− ’ may be either infix or prefix, as is conventional. As another example, the Fortress standard
libraries define ‘ ! ’ to be a postfix operator that computes factorial when applied to integers. These operators may not
be used as enclosing operators.

Several pairs of operators can be used as enclosing operators. Any number of ‘|’ (vertical line) can be used as both
infix operators and enclosing operators.

Some operators are always postfix: a ‘ˆ’ followed by any ordinary operator (with no intervening whitespace) is
considered to be a superscripted postfix operator. For example, ‘ ˆ∗ ’ and ‘ ˆ+ ’ and ‘ ˆ? ’ are available for use as part
of the syntax of extended regular expressions. As a very special case, ‘ ˆT ’ is also considered to be a superscripted
postfix operator, typically used to signify matrix transposition.

Finally, there are special operators such as juxtaposition and operators on dimensions and units. Juxtaposition may
be a function application or an infix operator in Fortress. When the left-hand-side expression is a function, juxta-
position performs function application; when the left-hand-side expression is a number, juxtaposition conventionally
performs multiplication; when the left-hand-side expression is a string, juxtaposition conventionally performs string
concatenation. Fortress provides several operators on dimensions and units as described in Chapter 18.

16.1 Operator Names

To support a rich mathematical notation, Fortress allows most Unicode characters that are specified to be mathematical
operators to be used as operators in Fortress expressions, as well as these characters and character combinations:

! @ # $ % * + - = | : < > / ? ˆ ˜
-> --> => ==> <= >= =/= ** !! || |||
<< <<< >> >>> <-> <-/- -/-> <=> ===

In addition, a token that is made up of a mixture of uppercase letters and underscores (but no digits), does not begin or
end with an underscore, and contains at least two different letters is also considered to be an operator:

132

MAX MIN SQRT TIMES

The above operators are rendered as: MAX MIN
√
× . Some of these uppercase tokens are considered to be

equivalent to single Unicode characters, but even those that are not can still be used as operators. (See Appendix F for
a detailed description of operator names in Fortress.)

16.2 Operator Precedence

Fortress specifies that certain operators have higher precedence than certain other operators, so that one need not use
parentheses in all cases where operators are mixed in an expression. (See Appendix F for a detailed description of
operator precedence in Fortress.) However, Fortress does not follow the practice of other programming languages in
simply assigning an integer to each operator and then saying that the precedence of any two operators can be compared
by comparing their assigned integers. Instead, Fortress relies on defining traditional groups of operators based on their
meaning and shape, and specifies specific precedence relationships between some of these groups. If there is no
specific precedence relationship between two operators, then parentheses must be used. For example, Fortress does
not accept the expression a+ b ∪ c ; one must write either (a+ b) ∪ c or a+ (b ∪ c) . (Whether or not the result
then makes any sense depends on what definitions have been made for the + and ∪ operators—see Chapter 34.)

Here are the basic principles of operator precedence in Fortress:

• Member selection (.) and method invocation (.name(. . .)) are not operators. They have higher precedence
than any operator listed below.

• Subscripting ([]), superscripting (ˆ), and postfix operators have higher precedence than any operator listed
below; within this group, these operations are left-associative (performed left-to-right).

• Tight juxtaposition, that is, juxtaposition without intervening whitespace, has higher precedence than any oper-
ator listed below. The associativity of tight juxtaposition is type-dependent; see Section 16.7.

• Next, tight fractions, that is, the use of the operator ‘ / ’ with no whitespace on either side, have higher prece-
dence than any operator listed below. The tight-fraction operator has no precedence compared with itself, so it
is not permitted to be used more than once in a tight fraction without use of parentheses.

• Loose juxtaposition, that is, juxtaposition with intervening whitespace, has higher precedence than any operator
listed below. The associativity of loose juxtaposition is type-dependent and is different from that for tight
juxtaposition; see Section 16.7. Note that lopsided juxtaposition (having whitespace on one side but not the
other) is a static error as described in Section 16.3.

• Prefix operators have higher precedence than any operator listed below.

• The infix operators are partitioned into certain traditional groups, as explained below. They have higher prece-
dence than any operator listed below.

• The equal symbol ‘ = ’ in binding context, the assignment operator ‘ := ’, and compound assignment operators
(+= , − = , ∧ = , ∨ = , ∩ = , ∪ = , and so on as described in Section 13.8) have lower precedence than any
operator listed above. Note that compound assignment operators themselves are not operator names.

The infix binary operators are divided into four general categories: arithmetic, relational, boolean, and other. The arith-
metic operators are further categorized as multiplication/division/intersection, addition/subtraction/union, and other.
The relational operators are further categorized as equivalence, inequivalence, chaining, and other. The boolean oper-
ators are further categorized as conjunctive, disjunctive, and other.

The arithmetic and relational operators are further divided into groups based on shape:

133

• “ordinary” operators: +− · × /±∓⊕	�⊗����� <≤≥>�≪≫�≮��≯ etc.

The arithmetic operations in this group are further subdivided into “plain” (+− · × /±∓ etc.), “circled”
(⊕	�⊗� etc.), “boxed” (���� etc.), and so on; any of these groups may be used with the plain relational
operators (<≤≥>�≪≫�≮��≯ etc.), but the groups may not be mixed.

• “rounded horseshoe” or “set” operators: ∩ e ∪ d] ⊂⊆⊇⊃bc6⊂*+6⊃ etc.

• “square horseshoe” operators: ut @vwA6v6w etc.

• “curly” operators: fg ≺���⊀646<� etc.

• “triangular” relations: CEDB 6547 etc.

• “chickenfoot” relations: <--> etc.

The principles of precedence for binary operators are then as follows:

• A multiplication or division or intersection operator has higher precedence than any addition or subtraction or
union operator that is in the same shape group.

• Certain addition and subtraction operators come in pairs, such as + and − , or ⊕ and 	 , which are considered
to have the same precedence and so may be mixed within an expression and are grouped left-associatively.
These addition-subtraction pairs are the only cases where two different operators are considered to have the
same precedence.

• An arithmetic operator has higher precedence than any equivalence or inequivalence operator.

• An arithmetic operator has higher precedence than any relational operator that is in the same shape group.

• A relational operator has higher precedence than any boolean operator.

• A conjunctive boolean operator has higher precedence than any disjunctive boolean operator.

While the rules of precedence are complicated, they are intended to be both unsurprising and conservative. Note
that operator precedence in Fortress is not always transitive; for example, while + has higher precedence than
< (so you can write a + b < c without parentheses), and < has higher precedence than ∨ (so you can write
a < b ∨ c < d without parentheses), it is not true that + has higher precedence than ∨—the expression a ∨ b + c
is not permitted, and one must instead write (a ∨ b) + c or a ∨ (b + c) .

Another point is that the various multiplication and division operators do not have “the same precedence”; they may
not be mixed freely with each other. For example, one cannot write u · v × w ; one must write (u · v) × w or
(more likely) u · (v × w) . Similarly, one cannot write a · b / c · d ; but juxtaposition does bind more tightly
than a loose (whitespace-surrounded) division slash, so one is allowed to write a b / c d , and this means the same
as (a b)/(c d) . On the other hand, loose juxtaposition binds less tightly than a tight division slash, so that a b/c d
means the same as a (b/c) d . On the other other hand, tight juxtaposition binds more tightly than tight division, so
that (n+ 1)/(n+ 2)(n+ 3) means the same as (n+ 1)/((n+ 2)(n+ 3)) .

There are two additional rules intended to catch misleading code: it is a static error for an operand of a tight infix or
prefix operator to be a loose juxtaposition, and it is a static error if the rules of precedence determine that a use of
infix operator a has higher precedence than a use of infix operator b , but that particular use of a is loose and that
particular use of b is tight. Thus, for example, the expression sin x + y is permitted, but sin x+ y is not permitted.
Similarly, the expression a · b + c is permitted, as are a·b + c and a·b+c , but a · b+c is not permitted. (The
rule detects only the presence or absence of whitespace, not the amount of whitespace, so a · b + c is permitted.
You have to draw the line somewhere.)

When in doubt, just use parentheses. If there’s a problem, the compiler will (probably) let you know.

134

16.3 Operator Fixity

Most operators in Fortress can be used variously as prefix, postfix, infix, nofix, or multifix operators. (See Section 16.4
for a discussion of how infix operators may be chained or treated as multifix operators.) Some operators can be used in
pairs as enclosing (bracketing) operators—see Section 16.5. The Fortress language dictates only the rules of syntax;
whether an operator has a meaning when used in a particular way depends only on whether there is a definition in the
program for that operator when used in that particular way (see Chapter 34).

The fixity of a non-enclosing operator is determined by context. To the left of such an operator we may find (1) a
primary expression (described below), (2) another operator, or (3) a comma, semicolon, or left encloser. To the right
we may find (1) a primary expression, (2) another operator, (3) a comma, semicolon, or right encloser, or (4) a line
break. A primary expression is an identifier, a literal, an expression enclosed by matching enclosers, a field selection,
or an expression followed by a postfix operator. Considered in all combinations, this makes twelve possibilities. In
some cases one must also consider whether or not whitespace separates the operator from what lies on either side. The
rules of operator fixity are specified by Figure 16.1, where the center column indicates the fixity that results from the
left and right context specified by the other columns.

left context whitespace operator fixity whitespace right context

primary

yes
yes
no
no

infix
error (infix)

postfix
infix

yes
no
yes
no

primary

primary

yes
yes
no
no

infix
error (infix)

postfix
infix

yes
no
yes
no

operator

primary yes
no

error (postfix)
postfix

, ; right encloser

primary yes
no

infix
postfix

line break

operator prefix primary
operator prefix operator
operator error (nofix) , ; right encloser
operator error (nofix) line break

, ; left encloser prefix primary
, ; left encloser prefix operator
, ; left encloser nofix , ; right encloser
, ; left encloser error (prefix) line break

Figure 16.1: Operator Fixity (I)

A case described in the center column of the table as an error is a static error; for such cases, the fixity mentioned
in parentheses is the recommended treatment of the operator for the purpose of attempting to continuing the parse in
search of other errors.

The table may seem complicated, but it all boils down to a couple of practical rules of thumb:

1. Any operator can be prefix, postfix, infix, or nofix.

2. An infix operator can be loose (having whitespace on both sides) or tight (having whitespace on neither side),
but it mustn’t be lopsided (having whitespace on one side but not the other).

3. A postfix operator should have no whitespace before it and should be followed (possibly after some whitespace)
by a comma, semicolon, right encloser, or line break.

135

left context whitespace operator fixity whitespace right context

primary

yes
yes
no
no

infix
left encloser

right encloser
infix

yes
no
yes
no

primary

primary

yes
yes
no
no

infix
left encloser

right encloser
infix

yes
no
yes
no

operator

primary yes
no

error (right encloser)
right encloser

, ; right encloser

primary yes
no

infix
right encloser

line break

operator error (left encloser)
left encloser

yes
no primary

operator error (left encloser)
left encloser

yes
no operator

operator error (nofix) , ; right encloser
operator error (nofix) line break

, ; left encloser left encloser primary
, ; left encloser left encloser operator
, ; left encloser nofix , ; right encloser
, ; left encloser error (left encloser) line break

Figure 16.2: Operator Fixity (II)

16.4 Chained and Multifix Operators

Certain infix mathematical operators that are traditionally regarded as relational operators, delivering boolean re-
sults, may be chained. For example, an expression such as A ⊆ B ⊂ C ⊆ D is treated as being equivalent to
(A ⊆ B) ∧ (B ⊂ C) ∧ (C ⊆ D) except that the expressions B and C are evaluated only once (which matters only if
they have side effects such as writes or input/output actions). Fortress restricts such chaining to operators of the same
kind and having the same sense of monotonicity; for example, neither A ⊆ B ≤ C nor A ⊆ B ⊃ C is permitted.
Equivalence operators may be mixed into a chain; for example, one may write A ⊆ B = C ⊆ D . This transformation
is done before type checking. In particular, it is done even though these operators do not return boolean values, and
the resulting expression is checked for type correctness. (See Section F.4 for a detailed description of which operators
may be chained.)

Any infix operator that does not chain may be treated as multifix. If n − 1 occurrences of the same operator separate
n operands where n ≥ 3, then the compiler first checks to see whether there is a definition for that operator that will
accept n arguments. If so, that definition is used; if not, then the operator is treated as left-associative and the compiler
looks for a two-argument definition for the operator to use for each occurrence. As an example, the cartesian product
S1 × S2 × · · · × Sn of n sets may usefully be defined as a multifix operator, but ordinary addition p+ q + r + s is
normally treated as ((p+ q) + r) + s .

16.5 Enclosing Operators

These operators are always used in pairs as enclosing operators:

(/ /) (\ \)

136

[] [/ /] [* *]
{ } {/ /} {\ \} {* *}

</ /> <\ \>
<</ />> <<\ \>>

(ASCII encodings are shown here; they all correspond to particular single Unicode characters.) There are other pairs
as well, such as b c and d e. Note that the pairs () and [\ \] (also known as J K) are not operators; they play
special roles in the syntax of Fortress, and their behavior cannot be redefined by a library. The bracket pairs that may
be used as enclosing operators are described in Section F.1.

Any number of ‘|’ (vertical line) may also be used in pairs as enclosing operators but there is a trick to it, because on
the face of it you can’t tell whether any given occurrence is a left encloser or a right encloser. Again, context is used
to decide, this time according to Figure 16.2.

This is very similar to Figure 16.1 in Section 16.3; a rough rule of thumb is that if an ordinary operator would be
considered a prefix operator, then one of these will be considered a left encloser; and if an ordinary operator would be
considered a postfix operator, then one of these will be considered a right encloser.

In this manner, one may use |. . .| for absolute values and ||. . .|| for matrix norms.

16.6 Conditional Operators

If a binary operator other than ‘:’ is immediately followed by a ‘:’ then it is conditional: evaluation of the right-
hand operand cannot begin until evaluation of the left-hand operand has completed, and whether or not the right-hand
operand is evaluated may depend on the value of the left-hand operand. If the left-hand operand throws an exception,
then the right-hand operand is not evaluated.

The Fortress standard libraries define two conditional operators on boolean values, ∧ : and ∨ : (see Section 16.8.14).

See Section 34.8 for a discussion of how conditional operators are implemented.

16.7 Juxtaposition

Juxtaposition in Fortress may be a function call or a special infix operator. See Section 25.1 for an example declaration
of a juxtaposition operator.

When two expressions are juxtaposed, the juxtaposition is interpreted as follows: if the left-hand-side expression
is a function, juxtaposition performs function application; otherwise, juxtaposition performs the juxtaposition
operator application.

The manner in which a juxtaposition of three or more items should be associated requires type information and aware-
ness of whitespace. (This is an inherent property of customary mathematical notation, which Fortress is designed to
emulate where feasible.) Therefore a Fortress compiler must produce a provisional parse in which such multi-element
juxtapositions are held in abeyance, then perform a type analysis on each element and use that information to rewrite
the n-ary juxtaposition into a tree of binary juxtapositions.

All we need to know is whether the static type of each element of a juxtaposition is an arrow type. There are actually
three legitimate possibilities for each element of a juxtaposition: (a) it has an arrow type, in which case it is considered
to be a function element; (b) it has a type that is not an arrow type, in which case it is considered to be a non-function
element; (c) it is an identifier that has no visible declaration, in which case it is considered to be a function element
(and everything will work out okay if it turns out to be the name of an appropriate functional method).

137

The rules below are designed to forbid certain forms of notational ambiguity that can arise if the name of a functional
method happens to be used also as the name of a variable. For example, suppose that trait T has a functional method
of one parameter named n ; then in the code

do
a:T = t
n: Z = 14
z = n a

end

it might not be clear whether the intended meaning was to invoke the functional method n on a or to multiply a by
14 . The rules specify that such a situation is a static error.

The rules for reassociating a loose juxtaposition are as follows:

• First the loose juxtaposition is broken into nonempty chunks; wherever there is a non-function element followed
by a function element, the latter begins a new chunk. Thus a chunk consists of some number (possibly zero) of
functions followed by some number (possibly zero) of non-functions.

• It is a static error if any non-function element in a chunk is an unparenthesized identifier f and is followed by
another non-function element whose type is such that f can be applied to that latter element as a functional
method.

• The non-functions in each chunk, if any, are replaced by a single element consisting of the non-functions grouped
left-associatively into binary juxtapositions.

• What remains in each chunk is then grouped right-associatively.

• It is a static error if an element of the original juxtaposition was the last element in its chunk before reassociation,
the chunk was not the last chunk (and therefore the element in question is a non-function element), the element
was an unparenthesized identifier f , and the type of the following chunk after reassociation is such that f can
be applied to that following chunk as a functional method.

• Finally, the sequence of rewritten chunks is grouped left-associatively.

(Notice that no analysis of the types of newly constructed chunks is needed during this process.)

Here is an example: n (n+ 1) sin 3 n x log log x . Assuming that sin and log name functions in the usual man-
ner and that n , (n+ 1) , and x are not functions, this loose juxtaposition splits into three chunks: n (n+ 1) and
sin 3 n x and log log x . The first chunk has only two elements and needs no further reassociation. In the sec-
ond chunk, the non-functions 3 n x are replaced by ((3 n) x) . In the third chunk, there is only one non-function,
so that remains unchanged; the chunk is the right-associated to form (log (log x)) . Finally, the three chunks are
left-associated, to produce the final interpretation ((n (n+ 1)) (sin ((3 n) x))) (log (log x)) . Now the original jux-
taposition has been reduced to binary juxtaposition expressions.

The rules for reassociating a tight juxtaposition follow a different strategy:

• If the tight juxtaposition contains no function element, or if only the last element is a function, go on to the
next step. Otherwise, consider the leftmost function element and examine the element that follows it. If that
latter element is not parenthesized, it is a static error; otherwise, replace the two elements with a single element
consisting of a new juxtaposition of the two elements (in the same order), and perform a type analysis on this new
juxtaposition. (At this point, it is a static error if this new juxtaposition is preceded in the overall juxtaposition
by a non-function element that is an unparenthesized identifier f , and the type of the new juxtaposition is such
that f can be applied to it as a functional method.) Then repeat this step on the original juxtaposition (which is
now one element shorter).

• The overall juxtaposition now either is a single element or consists entirely of non-function elements. It is a
static error the overall juxtaposition now contains a non-function element that is an unparenthesized identifier
f , and the type of the following element is such that f can be applied to it as a functional method.

138

• Left-associate the remaining elements of the juxtaposition.

(Note that this process requires type analysis of newly created chunks along the way.)

Here is an (admittedly contrived) example: reduce(f)(a)(x+ 1)sqrt(x+ 2) . Suppose that reduce is a curried func-
tion that accepts a function f and returns a function that can be applied to an array a (the idea is to use the function
f , which ought to take two arguments, to combine the elements of the array to produce an accumulated result).

The leftmost function is reduce , and the following element (f) is parenthesized, so the two elements are replaced with
one: (reduce(f))(a)(x+ 1)sqrt(x+ 2) . Now type analysis determines that the element (reduce(f)) is a function.

The leftmost function is (reduce(f)) , and the following element (a) is parenthesized, so the two elements are re-
placed with one: ((reduce(f))(a))(x+ 1)sqrt(x+ 2) . Now type analysis determines that the element ((reduce(f))(a))
is not a function.

The leftmost function is (sqrt) , and the following element (x+ 2) is parenthesized, so the two elements are replaced
with one: ((reduce(f))(a))(x+ 1)(sqrt(x+ 2)) . Now type analysis determines that the element (sqrt(x+ 2)) is
not a function.

There are no functions remaining in the juxtaposition, so the remaining elements are left-associated:

(((reduce(f))(a))(x+ 1))(sqrt(x+ 2))

Now the original juxtaposition has been reduced to binary juxtaposition expressions.

16.8 Overview of Operators in the Fortress Standard Libraries

This section provides a high-level overview of the operators in the Fortress standard libraries. See Appendix F for the
detailed rules for the operators provided by the Fortress standard libraries.

16.8.1 Prefix Operators

For all standard numeric types, the prefix operator + simply returns its argument and the prefix operator − returns
the negative of its argument.

The operator ¬ is the logical NOT operator on boolean values and boolean intervals.

The operator ¬¬ computes the bitwise NOT of an integer.

Big operators such as
∑

begin a reduction expression (Section 13.17). The big operators include
∑

(summation)
and

∏
(product), along with

⋂
,

⋃
,

∧
,

∨
,

∨
,

⊕
,

⊗
,

⊎
, � , � , MAX , MIN , and so on.

16.8.2 Postfix Operators

The operator ! computes factorial; the operator !! computes double factorials. They may be applied to a value of any
integral type and produces a result of the same type.

When applied to a floating-point value x , x! computes Γ(1 + x) , where Γ is the Euler gamma function.

139

16.8.3 Enclosing Operators

When used as left and right enclosing operators, | | computes the absolute value or magnitude of any number, and is
also used to compute the number of elements in an aggregate, for example the cardinality of a set or the length of a
list. Similarly, ‖ ‖ is used to compute the norm of a vector or matrix.

The floor operator b c and ceiling operator d e may be applied to any standard integer, rational, or real value (their
behavior is trivial when applied to integers, of course). The operators hyperfloor bbxcc = 2blog2 xc, hyperceiling ddxee =
2dlog2 xe, hyperhyperfloor bbbxccc = 2bblog2 xcc, and hyperhyperceiling dddxeee = 2ddlog2 xee are also available.

16.8.4 Exponentiation

Given two expressions e and e′ denoting numeric quantities v and v′ that are not vectors or matrices, the expression
ee′ denotes the quantity obtained by raising v to the power v′ . This operation is defined in the usual way on numerals.

Given an expression e denoting a vector and an expression e′ denoting a value of type Z , the expression ee′ denotes
repeated vector multiplication of e by itself e′ times.

Given an expression e denoting a square matrix and an expression e′ denoting a value of type Z , the expression ee′

denotes repeated matrix multiplication of e by itself e′ times.

16.8.5 Superscript Operators

The superscript operator ˆT transposes a matrix. It also converts a column vector to a row vector or a row vector to
a column vector.

16.8.6 Subscript Operators

Subscripting of arrays and other aggregates is written using square brackets:

a[i] is displayed as ai ith element of one-dimensional array a
m[i,j] is displayed as mij i, jth element of two-dimensional matrix m
space[i,j,k] is displayed as spaceijk i, j, kth element of three-dimensional array space
a[3] := 4 is displayed as a3 := 4 assign 4 to the third element of mutable array a
m["foo"] is displayed as m“foo” fetch the entry associated with string “foo” from map m

16.8.7 Multiplication, Division, Modulo, and Remainder Operators

For most integer, rational, floating-point, complex, and interval expressions, multiplication can be expressed using any
of ‘ · ’ or ‘× ’ or simply juxtaposition. There are, however, two subtle points to watch out for. First, juxtaposition
of numerals is treated as literal concatenation rather than multiplication; in this way one can use spaces to separate
groups of digits, for example 1 234 567.890 12 rather than 123457.89012 . Second, the × operator is used to
express the shape of matrices, so if expressions using multiplication are used in expressing the shape of a matrix, it
may be necessary to avoid the use of ’× ’ to express multiplication, or to use parentheses.

For integer, rational, floating-point, complex, and interval expressions, division is expressed by / . When the oper-
ator / is used to divide one integer by another, the result is rational. The operator ÷ performs truncating integer
division: m÷ n = signum

(
m
n

) ⌊∣∣m
n

∣∣⌋ . The operator REM gives the remainder from such a truncating division:
m REM n = m− n(m÷ n) . The operator MOD gives the remainder from a floor division: m MOD n = m− n

⌊
m
n

⌋
;

140

when n > 0 this is the usual modulus computation that evaluates integer m to an integer k such that 0 ≤ k < n and
n evenly divides m− k .

The special operators DIVREM and DIVMOD each return a pair of values, the quotient and the remainder; m DIVREM n
returns (m÷ n,m REM n) while m DIVMOD n returns (

⌊
m
n

⌋
,m MOD n) .

Multiplication of a vector or matrix by a scalar is done with juxtaposition, as is multiplication of a vector by a matrix
(on either side). Vector dot product is expressed by ‘ · ’ and vector cross product by ‘× ’. Division of a matrix or
vector by a scalar may be expressed using ‘ / ’.

The syntactic interaction of juxtaposition, · , × , and / is subtle. See Section 16.2 for a discussion of the relative
precedence of these operations and how precedence may depend on the use of whitespace.

The handling of overflow depends on the type of the number produced. For integer results, overflow throws an
IntegerOverflowException . Rational computations do not overflow. For floating-point results, overflow produces
+∞ or −∞ according to the rules of IEEE 754. For intervals, overflow produces an appropriate containing interval.

Underflow is relevant only to floating-point computations and is handled according to the rules of IEEE 754.

The handling of division by zero depends on the type of the number produced. For integer results, division by zero
throws a DivideByZeroException . For rational results, division by zero produces 1/0 . For floating-point results,
division by zero produces a NaN value according to the rules of IEEE 754. For intervals, division by zero produces
an appropriate containing interval (which under many circumstances will be the interval of all possible real values and
infinities).

Wraparound multiplication on fixed-size integers is expressed by ×̇ . Saturating multiplication on fixed-size integers
is expressed by � or � . These operations do not overflow.

Ordinary multiplication and division of floating-point numbers always use the IEEE 754 “round to nearest” rounding
mode. This rounding mode may be emphasized by using the operators ⊗ (or �) and � . Multiplication and division
in “round toward zero” mode may be expressed with � (or �) and � . Multiplication and division in “round toward
positive infinity” mode may be expressed with

a
× (or

a
·) and

a
� . Multiplication and division in “round toward

negative infinity” mode may be expressed with ×̀ (or ·̀) and �̀ .

16.8.8 Addition and Subtraction Operators

Addition and subtraction are expressed with + and − on all numeric quantities, including intervals, as well as vectors
and matrices.

The handling of overflow depends on the type of the number produced. For integer results, overflow throws an
IntegerOverflowException . Rational computations do not overflow. For floating-point results, overflow produces
+∞ or −∞ according to the rules of IEEE 754. For intervals, overflow produces an appropriate containing interval.

Underflow is relevant only to floating-point computations and is handled according to the rules of IEEE 754.

Wraparound addition and subtraction on fixed-size integers are expressed by u and −̇ . Saturating addition and
subtraction on fixed-size integers are expressed by � and � . These operations do not overflow.

Ordinary addition and subtraction of floating-point numbers always use the IEEE 754 “round to nearest” rounding
mode. This rounding mode may be emphasized by using the operators ⊕ and 	 . Addition and subtraction in “round
toward zero” mode may be expressed with � and � . Addition and subtraction in “round toward positive infinity”
mode may be expressed with

a
+ and

a
− . Addition and subtraction in “round toward negative infinity” mode may be

expressed with +̀ and −̀ .

The construction x± y produces the interval 〈|x− y, x+ y|〉 .

141

16.8.9 Intersection, Union, and Set Difference Operators

Sets support the operations of intersection ∩ , union ∪ , disjoint union] , set difference \ , and symmetric set differ-
ence 	 . Disjoint union throws DisjointUnionException if the arguments are in fact not disjoint.

Intervals support the operations of intersection ∩ , union ∪ , and interior hull ∪ . The operation e returns a pair of
intervals; if the intersection of the arguments is a single contiguous span of real numbers, then the first result is an
interval representing that span and the second result is an empty interval, but if the intersection is two spans, then two
(disjoint) intervals are returned. The operation d returns a pair of intervals; if the arguments overlap, then the first
result is the union of the two intervals and the second result is an empty interval, but if the arguments are disjoint, they
are simply returned as is.

16.8.10 Minimum and Maximum Operators

The operator MAX returns the larger of its two operands, and MIN returns the smaller of its two operands.

For floating-point numbers, if either argument is a NaN then NaN is returned. The floating-point operations MAXNUM
and MINNUM behave similarly except that if one argument is NaN and the other is a number, the number is returned.
For all four of these operators, when applied to floating-point values, −0 is considered to be smaller than +0 .

16.8.11 GCD, LCM, and CHOOSE Operators

The infix operator GCD computes the greatest common divisor of its integer operands, and LCM computes the least
common multiple. The operator CHOOSE computes binomial coefficients: n CHOOSE k =

(
n
k

)
= n!

k!(n−k)! .

The expression e 6= e′ is semantically equivalent to the expression ¬(e = e′) .

16.8.12 Comparisons Operators

Unless otherwise noted, the operators described in this section produce boolean (true /false) results.

The operators<, ≤ , ≥ , and> are used for numerical comparisons and are supported by integer, rational, and floating-
point types. Comparison of rational values throws RationalComparisonException if either argument is the rational
infinity 1/0 or the rational indefinite 0/0 . Comparison of floating-point values throws FloatingComparisonException
if either argument is a NaN .

The operators <, ≤ , ≥ , and > may also be used to compare characters (according to the numerical value of their
Unicode codepoint values) and strings (lexicographic order based on the character ordering). They also use lexico-
graphic order when used to compare lists whose elements support these same comparison operators.

When <, ≤ , ≥ , and > are used to compare numerical intervals, the result is a boolean interval. The functions
possibly and certainly are useful for converting boolean intervals to boolean values for testing. Thus possibly(x > y)
is true if and only if there is some value in the interval x that is greater than some value in the interval y , while
certainly(x > y) is true if and only if x and y are nonempty and every value in x is greater than every value in y .

The operators ⊂ , ⊆ , ⊇ , and ⊃ may be used to compare sets or intervals regarded as sets.

The operator ∈ may be used to test whether a value is a member of a set, list, array, interval, or range.

142

16.8.13 Logical Operators

The following binary operators may be used on boolean values:

∧ AND
∨ inclusive OR

∨ or ⊕ or 6= exclusive OR
≡ or↔ or = equivalence (if and only if)

→ IMPLIES
∧ NAND
∨ NOR

These same operators may also be applied to boolean intervals to produce boolean interval results.

The following operators may be used on integers to perform “bitwise” operations:

∧∧ bitwise AND
∨∨ bitwise inclusive OR
∨∨ bitwise exclusive OR

The prefix operator ¬¬ computes the bitwise NOT of an integer.

16.8.14 Conditional Operators

If p(x) and q(x) are expressions that produce boolean results, the expression p(x)∧: q(x) computes the logical AND
of those two results by first evaluating p(x) . If the result of p(x) is true , then q(x) is also evaluated, and its result
becomes the result of the entire expression; but if the result of p(x) is false , then q(x) is not evaluated, and the
result of the entire expression is false without further ado. (Similarly, evaluating the expression p(x)∨: q(x) does not
evaluate q(x) if the result of p(x) is true .) Contrast this with the expression p(x) ∧ q(x) (with no colon), which
evaluates both p(x) and q(x) , in no specified order and possibly in parallel.

143

Chapter 17

Conversions and Coercions

Fortress provides a mechanism, called coercion, to allow a value of one type to be automatically converted to a value
of another type. Programmers can define coercions (described in Section 17.2) and coercions may change the set of
applicable declarations for a call (as described in Section 17.4). If multiple coercions can be applied to a particular
functional call then the most appropriate coercion is chosen statically. Restrictions on coercion declarations (described
in Section 17.6) guarantee that the static resolution of coercion (described in Section 17.5) is well-defined. Fortress
provides implicit coercions for tuple types and arrow types (described in Section 17.7). Fortress also provides an addi-
tional feature of coercion that allows “widest-need” evaluation of numerical expressions (described in Section 17.8).

17.1 Principles of Coercion

In certain situations it is convenient to be able to use a value of one type T as if it were a value of another type U
even though T is not a subtype of U . For example, it is convenient to be able to use the integer-valued expression
2 in a floating-point expression even though its type is not a subtype of any floating-point type. Fortress supports the
automatic conversion of integer values to floating-point values (the technical term for this kind of automatic conversion
is coercion). In this way one can write (x+ 1)/2 rather than (x+ 1.0)/2.0 , for example. Such coercion applies
generally to function and method (collectively called as functional) calls as well as to operators; one can write ln 2
rather than ln 2.0 , or arctan(1, 1) rather than arctan(1.0, 1.0) , for example.

One way to think about coercion is that if type T can be coerced to type U , then a value of type T can be used to
“stand in” for a value of type U in a functional call, for example. This is different from actually being of type U ; it
means only that, given any value of type T , an appropriate value of type U can be computed to substitute for it. Also,
coercion occurs only when the declared type of the corresponding parameter in the functional declaration is exactly
the type U being coerced to not if it is a supertype of U . Note, however, that if type T can be coerced to type U
then any subtype of T can also be coerced to type U .

Coercion from T to U may occur in an expression context where the context expects the expression to have type U
and the type of the expression is a subtype of T except for the following cases:

• type ascriptions (see Section 13.29)

• type assumptions (see Section 13.30)

• arguments to an explicit coercion invocation (see Section 17.3)

For example, a coercion may occur in a variable definition when the declared type of the variable is U and the type of
the expression on the right-hand side is a subtype of T .

144

The expression contexts where a coercion can occur are:

• the right-hand sides of variable and field declarations where the left-hand sides have declared types

• arguments to functionals and constructors where the corresponding parameters have declared types

• body expressions of functionals and constructors where the return types are declared

• the right-hand sides of test and property declarations

• expressions in contracts

• expressions whose enclosing expressions constrain the types of their subexpressions

Chapter 13 describes the type constraints for each expression in Fortress.

Coercion is not automatically chained in Fortress, unlike some other programming languages: even if type T can be
coerced to type U and type U can be coerced to type V , it is not necessarily the case that type T can be coerced to
type V . Type T can be coerced to type V only if this coercion is explicitly defined.

Example 1: For any floating-point parameter, a decimal integer literal argument may be used.

Example 2: For any floating-point parameter, a floating-point argument of a shorter format may be used.

Example 3: For any floating-point interval parameter, a non-interval floating-point argument (of the same or shorter
floating-point format) may be used.

17.2 Coercion Declarations

Syntax:
Coercion ::= widening ? coercion StaticParams?(Id IsType)CoercionClauses = Expr
CoercionClauses ::= Throws? CoercionWhere? Contract
CoercionWhere ::= where { CoercionWhereClauseList }
CoercionWhereClauseList ::= CoercionWhereClause(, CoercionWhereClause)∗

CoercionWhereClause ::= WhereClause
| TypeRef widens or coerces TypeRef

To declare that trait U allows a coercion from type T , the declaration of trait U must provide a coercion declaration
whose parameter type is T . Coercion declarations are like functional declarations, except that coercion is actually
a reserved word, a coercion declaration may have special where -clause constraints (described below), and it is not
permitted to specify a return type, because the return type must be the very trait in whose declaration the coercion
declaration appears. The coercion body is required; there is no such thing as an abstract coercion declaration.

Coercions may have static parameters (described in Chapter 11) and a where clause (described in Section 11.6), just
like functionals. The where clause may contain one of the following special constraints:

Type1 coerces Type2

Type1 widens Type2

Type1 widens or coerces Type2

The first is true if trait Type1 has a coercion from Type2 . The second is true if trait Type1 has a widening coercion
(described in Section 17.8) from Type2 . The third may be used only in a coercion with the “ widening ” reserved
word; it is true if Type1 has a coercion from Type2 , and furthermore the coercion declaration to which the where
clause belongs is widening only if Type1 has a widening coercion from Type2 . For example:

145

trait VectorJT extends NumberK
widening coercion JU extends NumberK(x : VectorJUK)

where {T widens or coerces U } = . . .
end

Coercions, unlike methods, are not inherited. If trait V extends trait U , and trait U has a coercion from type T , then
V does not thereby have a coercion from type T . (It may, however, have its own coercion from type T , separately
defined within the body of V .) For example, given the following declarations,

trait A
coercion (b :B) = . . .

end
object B end
trait C extends A end

f(c :C) = 5

a call to f(B) is considered a static error because trait C does not inherit a coercion from type B .

17.3 Coercion Invocations

One may invoke a coercion explicitly with the syntax: Trait. coercion (expr) . Overloading resolution (described
in Section 15.5) applies in the usual way if the specified trait has more than one coercion that applies to the actual
argument. Implicit coercions cannot occur in an argument to an explicit coercion invocation. Result of an explicit
coercion can be implicitly coerced.

One way to think about coercion is that explicit calls to coercion declarations are automatically inserted into the
expression in a context where a coercion can occur. For example, if trait U has a coercion from type T , then
whenever a functional, f , is declared with a parameter of type U , a call f(t) where t has type T can be rewritten
to f(U. coercion (t)) making the declaration of f applicable to the call. However, this rewriting does not occur if
there exists a declaration that is applicable to the call before the rewriting (see Section 17.5 for further discussion).

If coercion is possible for more than one element of a tuple argument, a cross-product effect is obtained. For example,
in this code:

object X
coercion (kiki :Y) = . . .
coercion (tutu :Q) = . . .
hack(other :X) = 1

end
object Y end
object Q end

foo(dodo :X) = 2

bar(hyar :X, yon :X) = 3
bar(hyar :Q, yon :Q) = 4

the following method invocations are valid:

X.hack(Y)
X.hack(Q)

Because there is no declaration of hack applicable to Y and Q , these invocations are rewritten to:

146

X.hack(X. coercion (Y))
X.hack(X. coercion (Q))

Similarly, the function calls in the left-hand side of the following are valid and rewritten to the right-hand side:

foo(Y) is rewritten to foo(X. coercion (Y))
foo(Q) is rewritten to foo(X. coercion (Q))

bar(Y,X) is rewritten to bar(X. coercion (Y), X)
bar(Q,X) is rewritten to bar(X. coercion (Q), X)
bar(X,Y) is rewritten to bar(X,X. coercion (Y))
bar(X,Q) is rewritten to bar(X,X. coercion (Q))
bar(Y, Y) is rewritten to bar(X. coercion (Y), X. coercion (Y))
bar(Q,Q) is rewritten to bar(Q,Q)
bar(Q,Y) is rewritten to bar(X. coercion (Q), X. coercion (Y))
bar(Y,Q) is rewritten to bar(X. coercion (Y), X. coercion (Q))

Note that the call bar(Q,Q) remains unchanged because there exists a declaration for bar that is applicable without
coercion.

To continue the example, let us illustrate a point about type parameters. If we add the following definitions:

trait Frobboz
frob(item :X) = 5
coercion (m :Matrix) = . . . (∗ irrelevant! ∗)

end

object BozoJT extends FrobbozK(t :T) . . . end

then this says nothing about whether the type parameter T of Bozo has coercions, because coercions are not inher-
ited. (In fact, we can make a stronger statement: types named by type parameters do not have coercions!) But it is
guaranteed that the following method invocations are valid if they occur within the declaration of Bozo:

t.frob(X)
t.frob(Y)
t.frob(Q)

because T inherits the method declaration frob(item :X) from Frobboz and X contains coercions from Y and Q .

17.4 Applicability with Coercion

As discussed in the previous section, coercion in Fortress alters the set of applicable declarations for a particular
functional call. In this section we formally define the applicability of declarations with coercion. (This level of
formality is necessary to discuss the interaction of overloading and coercion.) We build on the terminology and
notation defined in Chapter 15.

We write T→U if U defines a coercion from T . We say that T can be coerced to U , and we write T U , if U defines
a coercion from T or any supertype of T ; that is, T U ⇐⇒ ∃T ′ : T � T ′ ∧ T ′→U .

Because of automatic coercion, a declaration may be applicable even if its parameter type is not a supertype of the
argument type of the call. We define a new relation, substitutability, that takes coercion into account.

We say that a type T is substitutable for type U , and we write T v U , if T is a subtype of U or T can be coerced to
U ; that is,

T v U ⇐⇒ T � U ∨ T U.

147

Note thatv need not be transitive. This is a result of the fact that coercion does not chain. However, if T is substitutable
for U then so are T ’s subtypes; that is, A � T ∧ T v U =⇒ A v U .

A declaration f (P) is applicable with coercion to a call f (C) if the call is in the scope of the declaration and C v P .
(See Chapter 7 for the definition of scope.)

Recall that Section 15.2 describes a rewriting of named functional calls into dotted method calls when no declarations
are applicable to the named functional call. This rewriting is also used to determine applicability with coercion. If
there is no declaration applicable with coercion to a named functional call then the call is rewritten into a dotted
method call (as described in Section 15.2). Applicable declarations are then determined by the rules for applicability
with coercion for dotted method calls.

Similarly, a dotted method declaration P0.f (P) is applicable with coercion to a dotted method call C0.f (C) if it
C0 � P0 and C v P . Notice that the receiver is compared using the subtype relation instead of the substitutable
relation. This reflects the restriction that receivers of dotted methods cannot be coerced. However, self parameters
of functional methods can be coerced. This distinction is consistent with the intuition that functional methods are
rewritten into top-level functions.

Note that the only difference between applicability and applicability with coercion is that substitutability is used
instead of subtyping to compare the parameter types of the declarations.

Also note that the definition of applicability with coercion does not take keyword parameters or varargs parameters into
account. Such declarations are conceptually rewritten into numerous declarations which cannot be called with elided
arguments nor with variable number of arguments (as described in Section 15.4). If one of the expanded declarations
is applicable with coercion to a call, then the original declaration (with keyword or varargs parameters) is applicable
with coercion to the call.

17.5 Coercion Resolution

For a given functional call, we first determine whether there exists a declaration that is applicable without coercion.
If so, the most specific declaration is selected; if not, then coercions are explicitly added to the functional call. If
more than one coercion is possible then the coercion that yields the most specific type is chosen. Section 17.6 and
Chapter 33 describe overloading rules for the declarations of coercions and overloaded functionals that guarantee there
exists always a most specific coercion when two or more are possible.

We first define a notion of more specific types in the presence of coercion. Recall from Section 8.1 that Fortress defines
an exclusion relation between types which is denoted by ♦.

For types T and U , we say that T rejects U , and write T−〉U , if for all coercions to T , the type coerced from excludes
U :

T−〉 U ⇐⇒ ∀A : A→T =⇒ A ♦ U.

Note that T−〉 U implies U 6 T .

We say that T is no less specific than U , and write T E U , if T is a subtype of U or T excludes, can be coerced to,
and rejects U :

T E U ⇐⇒ T � U ∨ (T ♦ U ∧ T U ∧ T−〉 U).

TheE relation is reflexive and antisymmetric but not necessarily transitive. It is possible, for example, for three types,
T , U and V , each excluding the other two, to have coercions from T to U and from U to V . In this case, T E U and
U E V but T 6E V .

Notice that if two tuple types have a bijective correspondence between their element types then the E relationship
between the tuple types is equivalent to applying the E relation elementwise.

148

We say that T is more specific than U , and write T / U , if T E U ∧ T 6= U .

We extend the definitions of no less specific and more specific to declarations. We say that a declaration f (P) is no
less specific than a declaration f (Q) if P E Q . Similarly, we say that a declaration P0.f (P) is no less specific than
a declaration Q0.f (Q) if (P0,P) E (Q0,Q). A declaration f (P) is more specific than a declaration f (Q) if P / Q .
Similarly, a declaration P0.f (P) is more specific than a declaration Q0.f (Q) if (P0,P) / (Q0,Q).

Now we describe how to determine which coercion is applied to a given call in terms of rewriting functional calls. The
rewriting is for pedagogical purposes; implementation techniques may vary.

Consider a static call f (A) or A0.f (A). Let Σ be the set of parameter types of functional declarations of f that are
applicable to the call. Let Σ′ be the set of parameter types of functional declarations of f that are applicable with
coercion to the call. If Σ is not empty then we use the overloading resolution described in Section 15.5 to determine
which element of Σ is called. If Σ is empty but Σ′ is not, then we rewrite the call as follows. Define:

C = {T ∈ Σ′ | S→T ∧A � S}.

Let T ∈ C be the most specific element of C . In other words, there does not exist T ′ ∈ C such that T ′ / T . The
restrictions given in Section 17.6 and Chapter 33 guarantee that such a T exists and that it is unique. The call f (A) or
A0.f (A) is rewritten to f(T. coercion (A)) or A0.f(T. coercion (A)) and the declaration with parameter type
T is applied to the call.

As an example, consider the following definitions:

trait Z32 end
trait Z64

coercion (z : Z32) = . . .
end
trait Z128

coercion (z : Z32) = . . .
coercion (z : Z64) = . . .

end

f(z : Z64) = 1
f(z : Z128) = 2

Then the call f(Z32) resolves to the declaration f(Z64) because Z64 / Z128, which follows from the fact that Z64
coerces to Z128 .

Notice that coercion is resolved statically. Once a coercion is statically chosen for a call, this coercion is conceptually
inserted into the call. This means that the statically chosen coercion is applied at run time.

For example, in the following program:

trait A
coercion (c :C) = . . .

end
trait B excludes A end
trait C end
object D extends {B,C} end
f(a :A) = 3
f(b :B) = 4

c : C = D
f(c)

the call to f(C) resolves to the declaration f(A) despite the fact that the declaration f(B) is applicable to the
dynamic call f(D) and does not require coercion.

149

17.6 Restrictions on Coercion Declarations

We place two restrictions on coercion declarations to ensure that it is always possible to resolve coercions.

It is a static error for a type to define a coercion from any of its subtypes. For example, the following program is
statically rejected:

trait Number
coercion (z : Z) = . . .

end

trait Z extends Number end

Instead, z of type Z can be coerced to type Number by “ coerceJNumberK(z) ” where coerce is defined in the
Fortress standard libraries (as described in Section 13.31.6).

It is also a static error for cycles to exist in the type hierarchy produced by extension and coercion declarations. Such
cycles may be composed of solely subtype relationships or solely coercion or a mixture of the two. In all cases the
cycles are statically rejected. An example showing a cycle that is a mixture of subtype and coercion relationships
follows:

trait A end

trait B extends A end

trait C extends B
coercion (a :A) = . . .

end

17.7 Coercions for Tuple and Arrow Types

Unlike other types, tuple types (described in Section 8.4) and arrow types (described in Section 8.5) are not defined
explicitly. Therefore coercions to these types are also not defined explicitly. Instead, the following rules describe when
these coercions are implicitly defined.

There is a coercion from a tuple type X to a tuple type Y if all the following conditions hold:

1. X is not a subtype of Y ;

2. for every plain type T in Y , there is a corresponding plain type in X whose type is substitutable for T ;

3. if neither X nor Y has a varargs type, then they have the same number of plain types;

4. if X has a varargs type, then Y has a varargs type, the type S of the varargs type S ... in X is substitutable for
the type T of the varargs type T ... in Y , and X and Y have the same number of plain types;

5. if X has no varargs type and Y has a varargs type T ..., then every plain type in X that has no corresponding
plain type in Y is substitutable for T ; and

6. the correspondence between keyword-type pairs in X and Y is bijective, and the type of each such pair in X is
substitutable for the type in the corresponding pair in Y .

Tuple type coercions are invoked by distributing the coercion elementwise. However, if an element type of the tuple
type being coerced from is a subtype of the corresponding element type of the tuple type being coerced to, the coercion
is ignored. For example, the following coercions:

150

(A,B). coercion (x, y)
(kwd = A). coercion (kwd = x)

are rewritten to:

(A. coercion (x), B. coercion (y))
(kwd = A. coercion (x))

However, if the type of y were a subtype of B then the first coercion would instead be rewritten to:

(A. coercion (x), y)

Coercions to varargs types such as the following:

(A . . .). coercion (x, y)

are invoked by applying the coercion to the type in the varargs type, A in this example, to each of the elements of the
tuple. Additionally, there is a coercion from any type T to a tuple type solely with varargs type (T . . .) .

There is a coercion from arrow type “A→ B throws C ” to arrow type “D → E throws F ” if all of the following
conditions hold:

1. “A→ B throws C ” is not a subtype of “D → E throws F ”;

2. D is substitutable for A;

3. B is substitutable for E ; and

4. for all X in C, there exists Y in F such that X is substitutable for Y .

Arrow type coercions are invoked by wrapping the argument function of the coercion in a function expression that
applies the appropriate coercions to the argument and result of the function. For example, assuming that f is a
function from type A to type B the following coercion:

(C → D). coercion (f)

is rewritten to:

fn x⇒ D. coercion (f(A. coercion (x)))

17.8 Automatic Widening

Syntax:
Coercion ::= widening coercion StaticParams?(Id IsType)CoercionClauses = Expr

Fortress supports what is sometimes called “widest-need” evaluation of numerical expressions. To see the problem,
suppose that a and b are 32-bit floating-point numbers and c is a 64-bit floating-point number. It is easy, and tempting,
to write an expression such as

c = c+ a · b

but if you stop to think about it, if interpreted naively it will compute the product a · b as a 32-bit floating-point
number, and the impression that the sum may be accurate to the precision of a 64-bit floating-point number is only an
illusion. Widest-need processing takes context into account and “widens” (or “upgrades”) the operands a and b to
64-bit floating-point numbers before the product is computed, so that the product will be computed as a 64-bit result.

Before widening is considered, a Fortress compiler, in its normal course of operation, analyzes an expression bottom-
up. For every functional invocation, it needs to statically identify a specific declaration to be invoked. Once this is

151

done, then for every functional invocation, one of two conditions holds: (a) The type of the argument expression is
a subtype of the type of the parameter in the identified declaration. (b) The type of the argument expression can be
coerced to the type of the parameter in the identified declaration.

This process has to be done bottom-up because in order to select a specific declaration for a functional invocation,
it is necessary to know the types of the argument expressions, and if an argument expression is itself a functional
invocation, it is necessary to select the specific declaration for that invocation in order to find out the return type of the
invocation.

Once an expression has been fully analyzed in this way, then widening is performed as a top-down process. For
each functional invocation that appears in a context where a coercion can occur, ask whether the argument expression
(which, remember, is a functional invocation) falls under case (a) or case (b) above. If case (b), coercion of the func-
tional result is required; if the relevant coercion declaration is a “widening” coercion, then this functional invocation
is a candidate for widening. Call the type of the functional invocation T , and call the expected type of the coercion
context, U .

When the functional call was considered during the bottom-up analysis, in general many overloaded declarations may
have been considered; of all those that were applicable with coercion to the static call, the most specific one was
chosen. When considering widening, we consider the same set of declarations, but first discard all declarations whose
return types are not subtypes of U . Then if any remain, and there is a unique most specific one among them, then that
declaration is attached to the functional call instead. In this way a coercion step is eliminated (coercion is no longer
needed to convert the result of the functional invocation from type T to type U), possibly at the expense of requiring
a new coercion in a subexpression—but this is exactly the desired effect. Once this is done, then the subexpressions
of the functional call are processed recursively.

This process is general enough not only to provide for widening floating-point precision, but to handle two other
cases of interest as well: widening point computations to interval computations, and widening computations involving
aggregate data structures whose components are widenable. For example, in d(v × w) suppose that d is of type R64
and v and w are 3-vectors with components of type R32; this strategy is capable of promoting v and w to 3-vectors
with components of type R64 and then performing all computations with R64 precision.

Let’s go through the example of c+ a · b in detail. The relevant declarations might look something like this:

trait R32
. . .

end

trait R64
widening coercion (x : R32) = . . .
. . .

end

opr · (l: R32, r: R32): R32 = . . . (∗ 1 ∗)
opr · (l: R64, r: R64): R64 = . . . (∗ 2 ∗)
opr +(l: R32, r: R32): R32 = . . . (∗ 3 ∗)
opr +(l: R64, r: R64): R64 = . . . (∗ 4 ∗)

The bottom-up analysis observes that a and b are both of type R32 , and discovers that declarations 1 and 2 are
both applicable to the product, but declaration 1 would be chosen because it requires no coercion and declaration
2 would require coercion of both arguments to type R64 . The analysis then observes that c has type R64 and the
product expression has type R32 , so declaration 3 is not applicable but declaration 4 is applicable (though requiring
a coercion from R32 to R64 for its second argument).

Now the top-down widening analysis is performed. The product is a functional call that is an argument to another
functional call, and its result requires coercion, and that coercion is a widening coercion. Therefore the compiler
reconsiders the applicable declarations, which were declarations 1 and 2 . The result type of declaration 1 is not
a subtype of R64 , but the result type of declaration 2 is a subtype of R64 (in fact, it is R64). Declaration 2 is

152

the most specific among the applicable declarations with that property (in fact, in this example it’s the only one), so
declaration 2 replaces declaration 1 for the product invocation. This in turn requires a and b to be coerced from
type R32 to R64 before the product is performed.

Widening is a tricky business, best left to expert library designers. When used judiciously, it can greatly improve the
precision of numerical computations without requiring a great deal of thought on the part of the application program-
mer and without cluttering up code with explicit conversions.

Future versions of this specification will include tables of coercions and widening coercions supported by the Fortress
standard libraries.

153

Chapter 18

Dimensions and Units

Syntax:

TypeRef : := DimType
DimType ::= DimRef

| TypeRef DimRef
| TypeRef · DimRef
| TypeRef / DimRef
| TypeRef per DimRef
| TypeRef UnitRef
| TypeRef · UnitRef
| TypeRef / UnitRef
| TypeRef per UnitRef
| TypeRef in DimRef

DimRef ::= StaticArg
StaticArg ::= Unity

| dimensionless
| StaticArg · StaticArg
| StaticArg StaticArg
| StaticArg / StaticArg
| 1 / StaticArg
| StaticArg ˆ StaticArg
| StaticArg per StaticArg
| DUPreOp StaticArg
| StaticArg DUPostOp
| TypeRef
| (StaticArg)

DUPreOp ::= square
| cubic
| inverse

DUPostOp ::= squared
| cubed

154

Expr ::= UnitExpr
UnitExpr ::= UnitRef

| Expr UnitRef
| Expr · UnitRef
| Expr / UnitRef
| Expr per UnitRef
| Expr in UnitRef

UnitRef ::= StaticArg

There are special type-like constructs called dimensions that are separate from other types (described in Chapter 8).
There are also special constructs that modify types and values called units that are instances of dimensions. These are
used to describe physical quantities.

The Fortress standard libraries define dimensions and units for the standard SI system of measurement based on meters,
kilograms, seconds, amperes, and so on (as described in Section 29.1). The Fortress standard libraries also provide
supplemental units of measurement, such as feet and miles (as described in Section 29.2). For example, the Fortress
standard libraries provide a dimension named Length whose default unit is named meter and abbreviated m_. By
rendering convention, this abbreviation is rendered in roman type without the underscore: m . In contrast, the variable
m is rendered as in standard mathematical notation: m . See Section 5.17 for a discussion of formatting conventions
for tokens.

For readability, plural forms of the unit names are defined as equivalent to the corresponding singular forms; thus one
can write meters per second , for example. Standard SI prefixes may be used on both the name and the symbol, so
that nanometer and nm are also units of the dimension named Length , related to meter and m by a conversion
factor of 10−9.

Every dimension may have a default unit that is used for representing values of quantities of that dimension if no unit
is specified explicitly. The Fortress standard libraries define these default dimensions and units:

Length meter MagneticFlux weber
Mass kilogram MagneticFluxDensity tesla
Time second Inductance henry
Frequency hertz Velocity meters per second
Force newton Acceleration meters per second squared
Pressure pascal Angle radian
Energy joule SolidAngle steradian
Power watt LuminousIntensity candela
Temperature kelvin LuminousFlux lumen
Area square meter Illuminance lux
Volume cubic meter RadionuclideActivity becquerel
ElectricCurrent ampere AbsorbedDose gray
ElectricCharge coulomb DoseEquivalent sievert
ElectricPotential volt AmountOfSubstance mole
Capacitance farad CatalyticActivity katal
Resistance ohm MassDensity kilograms per cubic meter
Conductance siemens

In addition, the Fortress standard libraries define the dimension Information with units bit and byte (and the plurals
bits and bytes), a byte being equal to 8 bits . To avoid confusion, SI prefixes are not provided for these units; instead,
programmers must use appropriate powers of 2 or 10, for example 106bits or 220bits .

Here are some examples of the use of dimensions and units:

x: R64 Length = 1.3 m
t: R64 Time = 5 s

155

v: R64 Velocity = x/t
w: R64 Velocity in nm/s = 17 nm/s
x: R64 Velocity in furlongs per fortnight = v in furlongs per fortnight

Dimensions and units can be multiplied, divided, and raised to rational powers to produce new dimensions and units.
Both the numerator and the denominator of a rational power of a dimension or a unit must be a valid nat parameter
instantiation (as described in Section 11.2). Multiplication can be expressed using juxtaposition or · ; division can be
expressed using / or per . The syntactic operators square and cubic may be applied to a dimension or unit in order
to raise it to the second power, third power, respectively; the special postfix syntactic operators squared and cubed
may be used for the same purpose. The syntactic operator inverse may be applied to a dimension or unit to divide it
into 1. All of these syntactic operators are merely syntactic sugar, expanded before type checking.

grams per cubic centimeter
meter per second squared
inverse ohms

One can also write 1/X as a synonym for X−1 if X is either a dimension or a unit.

Most numerical values in Fortress are dimensionless quantity values. Multiplying or dividing a dimensionless value
by a unit produces a dimensioned value; thus 5 s is the dimensioned value equal to five seconds, which has numerical
value 5 and second for its unit. A dimensioned value may also be multiplied or divided by a unit, and the result is to
combine the units; the expression (17 nm)/s first multiplies 17 by nm to produce the dimensioned value seventeen
nanometers, which is then divided by the unit s to produce seventeen nanometers per second.

The unit of a dimensioned value may be changed to another unit of the same dimension by using the in operator,
which takes a quantity to its left and a unit to its right. The in operator changes the unit and multiplies or divides
the numerical value by an appropriate conversion constant so as to preserve the overall dimensioned value. Thus
1.3 m in nm produces 1300000000 nm .

Multiplying or dividing a dimensionless numerical type by a unit produces an equivalent dimensioned numerical type
with that unit associated; thus R64 meter is a type that is just like R64 but whose values are values of dimension
Length measured in meters . A dimensioned numerical type may be further multiplied or divided by a unit. As a
convenience, if a dimension has a default unit, a numerical type may also be multiplied or divided by a dimension, in
which case the result is as if the default unit for that dimension had been used. The in operator may also be used to
change the unit associated with a dimensioned type; in this situation the effect is merely to alter the unit associated
with the type; no numerical operation is performed at run time.

Certain aggregate types, such as Vector , may also have associated units.

There are two reasons for using dimensions and units. One is that the in operator can supply conversion factors
automatically. The other is that certain programming errors may be detected at compile time. When dimensioned
values are added, subtracted, or compared, it is a static error if the units do not match. When dimensioned values are
multiplied or divided, their units are multiplied or divided. When taking the square root of a dimensioned value, the
unit of the result is the square root of the argument’s unit. Other numerical functions, such as sin and log , require
dimensionless arguments.

A variable whose declared type includes a dimension without an accompanying unit is understood to have the default
unit for that dimension. Thus, in most cases, the runtime unit of an expression can be statically inferred. However,
there are exceptions. For example, consider the following declaration:

a : Object[3] = [5 mg, 3 m, 4 s]

Now suppose we declare a function that takes an array of objects and returns one of its elements:

f(xs : Object[3]) = xs1

156

The value of the call f(a) is 3 m . However, the static type of f(a) is simply Object . When the value 3 m is placed
in an array of objects, the value is boxed, and the unit associated with the value must be included as part of the boxed
value. However, unboxed values need not include unit information at runtime, as this information is statically evident
in such cases.

There are also special static parameters for units and dimensions; see Section 11.4.

157

Chapter 19

Tests and Properties

Fortress supports automated program testing. Components and APIs can declare tests. Test declarations specify
explicit finite collections over which the test is run. Components, APIs, traits, and objects can declare properties
which describe boolean conditions that the enclosing construct is expected to obey. Tests and properties may modify
the program state.

19.1 The Purpose of Tests and Properties

To help make programs more robust, Fortress programs are allowed to include special constructs called tests and
properties. Tests consist of test data along with code that can be run on that data. Properties are documentation used
to describe the behavior of the traits and functions of a program; they can be thought of as comments written in a
formal language. For each property, there is a special function that can be called by a program’s tests to ensure that
the property holds for specific test data.

A fortress includes hooks to allow programmers to run a specific test on an executable component, and to run all tests
on such a component. A particularly useful time to run the tests of an executable component is at component link
time; errors in the behavior of constituent components can be caught before the linked program is run.

19.2 Test Declarations

Syntax:
TestDecl ::= test Id [GeneratorList] = Expr
GeneratorList ::= Generator(, Generator)∗

Generator ::= Id←Expr
| (Id , IdList)←Expr
| Expr

IdList ::= Id(, Id)∗

A test declaration begins with test followed by an identifier, a list of zero or more generators (described in Sec-
tion 13.14) enclosed in square brackets, the token = , and a subexpression. When a test is run (See Section 22.7), the
subexpression is evaluated in each extension of the enclosing environment corresponding to each point in the cross
product of bindings determined by the generators in the generator list.

For example, the following test:

158

test fxLessThanFy [x← E, y ← F] = assert(f(x) < f(y))

checks that, for each value x supplied by generator E, and for each value y supplied by generator F , f(x) is less than
f(y) .

19.3 Other Test Constructs

Syntax:
UniversalMod ::= test

The test modifier can also appear on a function definition, trait definition, object definition, or top-level variable
definition. In these contexts, the modifier indicates that the program construct it modifies can be referred to by a
test. Functions with modifier test must not be overloaded with functions that do not have modifier test , and traits
with modifier test must not be extended by traits or objects that do not have modifier test . The collection of all
constructs in a program that include modifier test are referred to collectively as the program’s tests. Tests can refer
to non-tests but it is a static error for a non-test to refer to any test.

For example, we can write the following helper function:

test ensureApplicationFails(g, x) = do
applicationSucceeded := false
try
g(x)
applicationSucceeded := true

catch e
Exception⇒ ()

end
if applicationSucceeded then

fail “Application succeeded!”
end

end

The library function fail displays the error message provided and terminates execution of the enclosing test.

19.4 Running Tests

When a program’s tests are run, the following actions are taken:

1. All top-level definitions, including constructs beginning with modifier test , are initialized. A test declaration
with name t declares a function named t that takes a tuple of parameters corresponding to the variables bound
in the generator list of the test declaration. For each variable v in the generator list of t, if the type of generator
supplied for v is GeneratorJαK then the parameter in the function corresponding to v has type α . The return
type of the function is () .

Each such function bound in this manner is referred to as a test function. Test functions can be called from the
rest of the program’s tests.

2. Each test t in a program is run in each extension of t’s enclosing environment with a point in the cross product
of bindings determined by the generators in the test’s generator list.

159

19.5 Test Suites

In order to allow programmers to run strict subsets of all tests defined in a program, Fortress allows tests to be
assembled into test suites.

The convenience object TestSuite is defined in the Fortress standard libraries. An instance of this object contains a
set of test functions that can all be called by invoking the method run :

test object TestSuite(testFunctions = {})
add(f : ()→ ()) = testFunctions.insert(f)

run() =
for t← testFunctions do
t()

end
end

Note that all tests in a TestSuite are run in parallel.

19.6 Property Declarations

Syntax:
PropertyDecl ::= property (Id =)? (∀ ValParam)? Expr
ValParam ::= BindId

| (Params?)
BindId ::= Id

|
Params ::= (Param ,)∗ (Varargs ,)? Keyword(,Keyword)∗

| (Param ,)∗ Varargs
| Param(, Param)∗

VarargsParam ::= Id : TypeRef ...
Varargs ::= VarargsParam
Keyword ::= Param = Expr
PlainParam ::= BindId IsType?

| TypeRef
Param ::= PlainParam

Components and APIs may include property declarations, documenting boolean conditions that a program is expected
to obey. Syntactically, a property declaration begins with property followed by an optional identifier followed by the
token = , an optional value parameter, which may be a tuple, preceded by the token ∀ , and a boolean subexpression.
In any execution of the program, the boolean subexpression is expected to evaluate to true at any time for any binding
of the property declaration’s parameter to any value of its declared type. When a property declaration includes an
identifier, the property identifier is bound to a function whose parameter and body are that of the property, and whose
return type is Boolean . A function bound in this manner is referred to as a property function.

Properties can also be declared in trait or object declarations. Such properties are expected to hold for all instances of
the trait or object and for all bindings of the property’s parameter. If a property in a trait or object includes a name,
the name is bound to a method whose parameter and body are that of the property, and whose return type is Boolean .
A method bound in this manner is referred to as a property method. A property method of a trait T can be called, via
dotted method notation, on an instance of T .

160

Property functions and methods can be referred to in a program’s tests. If the result of a call to a property function or
method is not true , a TestFailure exception is thrown. For example, we can write:

property fIsMonotonic = ∀(x: Z, y: Z) (x < y)→ (f(x) < f(y))

test s : SetJZK = {−2000, 0, 1, 7, 42, 59, 100, 1000, 5697}
test fIsMonotonicOverS [x← s, y ← s] = fIsMonotonic(x, y)
test fIsMonotonicHairy [x← s, y ← s] = fIsMonotonic(x, x2 + y)

The test fIsMonotonicOverS tests that function f is monotonic over all values in set s . The test fIsMonotonicHairy
tests that f is monotonic with respect to the values in s compared to the set of values corresponding to all the ways in
which we can choose an element of s , square it, and add it to another element of s .

161

Chapter 20

Type Inference

Type inference in Fortress is performed independently on each simple component (described in Chapter 22). For
separation of concerns, in this chapter, we describe the Fortress type inference as a procedure performed over a whole
Fortress program. We explain how this procedure can be adapted to perform type inference over a simple program
component in Section 22.5. Note that type inference cannot be performed on each functional (function or method)
declaration in isolation because it may be declared mutually recursively or may contain free variables.

20.1 What Is Inferred

Types of functional parameters, functional results, and variables may be elided in a program where they can be inferred
automatically. Similarly, instantiations of static parameters of generic functional invocations may be elided where they
can be inferred automatically. A Fortress compiler must allow types and static arguments inferable via the procedure
described in Section 20.2 to be elided, no more and no less. This strict requirement is made for the sake of source-code
portability; it is important that a program that compiles on one compiler will compile on all compilers. Of course,
there is nothing preventing a development environment from aiding programmers by performing more sophisticated
analyses and filling in additional information, but the text produced is not a valid Fortress program unless all elided
types and static arguments can be inferred via the described procedure.

20.2 Type Inference Procedure

To perform type inference, we first infer any elided parameter type in each functional declaration that can be inferred
from other declaration as follows:

1. If the declaration is a functional declaration and the type of the declared functional is declared via a separate
declaration, any elided parameter type is inferred to have the type provided by the separate declaration.

2. Otherwise, if the declaration is a method declaration that overloads a method declaration provided by a super-
trait, any elided parameter type is inferred to have the type provided (or inferred) by the overloaded method
declaration.

All remaining parameter types are inferred along with instantiations of static parameters.

In the following, we adopt the convention of writing “primed” static variables, T ′0, ..., T
′
m, U

′
0, ..., to stand for fresh

static variables. Our procedure will introduce primed static variables as placeholders that are to be replaced with

162

nonprimed types and static arguments before the termination of type inference. We abuse notation by using types to
refer to both types and static arguments when it is clear from context.

First, we annotate every expression e that is not a functional application with a fresh static variable (written here as a
superscript):

eT ′

and every functional application f(a0, ..., an) (where f is the name of a generic functional) with fresh static variables
for the instantiation of each of the functional’s static parameters as well as a superscript:

fJT ′0, ..., T ′m−1K(a0, ..., an)T ′
m

and every functional parameter x without a declared type with fresh static variable as its declared type:

x:T ′

We say that a functional application is an outermost functional application if and only if it is not a proper subexpression
of another functional application.

For each outermost functional application:

fJT ′0, ..., T ′m−1K(a0, ..., an)T ′
m

let fJR0, ..., Rm−1K(p0:S0, ..., pn:Sn):Rm be a declaration of f . Some of the types and static parameters appearing
at the declaration might be primed static variables themselves.

Note that there may be several declarations of f due to overloading. When there are multiple declarations for f , type
inference is performed to each declaration. Only the declarations to which type inference succeed are considered for
overload resolution.

We accumulate a table of subtyping constraints as follows:

First, we add the following constraint to our table:

T ′m <: [R0 7→ T ′0, ..., Rm−1 7→ T ′m−1]Rm

where we use the notation [R0 7→ T ′0, ..., Rm−1 7→ T ′m−1] to denote the safe substitution of R0, ..., Rm−1 with
T ′0, ..., T

′
m−1.

If the functional application occurs as the right-hand side of a declaration x:T = e, we add the constraint:

T ′m <: T

An analogous constraint is added if the application occurs as the right-hand-side of an assignment to a variable with
type T , or as the body of a functional with return type T , or as an expression ascripted with type T , etc. We refer to
all of these cases collectively by saying that the functional application “occurs in the context of type T ”.

Additionally, for every argument aU ′
i

i corresponding to value parameter pi, we add the following constraint:

U ′i <: [R0 7→ T ′0, ..., Rm−1 7→ T ′m−1]Si

Additionally, we add all “nested constraints” accumulated for ai, where nested constraints are accumulated as follows:

1. If ai is not a functional application or a typecase expression, the nested constraints are the union of the nested
constraints of all subexpressions of ai plus the constraint R <: U ′i , where R is the type of ai in the enclosing
context.

2. If ai is a typecase expression, only nested constraints common to all branches are accumulated. Furthermore,
static parameter instantiations of generic functional calls within each branch must be inferred independently, in
a separate table extending the constraints of the enclosing context with only those constraints available in that
branch.

163

3. If ai is a functional application, the nested constraints are all constraints accumulated for ai as if it were an
outermost generic functional application occurring in context U ′i .

Once we have accumulated all constraints for each outermost functional application, the constraints are solved in the
following phases:

1. For every cycle of constraints of naked primed static variables T ′1 <: ... <: T ′n <: T ′1, one of T ′1, ..., T
′
n is

chosen. We call the chosen naked primed static variable T ∗. All occurrences of T ′1, ..., T
′
n in the constraints and

throughout the program are replaced with T ∗. Redundant constraints are eliminated. This process is repeated
until a fixed point is reached.

2. For every naked primed static variable T ′, consider the set of all subtype constraints on T ′: T ′ <: U1, ...T
′ <:

Un. The unexpanded inferred least upper bound for T ′ is the intersection type (described in Section 8.8) U1 ∩
... ∩ Un.

3. If some primed static variable R′ appears in one of the Ui in the unexpanded inferred least upper bound for T ′

and R′ does not appear within a type constructor, R′ is replaced with its own unexpanded inferred type. This
process is repeated until a fixed point is reached.

If T ′ is expanded to a type with no primed variables, this phase is done. If T ′ is expanded to a type containing no
primed variables except T ′, the expansion E of T ′ is replaced with a fixed-point type µT ′.E. Fixed-point types
are needed to express types that would be “infinitely” large if expanded out into conventional ground types. We
have the following property for fixed-point types: µX.E = [X 7→ µX.E]E. Otherwise, T ′ is inferred to have
type Object .

4. For every naked primed static variable T ′, consider the set of all supertype constraints on T ′: V1 <: T ′, ...Vn <:
T ′. The unexpanded inferred greatest lower bound for T ′ is the union type (described in Section 8.8) V1∪...∪Vn.
This type is expanded analogously to the procedure used for the intersection of T ′.

5. The inferred type for a static variable T ′ is the intersection of the expanded inferred least upper bound and the
expanded inferred greatest lower bound for T ′. For the purposes of type checking, the inferred type is put into
clausal normal form as a canonical form, eliminating redundant clauses.

20.3 Finding “Closest Expressible Types” for Inferred Types

Once solutions to the primed variables are inferred, we must find the closest expressible type to each inferred type.
Expressible types are all types that are neither intersection types nor union types and that syntactically contain only
expressible types. Note that fixed-point types are expressible types as in the Java type inference.

1. Given an intersection type S1 ∩ ... ∩ Sn, if there is a unique most general expressible type T such that T is
a subtype of S1, ..., Sn, then T is the closest expressible type to S1 ∩ ... ∩ Sn. If there is not a unique most
general expressible type, then the close expressible type is the closest expressible supertype of the multiple
closest expressible types; this process is guaranteed to terminate because the type hierarchy is rooted at type
Object .

2. Given a union type S1∪...∪Sn, if there is a unique most specific expressible type T such that T is a supertype of
S1, ..., Sn, then T is the closest expressible type to S1∪ ...∪Sn. If there is not a unique most general expressible
type, then the close expressible type is the closest expressible supertype of the multiple closest expressible types.

3. Given a generic type instantiation CJS1, ..., SnK, where some of the S1, ..., Sn are not expressible, the closest
expressible type is CJE(S1), ..., E(Sn)K where E(Si) is the closest expressible type to Si.

Each primed type in a program is replaced with the closest expressible type to its solution. Any remaining primed
types that have not yet been inferred are then inferred to have type Object .

164

Chapter 21

Memory Model

Fortress programs are highly multithreaded by design; the language makes it easy to expose parallelism. However,
many Fortress objects are mutable; without judicious use of synchronization constructs—reductions and atomic
expressions—data races will occur and programs will behave in an unpredictable way. The memory model has two
important functions:

1. Define a programming discipline for the use of data and synchronization, and describe the behavior of programs
that obey this discipline. This is the purpose of Section 21.2.

2. Define the behavior of programs that do not obey the programming discipline. This constrains the optimizations
that can be performed on Fortress programs. The remaining sections of this chapter specify the detailed memory
model that Fortress programs must obey.

21.1 Principles

The Fortress memory model has been written with several important guiding principles in mind. Violations of these
principles should be taken as a flaw in the memory model specification rather than an opportunity to be exploited
by the programmer or implementor. The most important principle is this: violations of the Fortress memory model
must still respect the underlying data abstractions of the Fortress programming language. All data structures must be
properly initialized before they can be read by another thread, and a program must not read values that were never
written. When a program fails, it must fail gracefully by throwing an exception.

The second goal is nearly as important, and much more difficult: present a memory model which can be understood
thoroughly by programmers and implementors. It should never be difficult to judge whether a particular program be-
havior is permitted by the model. Where possible, it should be possible to check that a program obeys the programming
discipline.

The final goal of the Fortress memory model is to permit aggressive optimization of Fortress programs. A multi-
processor memory model can rule out optimizations that might be performed by a compiler for a uniprocessor. The
Fortress memory model attempts to rule out as few behaviors as possible, but more importantly attempts to make it
easy to judge whether a particular optimization is permitted or not. The semantics of Fortress already allows permis-
sive operation reordering in many programs, simply by virtue of the implicitly parallel semantics of tuple evaluation
and looping.

165

21.2 Programming Discipline

If Fortress programmers obey the following discipline, they can expect sequentially consistent behavior from their
Fortress programs:

• Updates to shared locations should always be performed using an atomic expression. A location is considered
to be shared if and only if that location can be accessed by more than one thread at a time. For example,
statically partitioning an array among many threads need not make the array elements shared; only elements
actually accessed by more than one thread are considered to be shared.

• Within a thread or group of implicit threads objects should not be accessed through aliased references; this can
yield unexpected results. Section 21.2.3 defines the notion of apparently disjoint references. An object should
not be written through one reference when it is accessed through another apparently disjoint reference.

The following stylistic guidelines reduce the possibility of pathological behavior when a program strays from the
above discipline:

• Where feasible, reduction should be used in favor of updating a single shared object.

• Immutable fields and variables should be used wherever practical. We discuss this further in Section 21.2.1.

• A getter or a setter should behave as though it is performing a simple field access, even if it internally accesses
many locations. The simplest (but not necessarily most efficient) way to obtain the appropriate behavior is to
make hand-coded accessors atomic . Section 21.2.2 expands on this.

21.2.1 Immutability

Recall from Section 4.3 that we can distinguish mutable and immutable memory locations. Any thread that reads
an immutable field will obtain the initial value written when the object was constructed. In this regard it is worth
re-emphasizing the distinction between an object reference and the object it refers to. A location that does not contain
a value object contains an object reference. If the field is immutable, that means the reference is not subject to change;
however, the object referred to may still be modified in accordance with the memory model.

By contrast, recall that all the fields of a value object are immutable; however, a mutable location may have a value type.
Such a location can be written, completely replacing the value object it contains. Similarly, reading the value contained
in such a location conceptually causes the entire value object to be read; if this isn’t followed by an immediate field
reference, the read must be performed atomically. This may potentially be expensive (see Section 21.3).

21.2.2 Providing the Appearance of a Single Object

In practice, most accesses to fields occur through a mediating getter or setter method. It should not be possible for the
programmer to tell whether a given getter or setter directly accesses a field or if it performs additional computations.
Similarly, any subscripting operation must be indistinguishable from accessing a single field. Thus, accessor methods
and subscripting methods should provide the appearance of atomicity, as described in Section 21.3. The Fortress
standard libraries are written to preserve this abstraction. For example, the Array type in Fortress makes use of one or
more underlying HeapSequences, and array subscripting preserves the atomicity guarantees of this underlying object.

21.2.3 Modifying Aliased Objects

In common with Fortran, and unlike most other popular programming languages, Fortress gives special treatment to
accesses to a location through different aliases. For the purposes of variable aliasing, it is important to define the notion

166

of apparently disjoint (or simply disjoint) object and field references. If two references are not disjoint, we say they
are certainly the same, or just the same. By contrast, we say object references are identical if they refer to the same
object, and distinct otherwise. Accesses to fields reached via apparently disjoint object references may be reordered
(except an initializing write is never reordered with respect to other accesses to the identical location).

Distinct references are always disjoint. Two identical references are apparently disjoint if they are obtained from any
of the following locations:

• distinct parameters of a single function call

• distinct fields

• a parameter and a field

• identically named fields read from apparently disjoint object references

• distinct reads of a single location for which there may be an interposing write

When comparing variables defined in different scopes, these rules will eventually lead to reads of fields or to reads of
parameters in some common containing scope.

We extend this to field references as follows: two field references are apparently disjoint if they refer to distinct fields,
or they refer to identically named fields read from apparently disjoint object references.

Consider the following example:

f(x : Z64[2], y : Z64[2]) : Z64 = do
x0 := 17
y0 := 32

end

Here x and y in f are apparently disjoint; the writes may be reordered, so the call f(a, a) may assign either 17 or 32
to a0 .

A similar phenomenon occurs in the following example:

g(x : Z64[2], y : Z64[2]) : Z64 = do
x0 := 17
y0

end

Again x and y are apparently distinct in g , so the write to x0 and the read of y0 may be reordered. The call g(a, a)
will assign 17 to a0 but may return either the former value of a0 or 17.

It is safe to read an object through apparently disjoint references:

h(x : Z64[2], y : Z64[2]) : Z64 = do
u : Z64 = x0

v : Z64 = y0
u+ v

end

A call to h(a, a) will read a0 twice without ambiguity. Note, however, that the reads may still be reordered, and if
a0 is written in parallel by another thread this reordering can be observed.

If necessary, atomic expressions can be used to order disjoint field references:

f ′(x : Z64[2], y : Z64[2]) : () = do
atomic x0 := 17
atomic y0 := 32

end

167

Here the call f(a, a) ends up setting a0 to 32. Note that simply using a single atomic expression containing one or
both writes is not sufficient; the two writes must be in distinct atomic expressions to be required to occur in order.

When references occur in distinct calling contexts, they are disambiguated at the point of call:

j(x : Z64[2], y : Z64) : () = x0 := y
k(x : Z64[2]) : () = do
j(x, 17)
j(x, 32)

end
l(x : Z64[2], y : Z64[2]) : () = do
j(x, 17)
j(y, 32)

end

Here if we call k(a) the order of the writes performed by the two calls to j is unambiguous, and a0 is 32 in the
end. By contrast, l(a, a) calls j with two apparently disjoint references, and the writes in these two calls may thus be
reordered.

21.3 Read and Write Atomicity

Any read or write to a location is indivisible. In practical terms, this means that each read operation will see exactly the
data written by a single write operation. Note in particular that indivisibility holds for a mutable location containing
a large value object. It is convenient to imagine that every access to a mutable location is surrounded by an atomic
expression. However, there are a number of ordering guarantees provided by atomic accesses that are not respected
by non- atomic accesses.

21.4 Ordering Dependencies among Operations

The Fortress memory model is specified in terms of two orderings: dynamic program order (see Chapter 4 and Chap-
ter 13) and memory order. The actual order of memory operations in a given program execution is memory order, a
total order on all memory operations. Dynamic program order constrains memory order. However, memory operations
need not be ordered according to dynamic program order; many memory operations, even reads and writes to a single
field or array element, can be reordered. Programmers who adhere to the model in Section 21.2 can expect sequentially
consistent behavior: there will be a global ordering for all memory operations that respects dynamic program order.

Here is a summary of the salient aspects of memory order:

• There is a single memory order which is respected in all threads.

• Every read obtains the value of the immediately preceding write to the identical location in memory order.

• Memory order on atomic expressions respects dynamic program order.

• Memory order respects dynamic program order for operations that certainly access the same location.

• Initializing writes are ordered before any other memory access to the same location.

21.4.1 Dynamic Program Order

Much of the definition of dynamic program order is given in the descriptions of individual expressions in Chapter 13.
It is important to understand that dynamic program order represents a conceptual, naive view of the order of operations

168

in an execution; this naive view is used to define the more permissive memory order permitted by the memory model.
Dynamic program order is a partial order, rather than a total order; in most cases operations in different threads will
not be ordered with respect to one another. There is an important exception: there is an ordering dependency among
threads when a thread starts or must be complete.

An expression is ordered in dynamic program order after any expression it dynamically contains, with one exception: a
spawn expression is dynamically ordered before any subexpression of its body. The body of the spawn is dynamically
ordered before any point at which the spawned thread object is observed to have completed.

Only expressions whose evaluation completes normally occur in dynamic program order, unless the expression is
“directly responsible” for generating abrupt termination. Examples of the latter case are throw and exit expressions
and division by zero. In particular, when the evaluation of a subexpression of an expression completes abruptly,
causing the expression itself to complete abruptly, the containing expression does not occur in dynamic program
order. A label block is ordered after an exit that targets it. The expressions in a catch clause whose try block
throws a matching exception are ordered after the throw and before any expression in the finally clause. If the
catch completes normally, the try block as a whole is ordered after the expressions in the finally clause. For
this reason, when we refer to the place of non- spawn expression in dynamic program order, we mean the expression
or any expression it dynamically contains.

For any construct giving rise to implicit threads—tuple evaluation, function or method call, or the body of an expres-
sion with generators such as for—there is no ordering in dynamic program order between the expression executed
in each thread in the group. These subexpressions are ordered with respect to expressions which precede or succeed
the group.

When a function or method is called, the body of the function or method occurs dynamically after the arguments and
function or receiver; the call expression is ordered after the body of the called function or method.

For conditional expressions such as if , case , and typecase , the expression being tested is ordered dynamically
before any chosen branch. This branch is in turn ordered dynamically before the conditional expression itself.

Iterations of the body of a while loop are ordered by dynamic program order. Each evaluation of the guarding
predicate is ordered after any previous iteration and before any succeeding iteration. The while loop as a whole is
ordered after the final evaluation of the guarding predicate, which yields false .

An iteration of the body of a for loop, and each evaluation of the body expression in a comprehension or big operator,
is ordered after the generator expressions.

21.4.2 Memory Order

Memory order gives a total order on all memory accesses in a program execution. A read obtains the value of the most
recent prior write to the identical location in memory order. In this section we describe the constraints on memory
order, guided by dynamic program order. We can think of these constraints as specifying a partial order which must
be respected by memory order. The simplest constraint is that accesses certainly to the same location must respect
dynamic program order. Apparently disjoint accesses need not respect dynamic program order, but an initializing
write must be ordered before all other accesses to the identical location in program order.

Accesses in distinct (non-nested) atomic expressions respect dynamic program order. Given an atomic expression,
we divide accesses into four classes:

1. Components, dynamically contained within the atomic expression.

2. Ancestors, dynamically ordered before the atomic expression.

3. Descendants, dynamically ordered before the atomic expression.

4. Peers, dynamically unordered with respect to operations dynamically contained within the atomic expression.

169

We say an atomic expression is effective if it contains an access to a location, there is a peer access to the identical
location, and at least one of these accesses is a write. For an effective atomic expression, every peer access must
either be a predecessor or a successor. A predecessor must occur before every component and every descendant in
memory order. A successor must occur after every component and every ancestor in memory order. Every ancestor
must occur before every descendant in memory order.

The above conditions guarantee that there is a single, global ordering for the effective atomic expressions in a Fortress
program. This means that for any pair of atomic expressions A and B one of the following conditions holds:

• A is dynamically contained inside B.

• B is dynamically contained inside A.

• Every expression dynamically contained inA precedes every expression dynamically contained inB in memory
order. This will always hold when A is dynamically ordered before B.

• Every expression dynamically contained inB precedes every expression dynamically contained inA in memory
order. This will always hold when B is dynamically ordered before A.

The above rules are also sufficient to guarantee that atomic expressions nested inside an enclosing atomic behave
with respect to one another just as if they had occurred at the top level in an un-nested context.

Any access preceding a spawn in dynamic program order will precede accesses in the spawned expression in memory
order. Any access occurring after a spawned thread has been observed to complete in dynamic program order will
occur after accesses in the spawned expression in memory order.

A reduction variable in a for loop does not have a single associated location; instead, there is a distinct location for
each loop iteration, initialized by writing the identity of the reduction. These locations are distinct from the location
associated with the reduction variable in the surrounding scope. In memory order there is a read of each of these
locations each of which succeeds the last access to that variable in the loop iteration, along with a read of the location
in the enclosing scope which succeeds all accesses to that location preceding the loop in dynamic program order.
These reads are followed by a write of the location in the enclosing scope which in turn precedes all accesses to that
location that succeed the loop in dynamic program order.

Finally, reads and writes in Fortress programs must respect dynamic program order for operations that are semantically
related. If the read A precedes the write B in dynamic program order, and the value of B can be determined in some
fashion without recourse to A, then these operations are not semantically related. A simple example is if A is a
reference to variable x andB is the assignment y := x · 0 . Here it can be determined that y := 0 without recourse to
x and these variables are not semantically related. By contrast, the write y := x is always semantically related to the
read of x . Note that two operations can only be semantically related if a transitive data or control dependency exists
between them.

170

Chapter 22

Components and APIs

Fortress programs are developed, compiled, and deployed as encapsulated upgradable components that exist not only
as programming language features, but also as self-contained run-time entities that are managed throughout the life of
the software. The imported and exported references of a component are described with explicit APIs. With components
and APIs, Fortress provides the stability benefits of static linking with the sharing and upgrading benefits of dynamic
linking. 1 In addition to an informal description of the component system in this chapter, we also formally specify key
functionality of the system, and illustrate how we can reason about the correctness of the system in Appendix C.

22.1 Overview
Syntax:

File ::= CompilationUnit
| Imports? Exports Decls?
| Imports? AbsDecls
| Imports AbsDecls?

CompilationUnit ::= Component
| Api

Components are the fundamental structure of Fortress programs. They export and import APIs, which serve as “inter-
faces” of the components. Components do not refer directly to other components. Rather, all external references are
to APIs imported by the component. These references are resolved by linking components together: the references of
a component to an imported API are resolved to a component that exports that API. Linking components produces
new components, whose constituents are the components that were linked together.

Components are similar to modules in other programming languages, such as those of ML and Scheme [20, 16, 15].
But, unlike modules in those languages, components are designed for use during both development and deployment
of software. In addition to compilation and linking, components can be produced by upgrading one component using
another component that exports some of the APIs exported by the first component.

A key aspect of Fortress components is that they are encapsulated, so that upgrading one component does not affect any
other component, even those produced by linking with the component that was upgraded. Abstractly, each component
has its own copy of its constituents. However, implementations are expected to share common constituents when
possible.

Users do not manipulate components directly. Instead, every component is installed in a persistent database on the
system. We think of this database, which we call a fortress, as the agent that actually performs operations such as

1The system described in this chapter is based on that described in [2].

171

compilation, linking, upgrading, and execution of components: a virtual machine, a compiler, and a library registry
all rolled into one. A fortress also maintains a list of APIs that are installed on it. A fortress also provides a shell by
which the user can issue commands to it. Components and APIs are immutable objects. A fortress maps names to
components installed on the system. The fortress operations are modeled as methods of the fortress that change the
mapping.

The ways in which fortresses are actually realized on particular platforms are beyond the scope of this specification.
An implementor might choose to instantiate a fortress as a process, or as a persistent object database stored in a file
system, with fortress operations being implemented as scripts that manipulate this database.

We call the source code for a single software component a project. Typically, when a project written in other pro-
gramming languages is compiled, each file in the project is separately compiled. To ship an application, these files are
linked together to form an application or library. Fortress uses a different model: a project is compiled directly into a
single component, which is installed in the compiling fortress.

From the point of view of the compiler, all the source code for a project is contained in a single file. This approach sim-
plifies the design but it is unworkable for components of substantial size. Therefore, the compiler can be instructed to
concatenate several source files together before compiling, while maintaining the original source location information.

After these components are compiled from source files, they can then be linked together to form larger components.

22.2 Components
Syntax:

Component ::= component DottedId Imports? Exports Decls? end
Imports ::= Import+

Import ::= import ImportFrom
| import AliasedDottedIds

ImportFrom ::= * (except Names)? from DottedId
| AliasedNames from DottedId

Names ::= Name
| { NameList }

NameList ::= Name(, Name)∗

AliasedNames ::= AliasedName
| { AliasedNameList }

AliasedName ::= Id (as DottedId)?
| opr Op (as Op)?
| opr LeftEncloser RightEncloser (as LeftEncloser RightEncloser)?

AliasedNameList ::= AliasedName(, AliasedName)∗

AliasedDottedIds ::= AliasedDottedId
| { AliasedDottedIdList }

AliasedDottedId ::= DottedId (as DottedId)?
AliasedDottedIdList ::= AliasedDottedId(, AliasedDottedId)∗

Exports ::= Export+

Export ::= export DottedIds
DottedIds ::= DottedId

| { DottedIdList }
DottedIdList ::= DottedId(, DottedId)∗

Decls ::= Decl+

In this specification, we will refer to components created by compiling a file as simple components, while components
created by linking components together will be known as compound components.

172

The source code of a simple component definition begins with component followed by a possibly qualified name (an
identifier or a sequence of identifiers separated by periods with no intervening whitespace), followed by a sequence of
import statements, and a sequence of export statements, and finally a sequence of declarations.

An import statement either imports an API and allows the specified names (separated by commas) declared in the API
to be referred to with their unqualified names:

import {name+} from apiName

or imports an API as another name:

import apiName as anotherAPIName

For convenience, an import statement can import an API and allow all elements declared in that API to be referred to
with unqualified names:

import * from apiName

or can import an API and allow all elements except the specified names (separated by commas) declared in that API
to be referred to with unqualified names:

import * except {name+} from apiName

If multiple elements with conflicting names are imported from separate APIs, all references to those elements within
the component definition must be fully qualified. An export statement specifies the APIs that the component exports.

Every component implicitly imports the Fortress core APIs; every fortress has at least one component implementing
all of these APIs. A preferred component exporting these APIs (configurable by the user) is implicitly linked to every
component installed in the fortress.

An API (described in Section 22.3) is an interface of a component. A component must provide a declaration, or a set of
declarations, that satisfies every top-level declaration in any API that it exports, as described below. A component may
include declarations that do not participate in satisfying any exported declaration (i.e., a declaration of any exported
API), and in particular, no declaration modified by private participates in satisfying any exported declaration. Such
declarations are not visible from outside the component.

Type aliases and dimension, unit, test and property declarations are satisfied only by declarations that are the same.2

A top-level variable declaration declaring a single variable is satisfied by any top-level variable declaration that declares
the name with the same type (in the component, the type may be inferred). A top-level variable declaration declaring
multiple variables is satisfied by a set of declarations (possibly just one) that declare all the names with their respective
types (which again, may be inferred). In either case, the mutability of a variable must be the same in the exported and
satisfying declarations. A top-level variable declaration declaring a single immutable variable with arrow type P → R
is also satisfied by a set of top-level function and functional method declarations if the union of their parameter types
is P and each of their return types is a subtype of R . Thus, an abstract function declaration in the form of variable
declarations in an API need not be replicated in a component exporting that API.

A top-level function declaration is satisfied by a set of top-level function and functional method declarations the union
of whose parameter types is the parameter type of the exported declaration, and each of whose return types is a subtype
of the return type of the exported declaration.

A trait or object declaration is satisfied by a declaration that has the same header,3 and contains, for each field declara-
tion and non-abstract method declaration in the exported declaration, a satisfying declaration (or a set of declarations).
If a trait declaration (in an API) has a comprises clause containing “ . . . ”, then the comprises clause of its satis-
fying declaration must contain all the types listed in the declaration in the API but it cannot contain “ . . . ”; instead, it

2The declarations are compared after ASCII conversion and scanning, and differences in the characters within whitespace elements is permitted
provided they do not change whether the whitespace element is line-breaking.

3The order of the modifiers, the clauses, and the types in the extends , excludes and comprises clauses may differ.

173

may contain other types declared in the component provided that those types are not declared by the API. A field dec-
laration is satisfied by a (possibly implicit) getter and/or setter declaration, depending on whether the field is declared
to be hidden and/or settable by the exported declaration. A method declaration is satisfied by a set of method
declarations the union of whose parameter types is the parameter type of the exported declaration, and each of whose
return types is a subtype of the return type of the exported declaration. A satisfying trait or object declaration may
contain method and field declarations not exported by the API but these may not be overloaded with method or field
declarations provided by (contained in or inherited by) any declarations exported by the API.

For functional declarations, recall that several functional declarations may define the same entity (i.e., they may be
overloaded). Given a set of overloaded declarations, it is not permitted to export some of them and not others.

When a component is compiled, the APIs it refers to must be present in the fortress. The import statements in a
component are not a way to abbreviate unqualified names of objects or functions. In our system, an import statement
merely allows references to the imported API to appear in the component definition. References to elements of an
imported API must be fully qualified unless they are imported by an import statement with a from clause. When a
component imports a functional f (either a top-level function or a functional method) by an import statement with a
from clause, the imported f may be overloaded with a functional f declared by the component. When a component
imports a top-level declaration f from an API A, all the relevant types to type check the uses of f are implicitly
imported from A. However, these implicitly imported types for type checking are not expressible by programmers;
programmers must import the types explicitly by import statements to use them.

A key design choice we make is to require that components never refer to other components directly; all external
references are to APIs. This requirement allows programmers to extend and test existing components more easily,
swapping new implementations of libraries in and out of programs at will.

One important restriction on components is that no API may be both imported and exported by the same compo-
nent. This restriction is required throughout to ground the semantics of operations on components, as discussed in
Section 22.7.

Every component has a unique name, used for the purposes of component linking. This name includes a user-provided
identifier. In the case of a simple component, the identifier is determined by a component name given at the top of the
source file from which it is compiled. A build script may keep a tally on version numbers and append them to the first
line of a component, incrementing its tally on each compilation. The name of a compound component is specified as
an argument to the link operation (described in Section 22.7) that defines it.

Component equivalence is determined nominally to allow mutually recursive linking of components. By programmer
convention, identifiers associated with components that are not included in the Fortress standard libraries begin with
the reverse of the URL of the development team. A fortress does not allow the installation of distinct components with
the same name. Component names are used during link and upgrade operations to ensure that the restrictions on
upgrades to a component are respected, as explained in Section 22.7.

Every component also includes a vendor name, the name of the fortress it is compiled on, and a timestamp, denoting
the time of compilation. The time of compilation is measured by the compiling fortress, and the name of the fortress
is provided by the fortress automatically. Every timestamp issued by a fortress must be unique. The vendor name
typically remains the same throughout a significant portion of the life of a user account, and is best provided as a user
environment variable.

In our examples, we use published descriptions of packages in the Java 6.0 API [28] as examples of APIs expressible
in our component system. We use, as names for these APIs, the names of the corresponding Java packages, with
java replaced with Fortress . For example, the following is the beginning of a source file for a fictional application
IronCrypto :

component Com.Sun.IronCrypto

import Fortress.IO
import Fortress.Security

174

export Fortress.Crypto
. . .
end

22.3 APIs

Syntax:
Api ::= api DottedId Imports? AbsDecls? end
AbsDecls ::= AbsDecl+

AbsDecl ::= AbsTraitDecl
| AbsObjectDecl
| AbsVarDecl
| AbsFnDecl
| DimUnitDecl
| TypeAlias
| TestDecl
| PropertyDecl
| AbsExternalSyntax

AbsTraitDecl ::= TraitHeader AbsGoInATrait? end
AbsGoInATrait ::= AbsGoFrontInATrait AbsGoBackInATrait?

| AbsGoBackInATrait
AbsGoFrontInATrait ::= AbsGoesFrontInATrait+

AbsGoesFrontInATrait ::= ApiFldDecl
| AbsGetterSetterDecl
| PropertyDecl

AbsGoBackInATrait ::= AbsGoesBackInATrait+

AbsGoesBackInATrait ::= AbsMdDecl
| AbsCoercion
| PropertyDecl

AbsObjectDecl ::= ObjectHeader AbsGoInAnObject? end
AbsGoInAnObject ::= AbsGoFrontInAnObject AbsGoBackInAnObject?

| AbsGoBackInAnObject
AbsGoFrontInAnObject ::= AbsGoesFrontInAnObject+

AbsGoesFrontInAnObject ::= ApiFldDecl
| AbsGetterSetterDecl
| PropertyDecl

AbsGoBackInAnObject ::= AbsGoesBackInAnObject+

AbsGoesBackInAnObject ::= AbsMdDecl
| AbsCoercion
| PropertyDecl

AbsCoercion ::= widening ? coercion StaticParams?(Id IsType)CoercionClauses
ApiFldDecl ::= ApiFldMods? Id IsType
ApiFldMods ::= ApiFldMod+

ApiFldMod ::= hidden | settable | UniversalMod
AbsVarDecl ::= VarWTypes

| VarWoTypes : TypeRef ...
| VarWoTypes : SimpleTupleType

APIs are compiled from special API definitions. These are source files which declare the entities declared by the API,
the names of all APIs referred to by those declarations, and prose documentation. In short, the source code of an API

175

should specify all the information that is traditionally provided for the published APIs of libraries in other languages.

The syntax of an API definition is identical to the syntax of a component definition, except that:

1. An API definition begins with api rather than component . As with components, the identifiers associated
with APIs that are not included in the Fortress standard libraries are prefixed with the reverse of the URL of the
development team.

2. An API does not include export statements. (However, it does include import statements, which name the
other APIs used in the API definition.)

3. Only declarations (but not definitions!) are included in an API definition except test and property declarations. A
method or field declaration may include the modifier abstract . (Whether a declaration includes the modifier
abstract has a significant effect on its meaning, as discussed below).

For the sake of simplicity, every identifier reference in an API definition must refer either to a declaration in a used
API (i.e., an API named in an import statement, or the Fortress core APIs, which are implicitly imported), or to a
declaration in the API itself. In this way, APIs differ from signatures in most module systems: they are not parametric
in their external dependencies.

Every API has a unique name that consists of a user-provided identifier. As with components, API equivalence is
determined nominally. Every API also includes a vendor name, the name of the fortress it is compiled on, and a
timestamp.

Component and API names exist in separate namespaces. For convenience, a compiler can also produce an API
directly from a project with the same name as the component it is derived from. Such an API includes matching
declarations of the component. All declarations in the component appear in the API.

For example, consider the APIs Fortress.IO , Fortress.Security , and Fortress.Crypto , with declarations simi-
lar to those in their respective Java packages. These APIs are interdependent. For example, both PublicKey in
Fortress.Security and SecretKey in Fortress.Crypto extend the trait Fortress.IO.Serializable and the trait CipherSpi
in Fortress.Crypto has methods that return values of type AlgorithmParameters in Fortress.Security . So the API
Fortress.Crypto must import Fortress.IO and Fortress.Security as follows:

api Fortress.Crypto

import Fortress.IO
import Fortress.Security
. . .
end

22.4 Tests in Components and APIs

A component may include definitions of tests, as described in Chapter 19. These definitions are allowed to refer to
both test and non-test code defined in the same component or declared in APIs imported by the component.

An API may also include definitions of tests. These definitions may refer to all declarations in the API as well as in
any APIs it imports. Tests defined in APIs should be thought of as “executable documentation” that partially specifies
the required behavior of the declared entities.

See Section 22.7 for an explanation of how tests defined in components and APIs are executed.

176

22.5 Type Inference for Components

Type inference for Fortress has been described as a procedure performed over a whole Fortress program in Chap-
ter 20. In this section, we explain how this procedure can be adapted to perform type inference over a simple program
component. For a compound component, concatenate all declarations of all constituents in the order specified by the
constructing link operation. Constituent compound component declarations are recursively concatenated.

Type inference over a simple component C is performed by first expanding C into a self-contained Fortress program,
as follows:

1. All program constructs corresponding to declarations in APIs exported by C are expanded so that they include
all types and static parameters included in the exported APIs.

2. All types provided by all declarations in the APIs imported byC are prepended toC. Note that these declarations
must include types for all variables, functions, fields, and methods; otherwise the APIs that declare them are not
well-formed.

3. In order for the resulting expanded program to be well-formed, we assume that all declarations in these APIs are
expanded into special definitions that include empty bodies. The empty body of such a definition is a conceptual
body which cannot be expressed directly in Fortress programs. Because declarations in APIs do not have any
elided type, type inference ignores empty bodies.

Once C is expanded, type inference is performed over all program constructs that still include elided types. Empty
bodies are ignored.

22.6 Initialization Order for Components

To ensure that all objects and all variables are initialized before their use, execution of program components proceeds
according to the procedure defined in this section. This procedure assumes that the program’s type hierarchy is already
checked to be acyclic.

If a component is a compound component, all constituent components are initialized nondeterministically, but before
first use. If a simple component has imports, take the transitive closure of all imported APIs. Collect all declarations
in this transitive closure, in any order, and prepend them to the component definition. Finally, for a simple component
without imports, initialize all top-level variables and singleton object fields as described in Chapter 4.

22.7 Basic Fortress Operations

We now describe the operations that can be performed on a fortress by developers and end-users for developing,
installing, testing, and maintaining components. We can think of these operations as commands to an interactive shell
provided by the fortress.

In this section, we discuss operations on a fortress in their most basic form, postponing the discussion of more advanced
options, including additional optional parameters, to Section 22.8. Although these more advanced options are critical
to performing some real-world tasks with components, it is easier to describe their behavior after the basic forms of
operations have been discussed.

Compile This operation takes the source code for a simple component (or API) definition and produces a new
component object (or API object) that is installed on the fortress. Its type is as follows:

compile(file:String):()

177

�
�
�
�

�
�
�
�

Fortress.IO Fortress.Crypto

IronIO IronCrypto

Fortress.IO
Fortress.Security

Figure 22.1: Simple components in box notation: A component is represented by a box, with the name of the compo-
nent at the top of the box. The arrow protruding from the upper right corner of a box is labeled with the APIs exported
by the component. The arrow pointing into the bottom of a box is labeled with APIs imported by the component. If
no APIs are imported, we elide the arrow.

For example, suppose IronCrypto.fss contains the source code for the aforementioned IronCrypto application,
which imports Fortress.IO and Fortress.Security , and exports Fortress.Crypto . Suppose we also have source code,
IronIO.fss, for another application, IronIO , which imports nothing and exports Fortress.IO . We generate these
components by compiling the source files:

compile("IronIO.fss")

compile("IronCrypto.fss")

The results are depicted diagrammatically in Figure 22.1.

Link A collection of one or more components exporting different APIs may be combined to form a new, compound,
component by calling the link operation, passing the names of the components to link along with the name of the
resulting compound component. Syntactically, a link operation is written as follows:4

link(result:String, constituents:String...):()

The components being linked are called constituents of the resulting component, which exports all the APIs exported
by any of its constituents, and imports the APIs imported by at least one of its constituents but not exported by any of
them.

For example, we can link the IronIO and IronCrypto libraries compiled above:

link(IronLink, IronIO, IronCrypto)

The resulting component, illustrated in Figure 22.2, imports Fortress.Security and exports Fortress.IO and Fortress.Crypto .

link does not distinguish between simple and compound components, so we can get arbitrarily nested components.
For example, we can construct an application CoolCryptoApp by compiling another source code, IronSecurity.fss,
for the library IronSecurity that imports Fortress.IO and exports Fortress.Security , and then linking the result with
IronLink .

compile(IronSecurity.fss)

link(CoolCryptoApp, IronSecurity, IronLink)

The resulting components are illustrated in Figure 22.3.

4We present only the basic form of link here. link has additional optional arguments that we discuss in the Section 22.8.

178

�
�
�
�

�
�
�
�

�
�
�
�

Fortress.IO
Fortress.Crypto

IronLink

Fortress.IO

IronCryptoIronIO

Fortress.Crypto

Fortress.IO
Fortress.Security

Fortress.Security
Figure 22.2: A compound component: A component inside another component is a constituent of the component that
immediately encloses it.

Two components cannot be linked if they export the same API.5 This restriction is made for the sake of simplicity; it al-
lows programmers to link a set of components without having to specify explicitly which constituent exporting an API
A provides the implementation exported by the linked component, and which constituent connects to the constituents
that import A: only one component exports A, so there is only one choice. Although we lose expressiveness with this
design, the user interface to link is vastly simplified, and it is rare that including multiple components that export a
given API in a set of linked components is even desirable. We discuss how even such rare cases can be supported in
Section 22.8.

For a compound component, in addition to the exported and imported APIs, we want to know what its constituents
are. It is an invariant of the system that for any compound component C, any API imported by any of its constituents
is either imported by C or exported by one of its constituents. This property is crucial for executing components, as
we discuss below. A simple component (i.e., one produced directly by compilation) has no constituents.

Execute Components provide implementations of the APIs they export. A component is executable if it imports no
APIs and it exports the special API Executable , defined as follows:

api Executable
run(args : String . . .) : ()
end

An executable component may be executed by calling the execute operation, resulting in a call to the component’s
implementation of the run function in a new process. Arguments to the run function are passed to the shell:

execute(componentName:String, args:String...):()

We say that a component is being executed when execute has been called on that component and has not yet returned,
or if it is the constituent component of a component being executed. During an execution, references may be made to

5There is one exception to this rule: the special API Upgradable , which is used during upgrades discussed below.

179

�
�
�
�

IronSecurity

Fortress.Security

Fortress.IO

�
�
�
�

CoolCryptoApp

Fortress.IO
Fortress.Crypto

Fortress.Security

�
�
�
�

IronSecurity

Fortress.Security

Fortress.IO

�
�
�
�

IronLink

Fortress.IO
Fortress.Crypto

Fortress.Security

�
�
�
�

IronIO

Fortress.IO

�
�
�
�

IronCrypto

Fortress.Crypto

Fortress.IO
Fortress.Security

Figure 22.3: Repeated linking

180

APIs exported by a component being executed, which may in turn make references to APIs that it imports.

For references to an API A exported by the component, if the component is simple, then it contains the code necessary
to evaluate any reference to an API it exports, possibly making references to APIs that it imports to do so. If the com-
ponent is compound, then it contains a unique constituent that exports A; the reference is resolved to that constituent
component.

For external references within a constituent component, recall that all such references in a component must be to
APIs that the component imports. A component being executed either does not import any API (and thus there are no
external references to resolve), or else is a constituent of another component that is being executed. In the latter case,
the constituent defers the reference to its enclosing component.

For example, suppose CoolCryptoApp above is the constituent of some executable component, and when that com-
ponent is executed, it generates a reference to SecretKey in Fortress.Crypto , which it resolves to CoolCryptoApp .
CoolCryptoApp resolves this reference to IronLink , which resolves it to IronCrypto , which is a simple component.
Suppose that in evaluating this reference, IronCrypto generates a reference to PublicKey in Fortress.Security . Be-
cause IronCrypto imports Fortress.Security , it resolves this reference to its enclosing component, IronLink , which
in turn resolves it to CoolCryptoApp , which resolves it to IronSecurity , which is a simple component.

Not all projects are compiled to components that export Executable . For example, a library component does not
usually export Executable .

Upgrade Compound components may be upgraded with new constituent components by calling an upgrade op-
eration, passing the name of the component to upgrade (the target), the name of a component to upgrade with (the
replacement), and a name for the resulting component (which we call the result). The type of the upgrade operation
is as follows:

upgrade(target:String, replacement:String, result = target):()

If no result name is provided, the result is bound to the name of the target, and the target is uninstalled (see below).

For example, we can upgrade CoolCryptoApp with a component CoolSecurity , which exports Fortress.Security
and imports nothing to CoolCryptoApp.2.0 .

upgrade(CoolCryptoApp, CoolSecurity, CoolCryptoApp.2.0)

The resulting component is illustrated in Figure 22.4. Notice that the constituent, IronSecurity , exporting
Fortress.Security has been replaced.

A component can be upgraded only if it exports the special API Upgradable , defined as follows:

api Upgradable
import Component from Components

isValidUpgrade(that : Component) : Boolean
upgrade(that : Component) : Component requires { isValidUpgrade(that) }
end

The Upgradable API imports a special API Components that provides handles on Component and Api objects.
The Components API is described in Chapter 39.

An upgrade operation on a component invokes the isValidUpgrade function, as declared in the API Upgradable .
This function must take a component and return true if and only if it is legal to upgrade with respect to that component.
Developers can define their own versions of this component to restrict how their components can be upgraded. For
example, they can prevent upgrades with older versions of a component, or with a matching component from an
untrusted vendor.

181

�
�
�
�

CoolCryptoApp.2.0

Fortress.IO
Fortress.Crypto

Fortress.Security

�
�
�
�

CoolSecurity

Fortress.Security

�
�
�
�

IronLink

Fortress.IO
Fortress.Crypto

Fortress.Security

�
�
�
�

IronIO

Fortress.IO

�
�
�
�

IronCrypto

Fortress.Crypto

Fortress.IO
Fortress.Security

Figure 22.4: An upgraded component

182

The Upgradable API presents a problem for our model. Its implementation by the various constituent components in
a compound component must be accessed during an upgrade operation. However, because the exported APIs of the
constituent components must be disjoint, they cannot all export Upgradable after linking.

We solve this problem by introducing an additional step during linking. In a link operation, a special component,
called a restriction component, is constructed automatically, based on the provided constituents. This component ex-
ports the Upgradable API; its implementation is a function of all the constituents provided to the link operation. The
provided constituents are then used to construct a new set of constituents that are identical to the provided constituents
except that they do not export Upgradable . These new constituents are then combined, along with the restriction
component, to form the constituents of a new compound component.

In addition to the constraints imposed by a component’s isValidUpgrade function, there are several other conditions
that must be met in order for an upgrade to be valid. These conditions are necessary to ensure that the resulting
component is well-formed and imports and exports the same APIs as the target: 6

1. Every API imported by the replacement must be either imported or exported by the target.

2. The APIs exported by the replacement must be a subset of those exported by the target.

3. If the replacement does not export all the APIs that a constituent exports then either the replacement and con-
stituent do not export any APIs in common or the constituent can be upgraded with the replacement.

The rationale for the first two conditions is straightforward: If an API is imported by the replacement but not imported
or exported by the target, then references to that API cannot be resolved in the result (unless we also import that API in
the result). If an API is exported by the replacement but not the target, then the result will export an API not exported
by the target.

The third condition says that the constituents of the target can be partitioned into three sets: those that are subsumed by
the replacement, those that are unaffected by the upgrade, and all the rest, which can be upgraded with the replacement.
This condition enables recursive propagation of upgrades. That is, an upgrade not only replaces constituents at the
top level of the component, but is also propagated into any constituents with which it exports some APIs in common.
Thus, in the example above, we could have upgraded CoolCryptoApp with a component that exports Fortress.IO .
However, we could not have upgraded CoolCryptoApp with a component that exports both Fortress.Security and
Fortress.IO because IronLink exports Fortress.IO but not Fortress.Security . In Section 22.8, we show how hiding
and constraining APIs can help us get around many of the limitations that this condition imposes.

Recall that in our system, unlike with dynamic linking, components are encapsulated so that an upgrade to one com-
ponent does not affect any other component on the system. We can imagine that all operations on components copy
the components that they operate on rather than share them. Because components are immutable, these two inter-
pretations are semantically indistinguishable. Convenience operations that support mass upgrades are provided on
fortresses (e.g., an upgradeAll operation that takes a component and upgrades all components in the fortress that can
be upgraded with its argument).

Extract and Install A component installed on a fortress may be extracted by calling an extract operation on the
fortress, passing the name of the component as an argument, along with an argument prereqs, denoting the names of
all APIs that must be installed on any fortress before this component can be installed.

extract(componentName:String, prereqs:Set[\String\] = {}):()

Furthermore, the destination fortress must have a component that exports these APIs and is a valid upgrade of the
extracted component. Intuitively, a prereqs argument allows a component to be serialized without having to include
all of its libraries; new libraries can be provided when the component is installed at a destination fortress.

The prereqs argument is optional; if omitted, the extracted component can be installed on any fortress. Any com-
ponent can be extracted; however only compound components can be extracted with a prereqs argument: because

6 These conditions are sufficient provided there are no hidden or constrained APIs, which are discussed in Section 22.8.

183

extracted components must be upgradable with respect to a component exporting their prereqs, no prereqs argu-
ment makes sense for a simple component.

The APIs included in a prereqs argument must be the APIs exported by some subset of the extracted component’s
constituents (or a subset of the constituents of one of its constituents, and so on, due to recursive updating).

The extracted component is serialized to a file, including all the APIs it refers to (and, transitively, all APIs they
refer to) and all constituent components, except those that export the prereqs. This operation does not remove the
extracted component from the fortress; there is a separate uninstall operation for that.

When the component is extracted, if no prereqs were passed to the extract operation, then the contents of the
file can be deserialized by any fortress into the extracted component, which can be installed on the fortress. How-
ever, if prereqs were passed to extract, then the file must be deserialized into a component that exports only the
Installable API:

api Installable
import Component from Components
reconstitute(candidate : Component) : Component
end

The deserialized component is immediately linked with preferred implementations of all of its imported APIs. (Pre-
ferred implementations of APIs are maintained in a table by a fortress, which maps each API to a list of components
that implements it, in order of preference). Because the deserialized and linked component exports the Installable
API, it has a reconstitute function that takes a candidate component, which exports the prereqs APIs, and checks
whether the given component satisfies the isValidUpgrade condition of the extracted component. If so, it returns the
extracted component upgraded with the given component. The reconstitute function is called by the fortress with
a new component, formed by linking the preferred components for each API in the extracted components’ prereqs
argument.

Note that an extracted component with prereqs APIs is not the same as an extracted component that imports the same
APIs but has no prereqs APIs. The latter can always be installed on a fortress, and then can be subsequently linked
with any component that exports the imported APIs. In contrast, the fortress has no access to an extracted component
with prereqs APIs unless it has a component that exports these APIs and satisfies the isValidUpgrade function of
the extracted component. This difference provides a means for controlling access to the extracted component, for
security, legal, or other reasons.

Syntactically, an install operation takes the name of a file constraining an extracted component. The install

operation is overloaded with another operation that takes the name of a component to match prereqs. If this optional
argument is provided, and the deserialized component exports the Installable API, then the reconstitute function is
called with the component denoted by the optional argument of install, rather than the fortress’ preferred imple-
mentation of the prereqs APIs. Install operations are written as follows:

install(file:String):()

install(file:String, prereqs:Set[\String\]):()

By default, a fortress adds a newly installed component to the head of the “preferred” list for every API it exports.
However, this default may be overridden by the end-user; an end-user may modify the table or even map some APIs
differently during a particular installation. If one or more of the APIs required by an extracted component is not
mapped to an API on the destination fortress, an exception is thrown.

There is a corresponding operation for APIs, installAPI, that takes a serialization of a set of APIs and installs them
into a fortress.

installAPI(file:String):()

This set of APIs must be closed under imports. If an API that is installed in this way is already installed on the fortress,
the definitions must match exactly, or an exception is thrown.

184

Uninstall An uninstall operation takes the name of a component as an argument and removes the top-level bind-
ing of that component from a fortress. Note that the uninstalled component may have been linked to other components,
or used as a replacement in an upgrade, and the result may still be installed; an uninstall operation will not affect
these other components.

uninstall(file:String):()

There is a corresponding operation for APIs, uninstallAPI, that removes an API from a fortress.

uninstallAPI(file:String):()

Typically, this operation is used only to remove APIs that have been corrupted in some fashion.

Testing A component can be tested by calling the method runTests on it:

runTests(inclusive = true): ()

This method runs all test functions defined in the component. All test functions are run in parallel; each test function
is run for each combination of test cases (bound in its generator list as described in Section 19.2) in parallel. In the
case of a compound component, the set of defined test functions consists of all test functions defined by all constituent
components and by all exported APIs. The set of test functions run can be limited by first hiding the tested component
in a more restrictive API. The set of test functions can also be expanded by linking with a component defining
additional test functions.

The runTests method includes a keyword parameter inclusive that defaults to true . If this parameter is set to false ,
only test functions defined in the APIs exported by the component are run.

22.8 Advanced Features of Fortress Operations

The system we have described thus far provides much of the desired functionality of a component system. However it
has a few significant weaknesses:

1. It exposes to everyone all the APIs used in the development of a project.

2. By allowing access to these APIs, it inhibits significant cross-component optimization.

3. It prevents components that use two different implementations of the same API from being linked, even if they
never actually pass references to that API between each other.

4. It restricts the upgradability of compound components, as described earlier.

We can mitigate all these shortcomings by providing two simple operations, hide and constrain. Informally, hide
makes APIs no longer visible from outside the component so that they cannot be upgraded, and constrain merely
prevents them from being exported. An API that is constrained but not hidden can still be upgraded. There are other
subtle consequences of this distinction, which we discuss as they arise.

Some of the properties about the APIs exported by a component discussed in Section 22.7 are actually properties of
APIs that are visible or provided by a component. For example, APIs visible in a component cannot be imported by
that component, even if they are not exported. Other properties are really properties only of the exported APIs. Most
importantly, components that do not export any common APIs can be linked, as can components that share only visible
APIs.

185

Constrain A constrain operation takes a component name of an installed component, a new component name,
and a set of APIs, and produces a new component that does not export any of the APIs specified. Syntactically, we
write:

constrain(source:String, destination = source, apis:Set[\String\]):()

If no destination name is provided, the name of the source is used.

The set of APIs provided must be a subset of the APIs exported by the component. Also, recall that every API used
by an API exported by a component must be imported or exported by that component. Thus, if we constrain an API
that is used by any other API exported by the component, then we must also constrain that other API.

If the component is a simple component, we first link it by itself, and then apply constrain to the result.

Hide A hide operation is like a constrain operation, except that the given set of APIs is subtracted from the
visible and provided APIs, along with the exported APIs, in the resulting component.

hide(source:String, destination = source, apis:Set[\String\]):()

The requirement of APIs being imported or exported whenever an API using them is exported also applies to visible
APIs. Thus, if we hide an API used by another exported API, we must hide that other API as well.

Link With constrained APIs, there is a new restriction on link: Any API visible in one constituent and imported by
another must be exported by some constituent. This restriction is necessary because an API visible in a component
cannot be imported by that component. Thus, if one of the component’s constituents imports that API, then the API
must be provided by some other constituent. Other than that, the link operation is largely unchanged: the visible
APIs are just all the APIs visible in any constituent, and the provided APIs are just those exported by any constituent.
There is a subtle additional restriction on how linked components can be upgraded, which we discuss below.

Rather than requiring users and developers to call constrain and hide directly, we provide optional parameters to
the link operation to do these operations immediately. The link operation has the following type:

link(result:String, constituents:String..., exports = {}, hide = {}):()

If the exports clause is present, only those APIs listed in the set following exports are exported; the others are
constrained. If the hide clause is present, those APIs listed in the set following hide are hidden. An exception is
thrown if the exports clause contains any API not exported by any constituent, or if the hide clause contains any
API not visible in any constituent.

Hiding enables us to handle the rare case in which programmers want to link multiple components that implement the
same API without upgrading them to use the same implementation. Before linking, the programmer simply hides (or
constrains) the API in every component that exports it except the one that should provide the implementation for the
new compound component.

For example, suppose we wish to link the following two components:

• A component NetApp that imports Fortress.IO and exports the Fortress.Net API.

• A component EditApp that imports Fortress.IO and exports the Fortress.Swing.Textrf API.

We want to link these two components to use in building an application for editing messages and sending them over
a network. But we want to use different implementations of Fortress.IO (e.g., IOApp1 and IOApp2 for the two
components). We simply perform the following operations:

link(temp1, NetApp, IOApp1, exports = {Fortress.Net}, hide = {Fortress.IO})
link(temp2, EditApp,IOApp2, exports = {Fortress.Swing.Textrf}, hide = {Fortress.IO})
link(NetEdit, temp1, temp2)

186

�
�
�
�

CoolCryptoApp.3.0

Fortress.IO
Fortress.Crypto

Fortress.Security

�
�
�
�

NewSecurity

Fortress.Security

�
�
�
�

IOSecurity

Fortress.IO
Fortress.Security

�
�
�
�

IronLink− upgrade

Fortress.IO
Fortress.Crypto

Fortress.Security

�
�
�
�

NewIO

Fortress.IO

�
�
�
�

IOSecurity

Fortress.IO
Fortress.Security

�
�
�
�

IronCrypto

Fortress.Crypto

Fortress.IO
Fortress.Security

Figure 22.5: Upgrading with hidden APIs: Crossed out APIs are hidden.

In this case, the NetEdit component does not export, or even make visible, Fortress.IO at all.

Upgrade For the upgrade operation, there is no change at all in the semantics. However, because hiding and
constraining APIs allow us to change the APIs exported by a component, it is possible to do some upgrades that are
not possible without these operations.

For example, suppose we have a component IOSecurity that exports Fortress.IO and Fortress.Security , and we
want to upgrade CoolCryptoApp with IOSecurity . As discussed above, we cannot use IOSecurity directly because
IronLink exports Fortress.IO but not Fortress.Security . We can get around this restriction by doing two upgrades,
one with Fortress.Security hidden and the other with Fortress.IO hidden.

hide(IOSecurity, NewIO, Fortress.Security)

hide(IOSecurity, NewSecurity, Fortress.IO)

upgrade(CoolCryptoApp, NewSecurity, temp1)

upgrade(CoolCryptoApp.3.0, temp1, NewIO)

The resulting component is shown in Figure 22.5.

The interplay between imported, exported, visible and provided APIs introduces subtleties that not present in our

187

discussion above. In particular, the last of the three conditions imposed for well-formedness of upgrades is modified
to state that for any constituent that is not subsumed by a replacement component, either it can be upgraded with
the replacement, or its visible APIs are disjoint from the APIs exported by the replacement (i.e., it is unaffected by
the upgrade). To maintain the invariant that no two constituents export the same API, we need another condition,
which was implied by the previous condition when no APIs were constrained or hidden: if the replacement subsumes
any constituents of the target, then its exported APIs must exactly match the exported APIs of some subset of the
constituents of the target. In practice, this restriction is rarely a problem; in most cases, a user wishes to upgrade a
target with a new version of a single constituent component, where the APIs exported by the old and new versions are
either an exact match, or there are new APIs introduced by the new component that have no implementation in the
target.

188

Part III

Fortress APIs and Documentation for
Application Programmers

189

Chapter 23

Objects

23.1 The Trait Fortress.Core.Any

The trait Any is the single root of the type hierarchy; every object in Fortress has trait Any and therefore every object
implements the methods of this trait. The immediate subtypes of the trait Any are Object , Tuple , and () .

trait Any extends { }
opr ==(self, other : Any): Boolean
opr IDENTITY(self): Any
hash(maxval : N64): N64
hash(maxval : N32): N32
getter hashCode(): N64
toString(): String
property ∀(x, y, n: N64) x == y → x.hash(n) == y.hash(n)
property ∀(x, y, n: N32) x == y → x.hash(n) == y.hash(n)
property ∀(x) x.hashCode == x.hash(264 − 1)
property ∀(x, y) x == y → x.toString() = y.toString()
property ∀(a) (IDENTITY a) == a
property ∀(a) a == a
property ∀(a, b) a == b↔ b == a
property ∀(a, b, c) (a == b∧: b == c)→: a == c

end

23.1.1 opr ==(self, other : Any): Boolean

The infix operator == (object equivalence) is used to decide whether two objects are “the same object” in the strictest
sense possible; this is described in detail in Section 10.4. Note that the properties of trait Any assert that == is an
equivalence relation. In Object this property is asserted abstractly using the algebraic constraints of Chapter 37.

For 6== see Section 26.1.1.

190

23.1.2 opr IDENTITY(self): Any

The operator IDENTITY simply returns its argument. (This may not be terribly useful for applications programming,
but it has technical uses for specifying contracts and algebraic properties in libraries as described in Section 37.3.)

23.1.3 hash(maxval : N64): N64
23.1.4 hash(maxval : N32): N32

The hash method returns a hash value for the object as an unsigned integer that is less than or equal to the maxval
argument. This hash value is not necessarily consistent from one Fortress application to another, nor from one exe-
cution of a Fortress application to another execution of the same application, but the hash value produced for a given
value of the maxval argument remains fixed during the execution of a single Fortress application. There is no defined
relationship between hash values produced for the same object but with different maxval values. Fortress program-
mers and implementors should be aware that the performance of hash tables is likely to be improved if, for any given
collection of objects and given value for the maxval argument, the hash method assigns hash values to those objects
with relatively uniform distribution.

23.1.5 getter hashCode(): N64

Every object has associated with it a 64-bit unsigned integer value called its hash code; this is the value returned by
the hash method when given the argument 264 − 1 . Hash codes are not necessarily consistent from one Fortress
application to another, nor from one execution of a Fortress application to another execution of the same application,
but remain fixed during the execution of a single Fortress application. It is permitted for two objects to have the same
hashCode, but Fortress programmers and implementors should be aware that assigning distinct hash codes to distinct
objects may improve the performance of hash tables.

The trait Any defines its hash methods in terms of hashCode ; therefore it suffices for a subtrait to override hashCode
to get the benefit of the hash methods as well.

23.1.6 toString(): String

The general contract of toString is that it returns a string that “textually represents” this object. The idea is to provide
a concise but informative representation that will be useful to a person reading it.

23.2 The Trait Fortress.Core.Object

The trait Object is the root of the type hierarchy for all user-constructed objects and functions. The Object type
does not have any additional methods, but uses algebraic constraints (see Chapter 37) to describe the properties of the
existing operators more abstractly.

trait Object extends {Any,EquivalenceRelationJObject,==K, IdentityOperatorJObjectK }
excludes {Tuple }

end

191

23.3 The Trait Fortress.Core.Tuple

The trait Tuple is the root of the type hierarchy for all tuple types (see Section 8.4). No user-defined object can
be a subtype of Tuple . As with the type Object , the type Tuple uses algebraic constraints to describe its existing
methods.

trait Tuple extends {Any,EquivalenceRelationJTuple,==K, IdentityOperatorJTupleK }
excludes {Object }

toString(): String
end

23.3.1 toString(): String

The toString method returns a string “” concatenated as follows:

• If the tuple has just one element, concatenate “tuple” .

• Concatenate “(” .

• For each element of the tuple, in left-to-right order, taking all plain elements before any varargs or keyword
element, taking any varargs element before any keyword element, and taking keyword elements in the order
defined by the type of the tuple (which may not be the sorted order):

– If this is a plain element, concatenate the toString of the element.

– If this is a varargs element “ e . . . ”, concatenate the toString of e and concatenate “...” .

– If this is a keyword element “ id = e ”, concatenate the toString of id , concatenate “ = ” , and concate-
nate the toString of e .

– If this is the last element of the tuple, concatenate “)” ; otherwise concatenate ”, ”.

192

Chapter 24

Booleans and Boolean Intervals

24.1 The Trait Fortress.Core.Boolean

trait Boolean
extends {BooleanAlgebraJBoolean, juxtaposition,∨,¬,∨K,

BooleanAlgebraJBoolean, juxtaposition,∨,¬,⊕K,
BooleanAlgebraJBoolean,∧,∨,¬,∨K,
BooleanAlgebraJBoolean,∧,∨,¬,⊕K,
BooleanAlgebraJBoolean,∨, juxtaposition,¬,≡K,
BooleanAlgebraJBoolean,∨, juxtaposition,¬,↔K,
BooleanAlgebraJBoolean,∨,∧,¬,≡K,
BooleanAlgebraJBoolean,∨,∧,¬,↔K,
TotalOrderJBoolean,→K,
PartialOrderAndBoundedLatticeJBoolean,→, juxtaposition,∨K,
PartialOrderAndBoundedLatticeJBoolean,→,∧,∨K,
IdentityEqualityJBooleanK,
EquivalenceRelationJBoolean,≡K,
EquivalenceRelationJBoolean,↔K,
SymmetricJBoolean,∧K,SymmetricJBoolean,∨K,
SymmetricJBoolean,∨K,SymmetricJBoolean,⊕K,
SymmetricJBoolean,∧K,CommutativeJBoolean,∧K,
SymmetricJBoolean,∨K,CommutativeJBoolean,∨K }

comprises { . . . }
coercion Jbool bK(x: BooleanLiteralJbK)
coercion (x: IdentityJjuxtapositionK)
coercion (x: IdentityJ∧K)
coercion (x: IdentityJ∨K)
coercion (x: IdentityJ∨K)
coercion (x: IdentityJ⊕K)
coercion (x: IdentityJ≡K)
coercion (x: IdentityJ↔K)
coercion (x: ComplementBoundJ∧K)
coercion (x: ComplementBoundJ∨K)
coercion (x: ZeroJ∧K)

193

coercion (x: ZeroJ∨K)
coercion (x:MaximalElementJ→K)
coercion (x:MinimalElementJ→K)
opr juxtaposition (self, other : Boolean): Boolean
opr ∧(self, other : Boolean): Boolean
opr ∧(self, other : ()→ Boolean): Boolean
opr ∨(self, other : Boolean): Boolean
opr ∨(self, other : ()→ Boolean): Boolean
opr ¬(self): Boolean
opr ∨(self, other : Boolean): Boolean
opr ⊕(self, other : Boolean): Boolean
opr ≡(self, other : Boolean): Boolean
opr =(self, other : Boolean): Boolean
opr↔(self, other : Boolean): Boolean
opr→(self, other : Boolean): Boolean
opr→(self, other : ()→ Boolean): Boolean
opr ∧(self, other : Boolean): Boolean
opr ∨(self, other : Boolean): Boolean
opr ==(self, other : Boolean): Boolean
majority(self, other1: Boolean, other2: Boolean)
getter hashCode(): N64
toString(): String
property ∀(a, b) a b = (a ∧ b)
property ∀(a, b) (a ∨ b) = (a⊕ b)
property ∀(a, b) (a ≡ b) = (a↔ b) = (a = b) = (a == b)
property ∀(a, b) (a→ b) = ((¬a) ∨ b)
property ∀(a, b) (a ∧ b) = ¬(a ∧ b)
property ∀(a, b) (a ∨ b) = ¬(a ∨ b)

end
test testData[] = { false, true }

24.1.1 coercion Jbool bK(x: BooleanLiteralJbK)

A boolean literal can always serve as a Boolean value.

194

24.1.2 coercion (x: IdentityJjuxtapositionK)
24.1.3 coercion (x: IdentityJ∧K)
24.1.4 coercion (x: IdentityJ∨K)
24.1.5 coercion (x: IdentityJ∨K)
24.1.6 coercion (x: IdentityJ⊕K)
24.1.7 coercion (x: IdentityJ≡K)
24.1.8 coercion (x: IdentityJ↔K)
24.1.9 coercion (x: ComplementBoundJ∧K)
24.1.10 coercion (x: ComplementBoundJ∨K)
24.1.11 coercion (x: ZeroJ∧K)
24.1.12 coercion (x: ZeroJ∨K)
24.1.13 coercion (x:MaximalElementJ→K)
24.1.14 coercion (x:MinimalElementJ→K)

The identity for ∧ or juxtaposition is true ; the zero and the complement bound for ∧ or juxtaposition are
false .

The identity for ∨ is false ; the zero and the complement bound for ∨ are false .

The identity for ∨ or ⊕ is false ; the identity for ≡ or ↔ is true .

The maximal element for → (regarded as a partial order operator) is true , and the minimal element is false .

24.1.15 opr juxtaposition (self, other : Boolean): Boolean

Juxtaposition of boolean expressions is equivalent to using the logical AND operator ∧ .

24.1.16 opr ∧(self, other : Boolean): Boolean
24.1.17 opr ∧(self, other : ()→ Boolean): Boolean

The logical AND operator ∧ (AND) returns true if both arguments are true ; otherwise it returns false .

The conditional logical AND operator ∧ : (AND:) examines its first argument; if it is false , the result is false , and
the second argument (a thunk) is not evaluated. But if the first argument is true , the second argument is evaluated and
its result becomes the result of the conditional logical AND operator expression.

24.1.18 opr ∨(self, other : Boolean): Boolean
24.1.19 opr ∨(self, other : ()→ Boolean): Boolean

The logical OR operator ∨ (OR) returns false if both arguments are false ; otherwise it returns true .

The conditional logical OR operator ∨ : (OR:) examines its first argument; if it is true , the result is true , and the
second argument (a thunk) is not evaluated. But if the first argument is false , the second argument is evaluated and its
result becomes the result of the conditional logical OR operator expression.

195

24.1.20 opr ¬(self): Boolean

The logical NOT operator ¬ (NOT) returns true if its argument is false ; it returns false if its argument is true .

24.1.21 opr ∨(self, other : Boolean): Boolean
24.1.22 opr ⊕(self, other : Boolean): Boolean

The logical exclusive OR operator ∨ (XOR) returns true if the arguments are different, one being true and the other
false ; it returns false if both arguments are true or both arguments are false .

The operator ⊕ (OPLUS) does the same thing as ∨ .

24.1.23 opr ≡(self, other : Boolean): Boolean
24.1.24 opr =(self, other : Boolean): Boolean
24.1.25 opr↔(self, other : Boolean): Boolean

The logical equivalence, or exclusive NOR, operator ≡ (EQV) returns true if both arguments are true or both
arguments are false ; it returns false if the arguments are different, one being true and the other false . (Thus its
behavior on boolean values happens to be exactly the same as that of the strict equivalence operator == .)

The equality operator = and the if-and-only-if operator ↔ (IFF) do the same thing as ≡ .

For 6≡ see Section 26.1.2. For 6= see Section 26.1.4.

24.1.26 opr→(self, other : Boolean): Boolean
24.1.27 opr→(self, other : ()→ Boolean): Boolean

The logical implication operator → (IMPLIES) returns false if the first argument is true but the second argument
is false ; otherwise it returns true .

The conditional logical implication operator → : (IMPLIES:) examines its first argument; if it is false , the result
is true , and the second argument (a thunk) is not evaluated. But if the first argument is true , the second argument is
evaluated and its result becomes the result of the conditional logical implication operator expression.

24.1.28 opr ∧(self, other : Boolean): Boolean

The logical NAND (NOT AND) operator ∧ (NAND) returns false if both arguments are true ; otherwise it returns
true .

24.1.29 opr ∨(self, other : Boolean): Boolean

The logical NOR (NOT OR) operator ∨ (NOR) returns false if both arguments are false ; otherwise it returns true .

196

24.1.30 opr ==(self, other : Boolean): Boolean

Two boolean values are strictly equivalent if and only if they are the same boolean value (that is, both true or both
false).

24.1.31 majority(self, other1: Boolean, other2: Boolean)

If two or three of the argments are true , the result is true ; if two or three of the argments are false , the result is false .

24.1.32 getter hashCode(): N64

24.1.33 toString(): String

The toString method returns either “true” or “false” as appropriate.

24.2 The Trait Fortress.Standard.BooleanInterval

A boolean interval is a set of boolean values. There are two distinct boolean values, true and false , and therefore
there are four distinct boolean intervals, which for convenience are given names:

True = {true}
False = {false}

Uncertain = {true, false}
Impossible = { }

Logical operations on intervals obey the interval containment rule: the result interval must contain every boolean result
that can be produced by applying the operator to a boolean value taken from each argument interval. For example, if
P and Q are boolean intervals, then by definition P ∧Q = {x ∧ y | x← P, y ← Q } .

A principal application of boolean intervals is to express the results of numerical comparison of numerical intervals.
In this way numerical comparisons can also obey the interval containment rule.

Set operations such as ∪ and ∩ may also be used on boolean intervals.

197

trait BooleanInterval
extends {BooleanAlgebraJBooleanInterval,∩,∪, SET COMPLEMENT, SYMDIFFK,

SetJBooleanK,
BinaryIntervalContainmentJBooleanInterval,Boolean,∧K,
BinaryIntervalContainmentJBooleanInterval,Boolean,∨K,
BinaryIntervalContainmentJBooleanInterval,Boolean,∨K,
BinaryIntervalContainmentJBooleanInterval,Boolean,≡K,
BinaryIntervalContainmentJBooleanInterval,Boolean,=K,
BinaryIntervalContainmentJBooleanInterval,Boolean,↔K,
BinaryIntervalContainmentJBooleanInterval,Boolean,∧K,
BinaryIntervalContainmentJBooleanInterval,Boolean,∨K,
BinaryIntervalContainmentJBooleanInterval,Boolean,→K,
UnaryIntervalContainmentJBooleanInterval,Boolean,¬K,
GeneratorJBooleanK }

comprises { . . . }
coercion (x: Boolean)
opr ∧(self, other : BooleanInterval): BooleanInterval
opr ∨(self, other : BooleanInterval): BooleanInterval
opr ¬(self): BooleanInterval
opr ∨(self, other : BooleanInterval): BooleanInterval
opr ⊕(self, other : BooleanInterval): BooleanInterval
opr ≡(self, other : BooleanInterval): BooleanInterval
opr =(self, other : BooleanInterval): BooleanInterval
opr↔(self, other : BooleanInterval): BooleanInterval
opr→(self, other : BooleanInterval): BooleanInterval
opr ∧(self, other : BooleanInterval): BooleanInterval
opr ∨(self, other : BooleanInterval): BooleanInterval
opr ∈(other : Boolean, self): Boolean
opr ∩(self, other : BooleanInterval): BooleanInterval
opr ∪(self, other : BooleanInterval): BooleanInterval
opr SET COMPLEMENT(self): BooleanInterval
opr SYMDIFF(self, other : BooleanInterval): BooleanInterval
opr \(self, other : BooleanInterval): BooleanInterval
possibly(self): Boolean
necessarily(self): Boolean
certainly(self): Boolean
opr ==(self, other : BooleanInterval): Boolean
getter hashCode(): Z64
toString(): String
property true ∈ True ∧ false 6∈ True
property true 6∈ False ∧ false ∈ False
property true ∈ Uncertain ∧ false ∈ Uncertain
property true 6∈ Impossible ∧ false 6∈ Impossible
property ∀(a) necessarily(a) == ¬possibly(¬a)
property ∀(a) possibly(a)↔ true ∈ a
property ∀(a) certainly(a)↔ (true ∈ a ∧ false 6∈ a)
property ∀(a, b) (a ∧ b)↔ ¬(a ∧ b)
property ∀(a, b) (a ∨ b)↔ ¬(a ∨ b)

end
True: BooleanInterval
False: BooleanInterval
Uncertain: BooleanInterval

198

Impossible: BooleanInterval
test testData[] = {True,False,Uncertain, Impossible }

24.2.1 coercion (x: Boolean)

A boolean value can always serve as a BooleanInterval value. The value true is coerced to True ; the value false is
coerced to False .

24.2.2 opr ∧(self, other : BooleanInterval): BooleanInterval

The logical AND operator ∧ (AND) returns Impossible if either argument is Impossible ; otherwise it returns False
if either argument is False; otherwise it returns Uncertain if either argument is Uncertain; otherwise it returns True .
It obeys the interval containment rule. The ∧ operator may be described by this table:

∧ Uncertain True False Impossible
Uncertain Uncertain Uncertain False Impossible

True Uncertain True False Impossible
False False False False Impossible

Impossible Impossible Impossible Impossible Impossible

24.2.3 opr ∨(self, other : BooleanInterval): BooleanInterval

The logical OR operator ∨ (OR) returns Impossible if either argument is Impossible ; otherwise it returns True if
either argument is True ; otherwise it returns Uncertain if either argument is Uncertain; otherwise it returns False .
It obeys the interval containment rule. The ∧ operator may be described by this table:

∧ Uncertain True False Impossible
Uncertain Uncertain True Uncertain Impossible

True True True True Impossible
False Uncertain True False Impossible

Impossible Impossible Impossible Impossible Impossible

24.2.4 opr ¬(self): BooleanInterval

The logical NOT operator ¬ (NOT) returns Impossible if its argument is Impossible , Uncertain if its argument is
Uncertain , False if its argument is True , and True if its argument is False . It obeys the interval containment rule.

199

24.2.5 opr ∨(self, other : BooleanInterval): BooleanInterval
24.2.6 opr ⊕(self, other : BooleanInterval): BooleanInterval

The logical exclusive OR operator ∨ (XOR) returns Impossible if either argument is Impossible ; otherwise it re-
turns Uncertain if either argument is Uncertain; otherwise it returns False if the arguments are strictly equivalent;
otherwise it returns True . It obeys the interval containment rule.

The operator ⊕ (OPLUS) does the same thing as ∨ . The ∨ or ⊕ operator may be described by this table:

∨ or ⊕ Uncertain True False Impossible
Uncertain Uncertain Uncertain Uncertain Impossible

True Uncertain False True Impossible
False Uncertain True False Impossible

Impossible Impossible Impossible Impossible Impossible

24.2.7 opr ≡(self, other : BooleanInterval): BooleanInterval
24.2.8 opr =(self, other : BooleanInterval): BooleanInterval
24.2.9 opr↔(self, other : BooleanInterval): BooleanInterval

The logical equivalence, or exclusive NOR, operator ≡ (EQV) returns Impossible if either argument is Impossible ;
otherwise it returns Uncertain if either argument is Uncertain; otherwise it returns True if the arguments are strictly
equivalent; otherwise it returns False . It obeys the interval containment rule. (Thus its behavior on boolean interval
values is not the same as that of the strict equivalence operator == .)

The equality operator = and the if-and-only-if operator ↔ (IFF) do the same thing as ≡ . The ≡ or = or ↔
operator may be described by this table:

≡ or = or ↔ Uncertain True False Impossible
Uncertain Uncertain Uncertain Uncertain Impossible

True Uncertain True False Impossible
False Uncertain False True Impossible

Impossible Impossible Impossible Impossible Impossible

24.2.10 opr→(self, other : BooleanInterval): BooleanInterval

The logical implication operator → (IMPLIES) returns Impossible if either argument is Impossible; otherwise it
returns True if the first argument is False or the second argument is True ; otherwise it returns Uncertain if either
argument is Uncertain; otherwise it returns False . It obeys the interval containment rule. The → operator may be
described by this table:

→ Uncertain True False Impossible
Uncertain Uncertain True Uncertain Impossible

True Uncertain True False Impossible
False True True True Impossible

Impossible Impossible Impossible Impossible Impossible

200

24.2.11 opr ∧(self, other : BooleanInterval): BooleanInterval

The logical NAND (NOT AND) operator ∧ (NAND) returns Impossible if either argument is Impossible ; otherwise it
returns True if either argument is False; otherwise it returns Uncertain if either argument is Uncertain; otherwise
it returns False . It obeys the interval containment rule. The ∧ operator may be described by this table:

∧ Uncertain True False Impossible
Uncertain Uncertain Uncertain True Impossible

True Uncertain False True Impossible
False True True True Impossible

Impossible Impossible Impossible Impossible Impossible

24.2.12 opr ∨(self, other : BooleanInterval): BooleanInterval

The logical NOR (NOT OR) operator ∨ (NOR) returns Impossible if either argument is Impossible ; otherwise it
returns False if either argument is True ; otherwise it returns Uncertain if either argument is Uncertain; otherwise
it returns True . It obeys the interval containment rule. The ∨ operator may be described by this table:

∨ Uncertain True False Impossible
Uncertain Uncertain False Uncertain Impossible

True False False False Impossible
False Uncertain False True Impossible

Impossible Impossible Impossible Impossible Impossible

24.2.13 opr ∈(other : Boolean, self): Boolean

The operator ∈ (IN) returns true if its first argument, a boolean value, is contained in its second argument, a boolean
interval regarded as a set; otherwise it returns false . The ∈ operator may be described by this table:

∈ Uncertain True False Impossible
true true true false false
false true false true false

24.2.14 opr ∩(self, other : BooleanInterval): BooleanInterval

The intersection operator ∩ (INTERSECTION or CAP) returns Impossible if either argument is Impossible ; oth-
erwise, if either argument is Uncertain , it returns the other argument; otherwise, if the arguments are the same value
(strictly equivalent), it returns that value; otherwise it returns Impossible . The ∩ operator may be described by this
table:

∩ Uncertain True False Impossible
Uncertain Uncertain True False Impossible

True True True Impossible Impossible
False False Impossible False Impossible

Impossible Impossible Impossible Impossible Impossible

201

24.2.15 opr ∪(self, other : BooleanInterval): BooleanInterval

The union operator ∪ (UNION or CUP) returns Uncertain if either argument is Uncertain; otherwise, if either argu-
ment is Impossible , it returns the other argument; otherwise, if the arguments are the same value (strictly equivalent),
it returns that value; otherwise it returns Uncertain . The ∪ operator may be described by this table:

∪ Uncertain True False Impossible
Uncertain Uncertain Uncertain Uncertain Uncertain

True Uncertain True Uncertain True
False Uncertain Uncertain False False

Impossible Uncertain True False Impossible

24.2.16 opr SET COMPLEMENT(self): BooleanInterval

The set complement operator SET COMPLEMENT returns Uncertain if its argument is Impossible , Impossible if its
argument is Uncertain , False if its argument is True , and True if its argument is False .

24.2.17 opr SYMDIFF(self, other : BooleanInterval): BooleanInterval

The symmetric difference operator SYMDIFF produces a result that contains a given boolean value if and only if
exactly one of the arguments contains that boolean value. The SYMDIFF operator may be described by this table:

SYMDIFF Uncertain True False Impossible
Uncertain Impossible False True Uncertain

True False Impossible Uncertain True
False True Uncertain Impossible False

Impossible Uncertain True False Impossible

24.2.18 opr \(self, other : BooleanInterval): BooleanInterval

The set difference operator \ (SETMINUS) produces a result that contains a given boolean value if and only if the
first argument contains that boolean value but the second argument does not. The \ operator may be described by this
table:

\ Uncertain True False Impossible
Uncertain Impossible False True Uncertain

True Impossible Impossible True True
False Impossible False Impossible False

Impossible Impossible Impossible Impossible Impossible

202

24.2.19 possibly(self): Boolean
24.2.20 necessarily(self): Boolean
24.2.21 certainly(self): Boolean

The predicate possibly returns true if and only if true is a member of this boolean interval.

The predicate necessarily returns true if and only if false is not a member of this boolean interval (thus “necessarily”
is a concise way of saying “not possibly not”).

The predicate certainly returns true if and only if this boolean interval is True , that is, it contains true but not false
(thus “certainly” is a concise way of saying “both possibly and necessarily”).

The fourteen nontrivial functions from a value x of type BooleanInterval to type Boolean may thus be expressed as
follows:

necessarily(x) ∧ necessarily(¬x)
certainly(¬x)

necessarily(¬x)
certainly(x)

necessarily(x)
possibly(x) ≡ necessarily(x)

necessarily(x) ∨ necessarily(¬x)
possibly(x) ∧ possibly(¬x)
possibly(x) ∨ necessarily(x)

possibly(¬x)
¬certainly(x)
possibly(x)
¬certainly(¬x)

possibly(x) ∨ possibly(¬x))

There are other ways to express some of them; for example, necessarily(x) ∧ necessarily(¬x) is the same as
x == Impossible , and possibly(x) ∧ possibly(¬x) is the same as x == Uncertain .

24.2.22 opr ==(self, other : BooleanInterval): Boolean

Two boolean intervals are strictly equivalent if and only if they are the same boolean interval.

24.2.23 getter hashCode(): Z64

24.2.24 toString(): String

The toString method returns either “True” or “False” or “Uncertain” or “Impossible” as appropriate.

203

24.3 Top-level BooleanInterval Values

24.3.1 True: BooleanInterval
24.3.2 False: BooleanInterval
24.3.3 Uncertain: BooleanInterval
24.3.4 Impossible: BooleanInterval

The immutable variables True , False , Uncertain , and Impossible have as their values the four boolean intervals.
They are top-level variables declared in the Fortress standard libraries.

204

Chapter 25

Numbers

25.1 Rational Numbers

The trait Q (QQ) encompasses all finite rational numbers, the results of dividing any integer by any nonzero integer.
The trait Q∗ (QQ_star) is Q with two extra elements, +∞ and −∞ . The trait Q# (QQ_splat) is Q∗ with
one additional element, the indefinite rational (written 0/0), which is used as the result of dividing zero by zero or of
adding −∞ to +∞ .

Often it is desirable to indicate that a variable ranges over only a subset of the rationals, such as only positive values
or only nonnegative values or only nonzero values. Unfortunately, traditional notations such as Q+ are not used
consistently in the literature; one author may use Q+ to mean the set of strictly positive rationals and another may
use it to mean the set of nonnegative rationals. Fortress therefore uses a notation that is novel but unambiguous:

Q (QQ) is the set of rationals (it is a subtype of R and Q∗).
Q< (QQ_LT) is the set of strictly negative rationals (it is a subtype of R< , Q∗< , Q , Q≤ , and Q6=).
Q≤ (QQ_LE) is the set of nonpositive rationals, that is, Q< ∪ {0} (it is a subtype of R≤ , Q∗≤ , and Q).
Q≥ (QQ_GE) is the set of nonnegative rationals, that is, Q> ∪ {0} (it is a subtype of R≥ , Q∗≥ , and Q).
Q> (QQ_GT) is the set of strictly positive rationals (it is a subtype of R> , Q∗> , Q , Q≥ , and Q6=).
Q6= (QQ_NE) is the set of strictly nonzero rationals (that is, Q< ∪Q>) (it is a subtype of R 6= , Q∗6= , and Q).
Q∗ (QQ_star) is Q with extra elements +∞ and −∞ (it is a subtype of R∗ and Q#).
Q∗< (QQ_star_LT) is Q< with extra element −∞ (it is a subtype of R∗< , Q#

< , Q∗ , Q∗≤ , and Q∗6=).
Q∗≤ (QQ_star_LE) is Q≤ with extra element −∞ (it is a subtype of R∗≤ , Q#

≤ , and Q∗).
Q∗≥ (QQ_star_GE) is Q≥ with extra element +∞ (it is a subtype of R∗≥ , Q#

≥ , and Q∗).
Q∗> (QQ_star_GT) is Q> with extra element +∞ (it is a subtype of R∗> , Q#

> , Q∗ , Q∗≥ , and Q∗6=).
Q∗6= (QQ_star_NE) is Q6= with extra elements +∞ and −∞ (it is a subtype of R∗6= , Q#

6= , and Q∗).
Q# (QQ_splat) is Q∗ with extra element 0/0 (it is a subtype of R#).
Q#

< (QQ_splat_LT) is Q∗< with extra element 0/0 (it is a subtype of R#
< , Q# , Q#

≤ , and Q#
6=).

Q#
≤ (QQ_splat_LE) is Q∗≤ with extra element 0/0 (it is a subtype of R#

≤ and Q#).
Q#
≥ (QQ_splat_GE) is Q∗≥ with extra element 0/0 (it is a subtype of R#

≥ and Q#).
Q#

> (QQ_splat_GT) is Q∗> with extra element 0/0 (it is a subtype of R#
> , Q# , Q#

≥ , and Q#
6=).

Q#
6= (QQ_splat_NE) is Q∗6= with extra element 0/0 (it is a subtype of R#

6= and Q#).

The Fortress type system tracks these types closely through various arithmetic operations; for example, adding two
values of type Q> produces a result of type Q> , and adding a value of type Q∗> and a value of type Q≥ produces
a value of type Q∗≥ .

205

Here we present only the trait Q and its methods. The other rational types have exactly the same methods and differ
only in the details of the types of method arguments and results and exactly what traits are extended by each rational
type. For example, Q is a field and is totally ordered, Q∗ is totally ordered but is not a field, and Q# is neither
totally ordered nor a field. For the exact details of how all this is implemented, see Section 38.1.

trait Q
extends {R,Q∗,

FieldJQ,Q6=,+,−, ·, /K,
FieldJQ,Q6=,+,−,×, /K,
FieldJQ,Q6=,+,−, juxtaposition, /K,
TotalOrderOperatorsJQ, <,≤,≥, >, CMPK,
PartialOrderAndLatticeJQ,≤, MIN, MAXK }

coercion (x: IdentityJ+K)
coercion (x: IdentityJ·K)
coercion (x: IdentityJ×K)
coercion (x: IdentityJjuxtapositionK)
coercion (x: ZeroJ·K)
coercion (x: ZeroJ×K)
coercion (x: ZeroJjuxtapositionK)
opr juxtaposition (self, other : Q): Q
opr +(self): Q
opr +(self, other : Q): Q
opr −(self): Q
opr −(self, other : Q): Q
opr ·(self, other : Q): Q
opr ×(self, other : Q): Q
opr /(self): Q∗
opr /(self, other : Q): Q#

opr ˆ(self, power : Z): Q#

opr <(self, other : Q): Boolean
opr ≤(self, other : Q): Boolean
opr =(self, other : Q): Boolean
opr ≥(self, other : Q): Boolean
opr >(self, other : Q): Boolean
opr CMP(self, other : Q∗): TotalComparison
opr CMP(self, other : Q#): Comparison
opr MAX(self, other : Q): Q
opr MIN(self, other : Q): Q
opr MAXNUM(self, other : Q): Q
opr MINNUM(self, other : Q): Q
opr |self| : Q≥
signum(self): Z
numerator(self): Z
denominator(self): Z
floor(self): Z
opr bselfc: Z
ceiling(self): Z
opr dselfe: Z
round(self): Z
truncate(self): Z
opr bbselfcc: N
opr ddselfee: N

206

opr bbbselfccc: N
opr dddselfeee: N
realpart(self): Q
imagpart(self): Q
check(self): Q throws CastException
check∗(self): Q∗ throws CastException
check<(self): Q< throws CastException
check≤(self): Q≤ throws CastException
check≥(self): Q≥ throws CastException
check>(self): Q> throws CastException
check 6=(self): Q6= throws CastException
check∗<(self): Q∗< throws CastException
check∗≤(self): Q∗≤ throws CastException
check∗≥(self): Q∗≥ throws CastException
check∗>(self): Q∗> throws CastException
check∗6=(self): Q∗6= throws CastException
check#

<(self): Q#
< throws CastException

check#
≤(self): Q#

≤ throws CastException
check#

≥(self): Q#
≥ throws CastException

check#
>(self): Q#

> throws CastException
check#

6=(self): Q#
6= throws CastException

end

25.1.1 coercion (x : IdentityJ+K)
25.1.2 coercion (x : IdentityJ·K)
25.1.3 coercion (x : IdentityJ×K)
25.1.4 coercion (x : IdentityJjuxtapositionK)
25.1.5 coercion (x : ZeroJ·K)
25.1.6 coercion (x : ZeroJ×K)
25.1.7 coercion (x : ZeroJjuxtapositionK)

The identity for + is 0.

The identity for juxtaposition or · or × is 1.

The zero for juxtaposition or · or × is 0.

25.1.8 opr juxtaposition (self, other : Q): Q

Juxtaposition of rational expressions is equivalent to using the multiplication operator · .

25.1.9 opr +(self): Q

The unary addition operator + simply returns its argument.

207

25.1.10 opr +(self, other : Q): Q

The binary addition operator + returns the sum of its arguments.

For types Q∗ and Q# , the sum of an infinity and either a finite rational or another infinity of the same sign is equal
to the given infinity, but the sum of infinities of differing sign is 0/0 , and the sum of 0/0 and any rational value is
0/0 .

25.1.11 opr −(self): Q

The unary negation operator − returns the negative of its argument.

For types Q∗ and Q# , the negative of +∞ is −∞ , the negative of −∞ is +∞ , and the negative of 0/0 is 0/0 .

25.1.12 opr −(self, other : Q): Q

The binary subtraction operator − returns the difference of its arguments, which is equal to the sum of (a) the first
argument and (b) the negation of the second argument.

25.1.13 opr ·(self, other : Q): Q
25.1.14 opr ×(self, other : Q): Q

The multiplication operator · (DOT) returns the product of its arguments. The multiplication operator × (TIMES)
does exactly the same thing.

For types Q∗ and Q# , the product of 0/0 and any rational value is 0/0 , and the product of zero and an infinity
(regardless of sign) is 0/0 ; the product of an infinity and any rational value other than zero and 0/0 is an infinity
whose sign is positive if and only if the two arguments have the same sign.

25.1.15 opr /(self): Q∗

The unary reciprocal operator / returns the reciprocal of its argument. The reciprocal of zero is +∞ (and therefore
the result type of / when given an arguments of type Q is necessarily Q∗).

For types Q∗ and Q# , the reciprocal of either +∞ or −∞ is zero, and the reciprocal of 0/0 is 0/0 .

25.1.16 opr /(self, other : Q): Q∗

The binary division operator / returns the quotient of its arguments, which is equal to the product of (a) the first
argument and (b) the reciprocal of the second argument.

208

25.1.17 opr ˆ(self, power : Z): Q#

Exponentiation of a rational number to an integer power produces a rational result. If the power is 0 , then the result
is always 1 , even if the rational number base is 0 (this definition is somewhat arbitrary but is computationally useful).

property ∀(x, y : Z) xy = 1/(x−y)
property ∀(x, y : Z) xy = x(by/2c)x(dy/2e)

25.1.18 opr <(self, other : Q): Boolean
25.1.19 opr ≤(self, other : Q): Boolean
25.1.20 opr =(self, other : Q): Boolean
25.1.21 opr ≥(self, other : Q): Boolean
25.1.22 opr >(self, other : Q): Boolean

The comparison operators < , ≤ , = , ≥ , and > allow any rational value to be compared numerically to any other
rational value.

For types Q∗ and Q# , the rational values are totally ordered except for 0/0 , which is unordered with respect to
all other rational values; moreover, for compatibility with floating-point arithmetic, 0/0 is unordered with respect to
itself, and therefore these five comparison operators always return false if either argument is 0/0 . The value −∞ is
less than any finite rational value, and +∞ is greater than any finite rational value.

For 6= see Section 26.1.4.

25.1.23 opr CMP(self, other : Q): TotalComparison
25.1.24 opr CMP(self, other : Q#): Comparison

The CMP operator compares the arguments and returns one of the four values LessThan , EqualTo , GreaterThan ,
and Unordered . If the argument types are such that the result cannot be Unordered , then the result has type
TotalComparison rather than simply Comparison .

25.1.25 opr MAX(self, other : Q): Q
25.1.26 opr MIN(self, other : Q): Q
25.1.27 opr MAXNUM(self, other : Q): Q
25.1.28 opr MINNUM(self, other : Q): Q

The operators MAX and MAXNUM return whichever argument is larger in the total order defined by < , ≤ , = , ≥ , > ,
and CMP , and the operators MIN and MINNUM return whichever argument is smaller. (For all four, if the arguments
are equal, then the result equals that same value.)

For type Q# , MAXNUM and MINNUM differ from MAX and MIN in their treatment of 0/0 : if one argument is 0/0 and
the other is not, then MAX or MIN returns 0/0 but MAXNUM or MINNUM returns the argument that is not 0/0 .

209

25.1.29 opr |self| : Q≥

The absolute value operator |. . .| returns the negative of this rational number if the argument is less than zero, and
otherwise returns the argument.

For type Q# , the absolute value of 0/0 is 0/0 .

25.1.30 signum(self): Z

The method signum returns −1 if this rational number is less than zero, 0 if this rational number is zero, and 1 if
this rational number is greater than zero.

For type Q# , the signum of 0/0 is 0/0 .

25.1.31 numerator(self): Z
25.1.32 denominator(self): Z

The method numerator returns the numerator of this rational number, and the method denominator returns the
denominator of this rational number, when this rational number is represented in lowest terms (such that the greatest
common divisor of numerator and denominator is 1).

For types Q∗ and Q# , the numerator of +∞ is 1 , the numerator of −∞ is −1 , and the numerator of 0/0 is 0 ;
the denominator of +∞ , −∞ , or 0/0 is 0 .

210

25.1.33 floor(self): Z
25.1.34 opr bselfc: Z
25.1.35 ceiling(self): Z
25.1.36 opr dselfe: Z
25.1.37 round(self): Z
25.1.38 truncate(self): Z

The method floor , likewise the enclosing operator b. . .c , returns the largest integer that is not greater than this rational
number.

The method ceiling , likewise the enclosing operator d. . .e , returns the smallest integer that is not less than this rational
number.

The method round returns the integer that is closest to this rational number, but if this rational number is exactly
halfway between two consecutive integers, then round returns whichever of the two integers is even.

The method truncate returns the ceiling of this rational number if it is negative, and otherwise returns the floor of this
rational number. (This has the effect of taking the floor of the magnitude, also called “rounding toward zero.”)

For types Q∗ and Q# , all of these methods simply return the argument if it is +∞ , −∞ , or 0/0 .

opr bbselfcc: N
opr ddselfee: N
opr bbbselfccc: N
opr dddselfeee: N

The hyperfloor operation bbxcc computes 2(blog2xc) and returns the result as a natural number. If the argument is equal
to 0 , the result is 0 . If the argument is negative, an InvalidArgumentException is thrown.

The hyperceiling operation ddxee computes 2(dlog2xe) and returns the result as a natural number. If the argument is
equal to 0 , the result is 0 . If the argument is negative, an InvalidArgumentException is thrown.

The hyperhyperfloor operation bbbxccc computes 2(bblog2xcc) and returns the result as a natural number. If the argument
is equal to 0 or 1 , the result is the same as the argument. If the argument is negative, an InvalidArgumentException
is thrown.

The hyperhyperceiling operation dddxeee computes 2(ddlog2xee) and returns the result as a natural number. If the argument
is equal to 0 or 1 , the result is the same as the argument. If the argument is negative, an InvalidArgumentException
is thrown.

25.1.39 realpart(self): Q

The method realpart for a rational number simply returns its argument.

25.1.40 imagpart(self): Q

The method imagpart for a rational number simply returns zero.

211

25.1.41 check(self): Q throws CastException
25.1.42 check∗(self): Q∗ throws CastException
25.1.43 check<(self): Q< throws CastException
25.1.44 check≤(self): Q≤ throws CastException
25.1.45 check≥(self): Q≥ throws CastException
25.1.46 check>(self): Q> throws CastException
25.1.47 check 6=(self): Q6= throws CastException
25.1.48 check∗<(self): Q∗< throws CastException
25.1.49 check∗≤(self): Q∗≤ throws CastException
25.1.50 check∗≥(self): Q∗≥ throws CastException
25.1.51 check∗>(self): Q∗> throws CastException
25.1.52 check∗6=(self): Q∗6= throws CastException
25.1.53 check#

<(self): Q#
< throws CastException

25.1.54 check#
≤(self): Q#

≤ throws CastException
25.1.55 check#

≥(self): Q#
≥ throws CastException

25.1.56 check#
>(self): Q#

> throws CastException
25.1.57 check#

6=(self): Q#
6= throws CastException

Each of these methods checks this rational number to see whether it belongs to the result type of the method. If, the
number is returned; if not, a CastException is thrown.

212

25.2 Integers

The trait Z (ZZ) encompasses all finite integers, the results of starting from 0 and repeatedly adding or subtracting
1 a finite number of times. The trait Z∗ (ZZ_star) is Z with two extra elements, +∞ and −∞ .

Often it is desirable to indicate that a variable ranges over only a subset of the integers, such as only positive values or
only nonnegative values or only nonzero values. Fortress uses a system similar to that for rational numbers, but also
accommodates the traditional use of N to denote the natural numbers:

Z (ZZ) is the set of integers (it is a subtype of Q and Z∗).
Z< (ZZ_LT) is the set of strictly negative integers (it is a subtype of Q< , Z∗< , Z , Z≤ , and Z6=).
Z≤ (ZZ_LE) is the set of nonpositive integers, that is, Z< ∪ {0} (it is a subtype of Q≤ , Z∗≤ , and Z).
Z≥ (ZZ_GE) is the set of nonnegative integers, that is, Z> ∪ {0} (it is a subtype of Q≥ , Z∗≥ , and Z).
Z> (ZZ_GT) is the set of strictly positive integers (it is a subtype of Q> , Z∗> , Z , Z≥ , and Z6=).
Z6= (ZZ_NE) is the set of strictly nonzero integers (that is, Z< ∪ Z>) (it is a subtype of Q6= , Z∗6= , and Z).
Z∗ (ZZ_star) is Z with extra elements +∞ and −∞ (it is a subtype of Q∗).
Z∗< (ZZ_star_LT) is Z< with extra element −∞ (it is a subtype of Q∗< , Z∗ , Z∗≤ , and Z∗6=).
Z∗≤ (ZZ_star_LE) is Z≤ with extra element −∞ (it is a subtype of Q∗≤ and Z∗).
Z∗≥ (ZZ_star_GE) is Z≥ with extra element +∞ (it is a subtype of Q∗≥ and Z∗).
Z∗> (ZZ_star_GT) is Z> with extra element +∞ (it is a subtype of Q∗> , Z∗ , Z∗≥ , and Z∗6=).
Z∗6= (ZZ_star_NE) is Z6= with extra elements +∞ and −∞ (it is a subtype of Q∗6= and Z∗).
N (NN) is a synonym for Z≥ .
N∗ (NN_star) is a synonym for Z∗≥ .

The Fortress type system tracks these types closely through various arithmetic operations; for example, adding two
values of type Z> produces a result of type Z> , and adding a value of type Z∗> and a value of type Z≥ produces a
value of type Z∗≥ .

Here we present only the trait Z and its methods. The other integer types have exactly the same methods and differ
only in the details of the types of method arguments and results and exactly what traits are extended by each integer
type. For example, Z is a commutative ring and is totally ordered, and Z∗ is totally ordered but is not a ring. Future
versions of this specification will include the exact details of how all this is implemented.

trait Z
extends {Q,Z∗, IntegerLikeJZK,

CommutativeRingJZ,+,−, juxtapositionK,
CommutativeRingJZ,+,−, ·K,
CommutativeRingJZ,+,−,×K,
CommutativeRingJZ,�,�,�K,
CommutativeRingJZ,�,�,�K,
CommutativeRingJZ,u, −̇, ×̇K,
TotalOrderOperatorsJZ, <,≤,≥, >, CMPK,
PartialOrderAndLatticeJZ,≤, MIN, MAXK,
BooleanAlgebraJZ,∧∧,∨∨,¬¬,∨∨K }

coercion (x: IdentityJ+K)
coercion (x: IdentityJ�K)
coercion (x: IdentityJuK)
coercion (x: IdentityJjuxtapositionK)
coercion (x: IdentityJ·K)
coercion (x: IdentityJ×K)
coercion (x: IdentityJ�K)
coercion (x: IdentityJ�K)

213

coercion (x: IdentityJ×̇K)
coercion (x: ZeroJjuxtapositionK)
coercion (x: ZeroJ·K)
coercion (x: ZeroJ×K)
coercion (x: ZeroJ�K)
coercion (x: ZeroJ�K)
coercion (x: ZeroJ×̇K)
opr juxtaposition (self, other : Z): Z
opr +(self): Z
opr �(self): Z
opr u(self): Z
opr +(self, other : Z): Z
opr �(self, other : Z): Z
opr u(self, other : Z): Z
opr −(self): Z
opr �(self): Z
opr −̇(self): Z
opr −(self, other : Z): Z
opr �(self, other : Z): Z
opr −̇(self, other : Z): Z
opr ·(self, other : Z): Z
opr ×(self, other : Z): Z
opr �(self, other : Z): Z
opr �(self, other : Z): Z
opr ×̇(self, other : Z): Z
opr /(self, other : Z): Q#

opr ÷(self, other : Z): Z throws IntegerDivideByZeroException
opr REM(self, other : Z): Z throws IntegerDivideByZeroException
opr MOD(self, other : Z): Z throws IntegerDivideByZeroException
opr DIVREM(self, other : Z): (Z,Z) throws IntegerDivideByZeroException
opr DIVMOD(self, other : Z): (Z,Z) throws IntegerDivideByZeroException
opr |(self, other : Z): Boolean
opr _(self, power : N): Z
opr GCD(self, other : Z): Z
opr LCM(self, other : Z): Z
opr (self)! : N
opr CHOOSE(self, other : Z): N
opr <(self, other : Z): Boolean
opr ≤(self, other : Z): Boolean
opr =(self, other : Z): Boolean
opr ≥(self, other : Z): Boolean
opr >(self, other : Z): Boolean
opr CMP(self, other : Z∗): TotalComparison
opr MAX(self, other : Z): Z
opr MIN(self, other : Z): Z
opr MAXNUM(self, other : Z): Z
opr MINNUM(self, other : Z): Z
opr |self| : Z≥
signum(self): Z
numerator(self): Z
denominator(self): Z
floor(self): Z

214

opr bselfc: Z
ceiling(self): Z
opr dselfe: Z
round(self): Z
truncate(self): Z
opr bbselfcc: N
opr ddselfee: N
opr bbbselfccc: N
opr dddselfeee: N
shift(self, k: IndexInt): Z
bit(self, k: IndexInt): Bit
opr ¬¬(self): Z
opr ∧∧(self, other : Z): Z
opr ∨∨(self, other : Z): Z
opr ∨∨(self, other : Z): Z
countBits(self): IndexInt
countFactorsOfTwo(self): IndexInt
integerLength(self): IndexInt
lowBits(self, k: IndexInt): Z
even(self): Boolean
odd(self): Boolean
prime(self): Boolean
realpart(self): Z
imagpart(self): Z
check(self): Z throws CastException
check∗(self): Z∗ throws CastException
check<(self): Z< throws CastException
check≤(self): Z≤ throws CastException
check≥(self): Z≥ throws CastException
check>(self): Z> throws CastException
check 6=(self): Z6= throws CastException
check∗<(self): Z∗< throws CastException
check∗≤(self): Z∗≤ throws CastException
check∗≥(self): Z∗≥ throws CastException
check∗>(self): Z∗> throws CastException
check∗6=(self): Z∗6= throws CastException

end

215

25.2.1 coercion (x: IdentityJ+K)
25.2.2 coercion (x: IdentityJ�K)
25.2.3 coercion (x: IdentityJuK)
25.2.4 coercion (x: IdentityJjuxtapositionK)
25.2.5 coercion (x: IdentityJ·K)
25.2.6 coercion (x: IdentityJ×K)
25.2.7 coercion (x: IdentityJ�K)
25.2.8 coercion (x: IdentityJ�K)
25.2.9 coercion (x: IdentityJ×̇K)
25.2.10 coercion (x: ZeroJjuxtapositionK)
25.2.11 coercion (x: ZeroJ·K)
25.2.12 coercion (x: ZeroJ×K)
25.2.13 coercion (x: ZeroJ�K)
25.2.14 coercion (x: ZeroJ�K)
25.2.15 coercion (x: ZeroJ×̇K)

The identity for + or � or u is 0.

The identity for juxtaposition or · or × or � or � or ×̇ is 1.

The zero for juxtaposition or · or × or � or � or ×̇ is 0.

25.2.16 opr juxtaposition (self, other : Z): Z

Juxtaposition of integer expressions is equivalent to using the multiplication operator · .

25.2.17 opr +(self): Z
25.2.18 opr �(self): Z
25.2.19 opr u(self): Z

The unary addition operator + simply returns its argument. The operators � and u do exactly the same thing.

25.2.20 opr +(self, other : Z): Z
25.2.21 opr �(self, other : Z): Z
25.2.22 opr u(self, other : Z): Z

The binary addition operator + returns the sum of its arguments. The wrapping and saturating addition operators �
and u do exactly the same thing, because operations on type Z never need to wrap or saturate.

For type Z∗ , the sum of an infinity and either a finite integer or another infinity of the same sign is equal to the given
infinity, but attempting to sum infinities of differing sign throws an IndeterminateIntegerException .

216

25.2.23 opr −(self): Q
25.2.24 opr �(self): Q
25.2.25 opr −̇(self): Q

The unary negation operator − returns the negative of its argument. The operators � and −̇ do exactly the same
thing.

For types Z∗ and Z# , the negative of +∞ is −∞ , and the negative of −∞ is +∞ .

25.2.26 opr −(self, other : Z): Z
25.2.27 opr �(self, other : Z): Z
25.2.28 opr −̇(self, other : Z): Z

The binary subtraction operator − returns the difference of its arguments, which is equal to the sum of (a) the first
argument and (b) the negation of the second argument. The wrapping and saturating subtraction operators � and −̇
do exactly the same thing, because operations on type ZZ never need to wrap or saturate.

25.2.29 opr ·(self, other : Z): Z
25.2.30 opr ×(self, other : Z): Z
25.2.31 opr �(self, other : Z): Z
25.2.32 opr �(self, other : Z): Z
25.2.33 opr ×̇(self, other : Z): Z

The multiplication operator · returns the product of its arguments. The multiplication operators × , � , � , and ×̇
do exactly the same thing.

For types Z∗ and Z# , attempting to multiply zero and an infinity (regardless of sign) throws an IndeterminateIntegerException .
The product of an infinity and any nonzero integer (including an infinity) is an infinity whose sign is positive if and
only if the two arguments have the same sign.

25.2.34 opr /(self, other : Z): Q#

The binary division operator / returns the quotient of its arguments as a rational number. Unlike in other programming
languages such as Fortran, the operator / does not perform truncating integer division; the operator ÷ may be used
for that purpose.

217

25.2.35 opr ÷(self, other : Z): Z throws IntegerDivideByZeroException
25.2.36 opr REM(self, other : Z): Z throws IntegerDivideByZeroException
25.2.37 opr MOD(self, other : Z): Z throws IntegerDivideByZeroException
25.2.38 opr DIVREM(self, other : Z): (Z,Z) throws IntegerDivideByZeroException
25.2.39 opr DIVMOD(self, other : Z): (Z,Z) throws IntegerDivideByZeroException

The operator ÷ performs truncating integer division; if the quotient is not an exact integer, the result is rounded
toward zero.

The operator REM returns the remainder that would be left over from a division using the operator ÷ .

The operator MOD returns the remainder that would be left over from an integer division that rounds inexact results
towards negative infinity (“floor division”).

The operator DIVREM returns a tuple of two results, the quotient and remainder from a truncating integer division.

The operator DIVMOD returns a tuple of two results, the quotient and remainder from an integer floor division.

For all these operators, if other is zero then an IntegerDivideByZeroException is thrown.

Examples:

+8÷+3=+2 +8 REM +3=+2 +8 MOD +3=+2 +8 DIVREM +3=(+2,+2) +8 DIVMOD +3=(+2,+2)
−8÷+3=−2 −8 REM +3=−2 −8 MOD +3=+1 −8 DIVREM +3=(−2,−2) −8 DIVMOD +3=(−3,+1)
+8÷−3=−2 +8 REM −3=+2 +8 MOD −3=−1 +8 DIVREM −3=(−2,+2) +8 DIVMOD −3=(−3,−1)
−8÷−3=+2 −8 REM −3=−2 −8 MOD −3=−2 −8 DIVREM −3=(+2,−2) −8 DIVMOD −3=(+2,−2)

These examples illustrate the fact that truncating division and floor division behave differently when the two operands
are of opposite sign and their quotient is not an exact integer.

property ∀(m,n) m REM n = m− n(m÷ n)
property ∀(m,n) m MOD n = m− nbm/nc
property ∀(m,n) m DIVREM n = (m÷ n,m REM n)
property ∀(m,n) m DIVMOD n = (bm/nc,m MOD n)
property ∀(m,n, k) (m+ kn) MOD n = m MOD n
property ∀(m,n) m REM n = m REM (−n)
property ∀(m,n) (−m) REM n = −(m REM n)

25.2.40 opr |(self, other : Z): Boolean

The operator | returns true if the left-hand operand evenly divides the right-hand operand, and otherwise returns
false .

property ∀(m,n) m | n :=: (bm/nc = m/n)

25.2.41 opr ˆ(self, power : N): Z

Exponentiation of an integer to a nonnegative integer power produces an integer result. If the power is 0 , then the
result is always 1 , even if the base is 0 (this definition is somewhat arbitrary but is computationally useful).

property ∀(x, y : N) xy = x(by/2c)x(dy/2e)

218

25.2.42 opr GCD(self, other : Z): Z
25.2.43 opr LCM(self, other : Z): Z

The operator GCD computes the greatest common divisor of its two arguments. The result is always nonnegative. If
either argment is 0 , the result equals the other argument.

The operator LCM computes the least common multiple of its two arguments. The result is always nonnegative. If
either argment is 1 , the result equals the other argument. If either argument is 0 , the result is 0 .

The type Z> extends the trait PartialOrderAndMeetBoundedLatticeJZ>, |, GCD, LCMK , which is to say that the
strictly positive integers form a partial order and lattice with the “evenly divides” operator | as the partial order
operator and with GCD and LCM as the lattice operators.

property ∀(m,n) ((m GCD n) | m) ∧ ((m GCD n) | n)
property ∀(m,n) (m | (m LCM n)) ∧ (n | (m LCM n))
property ∀(m,n) (m GCD n) · (m LCM n) = m · n

25.2.44 opr (self)! : N

The factorial operator is defined only for natural number types; it returns the product of all positive integers that are
not less than the integer. If the argument is 0 , the result is 1 . For type N∗ , if the argument is +∞ , the result is +∞ .

property ∀(m) m! =
∏

k←1:m

k

25.2.45 opr CHOOSE(self, other : Z): Z

The CHOOSE operator is defined only for natural number types; it computes the binomial coefficient m CHOOSE n = m!/(n!(m− n)!) .
If n < 0 or n > m , the result is 0 .

property ∀(m,n: Z) (m CHOOSE n) + (m CHOOSE (n+ 1)) = ((m+ 1) CHOOSE (n+ 1))

25.2.46 opr <(self, other : Z): Boolean
25.2.47 opr ≤(self, other : Z): Boolean
25.2.48 opr =(self, other : Z): Boolean
25.2.49 opr ≥(self, other : Z): Boolean
25.2.50 opr >(self, other : Z): Boolean

The comparison operators < , ≤ , = , ≥ , and > allow any integer value to be compared numerically to any other
integer value. Integer values, including +∞ and −∞ , are totally ordered. The value −∞ is less than any finite
integer value, and +∞ is greater than any finite integer value.

For 6= see Section 26.1.4.

219

25.2.51 opr CMP(self, other : Z∗): TotalComparison

The CMP operator compares the arguments and returns one of the three values LessThan , EqualTo , and GreaterThan .

25.2.52 opr MAX(self, other : Z): Z
25.2.53 opr MIN(self, other : Z): Z
25.2.54 opr MAXNUM(self, other : Z): Z
25.2.55 opr MINNUM(self, other : Z): Z

The operators MAX and MAXNUM return whichever argument is larger in the total order defined by < , ≤ , = , ≥ , > ,
and CMP , and the operators MIN and MINNUM return whichever argument is smaller. (For all four, if the arguments
are equal, then the result equals that same value.)

25.2.56 opr |self| : N

The absolute value operator |. . .| returns the negative of this integer if the argument is less than zero, and otherwise
returns the argument.

25.2.57 signum(self): Z

The method signum returns −1 if this integer is less than zero, 0 if this integer is zero, and 1 if this integer is greater
than zero.

25.2.58 numerator(self): Z
25.2.59 denominator(self): Z

For finite integers, the method numerator returns the argument and the method denominator returns 1 .

For type Z∗ , the numerator of +∞ is 1 , and the numerator of −∞ is −1 ; the denominator of either +∞ or −∞
is 0 .

25.2.60 floor(self): Z
25.2.61 opr bselfc: Z
25.2.62 ceiling(self): Z
25.2.63 opr dselfe: Z
25.2.64 round(self): Z
25.2.65 truncate(self): Z

These methods and operators simply return the argument when applied to an integer.

220

25.2.66 opr bbselfcc: N
25.2.67 opr ddselfee: N
25.2.68 opr bbbselfccc: N
25.2.69 opr dddselfeee: N

The hyperfloor operation bbxcc computes 2(blog2xc) and returns the result as a natural number. If the argument is equal
to 0 , the result is 0 . If the argument is negative, an InvalidArgumentException is thrown.

The hyperceiling operation ddxee computes 2(dlog2xe) and returns the result as a natural number. If the argument is
equal to 0 , the result is 0 . If the argument is negative, an InvalidArgumentException is thrown.

The hyperhyperfloor operation bbbxccc computes 2(bblog2xcc) and returns the result as a natural number. If the argument
is equal to 0 or 1 , the result is the same as the argument. If the argument is negative, an InvalidArgumentException
is thrown.

The hyperhyperceiling operation dddxeee computes 2(ddlog2xee) and returns the result as a natural number. If the argument
is equal to 0 or 1 , the result is the same as the argument. If the argument is negative, an InvalidArgumentException
is thrown.

25.2.70 shift(self, k: IndexInt): Z

The result of shift(x, k) is bx · 2kc . This corresponds to what is sometimes called an “arithmetic shift” on the two’s-
complement representation of the integer; positive values of k shifts the bits to the left, and negative values of k shifts
the bits to the right.

25.2.71 bit(self, k: IndexInt): Bit

The result of bit(x, k) is bx · 2−kc MOD 2 , as a Bit (0 or 1). If this integer is regarded as represented in binary two’s-
complement form, with bits numbered in “little-endian order” (least significant bit is bit number 0, least significant bit
but one is bit number 1, and so on), then this functional method returns bit k of this representation.

25.2.72 opr ¬¬(self): Z

If this integer is regarded as represented in binary two’s-complement form, then this functional method returns an
integer that is the bitwise complement of this integer—every bit is inverted.

property ∀(x, k: IndexInt) bit(¬¬x, k) = ¬bit(x, k)

221

25.2.73 opr ∧∧(self, other : Z): Z
25.2.74 opr ∨∨(self, other : Z): Z
25.2.75 opr ∨∨(self, other : Z): Z

If the arguments are regarded as represented in binary two’s-complement form, then these functional methods each
return an integer that is the result of bitwise operations (and, or, or exclusive or, respectively) on the argument integers.

property ∀(x, y, k: IndexInt) bit(x ∧∧ y, k) = bit(x, k) ∧ bit(y, k)
property ∀(x, y, k: IndexInt) bit(x ∨∨ y, k) = bit(x, k) ∨ bit(y, k)
property ∀(x, y, k: IndexInt) bit(x ∨∨ y, k) = bit(x, k) ∨ bit(y, k)

25.2.76 countBits(self): IndexInt

If this integer is regarded as represented in binary two’s-complement form, then this functional method returns the
number of 1-bits in the representation if this integer is nonnegative, but returns the number of 0-bits in the representa-
tion if this integer is negative.

property ∀(x) countBits(0) = 0
property ∀(x) countBits(x) = countBits(¬¬x)
property ∀(x) countBits(shift(x, 1)) = countBits(x)
property ∀(x) countBits(shift(x, 1)) + 1 = countBits(x) + 1

25.2.77 countFactorsOfTwo(self): IndexInt

This method returns the number of factors of 2 in this integer, that is, the logarithm of the largest power of 2 that
even divides this integer. If this integer is regarded as represented in binary two’s-complement form, then this method
returns the number of trailing 0-bits. If this integer is zero, this mehtod throws an IntegerOverflowException .

property ∀(x) countFactorsOfTwo(1) = 0
property ∀(x) x 6= 0→: countFactorsOfTwo(x) = countfactorsOfTwo(−x)
property ∀(x) x 6= 0→: countFactorsOfTwo(shift(x, 1)) = countfactorsOfTwo(x) + 1
property ∀(x) countFactorsOfTwo(shift(x, 1)) + 1 = 0

25.2.78 integerLength(self): IndexInt

This method returns dlog2(−self)e if self is negative, but returns dlog2(self + 1)e if self is nonnegative.
Suppose that this integer is regarded as represented in binary two’s-complement form, and this method returns the
value k ; then k is the smallest integer such that k + 1 bits suffice to represent this integer in binary two’s-complement
form. Moreover, if this integer is nonnegative, then k is the smallest integer such that k bits suffice to represent this
integer in unsigned binary form.

property ∀(x) integerLength(0) = 0
property ∀(x) x ≥ 0→ integerLength(shift(x, 1)) = integerLength(shift(x, 1) + 1) = integerLength(x) + 1
property ∀(x) integerLength(x) = integerLength(¬¬x)

222

25.2.79 lowBits(self, k: IndexInt): N

This method returns the value of this integer modulo 2k . If this integer is regarded as represented in binary two’s-
complement form, then this method returns an integer whose k least significant bits are equal to the correpsonding
bits of this integer, and whose other bits are all 0.

property ∀(x, k : IndexInt) lowBits(x, k) = x MOD 2k

25.2.80 even(self): Boolean
25.2.81 odd(self): Boolean

The method even returns true , and the method odd returns false , if this integer is evenly divisible by two. The
method even returns false , and the method odd returns true , if this integer is not evenly divisible by two. For type
Z∗ , if this integer is +∞ or −∞ , an InvalidArgumentException is thrown.

property ∀(a) even a↔ 2 | a
property ∀(a) odd a↔ ¬even a

25.2.82 prime(self): Boolean

The method prime is defined only for natural number types; it returns true if this integer is a prime number, and
otherwise returns false . It returns false if this integer is 0 or 1 .

∀(a, b) (a > 1) ∧ (a | b)→:¬prime b

25.2.83 realpart(self): Z

The method realpart for an integer simply returns its argument.

25.2.84 imagpart(self): Z

The method imagpart for an integer simply returns zero.

223

25.2.85 check(self): Z throws CastException
25.2.86 check∗(self): Z∗ throws CastException
25.2.87 check<(self): Z< throws CastException
25.2.88 check≤(self): Z≤ throws CastException
25.2.89 check≥(self): Z≥ throws CastException
25.2.90 check>(self): Z> throws CastException
25.2.91 check 6=(self): Z6= throws CastException
25.2.92 check∗<(self): Z∗< throws CastException
25.2.93 check∗≤(self): Z∗≤ throws CastException
25.2.94 check∗≥(self): Z∗≥ throws CastException
25.2.95 check∗>(self): Z∗> throws CastException
25.2.96 check∗6=(self): Z∗6= throws CastException

Each of these methods checks this integer to see whether it belongs to the result type of the method. If, the number is
returned; if not, a CastException is thrown.

Future versions of this specification will include trait declarations definitions for the other numeric quantities.

224

Chapter 26

Negated Relational Operators

26.1 Negated Equivalence Operators

26.1.1 opr 6==(x: Any, y: Any): Boolean
26.1.2 opr 6≡JT extends BinaryPredicateJT,≡KK(x:T, y:T): Boolean
26.1.3 opr 6≡JT extends BinaryIntervalPredicateJT,≡KK(x:T, y:T): BooleanInterval
26.1.4 opr 6=JT extends BinaryPredicateJT,=KK(x:T, y:T): Boolean
26.1.5 opr 6=JT extends BinaryIntervalPredicateJT,=KK(x:T, y:T): BooleanInterval
26.1.6 opr 6'JT extends BinaryPredicateJT,'KK(x:T, y:T): Boolean
26.1.7 opr 6'JT extends BinaryIntervalPredicateJT,'KK(x:T, y:T): BooleanInterval
26.1.8 opr 6≈JT extends BinaryPredicateJT,≈KK(x:T, y:T): Boolean
26.1.9 opr 6≈JT extends BinaryIntervalPredicateJT,≈KK(x:T, y:T): BooleanInterval

The infix operator 6== applies ¬ to the result of == on the same operands.

The infix operator 6≡ applies ¬ to the result of ≡ on the same operands.

The infix operator 6= applies ¬ to the result of = on the same operands.

The infix operator 6' applies ¬ to the result of ' on the same operands.

The infix operator 6≈ applies ¬ to the result of ≈ on the same operands.

225

26.2 Negated Comparison Operators

26.2.1 opr ≮JT extends BinaryPredicateJT,<KK(x:T, y:T): Boolean
26.2.2 opr ≮JT extends BinaryIntervalPredicateJT,<KK(x:T, y:T): BooleanInterval
26.2.3 opr �JT extends BinaryPredicateJT,≤KK(x:T, y:T): Boolean
26.2.4 opr �JT extends BinaryIntervalPredicateJT,≤KK(x:T, y:T): BooleanInterval
26.2.5 opr �JT extends BinaryPredicateJT,≥KK(x:T, y:T): Boolean
26.2.6 opr �JT extends BinaryIntervalPredicateJT,≥KK(x:T, y:T): BooleanInterval
26.2.7 opr ≯JT extends BinaryPredicateJT,>KK(x:T, y:T): Boolean
26.2.8 opr ≯JT extends BinaryIntervalPredicateJT,>KK(x:T, y:T): BooleanInterval

The infix operator ≮ applies ¬ to the result of < on the same operands.

The infix operator � applies ¬ to the result of ≤ on the same operands.

The infix operator � applies ¬ to the result of ≥ on the same operands.

The infix operator ≯ applies ¬ to the result of > on the same operands.

26.2.9 opr 6⊂JT extends BinaryPredicateJT,⊂KK(x:T, y:T): Boolean
26.2.10 opr 6⊂JT extends BinaryIntervalPredicateJT,⊂KK(x:T, y:T): BooleanInterval
26.2.11 opr *JT extends BinaryPredicateJT,⊆KK(x:T, y:T): Boolean
26.2.12 opr *JT extends BinaryIntervalPredicateJT,⊆KK(x:T, y:T): BooleanInterval
26.2.13 opr +JT extends BinaryPredicateJT,⊇KK(x:T, y:T): Boolean
26.2.14 opr +JT extends BinaryIntervalPredicateJT,⊇KK(x:T, y:T): BooleanInterval
26.2.15 opr 6⊃JT extends BinaryPredicateJT,⊃KK(x:T, y:T): Boolean
26.2.16 opr 6⊃JT extends BinaryIntervalPredicateJT,⊃KK(x:T, y:T): BooleanInterval

The infix operator 6⊂ applies ¬ to the result of ⊂ on the same operands.

The infix operator * applies ¬ to the result of ⊆ on the same operands.

The infix operator + applies ¬ to the result of ⊇ on the same operands.

The infix operator 6⊃ applies ¬ to the result of ⊃ on the same operands.

226

26.2.17 opr ⊀JT extends BinaryPredicateJT,≺KK(x:T, y:T): Boolean
26.2.18 opr ⊀JT extends BinaryIntervalPredicateJT,≺KK(x:T, y:T): BooleanInterval
26.2.19 opr 6�JT extends BinaryPredicateJT,4KK(x:T, y:T): Boolean
26.2.20 opr 6�JT extends BinaryIntervalPredicateJT,4KK(x:T, y:T): BooleanInterval
26.2.21 opr 6�JT extends BinaryPredicateJT,<KK(x:T, y:T): Boolean
26.2.22 opr 6�JT extends BinaryIntervalPredicateJT,<KK(x:T, y:T): BooleanInterval
26.2.23 opr �JT extends BinaryPredicateJT,�KK(x:T, y:T): Boolean
26.2.24 opr �JT extends BinaryIntervalPredicateJT,�KK(x:T, y:T): BooleanInterval

The infix operator ⊀ applies ¬ to the result of ≺ on the same operands.

The infix operator 6� applies ¬ to the result of � on the same operands.

The infix operator 6� applies ¬ to the result of � on the same operands.

The infix operator � applies ¬ to the result of � on the same operands.

26.2.25 opr 6@JT extends BinaryPredicateJT,@KK(x:T, y:T): Boolean
26.2.26 opr 6@JT extends BinaryIntervalPredicateJT,@KK(x:T, y:T): BooleanInterval
26.2.27 opr 6vJT extends BinaryPredicateJT,vKK(x:T, y:T): Boolean
26.2.28 opr 6vJT extends BinaryIntervalPredicateJT,vKK(x:T, y:T): BooleanInterval
26.2.29 opr 6wJT extends BinaryPredicateJT,wKK(x:T, y:T): Boolean
26.2.30 opr 6wJT extends BinaryIntervalPredicateJT,wKK(x:T, y:T): BooleanInterval
26.2.31 opr 6AJT extends BinaryPredicateJT,AKK(x:T, y:T): Boolean
26.2.32 opr 6AJT extends BinaryIntervalPredicateJT,AKK(x:T, y:T): BooleanInterval

The infix operator 6@ applies ¬ to the result of @ on the same operands.

The infix operator 6v applies ¬ to the result of v on the same operands.

The infix operator 6w applies ¬ to the result of w on the same operands.

The infix operator 6A applies ¬ to the result of A on the same operands.

26.2.33 opr 6∈JT extends BinaryPredicateJT,∈KK(x:T, y:T): Boolean
26.2.34 opr 6∈JT extends BinaryIntervalPredicateJT,∈KK(x:T, y:T): BooleanInterval
26.2.35 opr 63JT extends BinaryPredicateJT,3KK(x:T, y:T): Boolean
26.2.36 opr 63JT extends BinaryIntervalPredicateJT,3KK(x:T, y:T): BooleanInterval

The infix operator 6∈ applies ¬ to the result of ∈ on the same operands.

The infix operator 63 applies ¬ to the result of 3 on the same operands.

26.2.37 opr ∦JT extends BinaryPredicateJT, ‖KK(x:T, y:T): Boolean
26.2.38 opr ∦JT extends BinaryIntervalPredicateJT, ‖KK(x:T, y:T): BooleanInterval

The infix operator ∦ applies ¬ to the result of ‖ on the same operands.

227

Chapter 27

Exceptions

27.1 The Trait Fortress.Standard.Exception

The trait Exception is a single root of the exception hierarchy; every exception in Fortress has trait Exception . An
exception is either a CheckedException or an UncheckException . Every exception has optional fields: a message
and a chained exception. These fields are default to Nothing where an optional value v is either Nothing or Just(v)
as declared in Section 31.2.

trait Exception comprises {CheckedException,UncheckedException }
settable message:MaybeJStringK
settable chain:MaybeJExceptionK

end

27.1.1 settable message:MaybeJStringK

When an exception is thrown, its message may be set.

27.1.2 settable chain:MaybeJExceptionK

When an exception is thrown, its chain may be set to the exception thrown immediately before this exception.

27.2 The Trait Fortress.Standard.CheckedException
trait CheckedException

extends {Exception }
excludes {UncheckedException }

end

228

27.3 The Trait Fortress.Standard.UncheckedException
trait UncheckedException

extends {Exception }
excludes {CheckedException }

end

229

Chapter 28

Threads

28.1 The Trait Fortress.Standard.Thread

Every thread in Fortress has trait Thread .

trait ThreadJT extends AnyK
val():T
wait(): ()
ready(): Boolean
stop(): () throws Stopped

end

28.1.1 val():T

The val method returns the value computed by the expression of the thread. If the thread has not yet completed
execution, the invocation of val blocks until it has done so.

28.1.2 wait(): ()

The wait method waits for a thread to complete, but does not return a value.

28.1.3 ready(): Boolean

The ready method returns true if a thread has completed, and returns false otherwise.

28.1.4 stop(): () throws Stopped

The stop method attempts to terminate a thread.

230

Chapter 29

Dimensions and Units

29.1 Fortress.SIUnits

(∗ Reference: http://physics.nist.gov/cuu/Units/index.html ∗)
(∗ SI base units ∗)
dim Length SI unit meter meters m
dim Mass default kilogram; SI unit gram grams g:Mass
dim Time SI unit second seconds s
dim ElectricCurrent SI unit ampere amperes A
dim Temperature SI unit kelvin kelvins K
dim AmountOfSubstance SI unit mole moles mol
dim LuminousIntensity SI unit candela candelas cd

(∗ SI derived units with special names and symbols ∗)
dim Angle = Unity SI unit radian radians rad
dim SolidAngle = Unity SI unit steradian steradians sr
dim Frequency = 1/Time SI unit hertz Hz
dim Force = Mass Acceleration SI unit newton newtons N
dim Pressure = Force/Area SI unit pascal pascals Pa
dim Energy = Length Force SI unit joule joules J
dim Power = Energy/Time SI unit watt watts W
dim ElectricCharge = ElectricCurrent Time SI unit coulomb coulombs C
dim ElectricPotential = Power/Current SI unit volt volts V
dim Capacitance = ElectricCharge/Voltage SI unit farad farads F
dim Resistance = ElectricPotential/Current SI unit ohm ohms Ω
dim Conductance = 1/Resistance SI unit siemens S
dim MagneticFlux = Voltage Time SI unit weber webers Wb
dim MagneticFluxDensity = MagneticFlux/Area SI unit tesla teslas T
dim Inductance = MagneticFlux/Current SI unit henry henries H
dim LuminousFlux = LuminousIntensity SolidAngle SI unit lumen lumens lm
dim Illuminance = LuminousFlux/Area SI unit lux lx
dim RadionuclideActivity = 1/Time SI unit becquerel becquerels Bq
dim AbsorbedDose = Energy/Mass SI unit gray grays Gy
dim CatalyticActivity = AmountOfSubstance/Time SI unit katal katals kat

(∗ Other derived dimensions ∗)

231

dim Area = Length2

dim Volume = Length3

dim Velocity = Length/Time
dim Speed = Velocity
dim Acceleration = Velocity/Time
dim Momentum = Mass Velocity
dim AngularVelocity = Angle/Second
dim AngularAcceleration = Angle/Second2

dim WaveNumber = 1/Length
dim MassDensity = Mass/Volume
dim CurrentDensity = Current/Area
dim MagneticFieldStrength = Current/Length
dim Luminance = LuminousIntensity/Area
dim Work = Energy
dim Action = Energy Time
dim MomentOfForce = Force Length
dim Torque = MomentOfForce
dim MomentOfInertia = Mass Length2

dim Voltage = ElectricPotential
dim Conductivity = Conductance/Length
dim Resistivity = 1/Conductivity
dim Impedance = Resistance
dim Permittivity = Capacitance/Length
dim Permeability = Inductance/Length
dim Irradiance = Power/Area
dim RadiantIntensity = Power/SolidAngle
dim Radiance = Power/Area SolidAngle
dim AbsorbedDoseRate = AbsorbedDose/Time
dim CatalyticConcentration = CatalyticActivity/Volume
dim HeatCapacity = Energy/Temperature
dim Entropy = Energy/Temperature
dim DynamicViscosity = Pressure Time
dim SpecificHeatCapacity = Energy/Mass Temperature
dim SpecificEntropy = Energy/Mass Temperature
dim SpecificEnergy = Energy/Mass
dim ThermalConductivity = Energy/Length Temperature
dim EnergyDensity = Energy/Volume
dim ElectricFieldStrength = ElectricPotential/Length
dim ElectricChargeDensity = ElectricCharge/Volume
dim ElectricFlux = ElectricCharge
dim ElectricFluxDensity = ElectricCharge/Area
dim MolarEnergy = Energy/AmountOfSubstance
dim MolarHeatCapacity = Energy/AmountOfSubstance Temperature
dim MolarEntropy = Energy/AmountOfSubstance Temperature
dim RadiationExposure = ElectricCharge/Mass

(∗ Units outside the SI that are accepted for use with the SI ∗)
unit minute minutes min: Time
unit hour hours h:Time
unit day days d: Time
unit degreeOfAngle degrees: Angle
unit minuteOfAngle minutesOfAngle: Angle

232

unit secondOfAngle secondsOfAngle: Angle
SI unit metricTon metricTons tonne tonnes t:Mass
SI unit liter liters L:Volume

29.2 Fortress.EnglishUnits

import {Length,Area,Volume,Time,Mass,millimeters, liters, grams }
from Fortress.SIUnits

unit inch inches: Length
unit foot feet: Length
unit yard yards: Length
unit mile miles: Length
unit rod rods: Length
unit furlong furlongs: Length

unit surveyFoot surveyFeet: Length
unit surveyMile surveyMiles: Length

unit nauticalMile nauticalMiles: Length
unit knot knots: Speed

unit week weeks: Time
unit fortnight fortnights: Time
unit microfortnight microfortnights: Time

unit gallon gallons:Volume
unit fluidQuart fluidQuarts: Volume
unit fluidPint fluidPints: Volume
unit fluidCup fluidCups:Volume
unit fluidOunce fluidOunces: Volume
unit fluidDram fluidDrams:Volume
unit minim minims:Volume

unit traditionalTablespoon traditionalTablespoons: Volume
unit traditionalTeaspoon traditionalTeaspoons:Volume
unit federalTablespoon federalTablespoons:Volume
unit federalTeaspoon federalTeaspoons:Volume

unit dryPint dryPints: Volume
unit dryQuart dryQuarts: Volume
unit peck pecks:Volume
unit bushel bushels: Volume

unit acre: Area

unit imperialGallon:Volume
unit imperialQuart: Volume
unit imperialPint: Volume
unit imperialGill: Volume
unit imperialFluidOunce:Volume
unit imperialFluidDrachm: Volume
unit imperialFluidDRam : Volume
unit imperialFluidScruple: Volume
unit imperialMinim:Volume

unit pound pounds lb lbs:Mass

233

unit ounce ounces oz: Mass
unit grain grains: Mass
unit troyPound troyPounds: Mass
unit troyOunce troyOunces:Mass

29.3 Fortress.InformationUnits
dim Information unit bit bits
unit byte bytes: Information

234

Chapter 30

Tests

30.1 The Object Fortress.Standard.TestSuite

An instance of the object TestSuite contains a set of test functions that can all be called by invoking the method run :

test object TestSuite(testFunctions = {})
add(f : ()→ ()): ()
run(): ()

end

30.1.1 add(f : ()→ ()): ()

The add method adds a given test function to the testFunctions field of this object.

30.1.2 run(): ()

The run method calls each test function in the testFunctions field of this object. Note that all tests in a TestSuite
are run in parallel.

30.2 Test Functions

30.2.1 test fail(message: String): ()

The helper function fail displays the error message provided and terminates execution of the enclosing test.

235

Chapter 31

Convenience Functions and Types

31.1 Convenience Functions

31.1.1 castJTextends AnyK(x: Any):T

The function cast converts the type of its argument to a given type. If the static type of the argument is not a subtype
of the given type, a CastException is thrown.

31.1.2 instanceOf JTextends AnyK(x: Any): Boolean

The function instanceOf tests whether its argument has a given type and returns a boolean value.

31.1.3 ignore(x: Any): ()

The function ignore discards the value of its argument and returns () .

31.1.4 tupleJTextends TupleK(x:T):T

The function tuple returns its argument as a tuple expression.

31.1.5 identityJTextends AnyK(x:T):T

The function identity returns its argument.

31.1.6 coerceJT K(x:T):T

The function coerce returns its argument as the given type.

236

31.2 Convenience Types

An optional value v is either Nothing or Just(v) declared as follows:

(∗ Optional Values ∗)
trait MaybeJT K comprises {Nothing, JustJT K }

isNothing : Boolean
end
object Nothing extends MaybeJT K excludes JustJT K where {T extends Object}
end
object JustJT K(just :T) extends MaybeJT K
end

237

Part IV

Fortress for Library Writers

238

Chapter 32

Parallelism and Locality

Fortress is designed to make parallel programming as simple and as painless as possible. This chapter describes the
internals of Fortress parallelism designed for use by authors of library code (such as distributions, generators, and
arrays). We adopt a multi-tiered approach to parallelism:

• At the highest level, we provide libraries which allocate locality-aware distributed arrays (Section 32.2) and
implicitly parallel constructs such as tuples and loops. Synchronization is accomplished through the use of
atomic sections (Section 13.22). More complex synchronization makes use of abortable atomicity, described in
Section 32.3.

• There is an extensive library of distributions, which permits the programmer to specify locality and data distri-
bution explicitly (Section 32.5).

• Immediately below that, the at expression requests that a computation take place in a particular region of the
machine (Section 32.7). We also provide a mechanism to terminate a spawned thread early (Section 32.6).

• Finally, there are mechanisms for constructing new generators via recursive subdivision into tree structures
with individual elements at the leaves. Section 32.8 explains how iterative constructs such as for loops and
comprehensions are desugared into calls to methods of trait Generator , and how new instances of this trait may
be defined.

We begin by describing the abstraction of regions, which Fortress uses to describe the machine on which a program is
run.

32.1 Regions

Every thread (either explicit or implicit) and every object in Fortress, and every element of a Fortress array (the
physical storage for that array element), has an associated region. The region in which an object o resides can be
obtained by calling o.region . Regions abstractly describe the structure of the machine on which a Fortress program is
running. They are organized hierarchically to form a tree, the region hierarchy, reflecting in an abstract way the degree
of locality which those regions share. The different levels of this tree reflect underlying machine structure, such as
execution engines within a CPU, memory shared by a group of processors, or resources distributed across the entire
machine. Objects which reside in regions near the leaves of the tree are local entities; those which reside at higher
levels of the region tree are logically spread out. The method call r.isLocalTo(s) returns true if r is contained within
the region tree rooted at s .

It is important to understand that regions and the structures (such as distributions, Section 32.5) built on top of them
exist purely for performance purposes. The placement of a thread or an object does not have any semantic effect on

239

the meaning of a program; it is simply an aid to enable the implementation to make informed decisions about data
placement.

It may not be possible for an object or a thread to reside in a given region. Threads of execution reside at the execution
level of the region hierarchy, generally the bottommost level in the region tree. Each thread is generally associated with
some region at the execution level, indicating where it will preferentially be run. The programmer can affect the choice
of region by using an at expression (Section 32.7) when the thread is created. A thread may be have an associated
region which is not at the execution level of the region hierarchy, either because a higher region was requested with
an at expression or because scheduling decisions permit the thread to run in several possible execution regions. The
region to which a thread is assigned may also change over time due to scheduling decisions. The region method for
the object associated with a spawned thread returns the region of the associated thread.

The memory level of the region hierarchy is where individual reference objects reside; on a machine with nodes com-
posed of multiple processor cores sharing a single memory, this generally will not be a leaf of the region hierarchy.
Imagine a constructor for a reference object is called by a thread residing in region r , yielding an object o . Ex-
cept in very rare circumstances (for example when a local node is out of memory) either r.isLocalTo(o.region) or
(o.region).isLocalTo(r) ought to hold: data is allocated locally to the thread which runs the constructor. For a value
object v being manipulated by a thread residing in region r either (v.region).isLocalTo(r) or r.isLocalTo(v.region)
(value objects always appear to be local).

Note that region is a getter method and can be overridden like any other method. The chief example of this is arrays,
which are generally composed from many reference objects; the region method is overridden to return the location of
the array as a whole—the region which contains all of its constituent reference objects.

32.2 Distributed Arrays

Arrays, vectors, and matrices in Fortress are assumed to be spread out across the machine. As in Fortran, Fortress
arrays are complex data structures; simple linear storage is encapsulated by the HeapSequence type, which is used
in the implementation of arrays (see Section 32.7). The default distribution of an array is determined by the Fortress
libraries; in general it depends on the size of the array, and on the size and locality characteristics of the machine
running the program. For advanced users, the distribution library (introduced in Section 32.5) provides a way of
combining and pivoting distributions, or of redistributing two arrays so that their distributions match. Programmers
should create arrays by using an array comprehension (Section 13.28) or an aggregate expression (Section 13.27). The
operational internals of array comprehensions are described in Section 32.8.

Because the elements of a fortress array may reside in multiple regions of the machine, there is an additional method
a.region(i) which returns the region in which the array element ai resides. An element of an array is always local
to the region in which the array as a whole is contained, so (a.region(i)).isLocalTo(a.region) must always return
true . When an array contains reference objects, the programmer must be careful to distinguish the region in which the
array element ai resides, a.region(i) , from the region in which the object referred to by the array element resides,
ai.region . The former describes the region of the array itself; the latter describes the region of the data referred to by
the array. These may differ.

32.3 Abortable Atomicity

Fortress provides a user-level abort() function which abandons execution of an atomic expression and rolls back
its changes, requiring the atomic expression to execute again from the beginning. This permits an atomic section to
perform consistency checks as it runs. However, the functionality provided by abort() can be abused; it is possible
to induce deadlock or livelock by creating an atomic section which always fails. Here is a simple example of a
program using abort() which is incorrect because Fortress does not guarantee that the two implicit threads (created

240

by evaluating the two elements of the tuple) will always run in parallel; it is possible for the first element of the tuple
to continually abort without ever running the second element of the tuple:

r : Z64 := 0
(a, b) = (atomic if r = 1 then 17 else abort() end,

do r := 1; r end)(∗ INCORRECT! ∗)

Fortress also includes a tryatomic expression, which attempts to run its body expression atomically. If it succeeds,
the result is returned; if it aborts due to a call to abort , the AtomicAborted exception is thrown; if it aborts due to
conflict (as described in Section 13.22), the AtomicConflict exception is thrown. These exceptions both implement
the AtomicFailed trait, which is an instance of CheckedException . Conceptually atomic can be defined in terms
of tryatomic as follows:

label AtomicBlock
while true do

try
result = tryatomic body
exit AtomicBlock with result

catch e
AtomicFailed⇒ ()(∗ continue execution ∗)

end
end
throw UnreachableCode(∗ inserted for type correctness ∗)

end AtomicBlock

Unlike the above definition, an implementation may choose to suspend a thread running an atomic expression which
invokes abort , re-starting it at a later time when it may be possible to make further progress. The above definition
restarts the body of the atomic expression immediately without suspending.

32.4 Shared and Local Data

Every object in a Fortress program is considered to be either shared or local (collectively referred to as the sharedness
of the object). A local object must be transitively reachable (through zero or more object references) from the variables
of at most one running thread. A local object may be accessed more cheaply than a shared object, particularly in the
case of atomic reads and writes. Sharedness is ordinarily managed implicitly by the Fortress implementation. Control
over sharedness is intended to be a performance optimization; however, methods such as isShared and localize can
affect program semantics, and must be used with care.

The sharedness of an object should be contrasted with its region. The region of an object describes where that object
is located on the machine. The sharedness of an object describes whether the object is visible to one thread or to many.
A local object need not actually reside in a region near the thread to which it is visible (though ordinarily it will).

The following rules govern sharedness:

• Reference objects are initially local when they are constructed.

• The sharedness of an object may change as the program executes.

• If an object is currently transitively reachable from more than one running thread, it must be shared.

• When a reference to a local object is stored into a field of a shared object, the local object must be published:
Its sharedness is changed to shared, and all of the data to which it refers is also published.

• The value of a local variable referenced by a thread must be published before that thread may be run in parallel
with the thread which created it. Values assigned to the variable while the threads run in parallel must also be
published.

241

• A field with value type is assigned by copying, and thus has the sharedness of the containing object or closure.

Publishing can be expensive, particularly if the structure being broadcast is large and heavily nested; this can cause an
apparently short atomic expression (a single write, say) to run arbitrarily long. To avoid this, the library programmer
can request that an object be published by calling the semantically transparent function shared :

x := shared Cons(x, xs)
shared(y)

A local copy of an object can be obtained by calling copy , a method on trait Any :

localVar := sharedVar .copy()

Two additional methods are provided which permit different choices of program behavior based on the sharedness of
objects:

• The getter o.isShared returns true when o is shared, and false when it is local. This permits the program to
take different actions based on sharedness.

• Method o.localize() is equivalent to the following expression:

if o.isShared then o.copy() else o end

These methods must be used with extreme caution. For example, localize should be used only when there is a unique
reference to the object being localized. The localize method can have unexpected behavior if there is a reference to o
from another local object p . Updates to o will be visible through p ; subsequent publication of p will publish o . By
contrast, if o was already shared, and referred to by another shared object, the newly-localized copy will be entirely
distinct; changes to the copy will not be visible through p , and publishing p will not affect the locality of the copy.

32.5 Distributions

Most of the heavy lifting in mapping threads and arrays to regions is performed by distributions. An instance of the
trait Distribution describes the parallel structure of ranges and other numeric generators (such as the generators for
the index space of an array), and provides for the allocation and distribution of arrays on the machine:

trait Distribution
distributeJE,B extends ArrayIndexK(RangeJBK) : RangeJBK
distributeJE,B extends ArrayIndexK(a : ArrayJE,BK) : ArrayJE,BK =

distributeFromToJE,BK(a, a.distribution, self)
end

Abstractly, a Distribution acts as a transducer for generators and arrays. The distribute method applied to a mul-
tidimensional Range organizes its indices into the leaves of a tree whose inner nodes correspond to potential levels
of parallelism and locality in the underlying computation, producing a fresh Range whose behavior as a Generator
may differ from that of the passed-in Range . The distribute method applied to an array creates a copy of that
array distributed according to the given distribution. This is specified in terms of a call to the overloaded function
distributeFromTo . This permits the definition of specialized versions of this function for particular pairs of distribu-
tions.

The intention of distributions is to separate the task of data distribution and program correctness. That is, it should be
possible to write and debug a perfectly acceptable parallel program using only the default data distribution provided
by the system. Imposing a distribution on particular computations, or designing and implementing distributions from
scratch, is a task best left for performance tuning, and one which should not affect the correctness of a working
program.

242

There is a DefaultDistribution which is defined by the underlying system. This distribution is designed to be rea-
sonably adaptable to different system scales and architectures, at the cost of some runtime efficiency. Arrays and
generators that are not explicitly allocated through a distribution are given the DefaultDistribution .

We said in Section 13.15 that there is a generator, indices , associated with every array. This generator is dis-
tributed in the same way as the array itself. When we re-distribute an array, we also re-distribute the generator;
thus d.distribute(a.indices) is equivalent to (d.distribute(a)).indices .

There are a number of built-in distributions:

DefaultDistribution Name for distribution chosen by system.
Sequential Sequential distribution. Arrays are allocated in one contiguous piece of memory.
Local Equivalent to Sequential .
Par Blocked into chunks of size 1.
Blocked Blocked into roughly equal chunks.
Blocked(n) Blocked into n roughly equal chunks.
Subdivided Chopped into 2k-sized chunks, recursively.
Interleaved(d1, d2, . . . dn) The first n dimensions are distributed according to d1 . . . dn ,

with subdivision alternating among dimensions.
Joined(d1, d2, . . . dn) The first n dimensions are distributed according to d1 . . . dn ,

subdividing completely in each dimension before proceeding to the next.

From these, a number of composed distributions are provided:

Morton Bit-interleaved Morton order [22], recursive subdivision in all dimensions.
Blocked(x1, x2, . . . xn) Blocked in n dimensions into chunks of size xi in dimension i ;

remaining dimensions (if any) are local.

To allocate an array which is local to a single thread (and most likely allocated in contiguous storage), the Local
distribution can be used:

a = Local.distribute[1 0 0; 0 1 0; 0 0 1]

Other distributions can be requested in a similar way.

Distributions can be constructed and given names:

spatialDist = Blocked(n, n, 1)(∗ Pencils along the z axis ∗)

The system will lay out arrays with the same distribution in the same way in memory (as much as this is feasible), and
will run loops with the same distribution in the same way (as much as this is feasible). By contrast, if we replace every
occurrence of spatialDist by Blocked(n, n, 1) , this code will likely divide up arrays and ranges into the same-sized
pieces as above, but these pieces need not be collocated.

32.6 Early Termination of Threads

As noted in Section 4.4, an implicit thread can be terminated if its group is going to throw an exception. Similarly, a
spawned thread t may be terminated by calling t.stop() . A successful attempt to terminate a thread causes the thread
to complete asynchronously. There is no guarantee that termination attempts will be prompt, or that they will occur at
all; the implementation will make its best effort. If a thread completes normally or exceptionally before an attempt to
terminate it succeeds, the result is retained and the termination attempt is simply dropped.

A termination attempt acts as if a special hidden stop exception is thrown in that thread. This exception cannot be
thrown by throw or caught by catch ; however, finally clauses are run as with any other exception. If the stopped
thread was in the middle of an atomic expression, the effects of that expression are rolled back just as with an ordinary
throw . A special wrapper around every spawned thread is provided by the Fortress implementation; it catches the

243

stop exception and transforms it into a deferred Stopped exception. This is visible to the programmer and should be
caught by invoking the val method on the thread object. Implicit threads are terminated only if another thread in the
group completes abruptly, and the threads that are terminated are ignored for the purposes of the completion of the
group.

Typical code for stopping a thread looks something like the following example:

x : Z64 := 0
t = spawn do

try
atomic if x = 0 then abort() else () end

finally
x := 1

end
end

t.stop()
try
t.val()

catch s
Stopped⇒ x += 2;x

end

Here the spawned thread t blocks until it is killed by the call to t .stop() ; it sets x to 1 in the finally clause before
exiting. In this case, the call to t .val() will throw Stopped , which is caught, causing 2 to be added to x and returning
3.

Note that there is a race in the above code, so the try block in t may not have been entered when t .stop() is called,
causing x to be 2 at the end of execution. Note also that the call to t .stop() occurs asynchronously; in the absence of
the call to t .val() , the spawning thread would not have waited for t to complete.

32.7 Placing Threads

A thread can be placed in a particular region by using an at expression:

(v, w) = (ai,
at a.region(j) do
aj

end)

In this example, two implicit threads are created; the first computes ai locally, the second computes aj in the region
where the jth element of a resides, specified by a.region(j) . The expression after at must return a value of type
Region , and the block immediately following do is run in that region; the result of the block is the result of the at
expression as a whole. Often it is more graceful to use the also do construct (described in Section 13.11.3) in these
cases:

do
v := ai

also at a.region(j) do
w := aj

end

We can also use at with a spawn expression:

244

v = spawn at a.region(i) do
ai

end
w = spawn at v.region() do

v.val() · 17
end

Finally, note that it is possible to use an at expression within a block:

do
v := ai

at a.region(j) do
w := aj

end
x = v + w

end

We can think of this as the degenerate case of also do : a thread group is created with a single implicit thread running
the contents of the at expression in the given region; when this thread completes control returns to the original
location.

Note that the regions given in an at expression are non-binding: the Fortress implementation may choose to run the
computations elsewhere—for example, thread migration might not be possible within an atomic expression, or load
balancing might cause code to be executed in a different region. In general, however, implementations should attempt
to respect thread placement annotations when they are given.

32.8 Use and Definition of Generators

Several expressions in Fortress make use of generator lists (given by the nonterminal GeneratorList in the Fortress
grammar defined in Appendix G) to express parallel iteration (see Section 13.14). A generator list binds a series of
variables to the values produced by a series of objects with the Generator trait. A generator list is simply syntactic
sugar for a nested series of invocations of methods on these objects. All the parallelism provided by a particular
generator is specified by its definitions for the methods of the Generator trait. In general, the library code for a
generator dictates the parallel structure of computations involving that generator.

The definition of trait Generator has very simple functionality at its core:

trait GeneratorJE extends Any K
size : Z64
generateJR extends MonoidJR,⊕ K, opr ⊕ K(body : E → R) :R
joinJN extends Any K(other : GeneratorJN K) : GeneratorJ (E,N) K =

SimplePairGeneratorJE,N K(self, other)
end

The mechanics of object generation are embedded entirely in the generate method. This method takes one argument,
the body function. The generate method invokes body once for each object which is to be generated, passing the
generated object as an argument. Note that body returns a value in some Monoid R ; the results of the calls to body
are combined using the monoid operator ⊕ . This reduction may include any number of occurrences of the identity
of the monoid—in particular, a generator may generate no elements, in which case it will never invoke body and will
simply the identity.

Note that every generator has a natural order: an order in which the terms generated by different executions of the
body expression are combined by the reduction. This is important when the operator in question is associative but not
commutative.

245

T JR,�K[] body = body
T JR,�K[x← g, gs] body = g.generateJR,�K(fn ()⇒ T JR,�K[gs]body)
T JR,�K[p , gs] body = if p then (T JR,�K[gs]body) else IdentityJ�K end

Figure 32.1: Naive and simple desugaring of generator lists using only the generate method.

A simple definition of a Generator need only define the size field and the generate method:

value object BlockedRange(lo: Z64, hi : Z64, b: Z64) extends GeneratorJZ64K
size : Z64 = hi − lo + 1
generateJR extends MonoidJR,⊕K, opr ⊕K(body : Z64→ R) : R =

if size ≤ max(b, 1) then
r : R = IdentityJ⊕K
i : Z64 = lo
if i ≤ hi then

label done do
while true do
r := r ⊕ body(i)
if i ≥ hi then exit done with () end
i += 1

end
end

end
r

else
mid = dlo/2e+ bhi/2c
BlockedRange(lo,mid , b).generate(body)⊕

BlockedRange(mid + 1, hi , b).generate(body)
end

end

This example generates the integers between lo and hi inclusive, with that ordering as the natural order of the gener-
ator. It does this using recursive subdivision. Recursive subdivision is the recommended technique for exposing large
amounts of parallelism in a Fortress program because it adjusts easily to varying machine sizes and can be dynamically
load balanced. In this example we divide the range in half if it is larger than the block size b ; these two halves are
computed in parallel (recall that the arguments to an operator are evaluated in parallel). If the range is smaller than b ,
then it is enumerated serially using a while loop, accumulating the result r as it goes.

The remainder of this section describes in detail the desugaring of generator lists and expressions with generators into
invocations of the generate and join methods of the generators in the generator list. It then outlines how method
overloading may be used to specialize the behavior of particular combinations of generators and reductions.

32.8.1 Simple Desugaring of Expressions with Generators

Each expression with generators is desugared into the following general form:

wrapper(fn ()⇒ T JR,�K[gs]body)

where the desugaring must provide appropriate instantiations of wrapper , body , and the reduction static parameters,
R and � . A simple and easily-understood desugaring “ T JR,�K[gs]body ” for generator lists is shown in Figure 32.1.

The desugaring of GeneratorList takes three parameters: a block of static parameters, R and � , the actual gener-
ator list (which we enclose in square brackets), and the body expression which should be used. Here and in sub-
sequent desugarings, v in v ← g can stand either for a single variable or for a tuple of variables. We convert the

246

expr type wrapper body JR,�K∑
gs
e R

∑
e JR,+K

lv := e, gs () noReduction lv := e JNoReduction,⊕K
〈 e | gs 〉 ListJEK closeList singletonOpen(e) JOpenList,++K

Figure 32.2: Desugaring of expressions with generators. Top to bottom: big operators (here
∑

is used as an ex-
ample; the appropriate library function is called on the right-hand side), assignments, and comprehensions (here list
comprehensions are shown; with the exception of array comprehensions, other comprehensions are similar to list
comprehensions).

provided GeneratorList into a nested series of calls to generate . For example, when we perform the desugaring
T JZ64,+K[x← xs, y ← ys, x 6= y](x · y) we obtain the following code:

xs.generateJZ64,+K(fn x⇒
ys.generateJZ64,+K(fn y ⇒

if x 6= y then (x · y) else IdentityJ+K end))

Some example desugarings of expressions with generators are shown in Figure 32.2 for big operators, assignments,
and list comprehensions (set and multiset comprehensions are similar to list comprehensions).

The simplest desugarings are the ones for big operators such as
∑

. The type of the traversal corresponds to the type
of the result. The body expression used is exactly the body expression of the big operator. The wrapper function is
named by the big operator itself. For example, the

∑
operator has the following declaration:

opr
∑

JR extends CommutativeMonoidJR,+KK(rhs : ()→ R):R = rhs()

Assignments desugar in a manner similar to big operators. However, they make use of the special NoReduction type,
which is a singleton type which extends CommutativeMonoidJNoReduction,⊕K . We can think of NoReduction
as composing the writes of the assignments in parallel. The wrapper noReduction is defined as follows:

noReduction(rhs : ()→ NoReduction): () = do
rhs()
()

end

Lists also desugar in a similar way. The desugaring given in Figure 32.2 makes use of the OpenList type—such a list
is constructed with an updatable tail cell, permitting partially-constructed lists to be appended in constant time using
the ++ (DOUBLE PLUS) operator. The closeList operation converts the result into an ordinary non-updatable list.

An array comprehension simply desugars into a factory function call and a series of assignments:

[i1 = e1 | gs1
i2 = e2 | gs2
. . .
in = en | gsn]

−→

do a = array()
a[i1] := e1, gs1
a[i2] := e2, gs2
. . .
a[in] := en, gsn

a
end

The desugaring of a for loop depends upon the set of reduction variables. We conceptually desugar the for loop
with reduction variables, r1, r2, . . ., rn, reduced using the reduction operator ⊕ for type (T1, T2, . . . Tn) as follows:

for gs do block end
−→

247

(r1, r2, . . . rn) ⊕= T J(T1, T2, . . . Tn),⊕K[gs] (do
(r1, r2, . . . rn) : (T1, T2, . . . Tn) := IdentityJ⊕K
block
(r1, r2, . . . rn)

end)

In practice, a tuple type is not a monoid. If there is only one reduction variable, this is not a problem. If there are no
reduction variables, we simply use the type NoReduction used in desugaring assignments. When there are multiple
reduction variables, we use nested applications of types extending the trait ReductionPair . These types encode
the common properties of the variables being reduced. Recall that every reduction variable must at least have type
Monoid , so it is not difficult to guarantee that ReductionPair itself also extends Monoid .

32.8.2 Accounting for Dependencies among Generators

The naive desugaring for generator lists in Figure 32.1 assumes there are always data dependencies among generators.
The actual desugaring makes use of the join method in the Generator trait to group together generators that have
no data dependencies. The goal is to permit library code to define more efficient merged generators for generator
pairs. For example, it is possible for the join method to take the generator list i← 1# 100, j ← 2# 200 and generate
a blocked two-dimensional traversal. This could then be joined with k ← 3# 300 to obtain a three-dimensional
blocked traversal.

However, most generators will simply make use of the default definition of join which calls SimplePairGenerator:

object SimplePairGeneratorJA extends Any, B extends Any K
(outer : GeneratorJA K, inner : GeneratorJB K) extends GeneratorJ (A,B) K

size : Z64 = outer .size · inner .size
generateJR extends MonoidJR,⊕ K, opr ⊕ K(body : (A,B)→ R) :R =

outer .generate(fn (a : A)⇒ inner .generate(fn (b : B)⇒ body(a, b)))
joinJN extends Any K(other : GeneratorJN K) : GeneratorJ ((A,B), N) K =

SimpleMapGenerator(outer .join(inner .join(other)),
(fn (a, (b, n))⇒ ((a, b), n)))

end

Note how SimplePairGenerator itself overrides the join method. When we attempt to join an existing pair of joined
generators, we first attempt to join the inner generator of the pair with the other generator (the new innermost
generator) passed in. This means that every generator will have the opportunity to combine with both its left and right
neighbors if neither has a dependency which prevents it. Note that we use a SimpleMapGenerator , which simply
applies a function to the result of another generator, to re-nest the tuples produced by the nested join operation.

Which pairs of adjacent traversals are combined using join ? This question is complicated by examples such as
i← 1 : 100, j ← 1 : 100, k ← i : 100, l← j : 100 . We can either combine i and j traversals, or we can combine j
and k traversals. In the former case we can also combine k and l traversals. The Fortress compiler is free to choose
any grouping subject to the following constraints:

• Two generators may not be combined using join if the second is data dependent upon the first.

• Generator order must be preserved when invoking join .

• When a chain of three or more generators is joined, the traversals must be combined left-associatively.

We can obtain a simple greedy desugaring which joins together traversals in accordance with the above rules by simply
adding the following desugaring rule which takes precedence over those given in Figure 32.1 when each variable bound
in v1 does not occur free in g2.

T JR,�K[v1 ← g1, v2 ← g2, gs] body = T JR,�K[(v1, v2)← g1.join(g2), gs] body

248

32.8.3 Using Overloading to Adapt Generators and Traversals

Overloaded instances of the generate method can be used to adapt a generator to the particular properties of the re-
duction being performed. For example, a commutative monoid need only maintain a single variable result containing
the reduced value so far:

value object BlockedRange(lo: Z64, hi : Z64, b: Z64) extends GeneratorJZ64K
. . .
generateJR extends CommutativeMonoidJR,⊕K, opr ⊕K(body : Z64→ R) : R = do

result : R = IdentityJ⊕K
traverse(l, u) =

if u− l + 1 ≤ max(b, 1) then
i : Z64 = l
while i ≤ u do
t = body(i)
atomic result := result ⊕ t
i += 1

end
()

else
mid = dl/2e+ bu/2c
(traverse(l,mid), traverse(mid + 1, u))
()

end
traverse(lo, hi)
result

end
end

The choice of whether to apply this transformation is left up to the author of the generator; when many iterations run
in parallel the result variable becomes a scalability bottleneck and this technique should not be used.

Various other properties of the reduction operator can be exploited:

• Idempotent reductions permit redundant computation. For example, when computing the maximum element of
a set it might be simpler to enumerate set elements more than once.

• On the other hand, sometimes a more efficient non-idempotent operator can be used for a reduction if the
generator promises never to produce duplicates—this fact can be used to advantage in set, multiset, or map
comprehensions.

• If the reduction operator has a zero, this can be used to exit early from a partial computation. This requires that
the body expression have no visible side effects such as writes or io actions.

At the moment, the author of a Generator is responsible for taking advantage of opportunities such as these. In
future, we expect some standardized support for efficient versions of various traversals based on experience with the
definitions provided here.

32.8.4 Making a Serial Version of a Generator or Distribution

A generator g can be made sequential simply by calling the builtin function sequential as follows:

v ← sequential(g)

249

The resulting generator yields its elements in the natural order specified by the original generator. Several builtin
generators (such as those for array indices) have an associated distribution. For these generators, sequential function
simply re-distributes the underlying object as follows:

sequential(r) = Sequential.distribute(r)

As a convenient shorthand, the sequential function is also defined to work for distributions themselves. The complete
signature for the overloadings of sequential is as follows:

sequentialJE extends Any K(g : GeneratorJEK) : GeneratorJEK
sequentialJE extends Any K(d : Distribution) : Distribution

The sequential function has special meaning to the Fortress implementation; there is no need to distinguish reduction
variables in loops for which generator is surrounded by a direct call to sequential .

Note that at the moment there is no way to tell the compiler for performance reasons that we really mean it when
we ask for sequentiality, as opposed to saying that we should preserve sequential semantics. Future versions of this
specification may use the Local distribution for this purpose, or provide additional functions on generators which
guarantee serial execution (rather than simply providing sequential semantics).

250

Chapter 33

Overloaded Functional Declarations

Fortress allows multiple functional declarations to be in scope of a particular program point. We call this overloading.
Chapter 15 describes how to determine which overloaded declarations are applicable to a particular functional call,
and when several are applicable, how to select the most specific one among them. In this chapter, we give a set of rules
on overloaded declarations that guarantee there exists a most specific declaration for any given functional call. These
rules are complicated by the presence of coercion, which may enlarge the set of declarations that are applicable to a
functional call, as discussed in Chapter 17.

33.1 Principles of Overloading

Fortress allows multiple functional declarations of the same name to be declared in a single scope. However, recall
from Chapter 7 the following shadowing rules:

• dotted method declarations shadow top-level function declarations with the same name, and

• dotted method declarations provided by a trait or object declaration or object expression shadow functional
method declarations with the same name that are provided by a different trait or object declaration or object
expression.

Also, note that a trait or object declaration or object expression must not have a functional method declaration and
a dotted method declaration with the same name, either directly or by inheritance. Therefore, top-level functions
can overload with other top-level functions and functional methods, dotted methods with other dotted methods, and
functional methods with other functional methods and top-level functions.

Overloading functional declarations allows the benefits of polymorphic declarations. However, with these benefits
comes the potential for ambiguous calls at run time. Fortress provides overloading rules for the declarations of
functionals to eliminate the possibility of ambiguous calls at run time, whether or not these calls actually appear in the
program.

Furthermore, these rules are checked statically. In fact, the overloading rules in Fortress allow the compiler to identify
the statically most specific declaration for a particular call. Therefore an implementation strategy may be used in
which the statically most specific declaration is identified statically, and the runtime dispatch mechanism need only
consider dispatching among that declaration plus declarations that are more specific than that declaration (proof of this
is given in Section B.2).

This chapter outlines several criteria for valid functional overloading. At any given program point, there is a set
of overloaded declarations that are in scope. Fortress determines whether there is a possibility for ambiguous calls

251

from this set by comparing declarations pairwise. The following three sections each describes a rule to accept a pair
of overloaded functional declarations. If a pair of overloaded declarations satisfies any one of the three rules, it is
considered a valid overloading.

The overloading rules given in this chapter are disjoint. That is, at most one rule applies to each pair of overloaded
declarations. It is possible for new rules to be added which allow additional overloadings.

Overloaded declarations must have static parameters that are identical (up to α-equivalence). Also, valid overloadings
for declarations that contain keyword or varargs parameters are determined by analyzing the expansion of these dec-
larations as described in Section 15.4. Therefore, static parameters, keyword parameters, and varargs parameters are
ignored in the remainder of this chapter.

An operator method declaration whose name is one of the operator parameters (described in Section 11.5) of its
enclosing trait or object may be overloaded with other operator declarations in the same component. Therefore,
such an operator method declaration must satisfy the overloading rules with every operator declaration in the same
component.

In addition, a functional which takes a single parameter of type Any (or a naked type parameter of bound Any) cannot
be overloaded. This restriction prevents ambiguous overloadings such as the following:

makeSetJT extends AnyK(x:T): SetJT K
makeSetJT extends AnyK(x:T, y:T): SetJT K

The type parameter of makeSet may be instantiated with (Z,Z) or Z . If this is the case then the call makeSet(3, 4) ,
where 3 and 4 have type Z , is ambiguous.

Section 33.2 states the Subtype Rule, which stipulates that the parameter type of one declaration be a subtype of the
parameter type of the other. In this case, there is no possibility of ambiguous calls, because one declaration is more
specific than the other. This section also places a restriction on the return types of the overloaded declarations to ensure
that type safety is not violated. Section 33.3 defines the Incompatibility Rule that, if satisfied by a pair of declarations,
guarantees that neither declaration is applicable to the same functional call. In Section 33.4, the Meet Rule requires
the existence of a declaration that is more specific than both overloaded declarations in the situation that both are
applicable to a given call.

In the remainder of this chapter we build on the terminology and notation defined in Chapter 15 and Chapter 17.

33.2 Subtype Rule

If the parameter type of one declaration is a subtype of the parameter type of another (and they are not the same) then
there is no ambiguity between these two declarations: for every call to which both are applicable, the first is more
specific. This is the basis of the Subtype Rule.

The Subtype Rule also requires a relationship between the return types of the two declarations. Without such a
requirement, a program may violate type safety.

The Subtype Rule for Functions and Functional Methods: Suppose that f (P) : U and f (Q) : V are two distinct
function or functional method declarations in a single scope. If P ≺ Q and U � V then f (P) and f (Q) are a valid
overloading.

The Subtype Rule for Dotted Methods: Suppose that P0.f (P) : U and Q0.f (Q) : V are two distinct dotted
method declarations provided by a trait or object C. If (P0,P) ≺ (Q0,Q) and U � V then P0.f (P) and Q0.f (Q)
are a valid overloading.

252

33.3 Incompatibility Rule

The basic idea behind the Incompatibility Rule is that if there is no call to which two overloaded declarations are both
applicable then there is no potential for ambiguous calls. In such a case, we say that the declarations are incompatible.
Without coercion, incompatibility is equivalent to exclusion. However, the presence of coercion complicates the
definition of incompatibility. To formally define incompatibility we first define the following notation. For types T
and U , we say that T and U do not share coercions, and write T G U , if any type that coerces to T excludes any type
that coerces to U :

T G U ⇐⇒ ∀A,B : A→T ∧B→U =⇒ A ♦ B.

We say that T is incompatible with U , and write T � U , if T and U exclude, reject each other, and do not share
coercions:

T � U ⇐⇒ T ♦ U ∧ T−〉 U ∧ U−〉 T ∧ T G U
⇐⇒ T ♦ U

∧ (∀A : A→T =⇒ A ♦ U)
∧ (∀B : B→U =⇒ B ♦ T)
∧ (∀A,B : A→T ∧B→U =⇒ A ♦ B)

Note that if T � U then no type is substitutable for both T and U .

The Incompatibility Rule for Functions and Functional Methods: Suppose that f (P) and f (Q) are two distinct
function or functional method declarations in a single scope. If P � Q then f (P) and f (Q) are a valid overloading.

The Incompatibility Rule for Dotted Methods: Suppose that P0.f (P) and Q0.f (Q) are two distinct dotted method
declarations provided by a trait or object C. If P � Q then P0.f (P) and Q0.f (Q) are a valid overloading.

33.4 Meet Rule

If neither the Subtype Rule nor the Incompatibility Rule holds for a pair of overloaded declarations then the declara-
tions introduce the possibility of ambiguity. To avoid this ambiguity, we require a disambiguating declaration; this is,
for every call to which both declarations are applicable, there must be a third, more specific, declaration that is also
applicable. Thus, at run time, neither of the pair of declarations is executed because the disambiguating declaration is
also applicable, and it is more specific than both.

The Meet Rule for Functions: Suppose that f (P) and f (Q) are two function declarations in a single scope such
that neither P nor Q is a subtype of the other and P and Q are not incompatible with one another. Let S be the set
of types that P defines coercions from and T be the set of types that Q defines coercions from. f (P) and f (Q) are a
valid overloading if all of the following hold:

• either P ♦ Q or there is a declaration f (P ∩Q) in the scope, and

• either P / Q or Q / P or for all P ′ ∈ S and Q ′ ∈ T one of the two conditions holds:

– P ′ ♦ Q ′, or

– there is a declaration f (P ′ ∩Q ′) in the scope.

253

Recall that P ∩ Q is the intersection of types P and Q as defined in Section 8.8. If for some type S we have S � P
and S � Q then S � (P ∩ Q), but it’s not necessarily the case that S = (P ∩ Q) since another type may be more
specific than both P and Q. For example, suppose the following:

trait S comprises {U, V } end
trait T comprises {V,W} end
trait U extends S excludesW end
trait V extends {S, T} end
traitW extends T end

f(s :S) = 1
f(t :T) = 1
f(v :V) = 1

Because of the comprises clauses of S and T and the excludes clause of U , any subtype of both S and T must be
a subtype of V . Thus, V = S ∩ T , and the declaration f(V) “disambiguates” f(S) and f(T), i.e., it is applicable to
and more specific for any call to which both f(S) and f(T) are applicable.

The Meet Rule should not be difficult to obey, especially because the compiler can give useful feedback. For example:

foo(x : Number, y : Z64) = . . .
foo(x : Z64, y : Number) = . . .

Assuming that Z64 ≺ Number , the compiler reports that these two declarations are a problem because of ambiguity
and suggests that a new declaration for foo(Z64,Z64) would resolve the ambiguity. As another example, consider:

bar(x : Printable) = . . .
bar(x : Throwable) = . . .

Assuming that Printable and Throwable are neither comparable by the subtyping relation nor disjoint, the compiler
reports that these two declarations are a problem because Printable and Throwable are incomparable but possibly
overlapping types. As a result, these two declarations are statically rejected.

Unlike for functions, the Meet Rule for dotted methods only applies to dotted methods that are provided by the same
trait or object. This is possible because two dotted methods are applicable to a given call A0.f(A) only if they are
both provided by the trait or object A0.

The Meet Rule for Dotted Methods: Suppose that P0.f (P) and Q0.f (Q) are two dotted method declarations
provided by a trait or object C such that neither (P0,P) nor (Q0,Q) is a subtype of the other and P and Q are not
incompatible with one another. Let S be the set of types that P defines coercions from and T be the set of types that
Q defines coercions from. P0.f (P) and Q0.f (Q) are a valid overloading if all of the following hold:

• either P ♦ Q or there is a declaration R0.f (P ∩Q) provided by C with R0 � (P0 ∩Q0), and

• either P / Q or Q / P or for all P ′ ∈ S and Q ′ ∈ T one of the two conditions holds:

– P ′ ♦ Q ′, or

– there is a declaration R0.f (P ′ ∩Q ′) provided by C with R0 � (P0 ∩Q0).

Recall that functional methods can be viewed semantically as top-level functions, as described in Section 9.2. However,
treating functional methods as top-level functions for determining valid overloading is too restrictive. In the following
example:

trait Z
opr −(self): Z

254

end
trait R

opr −(self): R
end

if the functional methods were interpreted as top-level functions then this program would define two top-level functions
with parameter types Z and R . These declarations would be statically rejected as an invalid overloading because
there is no relation between Z and R ; another trait may extend them both without declaring its own version of the
functional method which may lead to an ambiguous call at run time. However, notice that declaraions are ambiguous
only for calls on arguments that extend both Z and R , and any type that extends both can include a new declaration
that disambiguates them. We use this intuition to allow such overloadings.

The Meet Rule for Functional Methods: Suppose that f (P) and f (Q) are two functional method declarations
occurring in trait or object declarations or object expressions such that neither P nor Q is a subtype of the other and P
and Q are not incompatible with one another. Let f (P) and f (Q) have self parameters at i and j respectively. Also,
let S be the set of types that P defines coercions from and T be the set of types that Q defines coercions from. f (P)
and f (Q) are a valid overloading if all of the following hold:

• i = j

• either P ♦ Q or if there exists a trait or object C that provides both f (P) and f (Q) then P 6= Q and there is a
declaration f (P ∩Q) provide by C, and

• either P / Q or Q / P or for all P ′ ∈ S and Q ′ ∈ T one of the two conditions holds:

– P ′ ♦ Q ′, or

– there is a declaration f (P ′ ∩Q ′) provided by C.

Notice that the Meet Rule for functional methods requires the self parameters of two overloaded declarations to be
in the same position. This requirement guarantees that no ambiguity is caused by the position of the self parame-
ter. Two declarations which differ in the position of the self parameter must satisfy either the Subtype Rule or the
Incompatibility Rule to be a valid overloading.

Functional method declarations can overload with function declaraions. A valid overloading between a functional
method declaration and a function declaration is determined by applying the (more restrictive) Meet Rule for functions
to both declarations.

33.5 Coercion and Overloading Resolution

The overloading rules given in this chapter are sufficient to prove the following two facts:

1. If no declaration is applicable to a static call but there is a declaration that is applicable with coercion then there
exists a single most specific declaration that is applicable with coercion to the static call.

2. If any declaration is applicable to a static call then there exists a single most specific declaration that is applicable
to the static call and a single most specific declaration that is applicable to the corresponding dynamic call.

Moreover, we can prove that the most specific declaration that is applicable to a dynamic call is more specific than the
most specific declaration that is applicable to the corresponding static call.

Appendix B formally proves that the rules discussed in the previous sections guarantee the static resolution of coercion
(described in Section 17.5) is well defined for functions (the case for methods is analogous). Also in Appendix B is a
proof that the overloading rules for function declarations are sufficient to guarantee no undefined nor ambiguous calls
at run time (again, the case for methods is analogous).

255

Chapter 34

Operator Declarations

An operator declaration may appear anywhere a top-level function or method declaration may appear. Operator dec-
larations are like other function or method declarations in all respects except that an operator declaration has opr and
has an operator name (see Section 16.1 for a discussion of valid operator names) instead of an identifier. The precise
placement of the operator name within the declaration depends on the fixity of the operator. Like other functionals,
operators may have overloaded declarations (see Chapter 15 for a discussion of overloading). These overloadings may
be of the same or differing fixities.

Syntax:
OpDecl ::= FnDecl
FnDecl ::= FnDef

| AbsFnDecl
FnDef ::= FnMods? FnHeaderFront FnHeaderClause = Expr
FnHeaderFront ::= OpHeaderFront
OpHeaderFront ::= opr StaticParams? (LeftEncloser | Encloser) Params (RightEncloser | Encloser)

(:= (SubscriptAssignParam))?
| opr StaticParams? ValParam Op
| opr (Op | Encloser) StaticParams? ValParam

SubscriptAssignParam ::= Varargs
| Param

An operator declaration has one of seven forms: infix/multifix operator declaration, prefix operator declaration, postfix
operator declaration, nofix operator declaration, bracketing operator declaration, subscripting operator method decla-
ration, and subscripted assignment operator method declaration. Each is invoked according to specific rules of syntax.
An operator method declaration should be a functional method declaration, a subscripting operator method declaration,
or a subscripted assignment operator method declaration.

34.1 Infix/Multifix Operator Declarations

An infix/multifix operator declaration has opr and then an operator name where a functional declaration would have
an identifier. The declaration must not have any keyword parameters, and must be capable of accepting at least two
arguments. It is permissible to use a varargs parameter; in fact, this is a good way to define a multifix operator. Static
parameters (described in Chapter 11) may also be present, between the operator and the parameter list.

An expression consisting of an infix operator applied to an expression will invoke an infix/multifix operator declaration.
The compiler considers all infix/multifix operator declarations for that operator that are both accessible and applicable,

256

and the most specific operator declaration is chosen according to the usual rules for overloaded functionals. If the
expression is actually multifix, the invocation will pass more than two arguments.

An infix/multifix operator declaration may also be invoked by a prefix or nofix (but not a postfix) operator application
if the declaration is applicable.

Note that superscripting (ˆ) may be defined using an infix operator declaration even though it has very high precedence
and cannot be used as a multifix operator. (An operator declaration for superscripting should have exactly two value
parameters.)

Example:

opr MAXJT extends RationalK(x :T, y :T) :T = if x > y then x else y end

34.2 Prefix Operator Declarations

A prefix operator declaration has opr and then an operator name where a functional declaration would have an iden-
tifier. The declaration must have one value parameter, which must not be a keyword parameter or varargs parameter.
Static parameters may also be present, between the operator and the parameter list.

An expression consisting of a prefix operator applied to an expression will invoke a prefix operator declaration. The
compiler considers all prefix and infix/multifix operator declarations for that operator that are both accessible and
applicable, and the most specific operator declaration is chosen according to the usual rules for overloaded functionals.

Example:

opr ˜(x :Widget) : Widget = x.invert()

34.3 Postfix Operator Declarations

A postfix operator declaration has opr where a functional declaration would have an identifier; the operator name it-
self follows the parameter list. The declaration must have one value parameter, which must not be a keyword parameter
or varargs parameter. Static parameters may also be present, between opr and the parameter list.

An expression consisting of a postfix operator applied to an expression will invoke a postfix operator declaration. The
compiler considers all postfix operator declarations for that operator that are both accessible and applicable, and the
most specific operator declaration is chosen according to the usual rules for overloaded functionals.

Example:

opr (n : Integer)! =
∏

[i← 1 :n]i (∗ factorial ∗)

34.4 Nofix Operator Declarations

A nofix operator declaration has opr and then an operator name where a functional declaration would have an iden-
tifier. The declaration must have no parameters.

An expression consisting only of a nofix operator will invoke a nofix operator declaration. The compiler considers all
nofix and infix/multifix operator declarations for that operator that are both accessible and applicable, and the most
specific operator declaration is chosen according to the usual rules for overloaded functionals.

Uses for nofix operators are rare, but those rare examples are very useful. For example, the colon operator is used to
construct subscripting ranges, and it is the nofix declaration of : that allows a lone : to be used as a subscript:

257

opr : () = ImplicitRange

34.5 Bracketing Operator Declarations

A bracketing operator declaration has opr where a functional declaration would have an identifier. The value pa-
rameter list, rather than being surrounded by parentheses, is surrounded by the brackets being defined. A bracketing
operator declaration may have any number of parameters, keyword parameters, and varargs parameters in the value
parameter list. Static parameters may also be present, between opr and the parameter list. Any paired Unicode
brackets may be so defined except ordinary parentheses and white square brackets.

An expression consisting of zero or more comma-separated expressions surrounded by a bracket pair will invoke a
bracketing operator declaration. The compiler considers all bracketing operator declarations for that type of bracket
pair that are both accessible and applicable, and the most specific operator declaration is chosen according to the usual
rules for overloaded functionals. For example, the expression 〈p, q〉 might invoke the following bracketing method
declaration:

(∗ angle bracket notation for inner product ∗)
opr 〈x : Vector, y : Vector〉 =

∑
[i← x.indices]xi · yi

(∗ vector space norm (may not be the most efficient) ∗)
opr ‖x : Vector‖ = sqrt〈x, x〉

34.6 Subscripting Operator Method Declarations

A subscripting operator method declaration has opr where a method declaration would have an identifier. The value
parameter list, rather than being surrounded by parentheses, is surrounded by a pair of brackets. A subscripting
operator method declaration may have any number of value parameters, keyword parameters, and varargs parameters
in that value parameter list. Static parameters may also be present, between opr and the parameter list. Any paired
Unicode brackets may be so defined except ordinary parentheses and white square brackets; in particular, the square
brackets ordinarily used for indexing may be used.

An expression consisting of a subexpression immediately followed (with no intervening whitespace) by zero or more
comma-separated expressions surrounded by brackets will invoke a subscripting operator method declaration. Methods
for the expression preceding the bracketed expression list are considered. The compiler considers all subscripting op-
erator method declarations that are both accessible and applicable, and the most specific method declaration is chosen
according to the usual overloading rules. For example, the expression foop might invoke the following subscripting
method declaration because expressions in the square brackets are rendered as subscripts:

(∗ subscripting method ∗)
opr [x : BizarroIndex] = self.bizarroFetch(x)

34.7 Subscripted Assignment Operator Method Declarations

A subscripted assignment operator method declaration has opr where a method declaration would have an identifier.
The value parameter list, rather than being surrounded by parentheses, is surrounded by a pair of brackets; this is then
followed by the operator := and then a second value parameter list in parentheses, which must contain exactly one
non-keyword value parameter. A subscripted assignment operator method declaration may have any number of value
parameters within the brackets; these value parameters may include keyword parameters and varargs parameters. A
result type may appear after the second value parameter list, but it must be () . Static parameters may also be present,

258

between opr and the first parameter list. Any paired Unicode brackets may be so defined except ordinary parentheses
and white square brackets; in particular, the square brackets ordinarily used for indexing may be used.

An assignment expression consisting of an expression immediately followed (with no intervening whitespace) by zero
or more comma-separated expressions surrounded by brackets, followed by the assignment operator :=, followed by
another expression, will invoke a subscripted assignment operator method declaration. Methods for the expression
preceding the bracketed expression list are considered. The compiler considers all subscript operator method declara-
tions that are both accessible and applicable, and the most specific method declaration is chosen according to the usual
overloading rules. When a compound assignment operator (described in Section 13.8) is used with a subscripting
operator and a subscripted assignment operator, for example a3 += k , both a subscripting operator declaration and
a subscripted assignment operator declaration are required. For example, the assignment foop := myWidget might
invoke the following subscripted assignment method declaration:

(∗ subscripted assignment method ∗)
opr [x : BizarroIndex] := (newValue :Widget) = self.bizarroInstall(x,newValue)

34.8 Conditional Operator Declarations

A conditional operator is a binary operator (other than ‘:’) that is immediately followed by ‘:’; see Section 16.6.
A conditional operator expression x@ : y is syntactic sugar for x@(fn ()⇒ y) ; that is, the right-hand operand is
converted to a “thunk” (zero-parameter function) that then becomes the right-hand operand of the corresponding
unconditional operator. Therefore a conditional operator is simply implemented as an overloading of the operator that
accepts a thunk.

It is also permitted for a conditional operator to have a preceding as well as a following colon. A conditional operator
expression x : @ : y is syntactic sugar for (fn ()⇒ x)@(fn ()⇒ y) ; that is, each operand is converted to a thunk.
This mechanism is used, for example, to define the results-comparison operator :∼:, which takes exceptions into
account.

The conditional ∧ and ∨ operators for boolean values, for example, are implemented as methods in this manner:

opr ∧(self, other : Boolean) = if self then other else false end
opr ∧(self, other : ()→ Boolean) = if self then other() else false end
opr ∨(self, other : Boolean) = if self then true else other end
opr ∨(self, other : ()→ Boolean) = if self then true else other() end

34.9 Big Operator Declarations

A big operator such as
∑

or
∏

is declared as a usual operator declaration. See Section 32.8.1 for an example
declaration of a big operator. A big operator application is called a reduction expression and described in Section 13.17.

259

Chapter 35

Dimensions and Units Declarations

Syntax:
DimUnitDecl ::= dim Id (= DimRef)? (default Id)?

| (unit | SI unit) Id+ (: DimRef)? (= Expr)?
| dim Id (= DimRef)? (unit | SI unit) Id+ (= Expr)?

35.1 Dimensions Declarations

Dimensions may be explicitly declared; every declared dimension must be declared at the top level of a program
component, not within a block expression or trait. Other dimensions may be constructed by multiplying and dividing
other dimensions, as described in Chapter 18. An explicitly declared dimension may be a base dimension (with no
definition specified) or a derived dimension (with a definition specified in the form of an initialization expression).

The set of all dimensions has the algebraic structure of a free abelian group. The identity element of this group is the
dimension Unity , which represents dimensionlessness.

For every two dimensions D and E , there is a dimension DE (which may also be written D · E), corresponding to
the product of the dimensions D and E and a dimension D/E , corresponding to the quotient of the dimensions D
and E . The syntactic sugar 1/D is equivalent to Unity/D for all dimensions D . A dimension can be raised to a
rational power where both the numerator and the denominator of the rational power must be a valid nat parameter
instantiation (as described in Section 11.2); D0 is the same as Unity , D1 is the same as D , and Dm+n is the same
as DmDn . The syntactic sugar D−n is the same as Unity/Dn .

Here are some examples of base dimension declarations:

dim Length
dim Mass
dim Time
dim ElectricCurrent

Here are some examples of computed dimensions:

Length/Time
Velocity/Time
Length ·Mass/Time2

Length Mass Time−2

ElectricCurrent/Length2

260

and here some of these computed dimensions are given names through the use of derived dimension declarations:

dim Velocity = Length/Time
dim Acceleration = Velocity/Time
dim CurrentDensity = ElectricCurrent/Length2

35.2 Units Declarations

Every unit belongs to exactly one dimension, which is the type of the unit. A dimension may have more than one unit,
but one of these units may be singled out as the default unit for that dimension by adding a default clause:

dim Length default meter
dim Mass default kilogram
dim Time default second

The default unit is used when a numerical type is multiplied by a dimension to produce a new type (see Chapter 18).
If no default clause is specified for a base dimension, then it has no default unit. If no default clause is specified for a
derived dimension, then it has a default unit if and only if all the dimensions mentioned in its initialization expression
have defaults, in which case its default unit is calculated using the initialization expression with each dimension
replaced by its default unit.

Some units are explicitly declared; every declared unit must be declared at the top level of a program component,
not within a block expression or trait. Other units may be constructed by multiplying and dividing other units. An
explicitly declared unit may be a base unit (with no definition specified) or a derived unit (with a definition specified
in the form of an initialization expression).

The set of all units, like the set of all dimensions, has the algebraic structure of a free abelian group. The identity
element of this group is the unit dimensionless , of dimension Unity . Note that there may be other units of dimension
Unity , such as radian and steradian , but only dimensionless is the identity of the group of all units. (Note that
there is a straightforward homomorphism of units onto dimensions, wherein every unit is mapped to its dimension.)

Here are some examples of base unit declarations:

unit meter : Length
unit kilogram : Mass
unit second : Time
unit ampere : ElectricCurrent

Here are some examples of computed units:

meter/second
(meter/second)/second
meter · kilogram/second2

meter kilogram second−2

ampere/meter2

and here some computed units are given names through the use of derived unit declarations:

unit newton: Force = meter · kilogram/second2

unit joule: Energy = newton meter
unit pascal: Pressure = newton/meter2

In the preceding examples, the initialization expression for each unit is itself a unit. It is also permitted for the
initialization expression to be a dimensioned numerical value, in which case the unit being declared is related to the
unit of the dimensioned numerical value by a numerical conversion factor.

261

As with an ordinary variable declaration, one may omit the dimension for a unit if there is an initialization expression;
the dimension of the declared unit is the dimension of the unit of the expression.

Every unit can be reduced to a canonical value as follows. A base unit is multiplied by the value 1 ; a unit parameter
is multiplied by the value 1 ; a defined unit is replaced by its initialization expression and then every unit in that
expression is replaced by its canonical form; and finally all arithmetic is performed so as to reduce the units to a single
unit and the numerical values to a single numerical value. A dimensioned value with unit U is convertible by the
in operator to a value with unit V if the canonical values for U and V have the same unit; the conversion involves
multiplying the numerical value by the ratio of the numerical value of the canonical form of V to the numerical value
of the canonical form of U .

For example, given the declarations:

dim Length
unit meter: Length; unit meters = meter
unit kilometer: Length = 103meter; unit kilometers = kilometer
unit inch: Length = 2.54× 10−2meter; unit inches = inch
unit foot: Length = 12 inch; unit feet = foot
unit mile: Length = 5280 foot; unit miles = mile

then one can say 3 miles in kilometers and the in operator will multiply the numerical value 3 by the amount of
((2.54× 10−2)(12)(5280)/103) , or 25146/15625 .

Notice the subtle difference between these two declarations:

unit radian = meter/meter
unit radian = 1meter/meter

The first declaration defines radian to be equivalent to dimensionless , and so a value with unit radian can be used
anywhere a dimensionless value can be used, and vice versa. The second declaration defines radian to be convertible
to dimensionless but not equivalent, and so it is necessary to use the in operator (or multiplication and division by
radian) to convert between values in radians and truly dimensionless values.

35.3 Abbreviating Dimension and Unit Declarations

For convenience, three forms of syntactic sugar are provided when declaring dimensions and units. First, in a unit
declaration one may mention more than one name before the colon, and the extra names are defined to be synonyms
for the first name; thus

unit foot feet ft: Length

means exactly the same thing as

unit foot: Length
unit feet: Length = foot
unit ft: Length = foot

Second, instead of the reserved word unit one may use the reserved word SI unit , which has the effect of defining
not only the specified names but also names with the various SI prefixes attached. If more than one name is specified,
then the last name is assumed to be a symbol and has symbol prefixes (such as M and n) attached; all other names
have the full prefixes (such as mega and nano) attached. Thus

SI unit name1 name2 name3: . . .

may be regarded as an abbreviation for

262

unit name1 name2 name3: . . .
unit yottaname1 yottaname2 Yname3 = 1024name1
unit zettaname1 zettaname2 Zname3 = 1021name1
unit exaname1 exaname2 Ename3 = 1018name1
unit petaname1 petaname2 Pname3 = 1015name1
unit teraname1 teraname2 Tname3 = 1012name1
unit giganame1 giganame2 Gname3 = 109name1
unit meganame1 meganame2 Mname3 = 106name1
unit kiloname1 kiloname2 kname3 = 103name1
unit hectoname1 hectoname2 hname3 = 102name1
unit dekaname1 dekaname2 daname3 = 10name1
unit deciname1 deciname2 dname3 = 10−1name1
unit centiname1 centiname2 cname3 = 10−2name1
unit milliname1 milliname2 mname3 = 10−3name1
unit microname1 microname2 µname3 = 10−6name1
unit nanoname1 nanoname2 nname3 = 10−9name1
unit piconame1 piconame2 pname3 = 10−12name1
unit femtoname1 femtoname2 fname3 = 10−15name1
unit attoname1 attoname2 aname3 = 10−18name1
unit zeptoname1 zeptoname2 zname3 = 10−21name1
unit yoctoname1 yoctoname2 yname3 = 10−24name1

where µ is the Unicode character U+00B5 MICRO SIGN. Third, a dim declaration and a unit or SI unit declara-
tion may be collapsed into a single declaration by writing the unit or SI unit declaration in place of the default
clause in the dim declaration and omitting the colon and dimension from the unit declaration. Thus

dim Length SI unit meter meters m
dim Power = Energy/Time SI unit watt watts W = joule/second

is understood to abbreviate

dim Length default meter; SI unit meter meters m: Length
dim Power = Energy/Time default watt; SI unit watt watts W:Power = joule/second

In this way the names of the seven SI base units, along with all possible plural and prefixed forms, may be concisely
defined as follows:

dim Length SI unit meter meters m
dim Mass default kilogram; SI unit gram grams g:Mass
dim Time SI unit second seconds s
dim ElectricCurrent SI unit ampere amperes A
dim Temperature SI unit kelvin kelvins K
dim AmountOfSubstance SI unit mole moles mol
dim LuminousIntensity SI unit candela candelas cd

Note the subtle difference in the declaration of Mass that allows the default unit to be kilogram rather than gram .

35.4 Absorbing Units

Syntax:
StaticParam ::= Id Extends? (absorbs unit)?

| unit Id (: DimRef)? (absorbs unit)?

263

The declaration of a type parameter or a unit parameter for a parameterized trait may contain a clause “ absorbs unit ”;
at most one static parameter of a trait may have this clause. An instance of a parameterized trait with a static parameter
that “ absorbs unit ” may be multiplied or divided by a unit, the result being another instance of that parameterized
trait in which the static argument corresponding to the unit-absorbing parameter has been multiplied or divided by the
unit.

A few examples should make this clear. Given the declaration

trait VectorJEltType extends Number absorbs unit, nat lenK . . . end

then VectorJFloat, 3Kmeter means the same as VectorJFloat meter, 3K , and VectorJFloat, 3K/second means the
same as VectorJFloat/second, 3K . Therefore, [(3m)(2 m)(5 m)] means the same as [3 2 5]m . Similarly, given the
declaration

trait FloatJunit U absorbs unit, nat e, nat sK . . . end

then FloatJmeter, 11, 53K/second means the same as FloatJmeter/second, 11, 53K , and

FloatJdimensionless, 8, 24Kmeter kilogram/second2

means the same as

FloatJdimensionless meter kilogram/second2, 8, 24K ,

which is the same as

FloatJmeter kilogram/second2, 8, 24K .

This is the mechanism by which meaning is given to the multiplication and division of library-defined types by units.

264

Chapter 36

Support for Domain-Specific Languages

To support syntax for domain-specific languages, and to allow the Fortress language to grow with time, programmers
can extend the basic syntax of Fortress in their programs. Such extensions are possible through the use of syntax
expanders. Syntax expanders must be defined in the top level of a simple component.

36.1 Definitions of Syntax Expanders

Syntax:
ExternalSyntax ::= syntax OpenExpander Id CloseExpander = Expr
OpenExpander ::= Id

| LeftEncloser
CloseExpander ::= Id

| RightEncloser
| end

The definition of a syntax expander starts with syntax , followed by an opening delimiter, followed by a contents
parameter, followed by a terminating delimiter, followed by an = , and a subexpression. The opening delimiter must
be either an identifier or the opening member of an enclosing operator. The contents parameter must be an identifier
(see Section 5.15). The terminating delimiter must be either an identifier, the terminating member of an enclosing
operator, or end . If either the opening delimiter or the closing delimiter is part of an enclosing operator, the opening
and closing delimiters must both be parts of enclosing operators, and they must match, or it is a static error. Because
delimiters conceptually delimit blocks, just as do and end delimit blocks, delimiters of syntax expanders are rendered
as reserved words. The subexpression of a syntax expander has type Fortress.Ast.SyntaxTree . This SyntaxTree
must be that of a Fortress expression. Here is an example:

syntax sql e end = parseSQL(e)

where parseSQL is a function that takes an argument of type Fortress.Lang.SourceAssembly (a sequence of
Unicode characters and abstract syntax trees), interprets it as an SQL query, and returns an expression with type
SyntaxTree consisting of constructor calls to SQL syntax nodes (defined in some SQL library).

At a use site, all characters between the opening delimiter and the terminating delimiter are turned into a SourceAssembly
(see Section 36.4 for a more detailed description of how this conversion is achieved). The resulting SourceAssembly
is bound to the contents parameter of the syntax expander. The use site is then expanded by evaluating the body of the
expander. Every use site of a syntax expander must occur in an expression context, or it is a static error.

265

For example, we could define parseSQL so that a use site such as:

sql
SELECT spectral class FROM stars

end

would be expanded into the following Fortress SyntaxTree :

Call(Empty,
List(VarRef(Identifier(“SqlQuery”)),

Call(Empty,
List(VarRef(Identifier(“Select”)),

String(“spectral_class”))),
Call(Empty,

List(VarRef(Identifier(“From”)),
String(“stars”)))))

(The Empty lists passed to Calls are the lists of static parameters to these calls). Note that this SyntaxTree corre-
sponds to the following Fortress concrete syntax:

SqlQuery(Select(“spectral_class”),From(“stars”))

36.2 Declarations of Syntax Expanders
Syntax:

AbsExternalSyntax ::= syntax OpenExpander Id CloseExpander

A declaration of a syntax expander is syntactically identical to the definition of a syntax expander, except that =
and the body of the expander (i.e., the expression following the = sign in an expander definition) are elided. Syntax
expander declarations must occur only in APIs. A component that exports an API A must provide, for each syntax
expander declaration d in A, a syntax expander definition with a header identical to d.

36.3 Restrictions on Delimiters

Consider the set S of syntax expander declarations imported by a component or API B, along with the syntax ex-
panders defined or declared in B directly. Every expander in S must have a distinct opening delimiter, or it is a static
error. Moreover, the terminating delimiter of each syntax expander must be distinct from every opening delimiter of
every syntax expander in S, or it is a static error.

36.4 Processing Syntax Expanders

In a given component, only syntax expander declarations appearing in APIs imported by the component may be used.
A component exporting an API A that includes a syntax expander must not import APIs that are not also imported by
A, or it is a static error. This restriction ensures that all names in scope of the definition of the syntax expander are also
in scope of any component importing the syntax expander in A. Additionally, all use sites of a syntax expander must
occur in simple components other than the defining component. Furthermore, multiple components containing syntax
expanders must not be cyclically linked. These restrictions avoid pathologies with nontermination during expansion.

266

Finally, to maintain proper separation of test code, a syntax expander definition is statically forbidden from referring
to variables or functions that have modifier test .

Because syntax expanders are defined at the top level of program components, and because they are syntactically
distinguished, they can be identified before scanning or parsing (but after ASCII conversion). Use sites are then
identified and expanded before parsing occurs.

Syntax expansion takes a sequence of Unicode characters and yields a sequence of Unicode characters and syntax
trees, where all the syntax expanders have been replaced by syntax trees. This result has type SourceAssembly .
Syntax expansion proceeds from left to right as follows. First, the source is scanned for opening delimiters of syntax
expanders, stopping at the leftmost one. We call this scanning Fortress-source scanning.

If the opening delimiter of a syntax expander is encountered during Fortress-source scanning, the source is scanned
rightward until the first occurrence of either an opening delimiter of some syntax expander (possibly another use of the
same expander), or the terminating delimiter of that syntax expander, is found. (If no matching terminating delimiter
is found in the remainder of the program, it is a static error.) We call this scanning expander scanning.

If an opening delimiter is encountered before the terminating delimiter, there is a nested use site of another syntax
expander. The nested use site is processed, and then expander scanning continues rightward of that use site. Thus, the
processing of syntax expanders is recursive, syntax expanders may be nested arbitrarily, and expanders are processed
from the leftmost-innermost occurrence outward and rightward.

When the terminating delimiter is encountered during expander scanning, the scanning is terminated, the resulting
SourceAssembly is bound to the contents parameter of the expander, and then the body of the expander is evaluated.
The result of evaluating this body has type SyntaxTree , and it is placed into the resulting SourceAssembly in place
of the expander in the scanned source.

36.4.1 Introduced Variable Names

Often, when expanding concrete syntax for a domain-specific language, it is useful to introduce variable binding
constructs into the resulting SyntaxTree . It is required that such bindings, in general, respect the rules of hygiene
and referential transparency [7]. Several aspects of the Fortress semantics allow the library programmer to ensure
referential transparency of syntax expanders:

1. A component exporting an API A that includes a syntax expander must not import APIs that are not also
imported by A.

2. Syntax expanders must expand to SyntaxTrees of expressions.

3. Shadowing of identifiers is not allowed.

Thus, syntax expanders cannot expand into new top-level identifiers. Moreover, provided that the library programmer
is careful to ensure that all top-level identifier references appearing in expanded code are fully qualified identifiers
exported by APIs, all top-level identifiers referred to in the definition of a syntax expander are visible at all use sites.

To ensure hygiene, all variables bound in a SyntaxTree resulting from an expansion are renamed, following the
syntax-case system of Dybvig et al. [9].

36.4.2 Comments and Syntax Expansion

Comments are not recognized before syntax expansion (the embedded syntax may have its own commenting syntax):
during expander scanning, an opening or terminating delimiter that occurs in what appears to be a Fortress comment
is nonetheless recognized as an opening or terminating delimiter for that expander. Comments can be viewed as uses
of a syntax expander, with special opening and terminating delimiters.

267

36.5 Expanders for Fortress

As the above examples demonstrate, it is often useful to denote Fortress abstract syntax using Fortress concrete syntax.
A special set of syntax expanders are defined in the API Fortress.Syntax for every nonterminal in Fortress grammar,
defined in Appendix G. The name of each expander consists of the name of the nonterminal in lowercase. The
terminating symbol for each nonterminal is end . For example:

expr
x+ y

end

expands to the SyntaxTree :

Call(Empty,
VarRef(Identifier(“+”)),
VarRef(Identifier(“x”)),
VarRef(Identifier(“y”)))

When one of these syntax expanders parses a binding construct, the bound identifier is replaced with an identifier
resulting from a call to the function gensym , which yields an identifier distinct from all other identifiers bound in
any component installed in the same fortress, or in any other fortress, anywhere, throughout all time past, present, and
future. All variable references captured by the original identifier are replaced with references to the new identifier.

For convenience, a syntax expander with opening delimiter � and terminating delimiter � behaves identically to
the expr expander when Fortress.Syntax is imported.

268

Part V

Fortress APIs and Documentation for
Library Writers

269

Chapter 37

Algebraic Constraints

The traits in this component are used to describe properties of traits and their associated operators. These traits provide
very few concrete methods, but specify abstract methods and property declarations.

37.1 Predicates and Equivalence Relations

A predicate is an operator that produces a boolean result. A binary predicate may be identified with a mathematical
relation, where the predicate returns true in exactly those cases that its two operands satisfy the relation; therefore we
use the mathematical terminology usually associated with relations to describe the properties of binary predicates.

trait UnaryPredicateJT extends UnaryPredicateJT,∼K, opr ∼K
extends Any

abstract opr ∼(self): Boolean
end

A unary predicate is a prefix operator that takes one argument and returns a boolean value (true or false). Note that
the symbol ∼ is a static parameter, used here as a “variable” name for an operator.

trait BinaryPredicateJT extends BinaryPredicateJT,∼K, opr ∼K
extends Any

abstract opr ∼(self, other :T): Boolean
end

A binary predicate is an infix operator that takes two arguments and returns a boolean value. Thus, for example, any
trait T that extends BinaryPredicateJT,@K necessarily has an infix method for the operator @ , and that operator
returns a boolean value.

trait ReflexiveJT extends ReflexiveJT,∼K, opr ∼K
extends {BinaryPredicateJT,∼K }

property ∀(a:T) (a ∼ a)
end

A reflexive predicate always returns true when its operands are the same. Because this fact is expressed as a property
declaration, the behavior of such an operator can be checked for correctness by unit testing.

trait IrreflexiveJT extends IrreflexiveJT,∼K, opr ∼K

270

extends {BinaryPredicateJT,∼K }
property ∀(a:T) ¬(a ∼ a)

end

An irreflexive predicate always returns false when its operands are the same. (Note that it is possible for a predicate
to be neither reflexive nor irreflexive.)

trait SymmetricJT extends SymmetricJT,∼K, opr ∼K
extends {BinaryPredicateJT,∼K }

property ∀(a:T, b:T) (a ∼ b)↔ (b ∼ a)
end

A symmetric predicate doesn’t care in which order its arguments are presented; the result is the same either way.

trait TransitiveJT extends TransitiveJT,∼K, opr ∼K
extends {BinaryPredicateJT,∼K }

property ∀(a:T, b:T, c:T) ((a ∼ b) ∧ (b ∼ c))→ (a ∼ c)
end

A transitive predicate has the property that if a is related to b and b is related to c , then a is related to c .

trait EquivalenceRelationJT extends EquivalenceRelationJT,∼K, opr ∼K
extends {ReflexiveJT,∼K,SymmetricJT,∼K,TransitiveJT,∼K }

end

An equivalence relation is any predicate that is reflexive, symmetric, and transitive. You can think of an equivalence
relation as describing a way to separate a set of items into categories, such that each item belongs to exactly one
category; the predicate is true of two items if and only if they are in the same category.

trait IdentityEqualityJT extends IdentityEqualityJT KK
extends {EquivalenceRelationJT,=K }

opr =(self, other :T): Boolean
property ∀(a:T, b:T) (self = other)↔ (self == other)

end

This trait provides a concrete implementation of the operator = (defining it to behave the same as the operator ==)
and states that = is an equivalence relation over instances of the type T .

trait UnaryPredicateSubstitutionLawsJT extends UnaryPredicateSubstitutionLawsJT,∼,'K,
opr ∼, opr 'K

extends {UnaryPredicateJT,∼K,BinaryPredicateJT,'K }
property ∀(a:T, a′:T) (a ' a′)→: ((∼ a)↔ (∼ a′))

end

This handy trait states that the unary predicate ∼ is consistent under substitutions described by the relation ' (which
is typically, but not always, an equivalence relation); that is, the result produced by ∼ is unchanged if its argument is
replaced by some other value that is equivalent.

trait BinaryPredicateSubstitutionLawsJT extends BinaryPredicateSubstitutionLawsJT,∼,'K,
opr ∼, opr 'K

extends {BinaryPredicateJT,∼K,BinaryPredicateJT,'K }
property ∀(a:T, a′:T) (a ' a′)→:∀(b:T) (a ∼ b)↔ (a′ ∼ b)
property ∀(b:T, b′:T) (b ' b′)→:∀(a:T) (a ∼ b)↔ (a ∼ b′)

end

271

This equally handy trait states that the binary predicate ∼ is consistent under substitutions described by the relation
' (which is typically, but not always, an equivalence relation); that is, the result produced by ∼ is unchanged if either
argument is replaced by some other value that is equivalent. (It is then easy to prove that the result is unchanged even
when both arguments are replaced by equivalent values.)

37.2 Partial and Total Orders

trait AntisymmetricJT extends AntiSymmetricJT,∼K, opr ∼K
extends {BinaryPredicateJT,∼K,EquivalenceRelationJT,=K,

BinaryPredicateSubstitutionLawsJT,∼,=K }
property ∀(a:T, b:T) ((a ∼ b) ∧ (b ∼ a)) :→: (a = b)

end

A binary predicate ∼ is antisymmetric if and only if two conditions are true: (a) ∼ is consistent under substitutions
described by the predicate = , which must be an equivalence relation; (b) whenever ∼ holds true for a pair of
arguments and for those same arguments in reverse order, those arguments are equivalent as specified by = .

trait PartialOrderJT extends PartialOrderJT,4K, opr 4K
extends {ReflexiveJT,4K,AntisymmetricJT,4K,TransitiveJT,4K }

end

A partial order is a binary predicate that is reflexive, antisymmetric, and transitive.

trait StrictPartialOrderJT extends StrictPartialOrderJT,≺K, opr ≺K
extends { IrreflexiveJT,≺K,AntisymmetricJT,≺K,TransitiveJT,≺K }

end

A strict partial order is a binary predicate that is irreflexive, antisymmetric, and transitive. (Thus it differs from an
ordinary partial order in being irreflexive rather than reflexive.)

It is easy to prove that, because ≺ is irreflexive and antisymmetric, that a ≺ b and a = b cannot both be true. (If
they were both true, then because antisymmetry requires that ≺ obey substitution laws, a ≺ a would be true—but
that contradicts the fact that ≺ is irreflexive.) It is then easy to prove that a ≺ b and b ≺ a cannot both be true. (If
they were both true, then by antisymmetry a = b must be true—but a ≺ b and a = b cannot both be true.)

trait TotalOrderJT extends TotalOrderJT,4K, opr 4K
extends {PartialOrderJT,4K }

property ∀(a:T, b:T) (a 4 b) ∨ (b 4 a)
end

A total order is a partial order in which every pair of operands must be related by the predicate 4 in one order or the
other; thus no two values are ever unordered with respect to each other.

trait StrictTotalOrderJT extends StrictTotalOrderJT,≺K, opr ≺K
extends {StrictPartialOrderJT,≺K }

property ∀(a:T, b:T) (a ≺ b) ∨ (b ≺ a) ∨ (a = b)
end

A strict total order is a strict partial order in which every pair of operands must be related, either by equality = or by
the predicate ≺ in one order or the other; thus no two values are ever unordered with respect to each other.

For a strict total order at least one of a ≺ b and a = b and b ≺ a is true; but a strict total order is also a strict partial
order, for which at most one of a ≺ b and a = b and b ≺ a is true. Therefore a strict total order obeys the law of
trichotomy: for any a and b , exactly one of a ≺ b and a = b and b ≺ a is true.

272

trait PartialOrderOperatorsJT extends PartialOrderOperatorsJT,≺,4,<,�, CMPK,
opr ≺, opr 4, opr <, opr �, opr CMPK

extends {StrictPartialOrderJT,≺K,PartialOrderJT,4K,
PartialOrderJT,<K,StrictPartialOrderJT,�K }

abstract opr CMP(self, other :T): Comparison
property ∀(a:T, b:T) ((a CMP b) == LessThan)↔ ((b CMP a) == GreaterThan)
property ∀(a:T, b:T) ((a CMP b) == EqualTo)↔ ((b CMP a) == EqualTo)
property ∀(a:T, b:T) ((a CMP b) == Unordered)↔ ((b CMP a) == Unordered)
property ∀(a:T, b:T) (a ≺ b)↔ ((a CMP b) == LessThan)
property ∀(a:T, b:T) (a 4 b)↔ ((a CMP b) == LessThan ∨ (a CMP b) == EqualTo)
property ∀(a:T, b:T) (a = b)↔ ((a CMP b) == EqualTo)
property ∀(a:T, b:T) (a < b)↔ ((a CMP b) == GreaterThan ∨ (a CMP b) == EqualTo)
property ∀(a:T, b:T) (a � b)↔ ((a CMP b) == GreaterThan)

end

For practical programming, we assume that partial order operators come in groups of five: a “less than” predicate, a
“less than or equal to” predicate, a “greater than or equal to” predicate, a “greater than” predicate, and a “compar-
ison” operator that returns one of the four values LessThan , EqualTo , GreaterThan , and Unordered . The trait
PartialOrderOperators declares such a set of five operators and describes the necessary algebraic constraints among
them and the equality predicate = .

trait TotalOrderOperatorsJT extends TotalOrderOperatorsJT,≺,4,<,�, CMPK,
opr ≺, opr 4, opr <, opr �, opr CMPK

extends {PartialOrderOperatorsJT,≺,4,<,�, CMPK,
StrictTotalOrderJT,≺K,TotalOrderJT,4K,
TotalOrderJT,<K,StrictTotalOrderJT,�K }

abstract opr CMP(self, other :T): TotalComparison
end

Total order operators likewise come in groups of five: a “less than” predicate, a “less than or equal to” predicate, a
“greater than or equal to” predicate, a “greater than” predicate, and a “comparison” operator that returns one of the
three values LessThan , EqualTo , and GreaterThan . The trait TotalOrderOperators declares such a set of five
operators and describes the necessary algebraic constraints among them and the equality predicate = . For a total
order, the comparison operator CMP never returns Unordered .

trait PartialOrderBasedOnLEJT extends PartialOrderBasedOnLEJT,≺,4,<,�, CMPK,
opr ≺, opr 4, opr <, opr �, opr CMPK

extends {PartialOrderOperatorsJT,≺,4,<,�, CMPK }
opr CMP(self, other :T): Comparison
opr ≺(self, other :T): Boolean
opr =(self, other :T): Boolean
opr <(self, other :T): Boolean
opr �(self, other :T): Boolean

end

The trait PartialOrderBasedOnLE implements a partial order by assuming that the “less than or equal to” predicate is
already defined and providing definitions for the comparison operator, the “less than” predicate, the equality predicate,
the “greater than or equal to” predicate, and the “greater than” predicate in terms of the “less than or equal to” predicate.

trait TotalOrderBasedOnLEJT extends TotalOrderBasedOnLEJT,≺,4,SUCCEQq,�, CMPK,
opr ≺, opr 4, opr <, opr �, opr CMPK

extends {TotalOrderOperatorsJT,≺,4,<,�, CMPK }
opr CMP(self, other :T): TotalComparison
opr ≺(self, other :T): Boolean

273

opr =(self, other :T): Boolean
opr <(self, other :T): Boolean
opr �(self, other :T): Boolean

end

The trait TotalOrderBasedOnLE implements a total order by assuming that the “less than or equal to” predicate is
already defined and providing definitions for the comparison operator, the “less than” predicate, the equality predicate,
the “greater than or equal to” predicate, and the “greater than” predicate in terms of the “less than or equal to” predicate.

trait TotalOrderBasedOnLTJT extends TotalOrderBasedOnLTJT,≺,4,<,�, CMPK,
opr ≺, opr 4, opr <, opr �, opr CMPK

extends {TotalOrderOperatorsJT,≺,4,<,�, CMPK }
opr CMP(self, other :T): TotalComparison
opr 4(self, other :T): Boolean
opr =(self, other :T): Boolean
opr <(self, other :T): Boolean
opr �(self, other :T): Boolean

end

The trait TotalOrderBasedOnLT implements a total order by assuming that the “less than” predicate is already
defined and providing definitions for the comparison operator, the “less than or equal to” predicate, the equality
predicate, the “greater than or equal to” predicate, and the “greater than” predicate in terms of the “less than” predicate.

value object MaximalElementJopr 4K end

trait HasMaximalElementJT extends HasMaximalElementJT,4K, opr 4K
extends {PartialOrderJT,4K }
where {T coerces MaximalElementJ�K }

property ∀(a :T) a 4 MaximalElementJ�K
end

The HasMaximalElement trait specifies that a partial order has a maximal element, that is, one to which every other
element is related by the ordering predicate 4 . The maximal element may be identified by coercing the object named
MaximalElementJ�K to type T .

value object MinimalElementJopr 4K end

trait HasMinimalElementJT extends HasMinimalElementJT,4K, opr 4K
extends {PartialOrderJT,4K }
where {T coerces MinimalElementJ�K }

property ∀(a :T) MinimalElementJ�K 4 a
end

The HasMinimalElement trait specifies that a partial order has a minimal element, that is, one to which every other
element relates by the ordering predicate 4 . The minimal element may be identified by coercing the object named
MinimalElementJ�K to type T .

trait LexicographicPartialOrderJT extends LexicographicPartialOrderJT,@,v,≡,w,A, TCMP,
X,≺,4,',<,�, XCMPK,

opr @, opr v, opr ≡, opr w, opr A, opr TCMP,
X extends TotalOrderOperatorsJX,≺,4,',<,�, XCMPK,
opr ≺, opr 4, opr ', opr <, opr �, opr XCMPK

extends {PartialOrderOperatorsJLexicographicPartialOrderJT,@,v,≡,w,A, TCMP,
X,≺,4,',<,�, XCMPK,

@,v,w,A, TCMPK }

274

where {T extends ZeroBasedIndexingJT,XK }
property ∀(a:T, b:T) (a TCMP b) = (BIG LEXICO

i←a.indices∩b.indices
(ai XCMP bi)) LEXICO (|a| CMP |b|)

end

The Comparison trait provides an associative operator LEXICO whose principal use is in defining lexicographic order
on sequences of elements, which may be partial or total depending on whether the ordering of the elements is partial
or total.

A set of lexicographic partial order operators @,v,≡,w,A, TCMP may be defined in terms of a partial order on the
elements of the sequence with operators ≺,4,',<,�, XCMP . All that is really necessary is to define the lexicographic
sequence comparison operator TCMP in terms of the element comparison operator XCMP ; this is easily expressed by
using the associative LEXICO operator to reduce the results of elementwise comparisons to a single value. (If the
sequences to be compared are of unequal length, then the shorter sequence is compared to a prefix of the longer
sequence, and if they are equal, then the longer sequence is considered to be greater than the shorter sequence. This
rule is implemented by an additional application of the LEXICO operator to the result of comparing the lengths of the
sequences.)

trait LexicographicTotalOrderJT extends LexicographicTotalOrderJT,@,v,≡,w,A, TCMP,
X,≺,4,',<,�, XCMPK,

opr @, opr v, opr ≡, opr w, opr A, opr TCMP,
X extends TotalOrderOperatorsJX,≺,4,',<,�, XCMPK,
opr ≺, opr 4, opr ', opr <, opr �, opr XCMPK

extends {LexicographicPartialOrderJT,@,v,≡,w,A, TCMP, X,≺,4,',<,�, XCMPK,
TotalOrderOperatorsJLexicographicTotalOrderJT,@,v,≡,w,A, TCMP,

X,≺,4,',<,�, XCMPK,
@,v,w,A, TCMPK }

end

Similarly, a set of lexicographic total order operators @,v,≡,w,A, TCMP may be defined in terms of a total order on
the elements of the sequence with operators ≺,4,',<,�, XCMP .

37.3 Operators and Their Properties

For some types, such as the integers Z or the rationals Q , results are always exact, and algebraic properties can be
expected to be obeyed exactly. For other types, such as floating-point numbers, results are not always numerically
exact, and algebraic properties can be expected to be obeyed only approximately. For example, given three floating-
point values a and b and c , it may well be that a+ (b+ c) is not equal to (a+ b) + c ; but we would expect their
values to be reasonably close—unless, of course, overflow occurred in one expression but not the other.

In order to address the difficulties of such approximate computation, many of the traits described in this section come
in two varieties: approximate and exact. The + operator on integers or rationals is correctly described by the trait
Associative , and the + operator on floating-point numbers is correctly described by the trait ApproximatelyAssociative .
An important distinction is that the predicate used to test acceptability of exact algebraic properties is = , which is
required to be an equivalence relation and therefore transitive, but a type-dependent binary predicate (typically ≈)
may be used to test acceptability of approximate algebraic properties, and this predicate is required only to be reflexive
and symmetric.

trait UnaryOperatorJT extends UnaryOperatorJT,�K, opr �K
extends Any

abstract opr �(self):T
end

275

A unary operator is a prefix operator that takes one argument and returns a value of the same type. Note that � is a
static parameter, used here as a “variable” name for an operator.

trait BinaryOperatorJT extends BinaryOperatorJT,�K, opr �K
extends Any

abstract opr �(self, other :T):T
end

A binary operator is an infix operator that takes two arguments of the same type and returns a value of that type. Thus,
for example, any trait T that extends BinaryPredicateJT,+K necessarily has an infix method for the operator + ,
and that operator takes two operands of type T and returns a value of type T .

trait IdentityOperatorJT extends IdentityOperatorJT KK
extends {UnaryOperatorJT, IDENTITYK }

property ∀(a:T) (IDENTITY a) == a
end

The trait Object extends IdentityOperatorJObjectK , so the IDENTITY operator is defined for every type whatso-
ever. (This operator may not be terribly useful for applications programming, but it has technical uses for specifying
contracts and algebraic properties in libraries. It is used, for example, when defining the trait BooleanAlgebra in
terms of the trait Ring : because every value is its own inverse with respect to the “exclusive OR” operator in a Boolean
Algebra, IDENTITY is the appropriate additive inverse operator for use with the trait Ring in this connection.)

trait ApproximatelyCommutativeJT extends ApproximatelyCommutativeJT,�,≈K, opr �, opr ≈K
extends {BinaryOperatorJT,�K,ReflexiveJT,≈K,SymmetricJT,≈K }

property ∀(a:T, b:T) (a� b) :≈: (b� a)
end

The trait ApproximatelyCommutative requires the operator � to be approximately commutative; that is, reversing
the operands produces a result that is considered to be “close enough” as determined by the specified ≈ predicate.

trait CommutativeJT extends CommutativeJT,�K, opr �K
extends {ApproximatelyCommutativeJT,�,=K,EquivalenceRelationJT,=K }

end

The trait Commutative requires the operator � to be commutative; that is, reversing the operands produces an equal
result.

trait ApproximatelyAssociativeJT extends ApproximatelyAssociativeJT,�,≈K, opr �, opr ≈K
extends {BinaryOperatorJT,�K,ReflexiveJT,≈K,SymmetricJT,≈K }

property ∀(a:T, b:T, c:T) ((a� b)� c) :≈: (a� (b� c))
end

The trait ApproximatelyAssociative requires the operator � to be approximately associative; that is, the expressions
(a� b)� c and a� (b� c) always produce results that are “close enough” to each other as determined by the
specified ≈ predicate.

trait AssociativeJT extends AssociativeJT,�K, opr �K
extends {ApproximatelyAssociativeJT,�,=K,EquivalenceRelationJT,=K }

end

The trait Associative requires the operator � to be associative; that is, the expressions (a� b)� c and a� (b� c)
always produce equal results.

276

trait IdempotentBinaryOperatorJT extends IdempotentBinaryOperatorJT,�K, opr �K
extends {BinaryOperatorJT,�K,EquivalenceRelationJT,=K }

property ∀(a:T) (a� a) :=: a
end

An idempotent binary operator has the property that if its two arguments are the same then the result is equal to each
argument. For example, MAX and MIN are idempotent, as are ∧ and ∨ applied to boolean arguments and ∩ and ∪
applied to sets; but + applied to integers is not idempotent because 1 + 1 does not produce 1 , and ⊕ applied to
boolean arguments is not idempotent because true ⊕ true produces false . The property of idempotency is sometimes
of interest when performing reductions such as MAX

i←1:n
ai .

trait HasLeftIdentityJT extends HasLeftIdentityJT,�K, opr �K
extends {BinaryOperatorJT,�K,EquivalenceRelationJT,=K }

abstract isLeftIdentity(): Boolean
property ∀(a:T, b:T) a.isLeftIdentity()→: ((a� b) = b)

end

A value e is a left identity for a binary operator � if the result of � always equals the right-hand operand whenever
e is the left-hand operand. For example, 0 is a left identity for the + operator on integers and the empty set is a left
identity for the ∪ operator on sets.

trait HasRightIdentityJT extends HasRightIdentityJT,�K, opr �K
extends {BinaryOperatorJT,�K,EquivalenceRelationJT,=K }

abstract isRightIdentity(): Boolean
property ∀(a:T, b:T) b.isRightIdentity()→: ((a� b) = a)

end

A value e is a right identity for a binary operator � if the result of � always equals the right-hand operand whenever
e is the left-hand operand. For example, 0 is a right identity (as well as a left identity) for the + operator on integers
and the empty set is a right identity (as well as a left identity) for the ∪ operator on sets. By way of contrast, 1 is a
right identity for division of rationals but not a left identity.

value object IdentityJopr �K end

trait HasIdentityJT extends HasIdentityJT,�K, opr �K
extends {HasLeftIdentityJT,�K,HasRightIdentityJT,�K }
where {T coerces IdentityJ�K }

property ∀(a:T) (a� IdentityJ�K) = a
property ∀(a:T) (IdentityJ�K� a) = a
property ∀(a:T) a.isLeftIdentity()↔ (a = IdentityJ�K)
property ∀(a:T) a.isRightIdentity()↔ (a = IdentityJ�K)

end

If the same value is both a left identity and a right identity for � , then it may be called simply an identity—in fact,
the identity, for it is unique and may be obtained by coercing the object named IdentityJ�K to type T .

trait ApproximatelyHasInversesJT extends ApproximatelyHasInversesJT,�,�,≈K,
opr �, opr �, opr ≈K

extends {HasIdentityJT,�K,UnaryOperatorJT,�K,BinaryOperatorJT,�K }
where {T coerces IdentityJ�K }

property ∀(a:T) (a� (�a)) :≈: IdentityJ�K
property ∀(a:T) ((�a)� a) :≈: IdentityJ�K
property ∀(a:T, b:T) (a� b) :≈: (a� (�b))

end

277

A set of values with a binary operator � has approximate inverses if and only if the operator has an identity and
for every value a there is another value a′ such that the result of applying � to a and a′ (in either order) is
“close enough” to the identity. The unary operator � returns the approximate inverse of its argument; as a notational
convenience, it may also be used as a binary operator.

trait HasInversesJT extends HasInversesJT,�,�K, opr �, opr �K
extends {ApproximatelyHasInversesJT,�,�,=K }
where {T coerces IdentityJ�K }

end

A set of values with a binary operator � has inverses if and only if the operator has an identity and for every value
a there is another value a′ such that the result of applying � to a and a′ (in either order) equals the identity. The
unary operator � returns the inverse of its argument; as a notational convenience, it may also be used as a binary
operator. A standard example is the operator + on integers; the identity is 0 , and the unary operator − returns the
additive inverse of its argument, such that a+ (−a) = 0 and (−a) + a = 0 . Moreover, − may be used as a binary
operator: a− b means a+ (−b) .

trait HasLeftZeroesJT extends HasLeftZeroesJT,�, isLeftZeroK, opr �, ident isLeftZeroK
extends {BinaryOperatorJT,�K }

abstract isLeftZero(): Boolean
property ∀(a:T, b:T) a.isLeftZero()→: ((a� b) = a)

end

A value e is a left zero for a binary operator � if the result of � always equals e whenever e is the left-hand operand.
For example, −∞ is a left zero for the MIN operator on floating-point values, and 7FFFFFFF16 is a left zero for the
MAX operator on values of type Z32 . The purpose of this trait is to specify a method that says whether a given element
is a left zero for � .

trait HasRightZeroesJT extends HasRightZeroesJT,�, isRightZeroK, opr �, ident isRightZeroK
extends {BinaryOperatorJT,�K }

abstract isRightZero(): Boolean
property ∀(a:T, b:T) b.isRightZero()→: ((a� b) = b)

end

A value e is a right zero for a binary operator � if the result of � always equals e whenever e is the right-hand
operand. For example, −∞ is a right zero (as well as a left zero) for the MIN operator on floating-point values, and
7FFFFFFF16 is a right zero (as well as a left zero) for the MAX operator on values of type Z32 . By way of contrast, 0
is a left zero for the arithmetic shift operator on integers, but is not a right zero. The purpose of this trait is to specify
a method that says whether a given element is a right zero for � .

trait ApproximatelyLeftDistributiveJT extends ApproximatelyLeftDistributiveJT,⊗,⊕,≈K,
opr ⊗, opr ⊕, opr ≈K

extends {BinaryOperatorJT,⊗K,BinaryOperatorJT,⊕K,ReflexiveJT,≈K,SymmetricJT,≈K }
property ∀(a:T, b:T, c:T) (a⊗ (b⊕ c)) :≈: ((a⊗ b)⊕ (a⊗ c))

end

The trait ApproximatelyLeftDistributive requires the operator ⊗ to be approximately left distributive over the
operator ⊕ ; that is, the expressions a⊗ (b⊕ c) and (a⊗ b)⊕ (a⊗ c) always produce results that are “close enough”
to each other as determined by the specified ≈ predicate.

trait LeftDistributiveJT extends LeftDistributiveJT,⊗,⊕K, opr ⊗, opr ⊕K
extends {ApproximatelyLeftDistributiveJT,⊗,⊕,=K,EquivalenceRelationJT,=K }

end

278

The trait LeftDistributive requires the operator ⊗ to be left distributive over the operator ⊕ ; that is, the expressions
a⊗ (b⊕ c) and (a⊗ b)⊕ (a⊗ c) always produce equal results.

trait ApproximatelyRightDistributiveJT extends ApproximatelyRightDistributiveJT,⊗,⊕,≈K,
opr ⊗, opr ⊕, opr ≈K

extends {BinaryOperatorJT,⊗K,BinaryOperatorJT,⊕K,ReflexiveJT,≈K,SymmetricJT,≈K }
property ∀(a:T, b:T, c:T) ((a⊕ b)⊗ c) :≈: ((a⊗ c)⊕ (b⊗ c))

end

The trait ApproximatelyRightDistributive requires the operator ⊗ to be approximately right distributive over the
operator ⊕ ; that is, the expressions (a⊕ b)⊗ c and (a⊗ c)⊕ (b⊗ c) always produce results that are “close enough”
to each other as determined by the specified ≈ predicate.

trait RightDistributiveJT extends RightDistributiveJT,⊗,⊕K, opr ⊗, opr ⊕K
extends {ApproximatelyRightDistributiveJT,⊗,⊕,=K,EquivalenceRelationJT,=K }

end

The trait RightDistributive requires the operator ⊗ to be right distributive over the operator ⊕ ; that is, the expres-
sions (a⊕ b)⊗ c and (a⊗ c)⊕ (b⊗ c) always produce equal results.

trait ApproximatelyDistributiveJT extends ApproximatelyDistributiveJT,⊗,⊕,≈K,
opr ⊗, opr ⊕, opr ≈K

extends {ApproximatelyLeftDistributiveJT,⊗,⊕,≈K,
ApproximatelyRightDistributiveJT,⊗,⊕,≈K }

end

The trait ApproximatelyDistributive requires the operator ⊗ to be both approximately left distributive and approx-
imately right distributive over the operator ⊕ .

trait DistributiveJT extends DistributiveJT,⊗,⊕K, opr ⊗, opr ⊕K
extends {ApproximatelyDistributiveJT,⊗,⊕,=K,LeftDistributiveJT,⊗,⊕K,RightDistributiveJT,⊗,⊕K }

end

The trait Distributive requires the operator ⊗ to be both left distributive and right distributive over the operator ⊕ .

trait AbsorptionLawsJT extends AbsorptionLawsJT,u,tK, opr u, opr tK
extends {BinaryOperatorJT,uK,BinaryOperatorJT,tK,EquivalenceRelationJT,=K }

property ∀(a:T, b:T) a t (a u b) = a = a u (a t b)
end

The absorption laws specify certain relationships between two operators u and t . These laws are one of the defining
properties of a lattice.

value object ZeroJopr ⊗K end

trait ApproximateZeroAnnihilationJT extends ApproximateZeroAnnihilationJT,⊗,≈K,
opr ⊗, opr ≈K

extends {BinaryOperatorJT,⊗K,ReflexiveJT,≈K,SymmetricJT,≈K }
where {T coerces ZeroJ⊗K }

property ∀(a:T) (ZeroJ⊗K⊗ a) :≈: ZeroJ⊗K
property ∀(a:T) (a⊗ ZeroJ⊗K) :≈: ZeroJ⊗K

end

An operator ⊗ obeys approximate zero annihilation if and only if there is an element (call it z) that when used as
either operand of ⊗ causes the result to be “close enough” to z as determined by the specified ≈ predicate. This
zero element may be obtained by coercing the object named ZeroJ⊗K to type T .

279

trait ZeroAnnihilationJT extends ZeroAnnihilationJT,⊗K, opr ⊗K
extends {ApproximateZeroAnnihilationJT,⊗,=K,EquivalenceRelationJT,=K,

HasLeftZeroesJT,⊗, isZeroK,HasRightZeroesJT,⊗, isZeroK }
where {T coerces ZeroJ⊗K }

end

An operator ⊗ obeys zero annihilation if and only if there is an element (call it z) that when used as either operand
of ⊗ causes the result to equal z . This element is both a left zero and a right zero for ⊗ .

trait NoApproximateZeroDivisorsJT extends NoApproximateZeroDivisorsJT,⊗,≈K, opr ⊗, opr ≈K
extends {BinaryOperatorJT,⊗K,ReflexiveJT,≈K,SymmetricJT,≈K }
where {T coerces ZeroJ⊗K }

property ∀(a:T, b:T) (a⊗ b :≈: ZeroJ⊗K)→ (a ≈ ZeroJ⊗K ∨ b ≈ ZeroJ⊗K)
end

An operator ⊗ has no approximate zero divisors if and only if, for every pair of elements a and b , if a⊗ b is
approximately zero then at least one of a and b is approximately zero. (Great care is needed in the definition of
“approximately” for this to work out correctly in practice.)

trait NoZeroDivisorsJT extends NoZeroDivisorsJT,⊗K, opr ⊗K
extends {NoApproximateZeroDivisorsJT,⊗,=K,EquivalenceRelationJT,=K }
where {T coerces ZeroJ⊗K }

property ∀(a:T, b:T) (a⊗ b = ZeroJ⊗K)→ (a = ZeroJ⊗K ∨ b = ZeroJ⊗K)
end

An operator ⊗ has no zero divisors if and only if, for every pair of elements a and b , if a⊗ b is zero then at least
one of a and b is zero (put conversely, if a and b are both nonzero then a⊗ b must be nonzero).

trait UnaryOperatorSubstitutionLawsJT extends UnaryOperatorSubstitutionLawsJT,�,=K,
opr �, opr 'K

extends {UnaryOperatorJT,�K,BinaryPredicateJT,'K }
property ∀(a:T, a′:T) (a ' a′)→: (�a) ' (�a′)

end

This peculiarly spiffy trait states that the unary operator � is consistent under substitutions described by the relation
' (which is typically, but not always, an equivalence relation); that is, the result produced by � is unchanged if its
argument is replaced by some other value that is equivalent.

trait BinaryOperatorSubstitutionLawsJT extends BinaryOperatorSubstitutionLawsJT,�,=K,
opr �, opr 'K

extends {BinaryOperatorJT,�K,BinaryPredicateJT,'K }
property ∀(a:T, a′:T) (a ' a′)→:∀(b:T) (a� b) ' (a′ � b)
property ∀(b:T, b′:T) (b ' b′)→:∀(a:T) (a� b) ' (a� b′)

end

This equally spiffy trait states that the binary operator � is consistent under substitutions described by the relation '
(which is typically, but not always, an equivalence relation); that is, the result produced by � is unchanged if either
argument is replaced by some other value that is equivalent. (It is then easy to prove that the result is unchanged even
when both arguments are replaced by equivalent values.)

37.4 Lattices

trait SemilatticeJT extends SemilatticeJT,uK, opr uK

280

extends {CommutativeJT,uK,AssociativeJT,uK, IdempotentBinaryOperatorJT,uK }
end

A semilattice is a set of values with an operator u that is commutative, associative, and idempotent. Examples of such
operators are ∧ , ∨ , ∩ , ∪ , MAX , MIN , GCD , and LCM .

trait BoundedSemilatticeJT extends BoundedSemilatticeJT,uK, opr uK
extends {SemilatticeJT,uK,CommutativeMonoidJT,uK }
where {T coerces IdentityJuK }

end

A bounded semilattice is a semilattice for which the operator u has an identity. For example, the boolean value true
is the identity for ∧ and the empty set is the identity for ∪ .

trait LatticeJT extends LatticeJT,u,tK, opr u, opr tK
extends {SemilatticeJT,uK,SemilatticeJT,tK,AbsorptionLawsJT,u,tK }

end

A lattice is a pair of semilattices that share the same set of values and whose operators together obey the absorption
laws. One operator (here, by convention, u) is called the meet operator and the other (here, by convention, t) is
called the join operator.

trait MeetBoundedLatticeJT extends MeetBoundedLatticeJT,u,tK, opr u, opr tK
extends {LatticeJT,u,tK,BoundedSemilatticeJT,uK }
where {T coerces IdentityJuK }

end

If the semilattice associated with the meet operator of a lattice is bounded, then the lattice is a meet-bounded lattice.

trait JoinBoundedLatticeJT extends JoinBoundedLatticeJT,u,tK, opr u, opr tK
extends {LatticeJT,u,tK,BoundedSemilatticeJT,tK}
where {T coerces IdentityJtK }

end

If the semilattice associated with the join operator of a lattice is bounded, then the lattice is a join-bounded lattice.

trait BoundedLatticeJT extends BoundedLatticeJT,u,tK, opr u, opr tK
extends {MeetBoundedLatticeJT,u,tK, JoinBoundedLatticeJT,u,tK}
where {T coerces IdentityJuK, T coerces IdentityJtK }

end

If a lattice is both meet-bounded and join-bounded, then we simply say that the lattice is bounded.

trait PartialOrderAndLatticeJT extends PartialOrderLatticeJT,4,u,tK,
opr 4, opr u, opr tK

extends {PartialOrderJT,4K,LatticeJT,u,tK }
property ∀(a:T, b:T) (a 4 b)↔ (a u b = a)
property ∀(a:T, b:T) (a 4 b)↔ (a t b = b)

end

Every lattice defines a partial order, and every partial order defines a lattice. This trait specifies that the type T
provides the necessary operators to be regarded as both a partial order and a lattice, states the properties that should
relate the partial-order behavior to the lattice behavior. As an example, if the set of values is the integers Z , the partial
order operator is LEQ , and the lattice operators are MIN and MAX , then the requirements are that a LEQ b if and only
if a = a MIN b , and that a LEQ b if and only if b = a MAX b .

281

trait PartialOrderAndMeetBoundedLatticeJT extends PartialOrderAndMeetBoundedLatticeJT,4,u,tK,
opr 4, opr u, opr tK

extends {PartialOrderAndLatticeJT,4,u,tK,
MeetBoundedLatticeJT,u,tK,
HasMinimalElementJT,4K }

where {T coerces IdentityJuK, T coerces MaximalElementJ4K }
property T. coercion (IdentityJuK) = T. coercion (MaximalElementJ4K)

end

The partial order associated with a meet-bounded lattice should have a maximal element, which is the identity of the
meet operator.

trait PartialOrderAndJoinBoundedLatticeJT extends PartialOrderAndJoinBoundedLatticeJT,4,u,tK,
opr 4, opr u, opr tK

extends {PartialOrderAndLatticeJT,4,u,tK,
JoinBoundedLatticeJT,u,tK,
HasMaximalElementJT,4K }

where {T coerces IdentityJtK, T coerces MinimalElementJ4K }
property T. coercion (IdentityJtK) = T. coercion (MinimalElementJ4K)

end

The partial order associated with a join-bounded lattice should have a minimal element, which is the identity of the
join operator.

trait PartialOrderAndBoundedLatticeJT extends PartialOrderAndBoundedLatticeJT,4,u,tK,
opr 4, opr u, opr tK

extends {PartialOrderAndMeetBoundedLatticeJT,4,u,tK,
PartialOrderAndJoinBoundedLatticeJT,4,u,tK }

end

The partial order associated with a bounded lattice should have both a minimal element and a maximal element.

37.5 Monoids, Groups, Rings, and Fields

trait ApproximateMonoidJT extends ApproximateMonoidJT,�,≈K, opr �, opr ≈K
extends {ApproximatelyAssociativeJT,�,≈K,HasIdentityJT,�K }
where {T coerces IdentityJ�K }

end

An approximate monoid is a set of values with an approximately associative binary operator � that has an identity.
For example, floating-point multiplication has identity 1 and is approximately associative.

trait MonoidJT extends MonoidJT,�K, opr �K
extends {ApproximateMonoidJT,�,=K,AssociativeJT,�K }
where {T coerces IdentityJ�K }

end

A monoid is a set of values with an associative binary operator � that has an identity. For example, trait String
extends MonoidJString, ‖K where ‖ is the string concatenation operator. Note that string concatenation is associative
but not commutative and that the empty string is the identity for string concatenation, so coercing IdentityJ ‖ K to type
String produces the empty string.

282

trait ApproximateCommutativeMonoidJT extends ApproximateCommutativeMonoidJT,⊕,≈K,
opr ⊕, opr ≈K

extends {ApproximateMonoidJT,⊕,≈K,ApproximatelyCommutativeJT,⊕,≈K }
where {T coerces IdentityJ⊕K }

end

An approximate commutative monoid is an approximate monoid whose binary operator is also approximately com-
mutative. For example, floating-point multiplication has identity 1 and is approximately associative and also approx-
imately (indeed, exactly) commutative.

trait CommutativeMonoidJT extends CommutativeMonoidJT,⊕K, opr ⊕K
extends {ApproximateCommutativeMonoidJT,⊕,=K,MonoidJT,⊕K,CommutativeJT,⊕K }
where {T coerces IdentityJ⊕K }

end

A commutative monoid is a monoid whose binary operator is also commutative. For example, the operator ∧ on
boolean values is associative and commutative and has identity true ; likewise, the operator ∨ on boolean values is
associative and commutative and has identity false .

trait ApproximateGroupJT extends ApproximateGroupJT,�,�,≈K, opr �, opr �, opr ≈K
extends {ApproximateMonoidJT,�,≈K,ApproximatelyHasInversesJT,�,�,≈K }
where {T coerces IdentityJ�K }

end

An approximate group is an approximate monoid that has approximate inverses. For example, a floating-point repre-
sentation of quaternions with multiplication as the binary operator would form an approximate group.

trait GroupJT extends GroupJT,�,�K, opr �, opr �K
extends {ApproximateGroupJT,�,�,=K,MonoidJT,�K,HasInversesJT,�,�K }
where {T coerces IdentityJ�K }

end

A group is monoid that has inverses.

trait ApproximateAbelianGroupJT extends ApproximateAbelianGroupJT,⊕,	,≈K,
opr ⊕, opr 	, opr ≈K

extends {ApproximateGroupJT,⊕,	,≈K,
ApproximateCommutativeMonoidJT,⊕,≈K }

where {T coerces IdentityJ⊕K }
end

An approximate Abelian group is an approximate group whose binary operator is also approximately commutative.

trait AbelianGroupJT extends AbelianGroupJT,⊕,	K, opr ⊕, opr 	K
extends {ApproximateAbelianGroupJT,⊕,	,=K,

GroupJT,⊕,	K,CommutativeMonoidJT,⊕K }
where {T coerces IdentityJ⊕K }

end

An Abelian group is group whose binary operator is also commutative. (The term “Abelian” is traditionally used
instead of “commutative” when discussing groups, in tribute to mathematician Niels Henrik Abel.) For example, the
integers with the binary addition operator + , unary negation operator − , and identity 0 form an Abelian group. As
another example, the boolean values with the binary exclusive OR operator ⊕ and unary negation operator IDENTITY
form an Abelian group; the value false is the identity for ⊕ .

283

trait ApproximateSemiRingJT extends ApproximateSemiRingJT,⊕,⊗,≈K,
opr ⊕, opr ⊗, opr ≈K

extends {ApproximateCommutativeMonoidJT,⊕,≈K,
ApproximateMonoidJT,⊗,≈K,
ApproximatelyDistributiveJT,⊗,⊕,≈K,
ApproximateZeroAnnihilationJT,⊗,≈K }

where {T coerces IdentityJ⊕K, T coerces IdentityJ⊗K, T coerces ZeroJ⊗K }
property T. coercion (ZeroJ⊗K) ≈ T. coercion (IdentityJ⊕K)

end

An approximate semiring is a set of values that has two binary operators ⊕ and ⊗ , such that (a) the values form an
approximate commutative monoid with ⊕ ; (b) the values form an approximate monoid with ⊗ ; (c) ⊗ is approxi-
mately distributive over ⊕ ; and (d) ⊗ obeys approximate zero annihilation, where the zero for ⊗ is the same as the
identity for ⊕ .

trait SemiRingJT extends SemiRingJT,⊕,⊗K, opr ⊕, opr ⊗K
extends {ApproximateSemiRingJT,⊕,⊗,=K,

CommutativeMonoidJT,⊕K,
MonoidJT,⊗K,
DistributiveJT,⊗,⊕K,
ZeroAnnihilationJT,⊗K }

where {T coerces IdentityJ⊕K, T coerces IdentityJ⊗K, T coerces ZeroJ⊗K }
end

A semiring is a set of values that has two binary operators ⊕ and ⊗ , such that (a) the values form a commuta-
tive monoid with ⊕ ; (b) the values form a monoid with ⊗ ; (c) ⊗ is distributive over ⊕ ; and (d) ⊗ obeys zero
annihilation, where the zero for ⊗ is the same as the identity for ⊕ .

trait ApproximateRingJT extends ApproximateRingJT,⊕,	,⊗,≈K,
opr ⊕, opr 	, opr ⊗, opr ≈K

extends {ApproximateAbelianGroupJT,⊕,	,≈K,
ApproximateSemiRingJT,⊕,⊗,≈K }

where {T coerces IdentityJ⊕K, T coerces IdentityJ⊗K, T coerces ZeroJ⊗K }
end

An approximate ring is an approximate semiring that also has a unary operator 	 that returns inverses for the ⊕
operator so that the values form an approximate group with ⊕ and 	 .

trait RingJT extends RingJT,⊕,	,⊗K, opr ⊕, opr 	, opr ⊗K
extends {ApproximateRingJT,⊕,	,⊗,=K,

AbelianGroupJT,⊕,	K,
SemiRingJT,⊕,⊗K }

where {T coerces IdentityJ⊕K, T coerces IdentityJ⊗K, T coerces ZeroJ⊗K }
end

A ring is a semiring that also has a unary operator 	 that returns inverses for the ⊕ operator so that the values form
a group with ⊕ and 	 .

trait ApproximateCommutativeRingJT extends ApproximateCommutativeRingJT,⊕,	,⊗,≈K,
opr ⊕, opr 	, opr ⊗, opr ≈K

extends {ApproximateRingJT,⊕,	,⊗,≈K,
ApproximateCommutativeMonoidJT,⊗,≈K }

where {T coerces IdentityJ⊕K, T coerces IdentityJ⊗K, T coerces ZeroJ⊗K }
end

284

An approximate commutative ring is an approximate ring for which the binary operator ⊗ is also approximately
commutative.

trait CommutativeRingJT extends CommutativeRingJT,⊕,	,⊗K,
opr ⊕, opr 	, opr ⊗K

extends {ApproximateCommutativeRingJT,⊕,	,⊗,=K,
RingJT,⊕,	,⊗K,
CommutativeMonoidJT,⊗K }

where {T coerces IdentityJ⊕K, T coerces IdentityJ⊗K, T coerces ZeroJ⊗K }
end

A commutative ring is a ring for which the binary operator ⊗ is also commutative.

trait ApproximateMathematicalDomainJT extends ApproximateRingJT,⊕,	,⊗,≈K,
opr ⊕, opr 	, opr ⊗, opr ≈K

extends {ApproximateRingJT,⊕,	,⊗,≈K,
NoApproximateZeroDivisorsJT,⊗,≈K }

where {T coerces IdentityJ⊕K, T coerces IdentityJ⊗K, T coerces ZeroJ⊗K }
end

An approximate mathematical domain is an approximate ring that has no approximate zero divisors.

trait MathematicalDomainJT extends RingJT,⊕,	,⊗K,
opr ⊕, opr 	, opr ⊗K

extends {ApproximateMathematicalDomainJT,⊕,	,⊗,=K,
RingJT,⊕,	,⊗K,
NoZeroDivisorsJT,⊗K }

where {T coerces IdentityJ⊕K, T coerces IdentityJ⊗K, T coerces ZeroJ⊗K }
end

A mathematical domain is a ring that has no zero divisors. (In mathematics, this is called simply a domain. In Fortress,
the term “mathematical domain” is used instead to avoid consuming this word for a concept that admittedly is used
rarely in programming when compared with other common single words such as“ring” and “field.”)

trait ApproximateIntegralDomainJT extends ApproximateRingJT,⊕,	,⊗,≈K,
opr ⊕, opr 	, opr ⊗, opr ≈K

extends {ApproximateMathematicalDomainJT,⊕,	,⊗,≈K,
ApproximateCommutativeRingJT,⊕,	,⊗,≈K }

where {T coerces IdentityJ⊕K, T coerces IdentityJ⊗K, T coerces ZeroJ⊗K }
end

An approximate integral domain is an approximate mathematical domain for which the binary operator ⊗ is also
approximately commutative.

trait IntegralDomainJT extends RingJT,⊕,	,⊗K,
opr ⊕, opr 	, opr ⊗K

extends {ApproximateIntegralDomainJT,⊕,	,⊗,=K,
MathematicalDomainJT,⊕,	,⊗K,
CommutativeRingJT,⊕,	,⊗K }

where {T coerces IdentityJ⊕K, T coerces IdentityJ⊗K, T coerces ZeroJ⊗K }
end

An integral domain is a mathematical domain for which the binary operator ⊗ is also commutative.

285

trait ApproximateDivisionRingJT extends ApproximateDivisionRingJT,U,⊕,	,⊗,�,≈K,
U extends T,
opr ⊕, opr 	, opr ⊗, opr �, opr ≈K

extends {ApproximateMathematicalDomainJT,⊕,	,⊗,≈K,
ApproximateGroupJU,⊗,�,≈K }

where {T coerces IdentityJ⊕K, T coerces IdentityJ⊗K, T coerces ZeroJ⊗K }
property ¬instanceOf JUK(T. coercion (ZeroJ⊕K))
property ∀(a:T) a 6= ZeroJ⊕K→ instanceOf JUK(a)

end

An approximate division ring is an approximate ring for which the binary operator ⊗ also has approximate inverses,
so that the values other than the zero of ⊗ form an approximate group with ⊗ and � . An approximate division ring
is in fact also an approximate mathematical domain.

trait DivisionRingJT extends DivisionRingJT,U,⊕,	,⊗,�K,
U extends T,
opr ⊕, opr 	, opr ⊗, opr �K

extends {ApproximateDivisionRingJT,U,⊕,	,⊗,�,=K,
MathematicalDomainJT,⊕,	,⊗,≈K,
GroupJU,⊗,�K }

where {T coerces IdentityJ⊕K, T coerces IdentityJ⊗K, T coerces ZeroJ⊗K }
end

A division ring is a ring for which the binary operator ⊗ also has inverses, so that the values other than the zero of ⊗
form a group with ⊗ and � . A division ring is in fact also a mathematical domain.

trait ApproximateFieldJT extends ApproximateFieldJT,U,⊕,	,⊗,�,≈K,
U extends T,
opr ⊕, opr 	, opr ⊗, opr �, opr ≈K

extends {ApproximateIntegralDomainJT,⊕,	,⊗,≈K,
ApproximateDivisionRingJT,U,⊕,	,⊗,�,≈K,
ApproximateAbelianGroupJT,⊗,�,≈K }

where {T coerces IdentityJ⊕K, T coerces IdentityJ⊗K, T coerces ZeroJ⊗K }
end

An approximate field is an approximately commutative ring that is also an approximate division ring: the binary
operator ⊗ is approximately commutative and also has approximate inverses, so that the values other than the zero of
⊗ form an approximate Abelian group with ⊗ and � . An approximate field is in fact also an approximate integral
domain.

trait FieldJT extends FieldJT,U,⊕,	,⊗,�K, U extends T, opr ⊕, opr 	, opr ⊗, opr �K
extends {ApproximateFieldJT,U,⊕,	,⊗,�,=K,

IntegralDomainJT,⊕,	,⊗K,
DivisionRingJT,U,⊕,	,⊗,�K,
AbelianGroupJT,⊗,�K }

where {T coerces IdentityJ⊕K, T coerces IdentityJ⊗K, T coerces ZeroJ⊗K }
end

A field is a commutative ring that is also a division ring: the binary operator ⊗ is commutative and also has inverses,
so that the values other than the zero of ⊗ form an Abelian group with ⊗ and � . A field is in fact also an integral
domain.

286

37.6 Boolean Algebras
value object ComplementBoundJopr �K end

trait HasComplementsJT extends HasComplementsJT,�,∼K, opr �, opr ∼K
extends {BinaryOperatorJT,�K,UnaryOperatorJT,∼K,EquivalenceRelationJT,=K }
where {T coerces ComplementBoundJ�K }

property ∀(a:T) (a� (∼ a)) :=: ComplementBoundJ�K
end

A set of values with a binary operator � has complements if and only if there is a specific value e such that for every
value a there is another value a′ such that the result of applying � to a and a′ (in either order) equals the specified
value e . This value may be obtained by coercing the object named ComplementBoundJ�K to type T . The unary
operator ∼ returns the complement of its argument with respect to the operator � .

Note that the trait HasComplements is similar to the trait HasInverses , but HasComplements does not require that
that specified element be an identity of the binary operator.

trait DeMorganJT extends DeMorganJT,f,g,∼K, opr f, opr g, opr ∼K
extends {BinaryOperatorJT,fK,BinaryOperatorJT,gK,

UnaryOperatorJT,∼K,EquivalenceRelationJT,=K }
property ∀(a:T, b:T) (∼ (ag b)) :=: ((∼ a)f (∼ b))

end

This trait expresses De Morgan’s law for two binary operators f and g and a unary operator ∼ : the expressions
∼ (ag b) and (∼ a)f (∼ b) produce equal results.

trait BooleanAlgebraJT extends BooleanAlgebraJT,f,g,∼,∨K, opr f, opr g, opr ∼, opr ∨K
extends {CommutativeJT,fK,AssociativeJT,fK,

CommutativeJT,gK,AssociativeJT,gK,
IdempotentBinaryOperatorJT,fK,
IdempotentBinaryOperatorJT,gK,
HasIdentityJT,fK,HasIdentityJT,gK,
HasComplementsJT,g,∼K,HasComplementsJT,f,∼K,
DistributiveJT,f,gK,DistributiveJT,g,fK,
DeMorganJT,f,g,∼K,DeMorganJT,g,f,∼K,
BoundedLatticeJT,f,gK,RingJT,∨, IDENTITY,fK }

where {T coerces IdentityJfK, T coerces ComplementBoundJfK,
T coerces IdentityJgK, T coerces ComplementBoundJgK,
T coerces IdentityJ∨K, T coerces ZeroJfK }

property ∀(a:T) (∼ (∼ a)) :=: a
property ∀(a:T, b:T) a ∨ b = (af (∼ b))g ((∼ a)f b))
property T. coercion (IdentityJ∨K) = T. coercion (IdentityJgK)
property T. coercion (ComplementBoundJfK) = T. coercion (IdentityJgK)
property T. coercion (ComplementBoundJgK) = T. coercion (IdentityJfK)

end

A boolean algebra is an algebraic structure consisting of a set of values, three binary operators f , g , and ∨ , and a
unary operator ∼ , such that the operators obey a number of specific properties:

• f is commutative, associative, and idempotent, and has a unique identity

• g is commutative, associative, and idempotent, and has a unique identity

• f has complements with respect to ∼

• g has complements with respect to ∼

287

• f and g distribute over each other

• De Morgan’s law applies to f , g , and ∼ , and also to g , f , and ∼

• The values form a bounded lattice with f as the meet operator and g as the join operator.

• The values form a ring with ∨ as the addition operator, IDENTITY as the additive inverse operator, and f as
the multiplication operator

The type Boolean is the most familiar example of a boolean algebra. The power set of a set (that is, the set of all
subsets of the set) also forms a boolean algebra with operators ∩ , ∪ , set complement, and symmetric set difference;
the empty set is the identity for ∪ , and the original set is the identity for ∩ .

288

Chapter 38

Numbers

38.1 The Trait Fortress.Standard.RationalQuantity

The standard types for rational numbers such as Q and Q∗ and Q#
≤ are defined in terms of a single trait RationalQuantity

that handles dimensions and units as well as performing a case analysis to distinguish rather a particular expression is
guaranteed not to produce infinities, 0/0 , or numbers of a particular sign.

The trait RationalQuantity takes seven static parameters; the first is a dimensional unit, and the others are booleans
specifying whether an instance of the trait can possibly be −∞ , a finite rational less than zero, zero, a finite rational
greater than zero, +∞ , or 0/0 . This allows the standard rational types to be represented as follows:

type Q = RationalQuantityJdimensionless, false, true, true, true, false, falseK
type Q< = RationalQuantityJdimensionless, false, true, false, false, false, falseK
type Q≤ = RationalQuantityJdimensionless, false, true, true, false, false, falseK
type Q≥ = RationalQuantityJdimensionless, false, false, true, true, false, falseK
type Q> = RationalQuantityJdimensionless, false, false, false, true, false, falseK
type Q6= = RationalQuantityJdimensionless, false, true, false, true, false, falseK
type Q∗ = RationalQuantityJdimensionless, true, true, true, true, true, falseK
type Q∗< = RationalQuantityJdimensionless, true, true, false, false, false, falseK
type Q∗≤ = RationalQuantityJdimensionless, true, true, true, false, false, falseK
type Q∗≥ = RationalQuantityJdimensionless, false, false, true, true, true, falseK
type Q∗> = RationalQuantityJdimensionless, false, false, false, true, true, falseK
type Q∗6= = RationalQuantityJdimensionless, true, true, false, true, true, falseK
type Q# = RationalQuantityJdimensionless, true, true, true, true, true, trueK
type Q#

< = RationalQuantityJdimensionless, true, true, false, false, false, trueK
type Q#

≤ = RationalQuantityJdimensionless, true, true, true, false, false, trueK
type Q#

≥ = RationalQuantityJdimensionless, false, false, true, true, true, trueK
type Q#

> = RationalQuantityJdimensionless, false, false, false, true, true, trueK
type Q#

6= = RationalQuantityJdimensionless, true, true, false, true, true, trueK

Here is the detailed description of RationalQuantity , showing the details of the type calculations:

289

trait RationalQuantityJ unit U absorbs unit,
bool ninf , bool lt , bool eq , bool gt , bool pinf , bool nanK

extends {RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K
where { bool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′,

ninf → ninf ′, lt → lt ′, eq → eq ′, gt → gt ′, pinf → pinf ′,nan → nan ′ },
FieldJRationalQuantityJU,ninf , lt , eq , gt , pinf ,nanK,

RationalQuantityJU,ninf , lt , false, gt , pinf ,nanK,+,−, ·, /K
where { lt ∧ eq ∧ gt ∧ ¬ninf ∧ ¬pinf ∧ ¬nan, U = dimensionless },
FieldJ RationalQuantityJU,ninf , lt , eq , gt , pinf ,nanK,

RationalQuantityJU,ninf , lt , false, gt , pinf ,nanK,+,−,×, /K
where { lt ∧ eq ∧ gt ∧ ¬ninf ∧ ¬pinf ∧ ¬nan, U = dimensionless },
FieldJRationalQuantityJU,ninf , lt , eq , gt , pinf ,nanK,

RationalQuantityJU,ninf , lt , false, gt , pinf ,nanK,+,−, juxtaposition, /K
where { lt ∧ eq ∧ gt ∧ ¬ninf ∧ ¬pinf ∧ ¬nan, U = dimensionless },
AbelianGroupJRationalQuantityJU,ninf , lt , eq , gt , pinf ,nanK,+,−K,
TotalOrderOperatorsJRationalQuantityJU,ninf , lt , eq , gt , pinf ,nanK, <,≤,≥, >, CMPK
where {¬nan },
PartialOrderAndLatticeJRationalQuantityJU,ninf , lt , eq , gt , pinf ,nanK,≤, MIN, MAXK
where {¬nan },
PartialOrderAndMeetBoundedLatticeJRationalQuantityJU,ninf , lt , eq , gt , pinf ,nanK,

≤, MIN, MAXK
where { pinf ∧ ¬nan },
PartialOrderAndJoinBoundedLatticeJRationalQuantityJU,ninf , lt , eq , gt , pinf ,nanK,

≤, MIN, MAXK
where {ninf ∧ ¬nan },
PartialOrderAndBoundedLatticeJRationalQuantityJU,ninf , lt , eq , gt , pinf ,nanK,

≤, MIN, MAXK
where {ninf ∧ pinf ∧ ¬nan } }

where {ninf ∨ lt ∨ eq ∨ gt ∨ pinf ∨ nan }
coercion (x: IdentityJ+K)
coercion (x: IdentityJ·K)
coercion (x: IdentityJ×K)
coercion (x: IdentityJjuxtapositionK)
coercion (x: ZeroJ·K)
coercion (x: ZeroJ×K)
coercion (x: ZeroJjuxtapositionK)
coercion (x: IntegerQuantityJU,ninf , lt , eq , gt , pinf ,nanK)
opr juxtaposition Junit U ′, bool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K

(self, other : RationalQuantityJU ′,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K) :
RationalQuantityJU U ′,

ninf ∧ pinf ′ ∨ ninf ∧ gt ′ ∨ lt ∧ pinf ′ ∨ pinf ∧ ninf ′ ∨ pinf ∧ lt ′ ∨ gt ∧ ninf ′,
lt ∧ gt ′ ∨ gt ∧ lt ′,
eq ∧ (lt ′ ∨ eq ′ ∨ gt ′) ∨ (lt ∨ eq ∨ gt) ∧ eq ′,
lt ∧ lt ′ ∨ gt ∧ gt ′,
ninf ∧ ninf ′ ∨ ninf ∧ lt ′ ∨ lt ∧ ninf ′ ∨ pinf ∧ pinf ′ ∨ pinf ∧ gt ′ ∨ gt ∧ pinf ′,
nan ∨ nan ′ ∨ ninf ∧ eq ′ ∨ pinf ∧ eq ′ ∨ eq ∧ ninf ′ ∨ eq ∧ pinf ′K

opr +(self): RationalQuantityJU,ninf , lt , eq , gt , pinf ,nanK
opr +Jbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool inf ′, bool nan ′K

(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K) :
RationalQuantityJU,

ninf ∧ (ninf ′ ∨ lt ′ ∨ eq ′ ∨ gt ′) ∨ (ninf ∨ lt ∨ eq ∨ gt) ∧ ninf ′,
lt ∧ (lt ′ ∨ eq ′ ∨ gt ′) ∨ (lt ∨ eq ∨ gt) ∧ lt ′,

290

lt ∧ gt ′ ∨ eq ∧ eq ′ ∨ gt ∧ lt ′,
gt ∧ (lt ′ ∨ eq ′ ∨ gt ′) ∨ (lt ∨ eq ∨ gt) ∧ gt ′,
pinf ∧ (lt ′ ∨ eq ′ ∨ gt ′ ∨ pinf ′) ∨ (lt ∨ eq ∨ gt ∨ pinf) ∧ pinf ′,
nan ∨ nan ′ ∨ ninf ∧ pinf ′ ∨ pinf ∧ ninf ′K

opr −(self): RationalQuantityJU, pinf , gt , eq , lt ,ninf ,nanK
opr −Jbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K

(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K) :
RationalQuantityJU,

ninf ∧ (lt ′ ∨ eq ′ ∨ gt ′ ∨ pinf ′) ∨ (ninf ∨ lt ∨ eq ∨ gt) ∧ pinf ′,
lt ∧ (lt ′ ∨ eq ′ ∨ gt ′) ∨ (lt ∨ eq ∨ gt) ∧ gt ′,
lt ∧ lt ′ ∨ eq ∧ eq ′ ∨ gt ∧ gt ′,
gt ∧ (lt ′ ∨ eq ′ ∨ gt ′) ∨ (lt ∨ eq ∨ gt) ∧ lt ′,
pinf ∧ (ninf ′ ∨ lt ′ ∨ eq ′ ∨ gt ′) ∨ (lt ∨ eq ∨ gt ∨ pinf) ∧ ninf ′,
nan ∨ nan ′ ∨ ninf ∧ ninf ′ ∨ pinf ∧ pinf ′K

opr ·Junit U ′, bool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU ′,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K) :
RationalQuantityJU U ′,

ninf ∧ pinf ′ ∨ ninf ∧ gt ′ ∨ lt ∧ pinf ′ ∨ pinf ∧ ninf ′ ∨ pinf ∧ lt ′ ∨ gt ∧ ninf ′,
lt ∧ gt ′ ∨ gt ∧ lt ′,
eq ∧ (lt ′ ∨ eq ′ ∨ gt ′) ∨ (lt ∨ eq ∨ gt) ∧ eq ′,
lt ∧ lt ′ ∨ gt ∧ gt ′,
ninf ∧ ninf ′ ∨ ninf ∧ lt ′ ∨ lt ∧ ninf ′ ∨ pinf ∧ pinf ′ ∨ pinf ∧ gt ′ ∨ gt ∧ pinf ′,
nan ∨ nan ′ ∨ ninf ∧ eq ′ ∨ pinf ∧ eq ′ ∨ eq ∧ ninf ′ ∨ eq ∧ pinf ′K

opr ×Junit U ′, bool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU ′,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K) :
RationalQuantityJU U ′,

ninf ∧ pinf ′ ∨ ninf ∧ gt ′ ∨ lt ∧ pinf ′ ∨ pinf ∧ ninf ′ ∨ pinf ∧ lt ′ ∨ gt ∧ ninf ′,
lt ∧ gt ′ ∨ gt ∧ lt ′,
eq ∧ (lt ′ ∨ eq ′ ∨ gt ′) ∨ (lt ∨ eq ∨ gt) ∧ eq ′,
lt ∧ lt ′ ∨ gt ∧ gt ′,
ninf ∧ ninf ′ ∨ ninf ∧ lt ′ ∨ lt ∧ ninf ′ ∨ pinf ∧ pinf ′ ∨ pinf ∧ gt ′ ∨ gt ∧ pinf ′,
nan ∨ nan ′ ∨ ninf ∧ eq ′ ∨ pinf ∧ eq ′ ∨ eq ∧ ninf ′ ∨ eq ∧ pinf ′K

opr /(self): RationalQuantityJ1/U, eq , lt ,ninf ∨ pinf , gt , eq ,nanK
opr /Junit U ′, bool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K

(self, other : RationalQuantityJU ′,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K) :
RationalQuantityJU/U ′,

ninf ∧ eq ′ ∨ ninf ∧ gt ′ ∨ lt ∧ eq ′ ∨ pinf ∧ lt ′,
lt ∧ gt ′ ∨ gt ∧ lt ′,
eq ∧ (lt ′ ∨ gt ′) ∨ (lt ∨ eq ∨ gt) ∧ (ninf ′ ∨ pinf ′)′,
lt ∧ lt ′ ∨ gt ∧ gt ′,
ninf ∧ lt ′ ∨ pinf ∧ eq ′ ∨ pinf ∧ gt ′ ∨ gt ∧ eq ′,
nan ∨ nan ′ ∨ (ninf ∨ pinf) ∧ (ninf ′ ∨ pinf ′) ∨ eq ∧ eq ′K

oprJunit U ′, bool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, power : IntegerQuantityJU ′,ninf ′, lt ′, eq ′, gt ′, pinf ′K) :
RationalQuantityJU,

ninf ∧ gt ′ ∨ eq ∧ lt ′,
lt ∧ (lt ′ ∨ gt ′),
eq ∧ gt ′ ∨ (ninf ∨ pinf) ∧ lt ′,
(lt ∨ gt) ∧ (lt ′ ∨ eq ′ ∨ gt ′),
pinf ∧ gt ′ ∨ eq ∧ lt ′,
needs more work hereK

where {U = dimensionless, U ′ = dimensionless }

291

opr <Jbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K): Boolean

opr ≤Jbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K): Boolean

opr =Jbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K): Boolean

opr ≥Jbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K): Boolean

opr >Jbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K): Boolean

opr CMPJbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′, falseK): TotalComparison

opr CMPJbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′, trueK): Comparison

opr MAXJbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K) :
RationalQuantityJU,

ninf ∧ ninf ′,
lt ∧ (ninf ′ ∨ lt ′) ∨ (ninf ∨ lt) ∧ lt ′,
eq ∧ (ninf ′ ∨ lt ′ ∨ eq ′) ∨ (ninf ∨ lt ∨ eq) ∧ eq ′,
gt ∧ (ninf ′ ∨ lt ′ ∨ eq ′ ∨ gt ′) ∨ (ninf ∨ lt ∨ eq ∨ gt) ∧ gt ′,
pinf ∧ (ninf ′ ∨ lt ′ ∨ eq ′ ∨ gt ′ ∨ pinf ′) ∨ (ninf ∨ lt ∨ eq ∨ gt ∨ pinf) ∧ pinf ′,
nan ∨ nan ′K

opr MINJbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K) :
RationalQuantityJU,

ninf ∧ (ninf ′ ∨ lt ′ ∨ eq ′ ∨ gt ′ ∨ pinf ′) ∨ (ninf ∨ lt ∨ eq ∨ gt ∨ pinf) ∧ ninf ′,
lt ∧ (lt ′ ∨ eq ′ ∨ gt ′ ∨ pinf ′) ∨ (lt ∨ eq ∨ gt ∨ pinf) ∧ lt ′,
eq ∧ (eq ′ ∨ gt ′ ∨ pinf ′) ∨ (eq ∨ gt ∨ pinf) ∧ eq ′,
gt ∧ (gt ′ ∨ pinf ′) ∨ (gt ∨ pinf) ∧ gt ′,
pinf ∧ pinf ′,
nan ∨ nan ′K

opr MAXNUMJbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K) :
RationalQuantityJU,

ninf ∧ (nan ′ ∨ ninf ′) ∨ (nan ∨ ninf) ∧ ninf ′,
lt ∧ (nan ′ ∨ ninf ′ ∨ lt ′) ∨ (nan ∨ ninf ∨ lt) ∧ lt ′,
eq ∧ (nan ′ ∨ ninf ′ ∨ lt ′ ∨ eq ′) ∨ (nan ∨ ninf ∨ lt ∨ eq) ∧ eq ′,
gt ∧ (nan ′ ∨ ninf ′ ∨ lt ′ ∨ eq ′ ∨ gt ′) ∨ (nan ∨ ninf ∨ lt ∨ eq ∨ gt) ∧ gt ′,
pinf ∧(nan ′ ∨ ninf ′ ∨ lt ′ ∨ eq ′ ∨ gt ′ ∨ pinf ′)∨

(nan ∨ ninf ∨ lt ∨ eq ∨ gt ∨ pinf) ∧ pinf ′,
nan ∧ nan ′K

opr MINNUMJbool ninf ′, bool lt ′, bool eq ′, bool gt ′, bool pinf ′, bool nan ′K
(self, other : RationalQuantityJU,ninf ′, lt ′, eq ′, gt ′, pinf ′,nan ′K) :
RationalQuantityJU,

ninf ∧(ninf ′ ∨ lt ′ ∨ eq ′ ∨ gt ′ ∨ pinf ′ ∨ nan ′)∨
(ninf ∨ lt ∨ eq ∨ gt ∨ pinf ∨ nan) ∧ ninf ′,

lt ∧ (lt ′ ∨ eq ′ ∨ gt ′ ∨ pinf ′ ∨ nan ′) ∨ (lt ∨ eq ∨ gt ∨ pinf ∨ nan) ∧ lt ′,
eq ∧ (eq ′ ∨ gt ′ ∨ pinf ′ ∨ nan ′) ∨ (eq ∨ gt ∨ pinf ∨ nan) ∧ eq ′,
gt ∧ (gt ′ ∨ pinf ′ ∨ nan ′) ∨ (gt ∨ pinf ∨ nan) ∧ gt ′,
pinf ∧ (pinf ′ ∨ nan ′) ∨ (pinf ∨ nan) ∧ pinf ′,
nan ∧ nan ′K

292

opr |self| : RationalQuantityJU, false, false, eq , lt ∨ gt ,ninf ∨ pinf ,nanK
signum(self): RationalQuantityJU, false, lt , eq , gt , false,nanK
numerator(self): IntegerQuantityJU, false,ninf ∨ lt , eq , gt ∨ pinf , false,nanK
denominator(self): IntegerQuantityJdimensionless, false, false,ninf ∨ pinf , lt ∨ eq ∨ gt , false,nanK
floor(self): IntegerQuantityJU,ninf , lt , eq ∨ gt , gt , pinf ,nanK
opr bselfc: IntegerQuantityJU,ninf , lt , eq ∨ gt , gt , pinf ,nanK
ceiling(self): IntegerQuantityJU,ninf , lt , lt ∨ eq , gt , pinf ,nanK
opr dselfe: IntegerQuantityJU,ninf , lt , lt ∨ eq , gt , pinf ,nanK
round(self): IntegerQuantityJU,ninf , lt , lt ∨ eq ∨ gt , gt , pinf ,nanK
truncate(self): IntegerQuantityJU,ninf , lt , lt ∨ eq ∨ gt , gt , pinf ,nanK
opr bbselfcc: IntegerQuantityJU,ninf , lt , eq ∨ gt , gt , pinf ,nanK where {¬(inf ∨lt ∨ nan) }
opr ddselfee: IntegerQuantityJU,ninf , lt , lt ∨ eq , gt , pinf ,nanK where {¬(inf ∨lt ∨ nan) }
opr bbbselfccc: IntegerQuantityJU,ninf , lt , eq ∨ gt , gt , pinf ,nanK where {¬(inf ∨lt ∨ nan) }
opr dddselfeee: IntegerQuantityJU,ninf , lt , lt ∨ eq , gt , pinf ,nanK where {¬(inf ∨lt ∨ nan) }
realpart(self): RationalQuantityJU,ninf , lt , eq , gt , pinf ,nanK
imagpart(self): RationalQuantityJU, false, false, true, false, false,nanK
check(self): Q throws CastException
check∗(self): Q∗ throws CastException
check<(self): Q< throws CastException
check≤(self): Q≤ throws CastException
check≥(self): Q≥ throws CastException
check>(self): Q> throws CastException
check 6=(self): Q6= throws CastException
check∗<(self): Q∗< throws CastException
check∗≤(self): Q∗≤ throws CastException
check∗≥(self): Q∗≥ throws CastException
check∗>(self): Q∗> throws CastException
check∗6=(self): Q∗6= throws CastException
check#

<(self): Q#
< throws CastException

check#
≤(self): Q#

≤ throws CastException
check#

≥(self): Q#
≥ throws CastException

check#
>(self): Q#

> throws CastException
check#

6=(self): Q#
6= throws CastException

end

For descriptions of the methods, see Section 25.1.

293

38.2 The Trait Fortress.Standard.TotalComparison

The comparison operator CMP , when applied to values belonging to a total order, typically returns a value of type
TotalComparison . The three values of type TotalComparison are called LessThan , EqualTo , and GreaterThan .

This trait supports an associative operator LEXICO that is useful for supporting lexicographic comparison of ordered
sequences; the trick is to compare the sequences elementwise and then to use the LEXICO operator to reduce the
sequence of comparison results. Note that EqualTo is the identity for LEXICO , and all other comparison values are
left zeroes for LEXICO .

value trait TotalComparison
extends {Comparison,

AssociativeJTotalComparison, LEXICOK,
HasIdentityJTotalComparison, LEXICOK,
HasLeftZeroesJTotalComparison, LEXICO, isLeftZeroForLEXICOK }

comprises {LessThan,EqualTo,GreaterThan }
opr LEXICO(self, other : TotalComparison): TotalComparison
isLeftZeroForLEXICO(self): Boolean
opr ==(self, other : TotalComparison): Boolean
getter hashCode(): Z64
toString(): String

end

LessThan:TotalComparison
EqualTo: TotalComparison
GreaterThan:TotalComparison

38.2.1 opr LEXICO(self, other : TotalComparison): TotalComparison

The operator LEXICO returns its right argument if the left argument is EqualTo ; otherwise it returns its left argument.
The LEXICO operator as applied to total comparison values may be described by this table:

LEXICO LessThan EqualTo GreaterThan
LessThan LessThan LessThan LessThan
EqualTo LessThan EqualTo GreaterThan

GreaterThan GreaterThan GreaterThan GreaterThan

38.2.2 isLeftZeroForLEXICO(self): Boolean

This method returns false for EqualTo and true for all other total comparison values.

38.2.3 opr ==(self, other : TotalComparison): Boolean

Two total comparison values are strictly equivalent if and only if they are the same.

294

38.2.4 getter hashCode(): Z64

38.2.5 toString(): String

The toString method returns either “LessThan” or “EqualTo” or “GreaterThan” as appropriate.

38.3 Top-level Total Comparison Values

38.3.1 LessThan: TotalComparison
38.3.2 EqualTo: TotalComparison
38.3.3 GreaterThan:TotalComparison

The immutable variables LessThan , EqualTo , and GreaterThan have as their values the three total comparison
values that respectively signify whether a left-hand comparand is less than, equal to, or greater than a right-hand
comparand. They are top-level variables declared in the Fortress standard libraries.

38.4 The Trait Fortress.Standard.Comparison

When the comparison operator CMP is applied to values belonging to a partial order, rather than a total order, it typi-
cally returns a value of type Comparison , which includes the three values LessThan , EqualTo , and GreaterThan
of type TotalComparison and also a fourth value, Unordered .

This trait, like trait TotalComparison , supports an associative operator LEXICO that is useful for supporting lexi-
cographic comparison of ordered sequences; the trick is to compare the sequences elementwise and then to use the
LEXICO operator to reduce the sequence of comparison results. Note that EqualTo is the identity for LEXICO , and
all other comparison values are left zeroes for LEXICO .

value trait Comparison
extends { IdentityEqualityJComparisonK,

AssociativeJComparison, LEXICOK,
HasIdentityJComparison, LEXICOK,
HasLeftZeroesJComparison, LEXICO, isLeftZeroForLEXICOK }

comprises {TotalComparison,Unordered }
opr LEXICO(self, other : Comparison): Comparison
isLeftZeroForLEXICO(self): Boolean
opr ==(self, other : Comparison): Boolean
getter hashCode(): Z64
toString(): String

end

Unordered:Comparison

295

38.4.1 opr LEXICO(self, other : Comparison): Comparison

The operator LEXICO returns its right argument if the left argument is EqualTo ; otherwise it returns its left argument.
The LEXICO operator as applied to comparison values may be described by this table:

LEXICO LessThan EqualTo GreaterThan Unordered
LessThan LessThan LessThan LessThan LessThan
EqualTo LessThan EqualTo GreaterThan Unordered

GreaterThan GreaterThan GreaterThan GreaterThan GreaterThan
Unordered Unordered Unordered Unordered Unordered

38.4.2 isLeftZeroForLEXICO(self): Boolean

This method returns false for EqualTo and true for all other comparison values.

38.4.3 opr ==(self, other : Comparison): Boolean

Two comparison values are strictly equivalent if and only if they are the same.

38.4.4 getter hashCode(): Z64

38.4.5 toString(): String

The toString method returns either “LessThan” or “EqualTo” or “GreaterThan” or “Unordered” as
appropriate.

38.5 Top-level Comparison Value

38.5.1 Unordered:Comparison

The immutable variable Unordered has as its value the comparison value that signifies that two comparands are
unordered. It is a top-level variable declared in the Fortress standard libraries.

296

Chapter 39

Components and APIs

We define a special Fortress.Components API that provides handles on components and APIs, and operations on
them, for use by components themselves (e.g., development environments), allowing components to build and maintain
other components, manipulate projects and components as objects, compile projects into components, link components
together, deploy components on specific sites over the internet, etc. This API is also used by the Upgradable and
Installable APIs. A component implementing this API is installed along with the Fortress standard libraries on every
fortress.

Note that Components and Apis can be constructed only from the factory functions provided in the API. The compo-
nents and APIs so constructed are also installed and accessible via getComponent , preferences (which returns a list
of components implementing a given API, in order of preference), and getAPI . Calling preferences on an API in the
Fortress standard libraries returns a non-empty list of components. In particular, preferences(Fortress.Components)
returns a non-empty list whose first element is the very component on which the call to preferences was made. Con-
ceptually, this component serves as a handle on the enclosing fortress, which might be necessary for the purposes of
certain development tools.

The operations on a fortress provided in this API take components and APIs as arguments directly, rather than names
of components and APIs as the corresponding shell operations are described. This decision is done for the sake of
convenience. Note, however, that a component name may be rebound on a fortress, or even uninstalled, while some
process p keeps a reference to a corresponding Component object. This possibility is not problematic because the
component corresponding to this object may be simply kept by the fortress until the object is freed in p. Also, note
that upgrade operations on a compound component are purely functional: they produce new compound components
as a result. Thus, the structure of a component as viewed through a Component object does not became stale in the
face of upgrades.

We include a method getSourceFile on components that returns the source file the component was compiled from.
Source files can be included with simple components during compilation as a compiler option. Doing so allows
development tools such as graphical debuggers to easily display the locations of errors without the possibility that
source code would not be synchronized with compiled code, as can happen in conventional programming models
where compiled code is stored in nonencapsulated object files.

api Fortress.Components
import File from Fortress.IO
import {List,Set,Date } from Fortress.Util

trait Fortress
fortressName: Name
birthDate: Date
getComponent(componentName: Name): Component

297

getAPI (apiName: Name):Api
preferences(ofAPI : Api): 〈Component〉
compile(file: File): SimpleComponent
install(file: File): Component
install(file: File, prereqs: SetJApiK): Component
upgradeAll(componentName: Name, that : Component): ()

isValidLink(constituents: 〈Component〉, exports = SetJApiK, hide = SetJApiK): Boolean

link(result : Name, constituents: 〈Component〉, exports = SetJApiK, hide = SetJApiK): Component
requires { isValidLink(constituents, exports, hide) }

end

object EnclosingFortress extends {Fortress } end
trait FortressElement

elementName: Name
vendor : String
owner : Fortress
timeStamp: Date
version: Version
uninstall(): ()

end

trait Component extends FortressElement
imports: SetJApiK
exports: SetJApiK
provides: SetJApiK
visibles: SetJApiK
constituents: SetJComponentK
run(args: String . . .): ()
constrain(destination: Name, apis: SetJApiK): Component
hide(destination: Name, apis: SetJApiK): Component
extract(prereqs: SetJApiK): File
isValidUpgrade(that : Component): Boolean
abstract upgrade(result : Name, that : Component): Component

requires { self.isValidUpgrade(that) }
sourceIsAvailable: Boolean
getSourceFile(): File

requires { sourceIsAvailable }
runTests(inclusive = Boolean): ()

end

trait Api extends FortressElement
uses: SetJApiK
extraction: File

end

trait Name end

trait SimpleComponent extends Component end

trait Version
major : N
minor : N

end

end

298

Chapter 40

Memory Sequences and Binary Words

These are the lowest-level data structures in Fortress, upon which all others are built. Even such conceptually “primi-
tive” data types as Z and Z32 and R64 are defined in terms of memory sequences and binary words.

Consider, for example, the types BinaryWordJ6K , Z64 , and N64 . All three may be regarded as 64-bit data objects.
However, Z64 causes the operator < to compare 64-bit words as two’s-complement signed integers, N64 causes
the operator < to compare 64-bit words as unsigned integers, and BinaryWordJ6K does not support the operator
< at all—instead it has two methods named signedLT and unsignedLT (which are, of course, conveniently used
to implement the operator < for Z64 and N64). Moreover, Z64 and N64 support units and dimensions, but
BinaryWord values do not. The parameterized type BinaryWord provides methods that are only a modest abstraction
of operations supported by typical hardware instruction sets and serves as the lowest-level substrate that allows types
such as Z64 to be defined by libraries coded entirely in Fortress.

Similarly, the parameterized traits LinearSequence and HeapSequence describe the lowest-level data structures that
are array-like or vector-like, capable of little more than one-dimensional indexing. They serve as the lowest-level
substrate that allows the complete distributed and multi-dimensional array types to be defined by libraries coded
entirely in Fortress.

For convenience, we use the term binary linear sequence to refer to a linear sequence of binary words, and the term
binary heap sequence to refer to a heap sequence of binary words.

type BinaryLinearSequenceJnat b, nat nK = LinearSequenceJBinaryWordJbK, nK
type BinaryHeapSequenceJnat bK = HeapSequenceJBinaryWordJbKK

Most operations on binary words do not depend on endianness, that is, in which order the bits are numbered. For
operations that do depend on endianness, the parameterized trait BinaryEndianWord is provided.

It is also sometimes desirable to perform endianness-dependent operations on a linear sequence of binary words. For
this purpose the specialized parameterized traits BinaryLinearEndianSequence and BinaryEndianLinearEndianSequence
are provided; the former has BinaryWord values as elements, and the latter has BinaryEndianWord values as ele-
ments.

299

40.1 The Trait Fortress.Core.LinearSequence

A value of type LinearSequenceJT, nK is a sequence of n things of type T , where n may be any natural number.
Note that its length is statically fixed and may be described by a static expression. The general intent is that such a
sequence will reside in a contiguous region of memory, typically belonging to a single processor or processor node,
and that any element (indicated by an integer index) may be fetched or updated quickly by that processor or processor
node.

If T is not a value type, then LinearSequenceJT, nK describes a sequence of references, and a variable of type
LinearSequenceJT, nK occupies an amount of storage equal to n times the amount of storage required to hold a
reference. If T is a value type, then LinearSequenceJT, nK describes a sequence of “unboxed” values, and a variable
of type LinearSequenceJT, nK occupies an amount of storage equal to n times the amount of storage required to
hold one value of type T .

Linear sequences, unlike arrays, are not too fancy. The main things you can do with linear sequences are subscripting
and subscripted assignment, as well as assignment of entire sequences. They also support the concatenation operator
‖ . For example:

x: LinearSequenceJThread, 3K
y: LinearSequenceJThread, 6K
z: LinearSequenceJThread, 5K = x‖y[3# 2]

Note in this example that the lengths are statically checkable. The range 3# 2 is a range of constant size 2, so y[3# 2]
is known to be of type LinearSequenceJThread, 2K . Indeed, only ranges of static size with element type IndexInt
may be used to subscript a linear sequence.

value trait LinearSequenceJT extends Any, nat nK comprises { . . . }
coercion Jnat b, bool bigEndianSequenceK

(x: BinaryLinearEndianSequenceJb, n, bigEndianSequenceK)
where {T extends BinaryWordJbK }

coercion Jnat b, bool bigEndianBytes, bool bigEndianBits, bool bigEndianSequenceK
(x: BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,

n, bigEndianSequenceK)
where {T extends BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK }

coercion Jnat b, bool bigEndianBytes, bool bigEndianBits, bool bigEndianSequenceK
(x: BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,

n, bigEndianSequenceK)
where {T extends BinaryWordJbK }

opr [j: IndexInt]:T throws { IndexOutOfBoundsException }
opr Jnat kK[j: IntegerStaticJkK]:T where { k < n }
opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK]: LinearSequenceJT,mK

throws { IndexOutOfBoundsException } where {m ≤ n }
opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK]: LinearSequenceJT,mK

where { 0 ≤ a < n, 0 ≤ a+m · c < n }
opr [j: IndexInt] := (v:T): LinearSequenceJT, nK throws { IndexOutOfBoundsException }
opr Jnat kK[j: IntegerStaticJkK] := (v:T): LinearSequenceJT, nK where { k < n }
opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] := (v: LinearSequenceJT,mK):

LinearSequenceJT, nK
throws { IndexOutOfBoundsException } where {m ≤ n }

opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] := (v: LinearSequenceJT,mK):
LinearSequenceJT, nK

where { 0 ≤ a < n, 0 ≤ a+m · c < n }
update(j: IndexInt, v:T): LinearSequenceJT, nK throws { IndexOutOfBoundsException }

300

updateJnat kK(j: IntegerStaticJkK, v:T): LinearSequenceJT, nK where { k < n }
updateJnat mK(r: RangeOfStaticSizeJIndexInt,mK, v: LinearSequenceJT,mK):

LinearSequenceJT, nK
throws { IndexOutOfBoundsException } where {m ≤ n }

updateJint a, nat m, int cK(r: StaticRangeJa,m, cK, v: LinearSequenceJT,mK):
LinearSequenceJT, nK

where { 0 ≤ a < n, 0 ≤ a+m · c < n }
opr ‖ Jnat mK(self, other : LinearSequenceJT,mK): LinearSequenceJT, n+mK
getter reverse(): LinearSequenceJT, nK
getter littleEndianJnat bK(): BinaryLinearEndianSequenceJb, n, falseK

where {T extends BinaryWordJbK }
getter bigEndianJnat bK(): BinaryLinearEndianSequenceJb, n, trueK

where {T extends BinaryWordJbK }
getter littleEndianJnat b, bool bigEndianBytes, bool bigEndianBitsK():

BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits, n, falseK
where {T extends BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK }

getter bigEndianJnat b, bool bigEndianBytes, bool bigEndianBitsK():
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits, n, trueK

where {T extends BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK }
end

40.1.1 coercion Jnat b, bool bigEndianSequenceK
(x: BinaryLinearEndianSequenceJb, n, bigEndianSequenceK)

where {T extends BinaryWordJbK }
40.1.2 coercion Jnat b, bool bigEndianBytes, bool bigEndianBits, bool bigEndianSequenceK

(x: BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
n, bigEndianSequenceK)

where {T extends BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK }

Any binary linear endian sequence may be coerced to an ordinary binary linear sequence of corresponding element
type. The bit values remain the same; all that is lost is the endianness information of the sequence in the static type.

40.1.3 coercion Jnat b, bool bigEndianBytes, bool bigEndianBits, bool bigEndianSequenceK
(x: BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
n, bigEndianSequenceK)
where {T extends BinaryWordJbK }

A binary linear endian sequence of binary endian words may be coerced to an ordinary binary linear sequence of
ordinary binary words. The bit values remain the same; all that is lost is the endianness information of both the
sequence and the elements.

301

40.1.4 opr [j: IndexInt]:T throws { IndexOutOfBoundsException }
40.1.5 opr Jnat kK[j: IntegerStaticJkK]:T where { k < n }

Subscripting returns element j of this linear sequence. Indexing is zero-origin; an IndexOutOfBoundsException is
thrown unless 0 ≤ j < n , where n is the length of the linear sequence. If the subscript is a static expression, then its
validity is checked statically, and no exception will occur at run time.

40.1.6 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK]: LinearSequenceJT,mK
throws { IndexOutOfBoundsException } where {m ≤ n }

40.1.7 opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK]: LinearSequenceJT,mK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

Subscripting with a range of static size m returns the indicated subsequence of this linear sequence. Indexing is zero-
origin; an IndexOutOfBoundsException is thrown unless r ⊆ 0#n , where n is the length of the linear sequence.
If the subscript is a static range, then its validity is checked statically, and no exception will occur at run time. Ele-
ment k of the result sequence is the same as element r.lowerBound + k × r.stride of this linear sequence, for all
0 ≤ k < m .

40.1.8 opr [j: IndexInt] := (v:T): LinearSequenceJT, nK throws { IndexOutOfBoundsException }
40.1.9 opr Jnat kK[j: IntegerStaticJkK] := (v:T): LinearSequenceJT, nK where { k < n }

After subscripted value object assignment, element j of the subscripted variable is the same as the given value v ,
and all other elements are the same as before. Indexing is zero-origin; an IndexOutOfBoundsException is thrown
unless 0 ≤ j < n , where n is the length of the linear sequence. If the subscript is a static expression, then its validity
is checked statically, and no exception will occur at run time.

40.1.10 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] := (v: LinearSequenceJT,mK):
LinearSequenceJT, nK
throws { IndexOutOfBoundsException } where {m ≤ n }

40.1.11 opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] := (v: LinearSequenceJT,mK):
LinearSequenceJT, nK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

After subscripted value object assignment, elements of the subscripted variable selected by r are the same as corre-
sponding elements of v , and all other elements are the same as before; specifically, element r.lowerBound + k × r.stride
of the updated variable is the same as element k of v , for all 0 ≤ k < m . Indexing is zero-origin; an IndexOutOfBoundsException
is thrown unless r ⊆ 0#n , where n is the length of the linear sequence. If the subscript is a static range, then its
validity is checked statically, and no exception will occur at run time.

302

40.1.12 update(j: IndexInt, v:T): LinearSequenceJT, nK throws { IndexOutOfBoundsException }
40.1.13 updateJnat kK(j: IntegerStaticJkK, v:T): LinearSequenceJT, nK where { k < n }

This is a functional version of subscripted value object assignment: element j of the result is the same as the given
value v , and all other elements are the same as before. Indexing is zero-origin; an IndexOutOfBoundsException is
thrown unless 0 ≤ j < n , where n is the length of the linear sequence. If the subscript is a static expression, then its
validity is checked statically, and no exception will occur at run time.

40.1.14 updateJnat mK(r: RangeOfStaticSizeJIndexInt,mK, v: LinearSequenceJT,mK):
LinearSequenceJT, nK
throws { IndexOutOfBoundsException } where {m ≤ n }

40.1.15 updateJint a, nat m, int cK(r: StaticRangeJa,m, cK, v: LinearSequenceJT,mK):
LinearSequenceJT, nK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

This is a functional version of subscripted value object assignment: elements of the result selected by r are the same as
corresponding elements of v , and all other elements are the same as before; specifically, element r.lowerBound + k × r.stride
of the result is the same as element k of v , for all 0 ≤ k < m . Indexing is zero-origin; an IndexOutOfBoundsException
is thrown unless 0 ≤ j < n , where n is the length of the linear sequence. If the subscript is a static range, then its
validity is checked statically, and no exception will occur at run time.

40.1.16 opr ‖ Jnat mK(self, other : LinearSequenceJT,mK): LinearSequenceJT, n+mK

The result is a linear sequence whose length is equal to the sum of the lengths of this linear sequence and the other
linear sequence. Element k of the result is the same as element k of this linear sequence if 0 ≤ k < n , and is the
same as element k − n of the other linear sequence if n ≤ k < n+m .

40.1.17 getter reverse(): LinearSequenceJT, nK

The result is a linear sequence such that element k of the result is the same as element n − 1 − k of this linear
sequence, for all 0 ≤ k < n .

40.1.18 getter littleEndianJnat bK(): BinaryLinearEndianSequenceJb, n, falseK
where {T extends BinaryWordJbK }

40.1.19 getter bigEndianJnat bK(): BinaryLinearEndianSequenceJb, n, trueK
where {T extends BinaryWordJbK }

40.1.20 getter littleEndianJnat b, bool bigEndianBytes, bool bigEndianBitsK():
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits, n, falseK
where {T extends BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK }

40.1.21 getter bigEndianJnat b, bool bigEndianBytes, bool bigEndianBitsK():
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits, n, trueK
where {T extends BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK }

These conversion getters allow a linear sequence of (possibly endian) binary words to be treated as a specifically
little-endian or specifically big-endian linear sequence. This is especially useful just before invoking an endianness-
dependent method, for example s.littleEndian.countLeadingZeroBits() .

303

40.2 Constructing Linear Sequences

40.2.1 makeLinearSequenceJT extends Any, nat nK(item:T): LinearSequenceJT, nK

A new linear sequence of length n is returned. Every element of the linear sequence is initialized to be the same as
the given item .

40.2.2 computeLinearSequenceJT extends Any, nat nK(f : IndexInt→ T): LinearSequenceJT, nK

A new linear sequence of length n is returned. Element j of the new linear sequence is initialized to a value computed
by calling the given function f with argument j .

40.3 The Trait Fortress.Core.HeapSequence

A value of type HeapSequenceJT K is an array-like object that contains items of type T . The length of a heap
sequence is in general not known statically, but can be discovered by asking for its length. A variable of type
HeapSequenceJT K occupies the amount of storage required to hold a reference; this reference refers to an object
that occupies an amount of storage greater than or equal to the amount that would be occupied by a variable of type
LinearSequenceJT, nK where n is the length of the heap sequence.

Heap sequences, like linear sequences and unlike arrays, are not too fancy. The main things you can do with heap
sequences are subscripting and subscripted assignment. Concatenation is not supported, because a basic principle of
the low-level types is that none of the operations, other than explicit construction of a heap sequence, does any heap
allocation. However, a range of static size may be used to index a heap sequence; the result is a linear sequence.

trait HeapSequenceJT extends AnyK comprises { . . . }
opr [j: IndexInt]:T throws { IndexOutOfBoundsException }
opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK]: LinearSequenceJT,mK

throws { IndexOutOfBoundsException }
opr [j : IndexInt] := (v:T): () throws { IndexOutOfBoundsException }
opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] := (v: LinearSequenceJT,mK): ()

throws { IndexOutOfBoundsException }
reverse(selfStart : IndexInt, length: IndexInt): () throws { IndexOutOfBoundsException }
opr |self| : IndexInt

end

40.3.1 opr [j: IndexInt]:T throws { IndexOutOfBoundsException }

Subscripting returns element j of this heap sequence. Indexing is zero-origin; an IndexOutOfBoundsException is
thrown unless 0 ≤ j < n , where n is the length of the heap sequence.

304

40.3.2 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK]: LinearSequenceJT,mK
throws { IndexOutOfBoundsException }

Subscripting by a range returns the indicated subsequence of this heap sequence. The range must be a range of static
size, and the result is returned as a linear sequence (not a heap sequence), so no heap allocation is performed. Indexing
is zero-origin; an IndexOutOfBoundsException is thrown unless r ⊆ (0 :n− 1) , where n is the length of the heap
sequence. Element k of the result linear sequence is the same as element r.lowerBound + k × r.stride of this heap
sequence, for all 0 ≤ k < m .

40.3.3 opr [j : IndexInt] := (v:T): () throws { IndexOutOfBoundsException }

After subscripted assignment, element j of this heap sequence is the same as the given value v , and all other elements
are the same as before. Indexing is zero-origin; an IndexOutOfBoundsException is thrown unless 0 ≤ j < n ,
where n is the length of the heap sequence.

40.3.4 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] := (v: LinearSequenceJT,mK): ()
throws { IndexOutOfBoundsException }

After subscripted assignment using a range as a subscript, elements of the subscripted variable selected by r are
the same as corresponding elements of v , and all other elements are the same as before; specifically, element
r.lowerBound + k × r.stride of the updated variable is the same as element k of v , for all 0 ≤ k < m . The range
must be a range of static size, and the values to be assigned must be passed as linear sequence of the same size. Index-
ing is zero-origin; an IndexOutOfBoundsException is thrown unless r ⊆ (0 :n− 1) , where n is the length of the
heap sequence.

40.3.5 reverse(selfStart : IndexInt, length: IndexInt): () throws { IndexOutOfBoundsException }

Elements selfStart through selfStart + length − 1 , inclusive, are reversed in order, that is, rearranged so that the
value originally stored at element selfStart + j becomes element selfStart + length − 1− j , for all 0 ≤ j < length .
Other elements of this heap sequence are unaffected.

40.3.6 opr |self| : IndexInt

The length of this heap sequence is returned. Note that the size of a heap sequence is specified at run time when the
heap sequence is created; once a heap sequence has been created, its length does not change.

305

40.4 Constructing Heap Sequences

40.4.1 makeHeapSequenceJT extends AnyK(n: IndexInt, item:T): HeapSequenceJT K
throws {NegativeLengthException }

A new heap sequence of length n is allocated and returned. A NegativeLengthException is thrown if n < 0 . Every
element of the heap sequence is initialized to be the same as the given item .

40.4.2 computeHeapSequenceJT extends AnyK(n: IndexInt, f : IndexInt→ T): HeapSequenceJT K
throws {NegativeLengthException }

A new heap sequence of length n is allocated and returned. A NegativeLengthException is thrown if n < 0 .
Element j of the new heap sequence is initialized to a value computed by calling the given function f with argument
j .

306

40.5 The Trait Fortress.Core.BinaryWord

A value of type BinaryWordJbK is a binary word of 2b bits; b may be any natural number, so BinaryWordJ0K is a
bit, BinaryWordJ3K is a byte, BinaryWordJ6K is a 64-bit word, and BinaryWordJ10K is a 1024-bit word. In fact,
for convenience, the type abbreviations Bit and Byte are defined:

type Bit = BinaryWordJ0K
type Byte = BinaryWordJ3K

The type BinaryWordJbK has 2(2b) distinct values. When the binary word is regarded as an unsigned integer, these
values are identified with the nonnegative integers that are less than 2(2b) . A binary word may also be regarded as a
signed integer: a value that, when regarded as an unsigned integer, is identified with an integer less than 2(2b−1) , is
identified with that same integer when regarded as a signed integer; but a value that, when regarded as an unsigned
integer, is identified with an integer not less than 2(2b−1) , is identified with that same integer less 2(2b) . (This is the
standard “two’s complement” representation for signed integers.)

A binary word of one bit can have one of two values, 0 or 1. A binary word of more than one bit has two halves, a
high half and a low half, which are binary words of half the size. If v is the unsigned integer value of a binary word
of 2b bits, b ≥ 1 , h is the unsigned integer value of its high half, and l is the unsigned integer value of its low half,
then v = h · 22b−1

+ l .

Operations on binary words include bitwise boolean operations, arithmetic operations, shifts and rotates, population
count, and counting of leading and trailing zeros. The type BinaryWordJbK is not “endian” and has no operations
that depend on endianness. However, if w is binary word, then w.littleEndian is a little-endian version of w and
w.bigEndian is a big-endian version of w ; for example, if w is of type BinaryWordJ6K , then w.littleEndian63 is
the most significant bit (the sign bit if the word is regarded as a two’s-complement integer), and w.bigEndian0 is that
same bit.

trait BinaryWordJnat bK extends {BasicBinaryWordOperationsJBinaryWordJbKK }
comprises { . . . }
where { b ≤ maxBinaryWordBitLog }

coercion Jint rK(x: IntegerStaticJrK) where {−2b−1 ≤ r < 2b }
coercion Jbool bigEndianBytes, bool bigEndianBitsK

(x: BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK)
coercion Jnat b′, nat n, bool bigEndianSequenceK

(x: BinaryLinearEndianSequenceJb′, n, bigEndianSequenceK)
where { 2b = n · 2b′ }

coercion Jnat b′, bool bigEndianBytes, bool bigEndianBits, nat n, bool bigEndianSequenceK
(x: BinaryEndianLinearEndianSequenceJb′, bigEndianBytes, bigEndianBits,

n, bigEndianSequenceK)
where { 2b = n · 2b′ }

bit(m: IndexInt): Bit
getter lowHalf (): BinaryWordJb− 1K where { b > 0 }
getter highHalf (): BinaryWordJb− 1K where { b > 0 }
opr ‖ Jnat mK(self, other : BinaryWordJbK): BinaryWordJb+ 1K

where { b < maxBinaryWordBitLog }
bitShuffle(other : BinaryWordJbK): BinaryWordJb+ 1K

where { b < maxBinaryWordBitLog }
bitUnshuffle(): (BinaryWordJb− 1K,BinaryWordJb− 1K) where { b > 0 }

end

307

40.5.1 coercion Jint rK(x: IntegerStaticJrK) where {−2b−1 ≤ r < 2b }

An static integer may be coerced to a binary word that corresponds to that integer value when interpreted as either a
signed integer or an unsigned integer. For example, the type BinaryWordJ3K has 2(23) = 256 distinct binary word
values; when they are interpreted as signed integers, the integer values range from −128 to 127, and when they are
interpreted as unsigned integers, the integer values range from 0 to 255. Therefore any static integer from −128 to
255 may be coerced to type BinaryWordJ3K .

40.5.2 coercion Jbool bigEndianBytes, bool bigEndianBitsK
(x: BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK)

Any binary endian word may be coerced to a plain binary word of the same size and value. In effect, this coercion
merely discards the endianness information.

40.5.3 coercion Jnat b′, nat n, bool bigEndianSequenceK
(x: BinaryLinearEndianSequenceJb′, n, bigEndianSequenceK)
where { 2b = n · 2b′ }

A binary linear endian sequence of smaller binary words may be coerced to a single binary word, provided that the
length of the linear sequence is an appropriate power of two, so that the total number of bits in the sequence is the
same as the total number of bits in the resulting binary word. The manner in which the elements of the sequence are
used to form the new binary word value respects the endianness of the sequence, so that element 0 of the sequence
supplies the most significant bits of the result if bigEndianSequence is true, but supplies the least significant bits of
the result if bigEndianSequence is false.

40.5.4 coercion Jnat b′, bool bigEndianBytes, bool bigEndianBits, nat n, bool bigEndianSequenceK
(x: BinaryEndianLinearEndianSequenceJb′, bigEndianBytes, bigEndianBits,
n, bigEndianSequenceK)
where { 2b = n · 2b′ }

A binary endian linear endian sequence of smaller binary endian words may be coerced to a single binary word,
provided that the length of the linear sequence is an appropriate power of two, so that the total number of bits in the
sequence is the same as the total number of bits in the resulting binary word. The manner in which the elements of
the sequence are used to form the new binary word value respects the endianness of the sequence, so that element 0
of the sequence supplies the most significant bits of the result if bigEndianSequence is true, but supplies the least
significant bits of the result if bigEndianSequence is false. In effect, the “bytes and bits” endianness information is
simply ignored and discarded.

308

40.5.5 bit(m: IndexInt): Bit

The result is a bit whose value (0 or 1) is equal to bv · 2−mc mod 2 where v is the value of the binary word regarded
as an unsigned integer. This formula holds for any value of m ; note that if m is negative or greater than 2b − 1 , the
result will always be a 0-bit. Thus the bit method provides a kind of “little-endian” indexing of the bits of a binary
word, even a binary word whose type is not intrinsically endian, but it does not require that the bit number identify an
actual represented bit of the binary word.

The bit method is particularly useful for describing the behavioral properties of other methods of binary data.

40.5.6 getter lowHalf (): BinaryWordJb− 1K where { b > 0 }
40.5.7 getter highHalf (): BinaryWordJb− 1K where { b > 0 }

The getters lowHalf and highHalf each return a binary word of half the size (in bits) of this binary word; lowHalf
returns the less significant bits, and highHalf returns the more significant bits.

property ∀(v)
∧

m←0#2b−1

v.lowHalf .bit(m) = v.bit(m)

property ∀(v)
∧

m←0#2b−1

v.highHalf .bit(m) = v.bit(m+ 2b−1)

40.5.8 opr ‖ Jnat mK(self, other : BinaryWordJbK): BinaryWordJb+ 1K
where { b < maxBinaryWordBitLog }

The result of concatenating two binary words of size 2b is a single binary word of size 2b+1 . The left-hand operand
becomes the high (more significant) half of the result and the right-hand operand becomes the low (less significant)
half of the result.

property ∀(v, w) (v ‖w).highHalf = v
property ∀(v, w) (v ‖w).lowHalf = w

40.5.9 bitShuffle(other : BinaryWordJbK): BinaryWordJb+ 1K
where { b < maxBinaryWordBitLog }

The bit-shuffle operation interleaves the bits of two words, as if shuffling cards together (using what magicians call a
“perfect shuffle”). The result of shuffling the bits two binary words of size 2b is a single binary word of size 2b+1 .
This binary word provides the odd-numbered bits of the result and the other binary word provides the even-numbered
bits of the result. For example, shuffling 1111 and 0000 produces 10101010 .

property ∀(v, w,m: IndexInt) v.bitShuffle(w).bit(m) = (if odd m then v.bit((m− 1)/2) else w.bit(m/2))

309

40.5.10 bitUnshuffle(): (BinaryWordJb− 1K,BinaryWordJb− 1K) where { b > 0 }

This is the inverse of the bitShuffle method: the odd-numbered bits of this binary word are used to form a binary
word of half the size, and likewise the even-numbered bits, and a tuple of the two binary words is returned.

property ∀(v, w) v.bitShuffle(w).bitUnshuffle() = (v, w)

310

40.6 The Trait Fortress.Core.BinaryEndianWord

The type BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK is exactly like BinaryWordJbK but bears two
kinds of endianness information. A BinaryEndianWord may be split into a sequence of smaller words; the result is of
type BinaryLinearEndianSequence . The flag bigEndianBytes indicates whether subword 0 is the most significant
subword (if bigEndianBytes is true) or least significant subword (if bigEndianBytes is false) of the original binary
word. A BinaryEndianWord may also be subscripted to extract a bit or a bit field; the flag bigEndianBits indicates
whether bit 0 is the most significant bit (if bigEndianBits is true) or least significant bit (if bigEndianBits is false)
of the original binary word. (Yes, it may seem strange for the bit ordering to differ from the subword ordering, but they
do differ on a number of architectures, including SPARC.) Extracting a bit produces a Bit , that is, a BinaryWordJ0K .
Extracting a bit field of width k produces a BinaryEndianLinearEndianSequence with n = k and b = 0 ; the
endianness of the sequence matches the bit-endianness of the original BinaryEndianWord .

trait BinaryEndianWordJnat b, bool bigEndianBytes, bool bigEndianBitsK
extends {BasicBinaryWordOperationsJBinaryEndianWordJb, bigEndianBytes, bigEndianBitsK, bK}
comprises { . . . }
where { b ≤ maxBinaryWordBitLog }

coercion Jint rK(x: IntegerStaticJrK) where {−2b−1 ≤ r < 2b }
opr [j: IndexInt] : BinaryEndianWordJ1, bigEndianBytes, bigEndianBitsK

throws { IndexOutOfBoundsException }
opr Jnat kK[j: IntegerStaticJkK] : BinaryEndianWordJ1, bigEndianBytes, bigEndianBitsK

where { k < 2b }
opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :

BinaryEndianLinearEndianSequenceJ1, bigEndianBytes, bigEndianBits,m, bigEndianBitsK
throws { IndexOutOfBoundsException }

opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :
BinaryEndianLinearEndianSequenceJ1, bigEndianBytes, bigEndianBits,m, bigEndianBitsK

where { 0 ≤ a < 2b, 0 ≤ a+m · c < 2b }
opr [j: IndexInt] := (v: Bit):

BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK
throws { IndexOutOfBoundsException }

opr Jnat kK[j: IntegerStaticJkK] := (v: Bit):
BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK

where { k < 2b }
opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] := (v: BinaryLinearSequenceJ1,mK):

BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK
throws { IndexOutOfBoundsException }

opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] := (v: BinaryLinearSequenceJ1, kK):
BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK

where { 0 ≤ a < 2b, 0 ≤ a+m · c < 2b }
update(j: IndexInt, v: Bit):

BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK
throws { IndexOutOfBoundsException }

updateJnat kK(j: IntegerStaticJkK, v: Bit):
BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK

where { k < 2b }
updateJnat mK(r: RangeOfStaticSizeJIndexInt,mK, v: BinaryLinearSequenceJ1,mK):

BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK
throws { IndexOutOfBoundsException }

updateJint a, nat m, int cK(r: StaticRangeJa,m, cK, v: BinaryLinearSequenceJ1,mK):
BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK

where { 0 ≤ a < 2b, 0 ≤ a+m · c < 2b }

311

lowHalf (): BinaryEndianWordJb− 1, bigEndianBytes, bigEndianBitsK where { b > 0 }
highHalf (): BinaryEndianWordJb− 1, bigEndianBytes, bigEndianBitsK where { b > 0 }
opr ‖ Jnat m, bool bigEndianSequenceK

(self, other : BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK):
BinaryEndianLinearEndianSequenceJb+ 1, bigEndianBytes, bigEndianBits,

2, bigEndianSequenceK
where { bigEndianSequence = bigEndianBytes }

opr ‖ Jnat m, bool bigEndianSequence, nat radix , nat q, nat k, nat vK
(self, other : NaturalNumeralJm, radix , vK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,

k + 1, bigEndianSequenceK
where { bigEndianSequence = bigEndianBytes, radix = 2q, q ·m = k · 2b }

opr ‖ Jnat m, bool bigEndianSequence, nat radix , nat q, nat k, nat vK
(other : NaturalNumeralJm, radix , vK, self):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,

k + 1, bigEndianSequenceK
where { bigEndianSequence = bigEndianBytes, radix = 2q, q ·m = k · 2b }

bitShuffle(other : BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK):
BinaryEndianWordJb+ 1, bigEndianBytes, bigEndianBitsK
where { b < maxBinaryWordBitLog }

bitUnshuffle(): (BinaryEndianWordJb− 1, bigEndianBytes, bigEndianBitsK,
BinaryEndianWordJb− 1, bigEndianBytes, bigEndianBitsK)

where { b > 0 }
littleEndian(): BinaryEndianWordJb, false, falseK
bigEndian(): BinaryEndianWordJb, true, trueK

end

40.6.1 coercion Jint rK(x: IntegerStaticJrK) where {−2b−1 ≤ r < 2b }

An static integer may be coerced to a binary endian word exactly as if it were coerced to a plain binary word of the
same size; the endian numbering of the bytes and bits does not affect which binary word value is produced from the
static integer.

40.6.2 opr [j: IndexInt] : BinaryEndianWordJ1, bigEndianBytes, bigEndianBitsK
throws { IndexOutOfBoundsException }

40.6.3 opr Jnat kK[j: IntegerStaticJkK] : BinaryEndianWordJ1, bigEndianBytes, bigEndianBitsK
where { k < 2b }

Subscripting returns bit j of this binary endian word. The numbering of the bits is dictated by bigEndianBits .
Indexing is zero-origin; an IndexOutOfBoundsException is thrown unless 0 ≤ j < 2b . If the subscript is a static
expression, then its validity is checked statically, and no exception will occur at run time.

property ∀(v)
∧

j←0#2b

vj = (if bigEndianBits then v.bit(2b − 1− j) else v.bit(j) end)

312

40.6.4 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :
BinaryEndianLinearEndianSequenceJ1, bigEndianBytes, bigEndianBits,m, bigEndianBitsK
throws { IndexOutOfBoundsException }

40.6.5 opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :
BinaryEndianLinearEndianSequenceJ1, bigEndianBytes, bigEndianBits,m, bigEndianBitsK
where { 0 ≤ a < 2b, 0 ≤ a+m · c < 2b }

Subscripting with a range of static size m returns the indicated subsequence of bits of this binary endian word. The
numbering of the bits is dictated by bigEndianBits . The result is a binary endian linear endian sequence of bits
whose sequence endianness is the same as the bit endianness of this binary endian word. Indexing is zero-origin;
an IndexOutOfBoundsException is thrown unless r ⊆ 0# 2b . If the subscript is a static range, then its validity is
checked statically, and no exception will occur at run time. Element k of the result sequence is the same as the bit
that would be selected from this binary endian word by subscripting it with r.lowerBound + k × r.stride , for all
0 ≤ k < m .

40.6.6 opr [j: IndexInt] := (v: Bit):
BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK
throws { IndexOutOfBoundsException }

40.6.7 opr Jnat kK[j: IntegerStaticJkK] := (v: Bit):
BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK
where { k < 2b }

After subscripted value object assignment, the bit that would be selected from this binary endian word by subscript-
ing it with j is the same as the given bit v , and all other bits are the same as before. Indexing is zero-origin; an
IndexOutOfBoundsException is thrown unless 0 ≤ j < 2b . If the subscript is a static expression, then its validity
is checked statically, and no exception will occur at run time.

40.6.8 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] := (v: BinaryLinearSequenceJ1,mK):
BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK
throws { IndexOutOfBoundsException }

40.6.9 opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] := (v: BinaryLinearSequenceJ1,mK):
BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK
where { 0 ≤ a < 2b, 0 ≤ a+m · c < 2b }

After subscripted value object assignment, bits that would be selected from this binary endian word by subscripting
it with r are the same as corresponding elements of v , and all other bits are the same as before; specifically, the bit
that would be selected from this binary endian word by subscripting it with r.lowerBound + k × r.stride is the same
as element k of v , for all 0 ≤ k < m . Indexing is zero-origin; an IndexOutOfBoundsException is thrown unless
r ⊆ 0# 2b . If the subscript is a static range, then its validity is checked statically, and no exception will occur at run
time.

313

40.6.10 update(j: IndexInt, v: Bit):
BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK
throws { IndexOutOfBoundsException }

40.6.11 updateJnat kK(j: IntegerStaticJkK, v: Bit):
BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK
where { k < 2b }

This is a functional version of subscripted value object assignment: the bit that would be selected from the result by
subscripting it with j is the same as the given bit v , and all other bits are the same as before. Indexing is zero-origin; an
IndexOutOfBoundsException is thrown unless 0 ≤ j < 2b . If the subscript is a static expression, then its validity
is checked statically, and no exception will occur at run time.

40.6.12 updateJnat mK(r: RangeOfStaticSizeJIndexInt,mK, v: BinaryLinearSequenceJ1,mK):
BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK
throws { IndexOutOfBoundsException }

40.6.13 updateJint a, nat m, int cK(r: StaticRangeJa,m, cK, v: BinaryLinearSequenceJ1,mK):
BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK
where { 0 ≤ a < 2b, 0 ≤ a+m · c < 2b }

This is a functional version of subscripted value object assignment: bits that would be selected from the result by
subscripting it with r are the same as corresponding elements of v , and all other bits are the same as before; specifi-
cally, the bit that would be selected from the result by subscripting it with r.lowerBound + k × r.stride is the same
as element k of v , for all 0 ≤ k < m . Indexing is zero-origin; an IndexOutOfBoundsException is thrown unless
r ⊆ 0# 2b . If the subscript is a static range, then its validity is checked statically, and no exception will occur at run
time.

40.6.14 lowHalf (): BinaryEndianWordJb− 1, bigEndianBytes, bigEndianBitsK where { b > 0 }
40.6.15 highHalf (): BinaryEndianWordJb− 1, bigEndianBytes, bigEndianBitsK where { b > 0 }

The getters lowHalf and highHalf each return a binary endian word of half the size (in bits) of this binary endian
word, and with the same endian characteristics; lowHalf returns the less significant bits, and highHalf returns the
more significant bits.

property ∀(v)
∧

m←0#2b−1

v.lowHalf .bit(m) = v.bit(m)

property ∀(v)
∧

m←0#2b−1

v.highHalf .bit(m) = v.bit(m+ 2b−1)

property ∀(v)
∧

m←0#2b−1

v.lowHalf m = v[if bigEndianBits then m+ 2b−1 else m end]

property ∀(v)
∧

m←0#2b−1

v.highHalf m = v[if bigEndianBits then m else m+ 2b−1 end]

314

40.6.16 opr ‖ Jnat m, bool bigEndianSequenceK
(self, other : BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK):
BinaryEndianLinearEndianSequenceJb+ 1, bigEndianBytes, bigEndianBits,
2, bigEndianSequenceK
where { bigEndianSequence = bigEndianBytes }

[Description to be supplied.]

40.6.17 opr ‖ Jnat m, bool bigEndianSequence, nat radix , nat q, nat k, nat vK
(self, other : NaturalNumeralJm, radix , vK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
k + 1, bigEndianSequenceK
where { bigEndianSequence = bigEndianBytes, radix = 2q, q ·m = k · 2b }

[Description to be supplied.]

40.6.18 opr ‖ Jnat m, bool bigEndianSequence, nat radix , nat q, nat k, nat vK
(other : NaturalNumeralJm, radix , vK, self):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
k + 1, bigEndianSequenceK
where { bigEndianSequence = bigEndianBytes, radix = 2q, q ·m = k · 2b }

[Description to be supplied.]

40.6.19 bitShuffle(other : BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK):
BinaryEndianWordJb+ 1, bigEndianBytes, bigEndianBitsK
where { b < maxBinaryWordBitLog }

[Description to be supplied.]

40.6.20 bitUnshuffle(): (BinaryEndianWordJb− 1, bigEndianBytes, bigEndianBitsK,
BinaryEndianWordJb− 1, bigEndianBytes, bigEndianBitsK)
where { b > 0 }

[Description to be supplied.]

40.6.21 littleEndian(): BinaryEndianWordJb, false, falseK
40.6.22 bigEndian(): BinaryEndianWordJb, true, trueK

[Description to be supplied.]

315

40.7 The Trait Fortress.Core.BasicBinaryOperations

trait BasicBinaryOperationsJT extends BasicBinaryOperationsJT KK
wrappingAdd(other :T):T
add(other :T, carryIn: Bit = 0): (T,Bit)
signedAdd(other :T, overflowAction: ()→ T):T
unsignedAdd(other :T, overflowAction: ()→ T):T
saturatingSignedAdd(other :T):T
saturatingUnsignedAdd(other :T):T
wrappingSubtract(other :T):T
subtract(other :T, carryIn: Bit = 1): (T,Bit)
signedSubtract(other :T, overflowAction: ()→ T):T
unsignedSubtract(other :T, overflowAction: ()→ T):T
saturatingSignedSubtract(other :T):T
saturatingUnsignedSubtract(other :T):T
wrappingNegate():T
negate(carryIn: Bit = 1): (T,Bit)
signedNegate(overflowAction: ()→ T):T
unsignedNegate(overflowAction: ()→ T):T
saturatingSignedNegate():T
bitNot():T
bitAnd(other :T):T
bitOr(other :T):T
bitXor(other :T):T
bitXorNot(other :T):T
bitNand(other :T):T
bitNor(other :T):T
bitAndNot(other :T):T
bitOrNot(other :T):T
signedMax (other :T):T
signedMin(other :T):T
unsignedMax (other :T):T
unsignedMin(other :T):T
opr =(self, other :T): Boolean
opr 6=(self, other :T): Boolean
signedLT (other :T): Boolean
signedLE (other :T): Boolean
signedGE (other :T): Boolean
signedGT (other :T): Boolean
unsignedLT (other :T): Boolean
unsignedLE (other :T): Boolean
unsignedGE (other :T): Boolean
unsignedGT (other :T): Boolean
signedShift(j: IndexInt):T
signedShift(j: IndexInt, overflowAction: ()→ T):T
saturatingSignedShift(j: IndexInt):T
unsignedShift(j: IndexInt):T
unsignedShift(j: IndexInt, overflowAction: ()→ T):T
saturatingUnsignedShift(j: IndexInt):T
bitRotate(j: IndexInt):T
countOneBits(): IndexInt

316

countLeadingZeroBits(): IndexInt
countTrailingZeroBits(): IndexInt
leftmostOneBit():T
rightmostOneBit():T
bitReverse():T
signedIndex (): IndexInt throws { IntegerOverflowException }
unsignedIndex (): IndexInt throws { IntegerOverflowException }
gatherBits(mask :T):T
spreadBits(mask :T):T
disentangleBits(mask :T):T
intersperseBits(mask :T):T

end

40.7.1 wrappingAdd(other :T):T
40.7.2 add(other :T, carryIn: Bit = 0): (T,Bit)
40.7.3 signedAdd(other :T, overflowAction: ()→ T):T
40.7.4 unsignedAdd(other :T, overflowAction: ()→ T):T
40.7.5 saturatingSignedAdd(other :T):T
40.7.6 saturatingUnsignedAdd(other :T):T

[Description to be supplied.]

40.7.7 wrappingSubtract(other :T):T
40.7.8 subtract(other :T, carryIn: Bit = 1): (T,Bit)
40.7.9 signedSubtract(other :T, overflowAction: ()→ T):T
40.7.10 unsignedSubtract(other :T, overflowAction: ()→ T):T
40.7.11 saturatingSignedSubtract(other :T):T
40.7.12 saturatingUnsignedSubtract(other :T):T

[Description to be supplied.]

40.7.13 wrappingNegate():T
40.7.14 negate(carryIn: Bit = 1): (T,Bit)
40.7.15 signedNegate(overflowAction: ()→ T):T
40.7.16 unsignedNegate(overflowAction: ()→ T):T
40.7.17 saturatingSignedNegate():T

[Description to be supplied.]

40.7.18 bitNot():T

[Description to be supplied.]

317

40.7.19 bitAnd(other :T):T
40.7.20 bitOr(other :T):T
40.7.21 bitXor(other :T):T
40.7.22 bitXorNot(other :T):T
40.7.23 bitNand(other :T):T
40.7.24 bitNor(other :T):T
40.7.25 bitAndNot(other :T):T
40.7.26 bitOrNot(other :T):T

[Description to be supplied.]

40.7.27 signedMax (other :T):T
40.7.28 signedMin(other :T):T

[Description to be supplied.]

40.7.29 unsignedMax (other :T):T
40.7.30 unsignedMin(other :T):T

[Description to be supplied.]

40.7.31 opr =(self, other :T): Boolean
40.7.32 opr 6=(self, other :T): Boolean

[Description to be supplied.]

40.7.33 signedLT (other :T): Boolean
40.7.34 signedLE (other :T): Boolean
40.7.35 signedGE (other :T): Boolean
40.7.36 signedGT (other :T): Boolean

[Description to be supplied.]

40.7.37 unsignedLT (other :T): Boolean
40.7.38 unsignedLE (other :T): Boolean
40.7.39 unsignedGE (other :T): Boolean
40.7.40 unsignedGT (other :T): Boolean

[Description to be supplied.]

318

40.7.41 signedShift(j: IndexInt):T
40.7.42 signedShift(j: IndexInt, overflowAction: ()→ T):T
40.7.43 saturatingSignedShift(j: IndexInt):T

[Description to be supplied.]

40.7.44 unsignedShift(j: IndexInt):T
40.7.45 unsignedShift(j: IndexInt, overflowAction: ()→ T):T
40.7.46 saturatingUnsignedShift(j: IndexInt):T

[Description to be supplied.]

40.7.47 bitRotate(j: IndexInt):T

[Description to be supplied.]

40.7.48 countOneBits(): IndexInt

[Description to be supplied.]

40.7.49 countLeadingZeroBits(): IndexInt
40.7.50 countTrailingZeroBits(): IndexInt

[Description to be supplied.]

40.7.51 leftmostOneBit():T
40.7.52 rightmostOneBit():T

[Description to be supplied.]

40.7.53 bitReverse():T

[Description to be supplied.]

40.7.54 signedIndex (): IndexInt throws { IntegerOverflowException }
40.7.55 unsignedIndex (): IndexInt throws { IntegerOverflowException }

[Description to be supplied.]

319

40.7.56 gatherBits(mask :T):T
40.7.57 spreadBits(mask :T):T

[Description to be supplied.]

40.7.58 disentangleBits(mask :T):T
40.7.59 intersperseBits(mask :T):T

[Description to be supplied.]

40.8 The Trait Fortress.Core.BasicBinaryWordOperations

trait BasicBinaryWordOperationsJT extends BasicBinaryWordOperationsJT, bK, nat bK
extends BasicBinaryOperationsJT K where { b ≤ maxBinaryWordBitLog }

multiplyLow(other :T):T where { b ≤ maxMultiplyBitLog }
multiplyLow(other :T, overflowAction: ()→ T):T where { b ≤ maxMultiplyBitLog }
saturatedMultiplyLow(other :T):T where { b ≤ maxMultiplyBitLog }
multiplyHigh(other :T):T where { b ≤ maxMultiplyBitLog }
multiplyDouble(other :T): (T, T) where { b ≤ maxMultiplyBitLog }
signedDivide(other :T, overflowAction: ()→ T, zeroDivideAction: ()→ T):T

where { b ≤ maxDivideBitLog }
unsignedDivide(other :T, zeroDivideAction: ()→ T):T where { b ≤ maxDivideBitLog }
signedDivRem(other :T, overflowAction: ()→ T, zeroDivideAction: ()→ T): (T, T)

where { b ≤ maxDivideBitLog }
unsignedDivRem(other :T, zeroDivideAction: ()→ T): (T, T) where { b ≤ maxDivideBitLog }
signedRemainder(other :T, zeroDivideAction: ()→ T):T where { b ≤ maxDivideBitLog }
unsignedModulo(other :T, zeroDivideAction: ()→ T):T where { b ≤ maxDivideBitLog }
bitSwap(j: IndexInt):T
getter littleEndian(): BinaryEndianWordJb, false, falseK
getter bigEndian(): BinaryEndianWordJb, true, trueK

end

40.8.1 multiplyLow(other :T):T where { b ≤ maxMultiplyBitLog }
40.8.2 multiplyLow(other :T, overflowAction: ()→ T):T where { b ≤ maxMultiplyBitLog }
40.8.3 saturatedMultiplyLow(other :T):T where { b ≤ maxMultiplyBitLog }
40.8.4 multiplyHigh(other :T):T where { b ≤ maxMultiplyBitLog }
40.8.5 multiplyDouble(other :T): (T, T) where { b ≤ maxMultiplyBitLog }

[Description to be supplied.]

320

40.8.6 signedDivide(other :T, overflowAction: ()→ T, zeroDivideAction: ()→ T):T
where { b ≤ maxDivideBitLog }

40.8.7 unsignedDivide(other :T, zeroDivideAction: ()→ T):T where { b ≤ maxDivideBitLog }

[Description to be supplied.]

40.8.8 signedDivRem(other :T, overflowAction: ()→ T, zeroDivideAction: ()→ T): (T, T)
where { b ≤ maxDivideBitLog }

40.8.9 unsignedDivRem(other :T, zeroDivideAction: ()→ T): (T, T) where { b ≤ maxDivideBitLog }

[Description to be supplied.]

40.8.10 signedRemainder(other :T, zeroDivideAction: ()→ T):T where { b ≤ maxDivideBitLog }
40.8.11 unsignedModulo(other :T, zeroDivideAction: ()→ T):T where { b ≤ maxDivideBitLog }

[Description to be supplied.]

40.8.12 bitSwap(j: IndexInt):T

[Description to be supplied.]

40.8.13 getter littleEndian(): BinaryEndianWordJb, false, falseK
40.8.14 getter bigEndian(): BinaryEndianWordJb, true, trueK

[Description to be supplied.]

321

40.9 The Trait Fortress.Core.BinaryLinearEndianSequence

trait BinaryLinearEndianSequenceJnat b, nat n, bool bigEndianSequenceK
extends {BasicBinaryOperationsJBinaryLinearEndianSequenceJb, n, bigEndianSequenceKK }

where { b ≤ maxBinaryWordBitLog }
coercion Jnat b′, bool bigEndianBytes, bool bigEndianBitsK

(x: BinaryEndianWordJb′, bigEndianBytes, bigEndianBitsK)
where { bigEndianBytes = bigEndianSequence, 2b′ = n · 2b }

coercion Jnat m, nat radix , nat q, nat k, nat vK(x: NaturalNumeralJm, radix , vK)
where { radix = 2q, q ·m = n · 2bk }

opr [j: IndexInt] : BinaryWordJbK
throws { IndexOutOfBoundsException }

opr Jnat kK[j: IntegerStaticJkK] : BinaryWordJbK where { k < n }
opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :

BinaryLinearEndianSequenceJb,m, bigEndianSequenceK
throws { IndexOutOfBoundsException } where {m ≤ n }

opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :
BinaryLinearEndianSequenceJb,m, bigEndianSequenceK

where { 0 ≤ a < n, 0 ≤ a+m · c < n }
opr [j: IndexInt] := (v: BinaryWordJbK):

BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

opr Jnat kK[j: IntegerStaticJkK] := (v: BinaryWordJbK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK where { k < n }

opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :=
(v: BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK

throws { IndexOutOfBoundsException }
opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :=

(v: BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK

where { 0 ≤ a < n, 0 ≤ a+m · c < n }
update(j: IndexInt, v: BinaryWordJbK):

BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

updateJnat kK(j: IntegerStaticJkK, v: BinaryWordJbK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK where { k < n }

updateJnat mK(r: RangeOfStaticSizeJIndexInt,mK,
v: BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):

BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

updateJint a, nat m, int cK(r: StaticRangeJa,m, cK,
v: BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):

BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

opr ‖ Jnat mK(self, other : BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):
BinaryLinearEndianSequenceJb, n+m, bigEndianSequenceK

opr ‖ Jnat m, nat radix , nat q, nat k, nat vK(self, other : NaturalNumeralJm, radix , vK):
LinearSequenceJBinaryWordJbK, n+ kK where { radix = 2q, q ·m = k · 2b }

opr ‖ Jnat m, nat radix , nat q, nat k, nat vK(other : NaturalNumeralJm, radix , vK, self):
LinearSequenceJBinaryWordJbK, n+ kK where { radix = 2q, q ·m = k · 2b }

322

littleEndian(): BinaryEndianLinearEndianSequenceJb, false, false, n, bigEndianSequenceK
bigEndian(): BinaryEndianLinearEndianSequenceJb, true, true, n, bigEndianSequenceK
littleEndianBits(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes, false,

n, bigEndianSequenceK
bigEndianBits(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes, true,

n, bigEndianSequenceK
littleEndianSequence(): BinaryLinearEndianSequenceJb, n, falseK
bigEndianSequence(): BinaryLinearEndianSequenceJb, n, trueK
splitJnat b′K(): BinaryLinearEndianSequenceJb′, n · 2b−b′ , bigEndianSequenceK

where { b′ ≤ b }
end

40.9.1 coercion Jnat b′, bool bigEndianBytes, bool bigEndianBitsK
(x: BinaryEndianWordJb′, bigEndianBytes, bigEndianBitsK)
where { bigEndianBytes = bigEndianSequence, 2b′ = n · 2b }

[Description to be supplied.]

40.9.2 coercion Jnat m, nat radix , nat q, nat k, nat vK(x: NaturalNumeralJm, radix , vK)
where { radix = 2q, q ·m = n · 2bk }

[Description to be supplied.]

40.9.3 opr [j: IndexInt] : BinaryWordJbK
throws { IndexOutOfBoundsException }

40.9.4 opr Jnat kK[j: IntegerStaticJkK] : BinaryWordJbK where { k < n }

[Description to be supplied.]

40.9.5 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :
BinaryLinearEndianSequenceJb,m, bigEndianSequenceK
throws { IndexOutOfBoundsException } where {m ≤ n }

40.9.6 opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :
BinaryLinearEndianSequenceJb,m, bigEndianSequenceK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

[Description to be supplied.]

323

40.9.7 opr [j: IndexInt] := (v: BinaryWordJbK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

40.9.8 opr Jnat kK[j: IntegerStaticJkK] := (v: BinaryWordJbK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK where { k < n }

[Description to be supplied.]

40.9.9 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :=
(v: BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

40.9.10 opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :=
(v: BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

[Description to be supplied.]

40.9.11 update(j: IndexInt, v: BinaryWordJbK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

40.9.12 updateJnat kK(j: IntegerStaticJkK, v: BinaryWordJbK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK where { k < n }

[Description to be supplied.]

40.9.13 updateJnat mK(r: RangeOfStaticSizeJIndexInt,mK,
v: BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

40.9.14 updateJint a, nat m, int cK(r: StaticRangeJa,m, cK,
v: BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):
BinaryLinearEndianSequenceJb, n, bigEndianSequenceK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

[Description to be supplied.]

40.9.15 opr ‖ Jnat mK(self, other : BinaryLinearEndianSequenceJb,m, bigEndianSequenceK):
BinaryLinearEndianSequenceJb, n+m, bigEndianSequenceK

[Description to be supplied.]

324

40.9.16 opr ‖ Jnat m, nat radix , nat q, nat k, nat vK(self, other : NaturalNumeralJm, radix , vK):
LinearSequenceJT, n+ kK where { radix = 2q, q ·m = k · 2b }

[Description to be supplied.]

40.9.17 opr ‖ Jnat m, nat radix , nat q, nat k, nat vK(other : NaturalNumeralJm, radix , vK, self):
LinearSequenceJT, n+ kK where { radix = 2q, q ·m = k · 2b }

[Description to be supplied.]

40.9.18 littleEndian(): BinaryEndianLinearEndianSequenceJb, false, false, n, bigEndianSequenceK
40.9.19 bigEndian(): BinaryEndianLinearEndianSequenceJb, true, true, n, bigEndianSequenceK

[Description to be supplied.]

40.9.20 littleEndianBits(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes, false,
n, bigEndianSequenceK

40.9.21 bigEndianBits(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes, true,
n, bigEndianSequenceK

[Description to be supplied.]

40.9.22 littleEndianSequence(): BinaryLinearEndianSequenceJb, n, falseK
40.9.23 bigEndianSequence(): BinaryLinearEndianSequenceJb, n, trueK

[Description to be supplied.]

40.9.24 splitJnat b′K(): BinaryLinearEndianSequenceJb′, n · 2b−b′ , bigEndianSequenceK
where { b′ ≤ b }

[Description to be supplied.]

325

40.10 The Trait Fortress.Core.BinaryEndianLinearEndianSequence

trait BinaryEndianLinearEndianSequenceJnat b, bool bigEndianBytes, bool bigEndianBits,
nat n, bool bigEndianSequenceK

extends {BasicBinaryOperationsJ
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,

n, bigEndianSequenceKK }
where { b ≤ maxBinaryWordBitLog }

coercion Jnat b′, bool bigEndianBytes, bool bigEndianBitsK
(x: BinaryEndianWordJb′, bigEndianBytes, bigEndianBitsK)

where { bigEndianBytes = bigEndianSequence, 2b′ = n · 2b }
coercion Jnat m, nat radix , nat q, nat k, nat vK(x: NaturalNumeralJm, radix , vK)

where { radix = 2q, q ·m = n · 2bk }
opr [j: IndexInt] : BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK

throws { IndexOutOfBoundsException }
opr Jnat kK[j: IntegerStaticJkK] : BinaryWordJb, bigEndianBytes, bigEndianBitsK

where { k < n }
opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :

BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
m, bigEndianSequenceK

throws { IndexOutOfBoundsException } where {m ≤ n }
opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :

BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
m, bigEndianSequenceK

where { 0 ≤ a < n, 0 ≤ a+m · c < n }
opr [j: IndexInt] := (v: BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK):

BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
n, bigEndianSequenceK

throws { IndexOutOfBoundsException }
opr Jnat kK[j: IntegerStaticJkK] :=

(v: BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,

n, bigEndianSequenceK
where { k < n }

opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :=
(v: BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,

m, bigEndianSequenceK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,

n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :=
(v: BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,

k, bigEndianSequenceK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,

n, bigEndianSequenceK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

update(j: IndexInt, v: BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,

n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

updateJnat kK(j: IntegerStaticJkK,

326

v: BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,

n, bigEndianSequenceK
where { k < n }

updateJnat mK(r: RangeOfStaticSizeJIndexInt,mK,
v: BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,

m, bigEndianSequenceK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,

n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

updateJint a, nat m, int cK
(r: StaticRangeJa,m, cK,
v: BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,

m, bigEndianSequenceK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,

n, bigEndianSequenceK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

opr ‖ Jnat mK(self, other : BinaryEndianLinearEndianSequenceJ
b, bigEndianBytes, bigEndianBits,
m, bigEndianSequenceK):

BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
n+m, bigEndianSequenceK

opr ‖ Jnat m, nat radix , nat q, nat k, nat vK(self, other : NaturalNumeralJm, radix , vK):
LinearSequenceJT, n+ kK

where { radix = 2q, q ·m = k · 2b }
opr ‖ Jnat m, nat radix , nat q, nat k, nat vK(other : NaturalNumeralJm, radix , vK, self):

LinearSequenceJT, n+ kK
where { radix = 2q, q ·m = k · 2b }

littleEndian(): BinaryEndianLinearEndianSequenceJb, false, false, n, bigEndianSequenceK
bigEndian(): BinaryEndianLinearEndianSequenceJb, true, true, n, bigEndianSequenceK
littleEndianBits(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes, false,

n, bigEndianSequenceK
bigEndianBits(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes, true,

n, bigEndianSequenceK
littleEndianSequence(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,

n, falseK
bigEndianSequence(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,

n, trueK
splitJnat b′K() :

BinaryEndianLinearEndianSequenceJb′, bigEndianBytes, bigEndianBits,
n · 2b−b′ , bigEndianSequenceK

where { b′ ≤ b }
end

40.10.1 coercion Jnat b′, bool bigEndianBytes, bool bigEndianBitsK
(x: BinaryEndianWordJb′, bigEndianBytes, bigEndianBitsK)
where { bigEndianBytes = bigEndianSequence, 2b′ = n · 2b }

[Description to be supplied.]

327

40.10.2 coercion Jnat m, nat radix , nat q, nat k, nat vK(x: NaturalNumeralJm, radix , vK)
where { radix = 2q, q ·m = n · 2bk }

[Description to be supplied.]

40.10.3 opr [j: IndexInt] : BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK
throws { IndexOutOfBoundsException }

40.10.4 opr Jnat kK[j: IntegerStaticJkK] : BinaryWordJb, bigEndianBytes, bigEndianBitsK
where { k < n }

[Description to be supplied.]

40.10.5 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
m, bigEndianSequenceK
throws { IndexOutOfBoundsException } where {m ≤ n }

40.10.6 opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
m, bigEndianSequenceK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

[Description to be supplied.]

40.10.7 opr [j: IndexInt] := (v: BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

40.10.8 opr Jnat kK[j: IntegerStaticJkK] :=
(v: BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
n, bigEndianSequenceK
where { k < n }

[Description to be supplied.]

328

40.10.9 opr Jnat mK[r: RangeOfStaticSizeJIndexInt,mK] :=
(v: BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
m, bigEndianSequenceK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

40.10.10 opr Jint a, nat m, int cK[r: StaticRangeJa,m, cK] :=
(v: BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
k, bigEndianSequenceK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
n, bigEndianSequenceK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

[Description to be supplied.]

40.10.11 update(j: IndexInt, v: BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

40.10.12 updateJnat kK(j: IntegerStaticJkK,
v: BinaryEndianWordJb, bigEndianBytes, bigEndianBitsK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
n, bigEndianSequenceK
where { k < n }

[Description to be supplied.]

40.10.13 updateJnat mK(r: RangeOfStaticSizeJIndexInt,mK,
v: BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
m, bigEndianSequenceK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
n, bigEndianSequenceK
throws { IndexOutOfBoundsException }

40.10.14 updateJint a, nat m, int cK
(r: StaticRangeJa,m, cK,
v: BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
m, bigEndianSequenceK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
n, bigEndianSequenceK
where { 0 ≤ a < n, 0 ≤ a+m · c < n }

[Description to be supplied.]

329

40.10.15 opr ‖ Jnat mK(self, other : BinaryEndianLinearEndianSequenceJ
b, bigEndianBytes, bigEndianBits,
m, bigEndianSequenceK):
BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
n+m, bigEndianSequenceK

[Description to be supplied.]

40.10.16 opr ‖ Jnat m, nat radix , nat q, nat k, nat vK(self, other : NaturalNumeralJm, radix , vK):
LinearSequenceJT, n+ kK
where { radix = 2q, q ·m = k · 2b }

[Description to be supplied.]

40.10.17 opr ‖ Jnat m, nat radix , nat q, nat k, nat vK(other : NaturalNumeralJm, radix , vK, self):
LinearSequenceJT, n+ kK
where { radix = 2q, q ·m = k · 2b }

[Description to be supplied.]

40.10.18 littleEndian(): BinaryEndianLinearEndianSequenceJb, false, false, n, bigEndianSequenceK
40.10.19 bigEndian(): BinaryEndianLinearEndianSequenceJb, true, true, n, bigEndianSequenceK

[Description to be supplied.]

40.10.20 littleEndianBits(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes, false,
n, bigEndianSequenceK

40.10.21 bigEndianBits(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes, true,
n, bigEndianSequenceK

[Description to be supplied.]

40.10.22 littleEndianSequence(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
n, falseK

40.10.23 bigEndianSequence(): BinaryEndianLinearEndianSequenceJb, bigEndianBytes, bigEndianBits,
n, trueK

[Description to be supplied.]

330

40.10.24 splitJnat b′K() :
BinaryEndianLinearEndianSequenceJb′, bigEndianBytes, bigEndianBits,
n · 2b−b′ , bigEndianSequenceK
where { b′ ≤ b }

[Description to be supplied.]

40.11 The Trait Fortress.Core.BinaryHeapEndianSequence

trait BinaryHeapEndianSequenceJnat b, bool bigEndianSequenceK
extends {BinaryHeapSequenceJbK,

BasicBinaryHeapSubsequenceOperationsJ
BinaryHeapEndianSequenceJb, bigEndianSequenceK,
bigEndianSequenceK }

end

40.12 The Trait Fortress.Core.BinaryEndianHeapEndianSequence

trait BinaryEndianHeapEndianSequenceJnat b, bool bigEndianBytes, bool bigEndianBits,
bool bigEndianSequenceK

extends {HeapSequenceJBinaryEndianWordJb, bigEndianBytes, bigEndianBitsKK,
BasicBinaryHeapSubsequenceOperationsJ

BinaryHeapEndianSequenceJb, bigEndianSequenceK,
bigEndianSequenceK }

end

331

40.13 The Trait Fortress.Core.BasicBinaryHeapSubsequenceOperations

trait BasicBinaryHeapSubsequenceOperationsJ
T extends BasicBinaryHeapSubsequenceOperationsJT, bigEndianSequenceK,
bool bigEndianSequenceK

copy(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

wrappingAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

add(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length: IndexInt, carryIn: Bit = 0): Bit

throws { IndexOutOfBoundsException }
signedAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt,

length: IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

unsignedAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length: IndexInt, overflowAction: ()→ ()): ()

throws { IndexOutOfBoundsException }
saturatingSignedAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()

throws { IndexOutOfBoundsException }
saturatingUnsignedAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()

throws { IndexOutOfBoundsException }
wrappingSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()

throws { IndexOutOfBoundsException }
subtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,

length: IndexInt, carryIn: Bit = 1): Bit
throws { IndexOutOfBoundsException }

signedSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length: IndexInt, overflowAction: ()→ ()): ()

throws { IndexOutOfBoundsException }
unsignedSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,

length: IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

saturatingSignedSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length: IndexInt): ()

throws { IndexOutOfBoundsException }
saturatingUnsignedSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,

length: IndexInt): ()
throws { IndexOutOfBoundsException }

wrappingNegate(selfStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

negate(selfStart : IndexInt, length: IndexInt, carryIn: Bit = 1): Bit
throws { IndexOutOfBoundsException }

signedNegate(selfStart : IndexInt, length: IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

unsignedNegate(selfStart : IndexInt, length: IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

saturatingSignedNegate(selfStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

bitNot(selfStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

332

bitAnd(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

bitOr(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

bitXor(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

bitXorNot(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

bitNand(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

bitNor(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

bitAndNot(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

bitOrNot(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

signedMax (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

signedMin(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

unsignedMax (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

unsignedMin(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

equal(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

unequal(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

signedLT (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

signedLE (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

signedGE (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

signedGT (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

unsignedLT (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

unsignedLE (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

unsignedGE (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

unsignedGT (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

signedShift(selfStart : IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

signedShift(selfStart : IndexInt, length: IndexInt, j: IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

saturatingSignedShift(selfStart : IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

unsignedShift(selfStart : IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

333

unsignedShift(selfStart : IndexInt, length: IndexInt, j: IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

saturatingUnsignedShift(selfStart : IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

bitRotate(selfStart : IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

countOneBits(selfStart : IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException }

countLeadingZeroBits(selfStart : IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException }

countTrailingZeroBits(selfStart : IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException }

leftmostOneBit(selfStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

rightmostOneBit(selfStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

bitReverse(selfStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

gatherBits(selfStart : IndexInt,mask :T,maskStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

spreadBits(selfStart : IndexInt,mask :T,maskStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

clearAllBits(selfStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

setAllBits(selfStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

signedIndex (): IndexInt
throws { IntegerOverflowException }

signedIndex (selfStart : IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException, IntegerOverflowException }

unsignedIndex (): IndexInt
throws { IntegerOverflowException }

unsignedIndex (selfStart : IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException, IntegerOverflowException }

end

40.13.1 copy(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

334

40.13.2 wrappingAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.3 add(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length: IndexInt, carryIn: Bit = 0): Bit
throws { IndexOutOfBoundsException }

40.13.4 signedAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length: IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

40.13.5 unsignedAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length: IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

40.13.6 saturatingSignedAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.7 saturatingUnsignedAdd(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.8 wrappingSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.9 subtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length: IndexInt, carryIn: Bit = 1): Bit
throws { IndexOutOfBoundsException }

40.13.10 signedSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length: IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

40.13.11 unsignedSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length: IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

40.13.12 saturatingSignedSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.13 saturatingUnsignedSubtract(selfStart : IndexInt, source:T, sourceStart : IndexInt,
length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

335

40.13.14 wrappingNegate(selfStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.15 negate(selfStart : IndexInt, length: IndexInt, carryIn: Bit = 1): Bit
throws { IndexOutOfBoundsException }

40.13.16 signedNegate(selfStart : IndexInt, length: IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

40.13.17 unsignedNegate(selfStart : IndexInt, length: IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

40.13.18 saturatingSignedNegate(selfStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.19 bitNot(selfStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.20 bitAnd(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.21 bitOr(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.22 bitXor(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.23 bitXorNot(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.24 bitNand(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.25 bitNor(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.26 bitAndNot(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.27 bitOrNot(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.28 signedMax (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.29 signedMin(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

336

40.13.30 unsignedMax (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.31 unsignedMin(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.32 equal(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.33 unequal(selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.34 signedLT (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.35 signedLE (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.36 signedGE (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.37 signedGT (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.38 unsignedLT (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.39 unsignedLE (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.40 unsignedGE (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

40.13.41 unsignedGT (selfStart : IndexInt, source:T, sourceStart : IndexInt, length: IndexInt): Boolean
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.42 signedShift(selfStart : IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.43 signedShift(selfStart : IndexInt, length: IndexInt, j: IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

40.13.44 saturatingSignedShift(selfStart : IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

337

40.13.45 unsignedShift(selfStart : IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.46 unsignedShift(selfStart : IndexInt, length: IndexInt, j: IndexInt, overflowAction: ()→ ()): ()
throws { IndexOutOfBoundsException }

40.13.47 saturatingUnsignedShift(selfStart : IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.48 bitRotate(selfStart : IndexInt, length: IndexInt, j: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.49 countOneBits(selfStart : IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.50 countLeadingZeroBits(selfStart : IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException }

40.13.51 countTrailingZeroBits(selfStart : IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.52 leftmostOneBit(selfStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.53 rightmostOneBit(selfStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.54 bitReverse(selfStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

338

40.13.55 gatherBits(selfStart : IndexInt,mask :T,maskStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.56 spreadBits(selfStart : IndexInt,mask :T,maskStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.57 clearAllBits(selfStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

40.13.58 setAllBits(selfStart : IndexInt, length: IndexInt): ()
throws { IndexOutOfBoundsException }

[Description to be supplied.]

40.13.59 signedIndex (): IndexInt
throws { IntegerOverflowException }

40.13.60 signedIndex (selfStart : IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException, IntegerOverflowException }

40.13.61 unsignedIndex (): IndexInt
throws { IntegerOverflowException }

40.13.62 unsignedIndex (selfStart : IndexInt, length: IndexInt): IndexInt
throws { IndexOutOfBoundsException, IntegerOverflowException }

[Description to be supplied.]

339

Part VI

Appendices

340

Appendix A

Fortress Calculi

A.1 Basic Core Fortress

In this section, we define a basic core calculus for Fortress. We call this calculus Basic Core Fortress. Following the
precedent set by prior core calculi such as Featherweight Generic Java [14], we have abided by the restriction that all
valid Basic Core Fortress programs are valid Fortress programs.

A.1.1 Syntax

A syntax for Basic Core Fortress is provided in Figure A.1. We use the following notational conventions:

• For brevity, we omit separators such as , and ; from Basic Core Fortress.

• −→τ is a shorthand for a (possibly empty) sequence τ1, · · · , τn.

• Similarly, we abbreviate a sequence of relations α1 extends N1, · · · , αn extends Nn to
−−−−−−−−−→
α extendsN

• We use τi to denote the ith element of −→τ .

• For simplicity, we assume that every name (type variables, field names, and parameters) is different and every
trait/object declaration declares unique name.

• We prohibit cycles in type hierarchies.

The syntax of Basic Core Fortress allows only a small subset of the Fortress language to be formalized. Basic Core
Fortress includes trait and object definitions, method and field invocations, and self expressions. The types of
Basic Core Fortress include type variables, instantiated traits, instantiated objects, and the distinguished trait Object .
Note that we syntactically prohibit extending objects. Among other features, Basic Core Fortress does not include
top-level variable and function definitions, overloading, excludes clauses, bounds clauses, where clauses, object
expressions, and function expressions. Basic Core Fortress will be extended to formalize a larger set of Fortress
programs in the future.

A.1.2 Dynamic Semantics

A dynamic semantics for Basic Core Fortress is provided in Figure A.2. This semantics has been mechanized via
the PLT Redex tool [17]. It therefore follows the style of explicit evaluation contexts and redexes. The Basic Core

341

α, β type variables
f method name
x field name
T trait name
O object name
τ, τ ′, τ ′′ ::= α type

| σ
σ ::= N type that is not a type variable

| OJ−→τ K
N,M,L ::= T J−→τ K type that can be a type bound

| Object
e ::= x expression

| self
| OJ−→τ K(−→e)
| e.x
| e.fJ−→τ K(−→e)

fd ::= fJ
−−−−−−−−−→
α extendsNK(−→x:τ):τ = e method definition

td ::= trait T J
−−−−−−−−−→
α extendsNK extends {

−→
N }
−→
fd end trait definition

od ::= objectOJ
−−−−−−−−−→
α extendsNK(−→x:τ) extends {

−→
N }
−→
fd end object definition

d ::= td definition
| od

p ::=
−→
d e program

Figure A.1: Syntax of Basic Core Fortress

Fortress dynamic semantics consists of two evaluations rules: one for field access and another for method invocation.
For simplicity, we use ‘ ’ to denote some parts of the syntax that do not have key roles in a rule. We assume that
does not expand across definition boundaries unless the entire definition is included in it.

A.1.3 Static Semantics

A static semantics for Basic Core Fortress is provided in Figures A.3, A.4, and A.5. The Basic Core Fortress static
semantics is based on the static semantics of Featherweight Generic Java (FGJ) [14]. The major difference is the
division of classes into traits and objects. Both trait and object definitions include method definitions but only object
definitions include field definitions. With traits, Basic Core Fortress supports multiple inheritance. However, due to
the similarity of traits and objects, many of the rules in the Basic Core Fortress dynamic and static semantics combine
the two cases. Note that Basic Core Fortress allows parametric polymorphism, subtype polymorphism, and overriding
in much the same way that FGJ does.

We proved the type soundness of Basic Core Fortress using the standard technique of proving a progress theorem and
a subject reduction theorem.

342

Values, evaluation contexts, redexes, and trait and object names

v ::= OJ−→τ K(−→v) value
E ::= � evaluation context
| OJ−→τ K(−→e E−→e)
| E.x
| E.fJ−→τ K(−→e)
| e.fJ−→τ K(−→e E−→e)

R ::= v.x redex
| v.fJ−→τ K(−→v)

C ::= T trait name
| O object name

Evaluation rules: p ` E[R] −→ E[e]

[R-FIELD] objectO (−−→x:) end ∈ p
p ` E[OJ−→τ K(−→v).xi] −→ E[vi]

[R-METHOD]
objectO (−−→x:) end ∈ p mbodyp(fJ

−→
τ ′ K, OJ−→τ K) = {(

−→
x′)→ e}

p ` E[OJ−→τ K(−→v).fJ
−→
τ ′ K(
−→
v′)] −→ E[[−→v /−→x][OJ−→τ K(−→v)/self][

−→
v′/
−→
x′]e]

Method body lookup: mbodyp(fJ−→τ K, τ) = {(−→x)→ e}

[MB-SELF]
CJ−−−−−−−−−→α extends K

−→
fd ∈ p fJ

−−−−−−−−−→
α′ extends K(

−−→
x′:) = e ∈ {

−→
fd}

mbodyp(fJ
−→
τ ′ K, CJ−→τ K) = {[

−→
τ ′/
−→
α′][−→τ /−→α](

−→
x′)→ e}

[MB-SUPER]
CJ−−−−−−−−−→α extends K extends {

−→
N }

−→
fd ∈ p f 6∈ {

−−−−−−−→
Fname(fd)}

mbodyp(fJ
−→
τ ′ K, CJ−→τ K) =

⋃
Ni∈{

−→
N}

mbodyp(fJ
−→
τ ′ K, [−→τ /−→α]Ni)

[MB-OBJ] mbodyp(fJ−→τ K, Object) = ∅

Function/method name lookup: Fname(fd) = f

Fname(fJ
−−−−−−−−−→
α extendsNK(−→x:τ):τ = e) = f

Figure A.2: Dynamic Semantics of Basic Core Fortress

343

Environments

∆ ::=
−−−−−→
α <: N bound environment

Γ ::= −−→x : τ type environment

Program typing: ` p : τ

[T-PROGRAM]
p =
−→
d e p `

−→
d ok p; ∅; ∅ ` e : τ

` p : τ

Definition typing: p ` d ok

[T-TRAITDEF]

∆ =
−−−−−→
α <: N p;∆ `

−→
N ok p;∆ `

−→
M ok p;∆; self : T J−→α K;T `

−→
fd ok

p ` oneOwner(T)

p ` trait T J
−−−−−−−−−→
α extendsNK extends {

−→
M}
−→
fd end ok

[T-OBJECTDEF]

∆ =
−−−−−→
α <: N p;∆ `

−→
N ok p;∆ ` −→τ ok p;∆ `

−→
M ok

p;∆; self : OJ−→α K −−→x : τ ;O `
−→
fd ok p ` oneOwner(O)

p ` objectOJ
−−−−−−−−−→
α extendsNK(−→x:τ) extends {

−→
M}
−→
fd end ok

Method typing: p;∆; Γ;C ` fd ok

[T-METHODDEF]

C extends {
−→
M} ∈ p p;∆ ` override(f, {

−→
M}, J

−−−−−−−−−→
α extendsNK −→τ → τ0)

∆′ = ∆
−−−−−→
α <: N p;∆′ `

−→
N ok p;∆′ ` −→τ ok p;∆′ ` τ0 ok

p;∆′; Γ −−→x : τ ` e : τ ′ p;∆′ ` τ ′ <: τ0
p;∆; Γ;C ` fJ

−−−−−−−−−→
α extendsNK(−→x:τ):τ0 = e ok

Method overriding: p;∆ ` override(f, {
−→
N }, J

−−−−−−−−−→
α extendsNK −→τ → τ)

[OVERRIDE]

⋃
Li∈{

−→
L}

mtypep(f, Li) = {J
−−−−−−−−−→
β extendsMK

−→
τ ′ → τ ′0}

−→
N = [−→α /

−→
β]
−→
M −→τ = [−→α /

−→
β]
−→
τ ′ p;

−−−−−→
α <: N ` τ0 <: [−→α /

−→
β]τ ′0

p;∆ ` override(f, {
−→
L }, J

−−−−−−−−−→
α extendsNK −→τ → τ0)

Method type lookup: mtypep(f, τ) = {J
−−−−−−−−−→
α extendsNK −→τ → τ}

[MT-SELF]
CJ−−−−−−−−−→α extends K

−→
fd ∈ p fJ

−−−−−−−−−→
β extendsMK(

−−→
:τ ′):τ ′0 = e ∈ {

−→
fd}

mtypep(f, CJ−→τ K) = {[−→τ /−→α]J
−−−−−−−−−→
β extendsMK

−→
τ ′ → τ ′0}

[MT-SUPER]
CJ−−−−−−−−−→α extends K extends {

−→
N }

−→
fd ∈ p f 6∈ {

−−−−−−−→
Fname(fd)}

mtypep(f, CJ−→τ K) =
⋃

Ni∈{
−→
N}

mtypep(f, [
−→τ /−→α]Ni)

[MT-OBJ] mtypep(f, Object) = ∅

Figure A.3: Static Semantics of Basic Core Fortress (I)

344

Expression typing: p;∆; Γ ` e : τ

[T-VAR] p;∆; Γ ` x : Γ(x)

[T-SELF] p;∆; Γ ` self : Γ(self)

[T-OBJECT]

objectOJ−−−−−−−−−→α extends K(
−−→

:τ ′) end ∈ p p;∆ ` OJ−→τ Kok

p;∆; Γ ` −→e :
−→
τ ′′ p;∆ `

−→
τ ′′ <: [−→τ /−→α]

−→
τ ′

p;∆; Γ ` OJ−→τ K(−→e) : OJ−→τ K

[T-FIELD]
p;∆; Γ ` e0 : τ0 bound∆(τ0) = OJ

−→
τ ′ K objectOJ−−−−−−−−−→α extends K(−→x:τ) end ∈ p

p;∆; Γ ` e0.xi : [
−→
τ ′/−→α]τi

[T-METHOD]

p;∆; Γ ` e0 : τ0 mtypep(f, bound∆(τ0)) = {J
−−−−−−−−−→
α extendsNK

−→
τ ′ → τ ′0}

p;∆ ` −→τ ok p;∆ ` −→τ <: [−→τ /−→α]
−→
N

p;∆; Γ ` −→e :
−→
τ ′′ p;∆ `

−→
τ ′′ <: [−→τ /−→α]

−→
τ ′

p;∆; Γ ` e0.fJ−→τ K(−→e) : [−→τ /−→α]τ ′0

Subtyping: p;∆ ` τ <: τ

[S-OBJ] p;∆ ` τ <: Object

[S-REFL] p;∆ ` τ <: τ

[S-TRANS]
p;∆ ` τ1 <: τ2 p;∆ ` τ2 <: τ3

p;∆ ` τ1 <: τ3

[S-VAR] p;∆ ` α <: ∆(α)

[S-TAPP]
CJ−−−−−−−−−→α extends K extends {

−→
N } ∈ p

p;∆ ` CJ−→τ K <: [−→τ /−→α]Ni

Well-formed types: p;∆ ` τ ok

[W-OBJ] p;∆ ` Object ok

[W-VAR]
α ∈ dom(∆)

p;∆ ` α ok

[W-TAPP]
CJ
−−−−−−−−−→
α extendsNK ∈ p p;∆ ` −→τ ok p;∆ ` −→τ <: [−→τ /−→α]

−→
N

p;∆ ` CJ−→τ K ok

Figure A.4: Static Semantics of Basic Core Fortress (II)

345

Bound of type: bound∆(τ) = σ

bound∆(α) = ∆(α)
bound∆(σ) = σ

One owner for all the visible methods: p ` oneOwner (C)

[ONEOWNER]
∀f ∈ visiblep(C) . f only occurs once in visiblep(C)

p ` oneOwner(C)

Auxiliary functions for methods: definedp / inheritedp / visiblep(C) = {
−→
f }

definedp(C) = {
−−−−−−−→
Fname(fd)} where C

−→
fd ∈ p

inheritedp(C) =
⊎

Ni∈{
−→
N}
{fi | fi ∈ visiblep(Ni), fi 6∈ definedp(C)} where C extends {

−→
N } ∈ p

visiblep(C) = definedp(C)] inheritedp(C)

Figure A.5: Static Semantics of Basic Core Fortress (III)

A.2 Core Fortress with Where Clauses

In this section, we define a Fortress core calculus with where clauses. We call this calculus Core Fortress with Where
Clauses. Core Fortress with Where Clauses is an extension of Basic Core Fortress with where clauses.

A.2.1 Syntax

The syntax for Core Fortress with Where Clauses is provided in Figure A.6. For simplicity, we use the following
notational conventions:

• We abbreviate a sequence of relations α1 extends {
−→
K1} · · · αn extends {

−→
Kn} to

−−−−−−−−−−−→
α extends {

−→
K} and τ1 <:

H11 τ1 <: H12 · · · τ1 <: H1l τ2 <: H21 · · · τn <: Hnm to −→τ <:
−→−→
H .

• Substitutions of x with v and α with τ are denoted as [v/x] and [τ/α], respectively. A sequence of substitutions
represents the composition of those substitutions where the right-most substitution is applied first. For example,
Sn · · · S1τ represents Sn(· · · S2(S1τ) · · ·).

Most of the syntax is a straightforward extension of Basic Core Fortress in Section A.1.1. An object or trait definition
may include where clauses. Every method invocation is annotated with three kinds of static types by type inference:
the static types of the receiver, the arguments, and the result. These type annotations appear in Core Fortress with
Where Clauses in a form of as τ . If the annotated types are not enough (to find “witnesses” for the where-clauses
variables), type checking rejects the program and requires more type information from the programmer.

A.2.2 Dynamic Semantics

A dynamic semantics for Core Fortress with Where Clauses is provided in Figures A.7 and A.8.

346

α, β type variables
m method name
x field name
T trait name
O object name
C trait or object name
τ, τ ′, τ ′′ ::= α type

| σ
σ ::= N type that is not a type variable

| OJ−→τ K
N,M,L ::= T J−→τ K super trait

| Object
K,H, J ::= α bound on a type variable

| N
e ::= x expression

| self
| OJ−→τ K(−→e)
| e.x
| (e as CJ−→τ K).mJ−→τ K(−−−→e as τ) as τ
| typecase x = e of −−−→τ ⇒ e else e end

md ::= mJ
−−−−−−−−−−−→
α extends {

−→
K}K(−→x:τ):τ = e method definition

td ::= trait T J
−−−−−−−−−−−→
α extends {

−→
K}K extends {

−→
N } where {

−−−−−−−−−−−→
α extends {

−→
K}}

−→
md end trait definition

od ::= objectOJ
−−−−−−−−−−−→
α extends {

−→
K}K(−→x:τ) extends {

−→
N } where {

−−−−−−−−−−−→
α extends {

−→
K}}

−→
md end object definition

d ::= td definition
| od

p ::=
−→
d e program

Figure A.6: Syntax of Core Fortress with Where Clauses

A.2.3 Static Semantics

A static semantics for Core Fortress with Where Clauses is provided in Figures A.9, A.10, A.11, and A.12.

For simplicity, we use the following conventions:

• FTV (τ) collects all free type variables in τ .

• Similarly, FTV (e) collects all free type variables in all types in e.

We proved the type soundness of Core Fortress with Where Clauses using the standard technique of proving a progress
theorem and a subject reduction theorem.

347

Values, evaluation contexts, and redexes

v ::= OJ−→τ K(−→v)
E ::= �
| OJ−→τ K(−→v E−→e)
| E.x
| E as τ .mJ−→τ K(−−−→e as τ)as τ
| v as τ .mJ−→τ K(−−−→v as τ E as τ −−−→e as τ)as τ
| typecase x = E of −−−→τ ⇒ e else e end

R ::= v.x
| v as τ .mJ−→τ K(−−−→v as τ)as τ
| typecase x = v of −−−→τ ⇒ e else e end

Evaluation rules: p ` E[R] −→ E[e]

[R-FIELD]
objectOJ−−−−−−−−−→α extends K(−−→x:) end ∈ p

p ` E[OJ−→τ K(−→v).xi] −→ E[vi]

[R-METHOD]

mtypep(m,CJ
−→
τ cK, ∅) = {(J

−−−−−−−−−→
α′ extends K

−→
τ ′′ → τ ′0,)} S([

−→
τ ′/
−→
α′]
−→
τ ′′) =

−→
τa S([

−→
τ ′/
−→
α′]τ ′0) = τ r

objectO (−−→x:) end ∈ p mbodyp(mJ
−→
τ ′ K, OJ−→τ K, CJ

−→
τ cK) = {(

−→
x′)→ e}

p ` E[OJ−→τ K(−→v)as CJ
−→
τ cK.mJ

−→
τ ′ K(
−−−−−→
v′ as τa)as τ r] −→ E[[−→v /−→x][OJ−→τ K(−→v)/self][

−→
v′/
−→
x′]Se]

[R-TYPECASE]
type(v) = τv |−→τ | = n ¬(p; ∅ ` τv <: τi) 1 ≤ i < n p; ∅ ` τv <: τn

p ` E[typecase x = v of −−−→τ ⇒ e
−−−−→
τ ′ ⇒ e′ else e end] −→ E[[v/x]en]

[R-TYPECASEELSE]
type(v) = τv ¬(p; ∅ ` τv <: τi) 1 ≤ i ≤ |−→τ |

p ` E[typecase x = v of −−−→τ ⇒ e else e′ end] −→ E[[v/x]e′]

Method body lookup: mbodyp(mJ−→τ K, τ, τ) = {(−→x)→ e}

[MB-SELF]
CJ−−−−−−−−−→α extends K

−→
md ∈ p mJ

−−−−−−−−−→
α′ extends K(

−−→
x′:): = e ∈ {

−→
md}

mbodyp(mJ
−→
τ ′ K, CJ−→τ K, CJ

−→
τ cK) = {(

−→
x′)→ [

−→
τ ′/
−→
α′][
−→
τ c/−→α]e}

[MB-WITNESS]

CJ−−−−−−−−−→α extends K
−→
md ∈ p mJ

−−−−−−−−−→
α′ extends K(

−−→
x′:): = e ∈ {

−→
md}

τo 6= CJ K witnessp(CJ−→τ K, τo) = S

mbodyp(mJ
−→
τ ′ K, CJ−→τ K, τo) = {(

−→
x′)→ [

−→
τ ′/
−→
α′](S([

−−→
τ/α]e))}

[MB-SUPER]
CJ−−−−−−−−−→α extends K extends {

−→
N }

−→
md ∈ p m 6∈ {

−−−−−−−→
Name(md)} C 6= C ′

mbodyp(mJ
−→
τ ′ K, CJ−→τ K, C ′J

−→
τ cK) =

⋃
Ni∈{

−→
N}

mbodyp(mJ
−→
τ ′ K, [−→τ /−→α]Ni, C

′J
−→
τ cK))

[MB-STATIC]
CJ−−−−−−−−−→α extends K extends {

−→
N }

−→
md ∈ p m 6∈ {

−−−−−−−→
Name(md)}

mbodyp(mJ
−→
τ ′ K, CJ−→τ K, CJ

−→
τ cK) =

⋃
Ni∈{

−→
N}

mbodyp(mJ
−→
τ ′ K, [
−→
τ c/−→α]Ni, Object)

[MB-OBJ] mbodyp(mJ−→τ K, Object, τ) = ∅

Figure A.7: Dynamic Semantics of Core Fortress with Where Clauses (I)

348

Function/method name lookup: Name(md) = m

Name(mJ
−−−−−−−−−−−→
α extends {

−→
K}K(−→x:τ):τ = e) = m

Types of values: type(v) = τ

type(OJ−→τ K(−→v)) = OJ−→τ K

Finding witnesses from the static type of the receiver: witnessp(τ , τ) = S

witnessp(τ, τ ′) =

[] if τ ′ = Object

match(CJ−→τ K, CJ
−→
τ ′ K) if τ = CJ−→τ K and τ ′ = CJ

−→
τ ′ K

Sn · · · S1 if τ = CJ−→τ K, τ ′ = C ′J
−→
τ ′ K, C 6= C ′,

CJ−−−−−−−−−→α extends K extends {
−→
N } ∈ p,

and witnessp([−→τ /−→α]Ni, C
′J
−→
τ ′ K) = Si for Ni ∈ {

−→
N }

[] otherwise

Match two types to get substitutions: match(τ , τ) = S

match(τ, τ ′) =

[] if τ = τ ′

[τ ′/β] if τ = β

Sn · · · S1 if τ = CJ−→τ K, τ ′ = CJ
−→
τ ′ K, and match(Si−1 · · · S1τi, τi

′) = Si for 1 ≤ i ≤ n
[] otherwise

Figure A.8: Dynamic Semantics of Core Fortress with Where Clauses (II)

349

Environments and method types

∆ ::=
−−−−−−−→
α <: {

−→
K} bound environment

Γ ::= −−→x : τ type environment

η ::= J
−−−−−−−−−−−→
α extends {

−→
K}K −→τ → τ method type

Program typing: ` p : τ

[T-PROGRAM]
p =
−→
d e p `

−→
d ok p; ∅; ∅ ` e : τ

` p : τ

Definition typing: p ` d ok

[T-TRAITDEF]

p ` validMultipleInheritance(T) ∆ =
−−−−−−−→
α <: {

−→
K}
−−−−−−−→
β <: {

−→
H}

p;∆ `
−→−→
K ok p;∆ `

−→
N ok p;∆ `

−→−→
H ok p;∆; self : T J−→α K;T `

−→
md ok

p ` trait T J
−−−−−−−−−−−→
α extends {

−→
K}K extends {

−→
N } where {

−−−−−−−−−−−→
β extends {

−→
H}}

−→
md end ok

[T-OBJECTDEF]

p ` validMultipleInheritance(O) ∆ =
−−−−−−−→
α <: {

−→
K} ∆′ = ∆

−−−−−−−→
β <: {

−→
H}

p;∆′ `
−→−→
K ok p;∆ ` −→τ ok p;∆′ `

−→
N ok p;∆′ `

−→−→
H ok

p;∆′; self : OJ−→α K −−→x : τ ;O `
−→
md ok

p ` objectOJ
−−−−−−−−−−−→
α extends {

−→
K}K(−→x:τ) extends {

−→
N } where {

−−−−−−−−−−−→
β extends {

−→
H}}

−→
md end ok

Method typing: p;∆; Γ;C ` md ok

[T-METHODDEF]

p ` override(m,C, J
−−−−−−−−−−−→
α extends {

−→
K}K −→τ → τ0) ∆′ = ∆

−−−−−−−→
α <: {

−→
K} p;∆′ `

−→−→
K ok

p;∆′ ` −→τ ok p;∆′ ` τ0 ok p;∆′; Γ −−→x : τ ` e : τ ′ p;∆′ ` τ ′ <: τ0

p;∆; Γ;C ` mJ
−−−−−−−−−−−→
α extends {

−→
K}K(−→x:τ):τ0 = e ok

Method overriding: p ` override(m,C, η)

[OVERRIDE]

CJ
−−−−−−−−−−−−−→
α′′ extends {

−→
K ′′}K extends {

−→
N } where {

−−−−−−−−−−−→
β extends {

−→
H}} ∈ p

∆ =
−−−−−−−−−→
α′′ <: {

−→
K ′′}

−−−−−−−→
β <: {

−→
H}⋃

C′J
−→
τ ′′K∈{

−→
N}

mtypep(m,C ′J
−→
τ ′′K,∆) = {(J

−−−−−−−−−−−−→
α′ extends {

−→
K ′}K

−→
τ ′ → τ ′0,∆

′)}
−→−→
K = [−→α /

−→
α′]
−→−→
K ′ p;∆′ ` [−→α /

−→
α′]
−→
τ ′ <: −→τ p;∆′ ` τ0 <: [−→α /

−→
α′]τ ′0

p ` override(m,C, J
−−−−−−−−−−−→
α extends {

−→
K}K −→τ → τ0)

Valid multiple inheritance: p ` validMultipleInheritance(C)

[VALIDMI]
p ` oneOwner(C) p ` validWhere(C)

p ` validMultipleInheritance(C)

Figure A.9: Static Semantics of Core Fortress with Where Clauses (I)

350

One owner for all the visible methods: p ` oneOwner (C)

[ONEOWNER]
∀m ∈ visiblep(C) . f only occurs once in visiblep(C)

p ` oneOwner(C)

Valid where clauses: p ` validWhere(C)

[VALIDWHERE]

∀m ∈ visiblep(C) .
where CJ−−→α K extends {

−→
N } ∈ p

mbodyp(mJ
−→
αf K, CJ−→α K, CJ−→α K) = { → ef}, mtypep(m,CJ−→α K, ∅) = {(ηf ,∆)}

1. ∀β ∈ (FTV (ef) \ {−→α
−→
αf}) . β ∈ FTV (ηf)

2. ∀β ∈ (FTV (ηf) \ {−→α
−→
αf}) . ∀C ′J−→τ cK ∈

⋃
Ni∈{

−→
N}

definingp(m,Ni) .

β = τ c
i ∆(β) =

−→
K ′i for 1 ≤ i ≤ |−→τ c| where C ′J

−−−−−−−−−−−−→
α′ extends {

−→
K ′}K ∈ p

p ` validWhere(C)

Valid witnesses: p ` validWitness(∆,
−−−−−−−→
α <: {−→τ },−→τ)

[VALIDWITNESS]

p;∆ `
−−−−−−→
[
−→
τβ/
−→
β]−→τ ok p;∆ `

−→
τβ ok p;∆ `

−→
τβ <:

−−−−−−→
[
−→
τβ/
−→
β]−→τ

{
−→
β } ∩ dom(∆) = ∅

p ` validWitness(∆,
−−−−−−−→
β <: {−→τ },

−→
τβ)

Expression typing: p;∆; Γ ` e : τ

[T-VAR] p;∆; Γ ` x : Γ(x)

[T-SELF] p;∆; Γ ` self : Γ(self)

[T-OBJECT]

object OJ−−−−−−−−−→α extends K (
−−→

:τ ′) end ∈ p p;∆ ` OJ−→τ Kok

p;∆; Γ ` −→e :
−→
τ ′′ p;∆ `

−→
τ ′′ <: [−→τ /−→α]

−→
τ ′

p;∆; Γ ` OJ−→τ K(−→e) : OJ−→τ K

[T-FIELD]
p;∆; Γ ` e0 : τ0 bound∆(τ0) = {OJ

−→
τ ′ K} objectOJ−−−−−−−−−→α extends K(−→x:τ) end ∈ p

p;∆; Γ ` e0.xi : [
−→
τ ′/−→α]τi

[T-METHOD]

p;∆; Γ ` e0 : τ0 p;∆ ` τ0 <: CJ
−→
τ cK mtypep(m,CJ

−→
τ cK, ∅) = {(J

−−−−−−−−−−−−→
α′ extends {

−→
K ′}K

−→
τ ′ → τ ′0,∆

′)}
p;∆ ` −→τ ok p;∆ ` CJ

−→
τ cK ok p;∆ ` −→τa ok p;∆ ` τ r ok

p;∆; Γ ` −→e :
−→
τ ′′ p;∆ `

−→
τ ′′ <:

−→
τa dom(∆′) = {

−→
β } S = [

−→
τβ/
−→
β]

p ` validWitness(∆,∆′,
−→
τβ) p;∆ ` −→τ <: S([−→τ /

−→
α′]
−→−→
K ′) S([−→τ /

−→
α′]
−→
τ ′) =

−→
τa S([−→τ /

−→
α′]τ ′0) = τ r

p;∆; Γ ` e0 as CJ
−→
τ cK.mJ−→τ K(

−−−−→
e as τa)as τ r : τ r

[T-TYPECASE]

p;∆; Γ ` e : τ p;∆; Γ x : τi ` ei : τe
i p;∆ ` τe

i <: τ ′ 1 ≤ i ≤ |−→τ |
p;∆; Γ x : τ ` e′ : τe′ p;∆ ` τe′ <: τ ′

p;∆; Γ ` typecase x = e of −−−→τ ⇒ e else e′ end : τ ′

Figure A.10: Static Semantics of Core Fortress with Where Clauses (II)

351

Subtyping: p;∆ ` τ <: τ

[S-OBJ] p;∆ ` τ <: Object

[S-REFL] p;∆ ` τ <: τ

[S-TRANS]
p;∆ ` τ1 <: τ2 p;∆ ` τ2 <: τ3

p;∆ ` τ1 <: τ3

[S-VAR]
τ ∈ ∆(α)

p;∆ ` α <: τ

[S-TAPP]

CJ
−−−−−−−−−−−→
α extends {

−→
K}K extends {

−→
N } where {

−−−−−−−−−−−→
β extends {

−→
H}} ∈ p

p;∆ ` −→τ ok p;∆ ` −→τ <: [
−→
τβ/
−→
β][−→τ /−→α]

−→−→
K p ` validWitness(∆,

−−−−−−−−−−−−−→
β <: {[−→τ /−→α]

−→
H},
−→
τβ)

p;∆ ` CJ−→τ K <: [
−→
τβ/
−→
β][−→τ /−→α]Ni

Well-formed types: p;∆ ` τ ok

[W-OBJ] p;∆ ` Object ok

[W-VAR]
α ∈ dom(∆)

p;∆ ` α ok

[W-TAPP]

CJ
−−−−−−−−−−−→
α extends {

−→
K}K where {

−−−−−−−−−−−→
β extends {

−→
H}} ∈ p

p;∆ ` −→τ ok p;∆ ` −→τ <: [
−→
τβ/
−→
β][−→τ /−→α]

−→−→
K p ` validWitness(∆,

−−−−−−−−−−−−−→
β <: {[−→τ /−→α]

−→
H},
−→
τβ)

p;∆ ` CJ−→τ K ok

Method type lookup: mtypep(m, τ,∆) = {(η,∆)}

[MT-SELF]

CJ−−−−−−−−−→α extends K where {
−−−−−−−−−−−→
β extends {

−→
H}}

−→
md ∈ p mJ

−−−−−−−−−−−−→
α′ extends {

−→
K ′}K(

−−→
:τ ′):τ0 ∈ {

−→
md}

∆′ = ∆
−−−−−−−→
β <: {

−→
H}

mtypep(m,CJ−→τ K,∆) = {([−→τ /−→α]J
−−−−−−−−−−−−→
α′ extends {

−→
K ′}K

−→
τ ′ → τ0, [−→τ /−→α]∆′)}

[MT-SUPER]

CJ−−−−−−−−−→α extends K extends {
−→
N } where {

−−−−−−−−−−−→
β extends {

−→
H}}

−→
md ∈ p m 6∈ {

−−−−−−−→
Name(md)}

∆′ = ∆
−−−−−−−→
β <: {

−→
H}

mtypep(m,CJ−→τ K,∆) =
⋃

Ni∈{
−→
N}

mtypep(m, [
−→τ /−→α]Ni, [−→τ /−→α]∆′)

[MT-OBJ] mtypep(m, Object,∆) = ∅
Bound of type: bound∆(τ) = {−→σ }

bound∆(α) =
⋃

τi∈∆(α) bound∆(τi)
bound∆(σ) = {σ}

Figure A.11: Static Semantics of Core Fortress with Where Clauses (III)

352

Traits defining a method: definingp(m, N) = {
−→
N }

definingp(m, Object) = ∅

definingp(m,CJ−→τ K) =

⋃
Ni∈{

−→
N}

definingp(m, [
−→τ /−→α]Ni)

if CJ−−→α K extends {
−→
N } ∈ p and m 6∈ definedp(C)⋃

Ni∈{
−→
N}

definingp(m, [
−→τ /−→α]Ni) ∪ {CJ−→τ K}

if CJ−−→α K extends {
−→
N } ∈ p and m ∈ definedp(C)

Auxiliary functions for methods: definedp / inheritedp / visiblep(C) = {−→m}

definedp(C) = {
−−−−−−−→
Name(md)} where C

−→
md ∈ p

inheritedp(C) =
⊎

Ni∈{
−→
N}
{mi |mi ∈ visiblep(Ni),mi 6∈ definedp(C)} where C extends {

−→
N } ∈ p

visiblep(C) = definedp(C)] inheritedp(C)

Figure A.12: Static Semantics of Core Fortress with Where Clauses (IV)

A.3 Core Fortress with Overloading

In this section, we define a Fortress core calculus with overloading for dotted methods and first-order functions. We
call this calculus Core Fortress with Overloading. Core Fortress with Overloading is an extension of Basic Core
Fortress with overloading.

A.3.1 Syntax

The syntax for Core Fortress with Overloading is provided in Figure A.13.

A.3.2 Dynamic Semantics

A dynamic semantics for Core Fortress with Overloading is provided in Figure A.14.

A.3.3 Static Semantics

A static semantics for Core Fortress with Overloading is provided in Figures A.15, A.16, A.17, and A.18.

We proved the type soundness of Core Fortress with Overloading using the standard technique of proving a progress
theorem and a subject reduction theorem.

353

α, β type variables
m function or method name
x field name
T trait name
O object name
τ, τ ′, τ ′′ ::= α type

| σ
σ ::= N type that is not a type variable

| OJ−→τ K
N,M,L ::= T J−→τ K type that can be a type bound

| Object
e ::= x expression

| self
| OJ−→τ K(−→e)
| e.x
| e.mJ−→τ K(−→e)
| mJ−→τ K(−→e)

md ::= mJ
−−−−−−−−−→
α extendsNK(−→x:τ):τ = e function or method definition

td ::= trait T J
−−−−−−−−−→
α extendsNK extends {

−→
N }
−→
md end trait definition

od ::= objectOJ
−−−−−−−−−→
α extendsNK(−→x:τ) extends {

−→
N }
−→
md end object definition

d ::= md definition
| td
| od

p ::=
−→
d e program

Figure A.13: Syntax of Core Fortress with Overloading

354

Values, evaluation contexts, and redexes

v ::= OJ−→τ K(−→v) value
E ::= � evaluation context
| OJ−→τ K(−→e E−→e)
| E.x
| E.mJ−→τ K(−→e)
| e.mJ−→τ K(−→e E−→e)
| mJ−→τ K(−→e E−→e)

R ::= v.x redex
| v.mJ−→τ K(−→v)
| mJ−→τ K(−→v)

Evaluation rules: p ` E[R] −→ E[e]

[R-FIELD]
objectO (−−→x:) end ∈ p
p ` E[OJ−→τ K(−→v).xi] −→ E[vi]

[R-METHOD]

objectOJ
−−−−−−−−−→
α extendsNK(−−→x:) end ∈ p

−−−−−→
type(v′) =

−→
τ ′′

mostspecificp;∅(applicablep;∅(mJ
−→
τ ′ K(
−→
τ ′′), visiblep(OJ−→τ K))) = mJ

−−−−−−−−−−→
α′ extendsN ′K(

−−→
x′:): = e

p ` E[OJ−→τ K(−→v).mJ
−→
τ ′ K(
−→
v′)] −→ E[[−→v /−→x][OJ−→τ K(−→v)/self][

−→
v′/
−→
x′]e]

[R-FUNCTION]

−−−−→
type(v) =

−→
τ ′

mostspecificp;∅(applicablep;∅(mJ−→τ K(
−→
τ ′), {(md , Object) | md ∈ p})) = mJ

−−−−−−−−−→
α extendsNK(−−→x:): = e

p ` E[mJ−→τ K(−→v)] −→ E[[−→v /−→x]e]

Types of values: type(v) = τ

type(OJ−→τ K(−→v)) = OJ−→τ K

Figure A.14: Dynamic Semantics of Core Fortress with Overloading

355

Environments and trait or object names

∆ ::=
−−−−−→
α <: N bound environment

Γ ::= −−→x : τ type environment
C ::= T trait name
| O object name

Program typing: ` p : τ

[T-PROGRAM]
p =
−→
d e p; ∅; ∅ `

−→
d ok p ` validFun(

−→
d) p; ∅; ∅ ` e : τ

` p : τ

Trait typing: p; ∅; ∅ ` td ok

[T-TRAITDEF]

∆ =
−−−−−→
α <: N p;∆ `

−→
N ok p;∆ `

−→
M ok

p;∆; self : T J−→α K `
−→
md ok p ` validMeth(T)

p; ∅; ∅ ` trait T J
−−−−−−−−−→
α extendsNK extends {

−→
M}
−→
md end ok

Object typing: p; ∅; ∅ ` od ok

[T-OBJECTDEF]

∆ =
−−−−−→
α <: N p;∆ `

−→
N ok p;∆ ` −→τ ok p;∆ `

−→
M ok

p;∆; self : OJ−→α K −−→x : τ `
−→
md ok p ` validMeth(O)

p; ∅; ∅ ` objectOJ
−−−−−−−−−→
α extendsNK(−→x:τ) extends {

−→
M}
−→
md end ok

Function and method typing: p;∆; Γ ` md ok

[T-FUNMETHDEF]

∆′ = ∆
−−−−−−−→
α <: {

−→
N } p;∆′ `

−→
N ok p;∆′ ` −→τ ok p;∆′ ` τ0 ok

p;∆′; Γ −−→x : τ ` e : τ ′ p;∆′ ` τ ′ <: τ0
p;∆; Γ ` mJ

−−−−−−−−−→
α extendsNK(−→x:τ):τ0 = e ok

Valid method declarations: p ` validMeth(C)

[VALIDMETH]

∀ (md , CJ
−→
τ cK), (md ′, C ′J

−→
τ c′K) ∈ visiblep(CoJ

−→
αoK).

where CoJ
−−−−−−−−−−→
αo extends K ∈ p,

md 6= md ′ (not same declaration),
md = mJ

−−−−−−−−−→
α extendsNK(−−→:τ):τ r = , md ′ = mJ

−−−−−−−−−−→
α′ extendsN ′K(

−−→
:τ ′):τ r′ = ,

p ` valid(J
−−−−−−−−−→
α extendsNKCJ

−→
τ cK−→τ → τ r, J

−−−−−−−−−−→
α′ extendsN ′KC ′J

−→
τ c′K
−→
τ ′ → τ r′ , visiblep(CoJ

−→
αoK))

p ` validMeth(Co)

Figure A.15: Static Semantics of Core Fortress with Overloading (I)

356

Valid function declarations: p ` validFun(
−→
d)

[VALIDFUN]

∀ md ,md ′ ∈
−→
d .

where md 6= md ′ (not same declaration),
md = mJ

−−−−−−−−−→
α extendsNK(−−→:τ):τ r = , md ′ = mJ

−−−−−−−−−−→
α′ extendsN ′K(

−−→
:τ ′):τ r′ = ,

p ` valid(J
−−−−−−−−−→
α extendsNKObject−→τ → τ r, J

−−−−−−−−−−→
α′ extendsN ′KObject

−→
τ ′ → τ r′ , {(md , Object) | md ∈

−→
d })

p ` validFun(
−→
d)

Valid declarations: p ` valid (J
−−−−−−−−−→
α extendsNK−→τ → τ, J

−−−−−−−−−→
α extendsNK−→τ → τ, {

−−−−→
(md , τ)})

[VALID]

∆ =
−−−−−−−→
α <: {

−→
N }, |−→τ | = n

1. |−→τ | 6= |
−→
τ ′ |

∨ 2. 1)
−→
N = [−→α /

−→
α′]
−→
N ′

∧ 2) ∀ 1 ≤ i ≤ n. p;∆ ` τi <: [−→α /
−→
α′]τ ′i ∨ p;∆ ` [−→α /

−→
α′]τ ′i <: τi

∧ 3) ∃ 1 ≤ i ≤ n. τi 6= [−→α /
−→
α′]τ ′i

∧ 4) ∃ (mJ
−−−−−−−−−−−→
α′′ extendsN ′′K(

−−−→
:τ ′′):τ r′′ = , τ ′′0) ∈ S.

where
∀ 0 ≤ i ≤ n. p;∆ ` meet({τi, [−→α /

−→
α′]τ ′i}, [

−→α /
−→
α′′]τ ′′i)

∧
−→
N = [−→α /

−→
α′′]
−→
N ′′

∧ p;∆ ` [−→α /
−→
α′′]τ r′′ <: τ r

∧ p;∆ ` [
−→
α′/
−→
α′′]τ r′′ <: τ r′

p ` valid(J
−−−−−−−−−→
α extendsNK−→τ → τ r, J

−−−−−−−−−−→
α′ extendsN ′K

−→
τ ′ → τ r′ , S)

Expression typing: p;∆; Γ ` e : τ

[T-VAR] p;∆; Γ ` x : Γ(x)

[T-SELF] p;∆; Γ ` self : Γ(self)

[T-OBJECT]

objectOJ−−−−−−−−−→α extends K(
−−→

:τ ′) end ∈ p p;∆ ` OJ−→τ Kok

p;∆; Γ ` −→e :
−→
τ ′′ p;∆ `

−→
τ ′′ <: [−→τ /−→α]

−→
τ ′

p;∆; Γ ` OJ−→τ K(−→e) : OJ−→τ K

[T-FIELD]
p;∆; Γ ` e0 : τ0 bound∆(τ0) = OJ

−→
τ ′ K objectOJ−−−−−−−−−→α extends K(−→x:τ) end ∈ p

p;∆; Γ ` e0.xi : [
−→
τ ′/−→α]τi

[T-METHOD]

p;∆; Γ ` e0 : τ0 p;∆ ` −→τ ok p;∆; Γ ` −→e :
−→
τ ′

mostspecificp;∆(applicablep;∆(mJ−→τ K(
−→
τ ′), visiblep(bound∆(τ0)))) = mJ

−−−−−−−−−→
α extendsNK():τ r

p;∆; Γ ` e0.mJ−→τ K(−→e) : τ r

[T-FUNCTION]

p;∆ ` −→τ ok p;∆; Γ ` −→e :
−→
τ ′

mostspecificp;∆(applicablep;∆(mJ−→τ K(
−→
τ ′), {(md , Object) | md ∈ p}))) = mJ

−−−−−−−−−→
α extendsNK():τ r

p;∆; Γ ` mJ−→τ K(−→e) : τ r

Figure A.16: Static Semantics of Core Fortress with Overloading (II)

357

Subtyping: p;∆ ` τ <: τ

[S-OBJ] p;∆ ` τ <: Object

[S-REFL] p;∆ ` τ <: τ

[S-TRANS]
p;∆ ` τ1 <: τ2 p;∆ ` τ2 <: τ3

p;∆ ` τ1 <: τ3

[S-VAR] p;∆ ` α <: ∆(α)

[S-TAPP]
CJ−−−−−−−−−→α extends K extends {

−→
N } ∈ p

p;∆ ` CJ−→τ K <: [−→τ /−→α]Ni

Well-formed types: p;∆ ` τ ok

[W-OBJ] p;∆ ` Object ok

[W-VAR]
α ∈ dom(∆)

p;∆ ` α ok

[W-TAPP]
CJ
−−−−−−−−−→
α extendsNK ∈ p p;∆ ` −→τ ok p;∆ ` −→τ <: [−→τ /−→α]

−→
N

p;∆ ` CJ−→τ K ok

Most specific definitions: mostspecificp;∆({
−−−−→
(md , τ)}) = md

−→
md = mJ(

−−−−−−−−−→
α extendsN)1K((

−−−→
:τa)1):τ r

1 · · ·mJ(
−−−−−−−−−→
α extendsN)nK((

−−−→
:τa)n):τ r

n

1 ≤ i ≤ n (
−→
τa)i = τa

i1 · · · τa
im τa

i0 = τi ∀ 0 ≤ j ≤ m . p;∆ ` meet({τa
1j , · · · , τa

nj}, τa
ij)

mostspecificp;∆({
−−−−→
(md , τ)}) = md i

Applicable definitions: applicablep;∆(mJ−→τ K(−→τ), {
−−−−→
(md , τ)}) = {

−−−−→
(md , τ)}

applicablep;∆(mJ
−→
τ ′ K(
−→
τ ′′), S) =

{([
−→
τ ′/−→α]md , τ) | where (md , τ) ∈ S,

md = mJ
−−−−−−−−−→
α extendsNK(

−−−→
x:τ ′′′): ,

p;∆ `
−→
τ ′′ <: [

−→
τ ′/−→α]

−→
τ ′′′

p;∆ `
−→
τ ′ <: [

−→
τ ′/−→α]

−→
N }

Figure A.17: Static Semantics of Core Fortress with Overloading (III)

358

Method definition lookup: visiblep / definedp(CJ−→τ K) = {
−−−−−−−−→
(md , CJ−→τ K)}

visiblep(CJ−→τ K) = definedp(CJ−→τ K) ∪
⋃

C′J
−→
τ ′K∈{

−→
N}

visiblep([−→τ /−→α]C ′J
−→
τ ′ K) where CJ−−→α K extends {

−→
N } ∈ p

definedp(CJ−→τ K) = {
−−−−−−−−−−−−−−→
([−→τ /−→α]md , CJ−→τ K)} where CJ−−→α K

−→
md ∈ p

Most specific type: p;∆ ` meet({−→τ }, τ)

[MEET]
τ ′ ∈ {−→τ } ∀ 1 ≤ i ≤ |−→τ | . p;∆ ` τ ′ <: τi

p;∆ ` meet({−→τ }, τ ′)

Bound of type: bound∆(τ) = σ

bound∆(α) = ∆(α)
bound∆(σ) = σ

Figure A.18: Static Semantics of Core Fortress with Overloading (IV)

A.4 Acyclic Core Fortress with Field Definitions

In this section, we define a Fortress core calculus with acyclic type hierarchy and field definitions inside object defini-
tions. We call this calculus Acyclic Core Fortress with Field Definitions. Acyclic Core Fortress with Field Definitions
is an extension of Basic Core Fortress with acyclic type hierarchy and field definitions inside object definitions.

A.4.1 Syntax

The syntax for Acyclic Core Fortress with Field Definitions is provided in Figure A.19.

A.4.2 Dynamic Semantics

A dynamic semantics for Acyclic Core Fortress with Field Definitions is provided in Figure A.20.

A.4.3 Static Semantics

A static semantics for Acyclic Core Fortress with Field Definitions is provided in Figures A.21, A.22, and A.23.

We proved the type soundness of Acyclic Core Fortress with Field Definitions and the acyclic type hierarchy of a
well-type program in Acyclic Core Fortress with Field Definitions using the standard technique of proving a progress
theorem and a subject reduction theorem.

359

α, β type variables
m method name
x, y, z field names
T trait name
O object name
τ, τ ′, τ ′′ ::= α type

| σ
σ ::= N type that is not a type variable

| OJ−→τ K
N,M,L ::= T J−→τ K type that can be a type bound

| Object
e ::= x expression

| self
| OJ−→τ K(−→e)
| e.x
| e.mJ−→τ K(−→e)

md ::= mJ
−−−−−−−−−→
α extendsNK(−→x:τ):τ = e method definition

vd ::= x:τ = e field definition
td ::= trait T J

−−−−−−−−−→
α extendsNK extends {

−→
N }
−→
md end trait definition

od ::= objectOJ
−−−−−−−−−→
α extendsNK(−→x:τ) extends {

−→
N }
−→
md end object definition

d ::= td definition
| od

p ::=
−→
d e program

Figure A.19: Syntax of Acyclic Core Fortress with Field Definitions

360

Values, intermediate expressions, evaluation contexts, redexes, and trait and object names

v ::= OJ−→τ K{−−−→x 7→ v; } value
ε ::= x intermediate expression
| self
| OJ−→τ K(−→ε)
| ε.x
| ε.mJ−→τ K(−→ε)
| OJ−→τ K{−−−→x 7→ ε;−−−→x 7→ ε}

E ::= � evaluation context
| OJ−→τ K(−→ε E−→ε)
| E.x
| E.mJ−→τ K(−→ε)
| ε.mJ−→τ K(−→ε E−→ε)
| OJ−→τ K{−−−→x 7→ v; x 7→ E −−−→x 7→ e}

R ::= OJ−→τ K(−→v) redex
| OJ−→τ K{−−−→x 7→ v; x 7→ v −−−→x 7→ e}
| v.x
| v.mJ−→τ K(−→v)

C ::= T trait name
| O object name

Evaluation rules: p ` E[R] −→ E[ε]

[R-OBJECT]
objectOJ−−−−−−−−−→α extends K(−−→x:)

−−−−−−→
x′: = e′ end ∈ p

p ` E[OJ−→τ K(−→v)] −→ E[OJ−→τ K{−−−→x 7→ v ;
−−−−−−−−−−−−−−−→
x′ 7→ [−→v /−→x][−→τ /−→α]e′}]

[R-SUB] p ` E[OJ−→τ K{−−−→x 7→ v; y 7→ v −−−→z 7→ e}] −→ E[OJ−→τ K{−−−→x 7→ v y 7→ v;
−−−−−−−→
z 7→ [v/y]e}]

[R-FIELD] p ` E[OJ−→τ K{−−−→x 7→ v; }.xi] −→ E[vi]

[R-METHOD]
mbodyp(mJ

−→
τ ′ K, OJ−→τ K) = {(

−→
x′)→ e}

p ` E[OJ−→τ K{−−−→x 7→ v; }.mJ
−→
τ ′ K(
−→
v′)] −→ E[[−→v /−→x][OJ−→τ K{−−−→x 7→ v; }/self][

−→
v′/
−→
x′]e]

Method body lookup: mbodyp(mJ−→τ K, τ) = {(−→x)→ e}

[MB-SELF]
CJ−−−−−−−−−→α extends K

−→
md ∈ p mJ

−−−−−−−−−→
α′ extends K(

−−→
x′:): = e ∈ {

−→
md}

mbodyp(mJ
−→
τ ′ K, CJ−→τ K) = {[

−→
τ ′/
−→
α′][−→τ /−→α](

−→
x′)→ e}

[MB-SUPER]
CJ−−−−−−−−−→α extends K extends {

−→
K}

−→
md ∈ p m 6∈ {

−−−−−−−→
Name(md)}

mbodyp(mJ
−→
τ ′ K, CJ−→τ K) =

⋃
Ni∈{

−→
N}

mbodyp(mJ
−→
τ ′ K, [−→τ /−→α]Ni)

[MB-OBJ] mbodyp(mJ−→τ K, Object) = ∅

Function/method name lookup: Name(md) = m

Name(mJ
−−−−−−−−−→
α extendsNK(−→x:τ):τ = e) = m

Figure A.20: Dynamic Semantics of Acyclic Core Fortress with Field Definitions

361

Environments

∆ ::=
−−−−−→
α <: N bound environment

Γ ::= −−→x : τ type environment

Program typing: ` p : τ

[T-PROGRAM]
p =
−→
d e p; ∅; ∅ `

−→
d ok p; ∅; ∅ ` e : τ acyclic(

−→
d)

` p : τ

Acyclic type hierarchy: acyclic(
−→
d)

[ACYCLIC]

trait T J
−−−−−−−−−→
α extendsNK extends {

−→
M} end ∈

−→
d 1 ≤ i ≤ |−→α |

(1) Mi 6= T J K implies p; ` [−→τ /−→α]
−→
M i 6<: T J−→τ K

(The type names excluding self-extensions form an acyclic hierarchy.)
(2) Mi = T J K implies Mj 6= T J K 1 ≤ j ≤ |

−→
M | i 6= j

(3) Mi = T J−→τ K implies (τi = αi) ∨ (τi = Ni) ∨ (τi = αj ∧ αi = Nj) 1 ≤ j ≤ |−→α | i 6= j

acyclic(
−→
d)

Definition typing: p; ∅; ∅ ` d ok

[T-TRAITDEF]

∆ =
−−−−−→
α <: N p;∆ `

−→
N ok p;∆ `

−→
M ok p;∆; self : T J−→α K ` T ok

−→
md

p ` oneOwner(T)

p; ∅; ∅ ` trait T J
−−−−−−−−−→
α extendsNK extends {

−→
M}
−→
md end ok

[T-OBJECTDEF]

∆ =
−−−−−→
α <: N p;∆ `

−→
N ok p;∆ ` −→τ ok p;∆ `

−→
M ok

−→
vd =

−−−−−→
x′:τ ′ = e p;∆;−−→x : τ x′1 : τ ′1 . . . x

′
i−1 : τ ′i−1 ` x′i:τ ′i = ei ok 1 ≤ i ≤ n

p;∆; self : OJ−→α K −−→x : τ
−−−→
x′ : τ ′ ` O ok

−→
md p ` oneOwner(O)

p; ∅; ∅ ` objectOJ
−−−−−−−−−→
α extendsNK(−→x:τ) extends {

−→
M}
−→
md end ok

One owner for all the visible methods: p ` oneOwner (C)

[ONEOWNER]
∀m ∈ visiblep(C) . f only occurs once in visiblep(C)

p ` oneOwner(C)

Method typing: p;∆; Γ ` C okmd

[T-METHODDEF]

CJ
−−−−−−−−−→
α′ extends K extends {

−→
K} ∈ p p ` override(m, {

−→
M}, J

−−−−−−−−−→
α extendsNK −→τ → τ0)

∆′ = ∆
−−−−−→
α <: N p;∆′ `

−→
N ok p;∆′ ` −→τ ok p;∆′ ` τ0 ok

p;∆′; Γ −−→x : τ ` e : τ ′ p;∆′ ` τ ′ <: τ0
p;∆; Γ ` C okmJ

−−−−−−−−−→
α extendsNK(−→x:τ):τ0 = e

Figure A.21: Static Semantics of Acyclic Core Fortress with Field Definitions (I)

362

Field typing: p;∆; Γ ` vd ok

[T-FIELDDEF]
p;∆ ` τ ok p;∆; Γ ` e : τ ′ p;∆ ` τ ′ <: τ

p;∆; Γ ` x: τ = e ok

Expression typing: p;∆; Γ ` ε : τ

[T-VAR] p;∆; Γ ` x : Γ(x)

[T-SELF] p;∆; Γ ` self : Γ(self)

[T-OBJECT]

object OJ−−−−−−−−−→α extends K (−−→:τ) end ∈ p p;∆ ` OJ−→τ Kok

p;∆; Γ ` −→ε :
−→
τ ′′ p;∆ `

−→
τ ′′ <: [−→τ /−→α]

−→
τ ′

p;∆; Γ ` OJ−→τ K(−→ε) : OJ−→τ K

[T-INT-OBJECT]

objectOJ−−−−−−−−−→α extends K(
−−→
x′:τ ′)

−−−−−−−→
x′′:τ ′′ = end ∈ p

−→
x1
−→
x2 =

−→
x′
−→
x′′

−→
ε1
−→
ε2 =

−→
ε′
−→
ε′′ p;∆; Γ ` OJ−→τ K(

−→
ε′) : OJ−→τ K

p;∆; Γ
−−→
x′:τ ′

−−−→
x′′:τ ′′ `

−→
ε′′ :
−→
τ ′′′ p;∆ ` [−→τ /−→α]

−→
τ ′′′ <: [−→τ /−→α]

−→
τ ′′

p;∆; Γ ` OJ−→τ K{
−−−−−→
x1 7→ ε1;

−−−−−→
x2 7→ ε2} : OJ−→τ K

[T-FIELD]

p;∆; Γ ` ε : τ0 bound∆(τ0) = OJ
−→
τoK

objectOJ−−−−−−−−−→α extends K(
−−→
x′:τ ′)

−−−−−−−→
x′′:τ ′′ = end ∈ p −→x =

−→
x′
−→
x′′ −→τ =

−→
τ ′
−→
τ ′′

p;∆; Γ ` ε.xi : [
−→
τo/−→α]τi

[T-METHOD]

p;∆; Γ ` ε : τ0 mtypep;∆(m, bound∆(τ0)) = {J
−−−−−−−−−→
α extendsNK

−→
τ ′ → τ ′0}

p;∆ ` −→τ ok p;∆ ` −→τ <: [−→τ /−→α]
−→
N

p;∆; Γ ` −→ε :
−→
τ ′′ p;∆ `

−→
τ ′′ <: [−→τ /−→α]

−→
τ ′

p;∆; Γ ` ε.mJ−→τ K(−→ε) : [−→τ /−→α]τ ′0

Subtyping: p;∆ ` τ <: τ

[S-OBJ] p;∆ ` τ <: Object

[S-REFL] p;∆ ` τ <: τ

[S-TRANS]
p;∆ ` τ1 <: τ2 p;∆ ` τ2 <: τ3

p;∆ ` τ1 <: τ3

[S-VAR] p;∆ ` α <: ∆(α)

[S-TAPP]
CJ−−−−−−−−−→α extends K extends {

−→
N } ∈ p

p;∆ ` CJ−→τ K <: [−→τ /−→α]Ni

Figure A.22: Static Semantics of Acyclic Core Fortress with Field Definitions (II)

363

Well-formed types: p;∆ ` τ ok

[W-OBJ] p;∆ ` Object ok

[W-VAR]
α ∈ dom(∆)

p;∆ ` α ok

[W-TAPP]
CJ
−−−−−−−−−→
α extendsNK ∈ p p;∆ ` −→τ ok p;∆ ` −→τ <: [−→τ /−→α]

−→
N

p;∆ ` CJ−→τ K ok

Method overriding: p ` override(m, {
−→
N }, J

−−−−−−−−−→
α extendsNK −→τ → τ)

[OVERRIDE]

⋃
Li∈{

−→
L}

mtypep;∆(m,Li) = {J
−−−−−−−−−→
β extendsMK

−→
τ ′ → τ ′0}

−→
N = [−→α /

−→
β]
−→
M −→τ = [−→α /

−→
β]
−→
τ ′ p;∆

−−−−−−−→
α <: {

−→
N } ` τ0 <: [−→α /

−→
β]τ ′0

p ` override(m, {
−→
L }, J

−−−−−−−−−→
α extendsNK −→τ → τ0)

Method type lookup: mtypep;∆(m, τ) = {J
−−−−−−−−−→
α extendsNK −→τ → τ}

[MT-SELF]
CJ−−−−−−−−−→α extends K

−→
md ∈ p mJ

−−−−−−−−−→
β extendsMK(−−→:τ):τ ′0 = ∈ {

−→
md}

mtypep;∆(m,CJ−→τ K) = {[−→τ /−→α]J
−−−−−−−−−→
β extendsMK

−→
τ ′ → τ ′0}

[MT-SUPER]
CJ−−−−−−−−−→α extends K extends {

−→
K}

−→
md ∈ p m 6∈ {

−−−−−−−→
Name(md)}

mtypep;∆(m,CJ−→τ K) =
⋃

Ni∈{
−→
N}

mtypep;∆(m, [−→τ /−→α]Ni)

[MT-OBJ] mtypep;∆(m, Object) = ∅

Auxiliary functions for methods: definedp / inheritedp / visiblep(C) = {−→m}

definedp(C) = {
−−−−−−−→
Name(md)} where C

−→
md ∈ p

inheritedp(C) =
⊎

Ni∈{
−→
N}
{mi |mi ∈ visiblep(Ni),mi 6∈ definedp(C)} where CJ−−−−−−−−−→α extends K extends {

−→
N } ∈ p

visiblep(C) = definedp(C)] inheritedp(C)

Bound of type: bound∆(τ) = τ

bound∆(α) = ∆(α)
bound∆(N) = N
bound∆(OJ−→τ K) = OJ−→τ K

Figure A.23: Static Semantics of Acyclic Core Fortress with Field Definitions (III)

364

Appendix B

Overloaded Functional Declarations

As mentioned in Chapter 33, this appendix proves that the overloading rules discussed in Chapter 33 guarantee no
undefined nor ambiguous call at run time.

B.1 Proof of Coercion Resolution for Functions

This section proves that the overloading rules discussed in the previous sections guarantee the static resolution of
coercion (described in Section 17.5) is well defined for functions (the case for methods is analogous).

Consider a static function call f (A) at some program point Z and its corresponding dynamic function call f (X). Let
Σ be the set of parameter types of function declarations of f that are visible at Z and applicable to the static call f (A).
Let Σ′ be the set of parameter types of function declarations of f that are visible at Z and applicable with coercion to
the static call f (A). Moreover, let σ′ be the subset of Σ′ for which no type in Σ′ is more specific:

σ′ = {S ∈ Σ′ | ¬∃S′ ∈ Σ′ : S′ / S }.

We prove the following:
|Σ| = 0 and |Σ′| 6= 0 imply |σ′| = 1.

Informally, if no declaration is applicable to a static call but there is a declaration that is applicable with coercion then
there exists a single most specific declaration that is applicable with coercion to the static call.

Lemma 1. Given an acyclic, irreflexive binary relation R on a set S, and a finite nonempty subset A of S, the set
{a ∈ A|¬∃a′ ∈ A : (a′, a) ∈ R} is nonempty.

Proof. Consider the relationR on S as a directed acyclic graph. LetA represent a subgraph. Then the Lemma amounts
to proving that there exists a node in the graph represented by A with no edges pointing to it. This follows from the
fact that A is finite and the graph is acyclic.

Lemma 2. If |Σ′| ≥ 1 then |σ′| ≥ 1.

Proof. Follows from Lemma 1 where S is the set of all types, A is Σ′, and the relation / is acyclic and irreflexive.

Lemma 3. If |Σ| = 0 then |σ′| ≤ 1.

365

Proof. For the purpose of contradiction suppose there are two declarations f (P) and f (Q) in σ′. Since both f (P) and
f (Q) are applicable with coercion to f (A) and |Σ| = 0 there must exist a coercion from some type P ′ to P and a
coercion from some type Q ′ to Q such that A � P ′ ∩Q ′. Therefore it is not the case that P � Q . By the overloading
rules, P 6= Q and either P / Q or Q / P or for all P ′ ∈ S and Q ′ ∈ T either P ′ ♦ Q ′, or there is a declaration
f (P ′ ∩Q ′) visible at Z. If P /Q or Q / P then we contradict our assumption. Otherwise, if there exists a declaration
f (P ′ ∩Q ′) visible at Z then this declaration is applicable to f (A) without coercion. This contradicts |Σ| = 0. If such
a declaration does not exist then it must be the case that P ′ ♦ Q ′. Then both f (P) and f (Q) can not be applicable to
the call f (A) which is a contradiction.

Theorem 1. If |Σ| = 0 and |Σ′| 6= 0 then |σ′| = 1.

Proof. Follows from Lemmas 2 and 3.

B.2 Proof of Overloading Resolution for Functions

This section proves that the overloading rules for function declarations are sufficient to guarantee no undefined nor
ambiguous call at run time (the case for methods is analogous).

Consider a static function call f (A) at some program point Z and its corresponding dynamic function call f (X). Let
∆ be the set of parameter types of function declarations of f that are visible at Z and applicable to the dynamic call
f (X). Let Σ be the set of parameter types of function declarations of f that are visible at Z and applicable to the static
call f (A). Moreover, let σ be the subset of Σ for which no type in Σ is more specific and let δ be the subset of ∆ for
which no type in ∆ is more specific:

σ = {S ∈ Σ | ¬∃S′ ∈ Σ : S′ ≺ S }
δ = {D ∈ ∆ | ¬∃D′ ∈ ∆ : D′ ≺ D }.

Below we prove:
|Σ| 6= 0 implies |σ| = 1, and
|Σ| 6= 0 implies |δ| = 1.

Informally, if any declaration is applicable to a static call then there exists a single most specific declaration that is
applicable to the static call and a single most specific declaration that is applicable to the corresponding dynamic call.

Lemma 4. Σ ⊆ ∆.

Proof. Notice that X � A by type soundness. If f (P) is applicable to the call f (A) then A � P . Notice that X � A
implies X � P . Therefore f (P) is applicable to the call f (X).

Lemma 5. If |∆| ≥ 1 then |δ| ≥ 1. Also, if |Σ| ≥ 1 then |σ| ≥ 1.

Proof. Follows from Lemma 1 where S is the set of all types, A is ∆ and Σ respectively, and the relation ≺ is acyclic
and irreflexive.

Lemma 6. If |Σ| ≥ 1 then |δ| ≥ 1.

Proof. Follows from Lemmas 4 and 5.

Lemma 7. |σ| ≤ 1. Also, |δ| ≤ 1.

366

Proof. We prove this for δ, but the case for σ is identical. For the purpose of contradiction suppose there are two
declarations f (P) and f (Q) in δ. Since both f (P) and f (Q) are applicable without coercion to the call f (X) we have
X � P ∩ Q . Therefore it is not the case that P � Q . By the overloading rules, P 6= Q and either P ♦ Q or there is
a declaration f (P ∩ Q) visible at Z. Since it cannot be the case that P ♦ Q there must exist a declaration f (P ∩ Q)
visible at Z. Since P ∩Q � P and P ∩Q � Q we know f (P ∩Q) is applicable without coercion to the call f (X).
Since P 6= Q either P ∩Q ≺ P or P ∩Q ≺ Q . Either case contradicts our assumption.

Theorem 2. If |Σ| 6= 0 then |σ| = 1. Also, if |Σ| 6= 0 then |δ| = 1.

Proof. Follows from Lemmas 5, 6 and 7.

Theorem 3. If σ = {S} and δ = {D} then D � S.

Proof. If the declaration with parameter type S and the declaration with parameter type D satisfy the Subtype Rule
then the theorem is proved. Otherwise, by the definition of σ we have σ ⊆ Σ. Therefore S ∈ Σ. By Lemma 4, S ∈ ∆.
Notice that S,D ∈ ∆ implies X � S and X � D. Therefore, S 6♦ D. By the More Specific Rule for Functions, there
must exist a declaration with parameter type S ∩ D. Because X � (S ∩ D), (S ∩ D) ∈ ∆. Notice (S ∩ D) � S
and (S ∩ D) � D. By the definition of δ, we have ¬∃D′ ∈ ∆ : D′ ≺ D. In particular, (S ∩ D) 6≺ D. Therefore
(S ∩D) = D.

367

Appendix C

Components and APIs

As mentioned in Chapter 22, we formally specify key functionality of the Fortress component system, and illustrate
how we can reason about the correctness of the system.

Components One important restriction on components is that no API may be both imported and exported by the
same component. Formally, we introduce two functions on components, imp and exp, that return the imported and
exported APIs of the component, respectively. For any component c, imp(c)∩ exp(c) = ∅. This restriction is required
throughout to ground the semantics of operations on components, as discussed in Section 22.7.

APIs Other than its identity, the only relevant characteristic of an API a is the set of APIs that it uses, denoted by
uses(a). Because an API a might expose types defined in uses(a), we require that a component that exports a also
exports all APIs in uses(a) that it does not import. Formally, the following condition holds on the exported APIs of a
component c:

a ∈ exp(c) ∧ a′ ∈ uses(a) =⇒ a′ ∈ imp(c) ∪ exp(c)

Link Given a set C = {c1, . . . , ck} of components, we define a partial function link(C) that returns the component
resulting from c1 through ck. If c = link(C), then exp(c) =

⋃
c′∈C exp(c′) and imp(c) =

⋃
c′∈C imp(c′)− exp(c).

The function link is partial because we do not allow arbitrary sets of components to be linked. In particular, Two
components cannot be linked if they export the same API.1 This restriction is made for the sake of simplicity; it allows
programmers to link a set of components without having to specify explicitly which constituent exporting an API A
provides the implementation exported by the linked component, and which constituent connects to the constituents
that import A: only one component exports A, so there is only one choice. Although we lose expressiveness with this
design, the user interface to link is vastly simplified, and it is rare that including multiple components that export a
given API in a set of linked components is even desirable. We discuss how even such rare cases can be supported in
Section 22.8.

For a compound component, in addition to the exported and imported APIs, we want to know what its constituents
are. So we introduce another function cns, which takes a component and returns the set of its constituents. That
is, cns(link(C)) = C . It is an invariant of the system that for any compound component C (i.e., cns(c) 6= ∅),
any API imported by any of its constituents is either imported by C or exported by one of its constituents (i.e.,⋃

c′∈cns(c) imp(c′) ⊆ imp(c) ∪
⋃

c′∈cns(c) exp(c′)). This property is crucial for executing components, as we discuss
below. A simple component (i.e., one produced directly by compilation) has no constituents (i.e., cns(c) = ∅).

1There is one exception to this rule: the special API Upgradable , which is used during upgrades discussed below.

368

Upgrade A predicate upg? takes two components and indicates whether the first can be upgraded with the second;
that is, upg?(ct, cr) returns true if and only if ct can be upgraded with cr. This predicate captures both the constraints
imposed by a component’s isValidUpgrade function and the conditions that guarantee the well-formedness of the
result. That is,

upg?(ct, cr) =⇒ ct.isValidUpgrade(cr)
∧ imp(cr) ⊆ exp(ct) ∪ imp(ct)
∧ exp(cr) ⊂ exp(ct)
∧ ∀c ∈ cns(ct).(exp(c) ⊆ exp(cr) ∨ exp(c) ∩ exp(cr) = ∅ ∨ upg?(c, cr))

Visible and Provided We introduce two new functions on components: vis, which returns the APIs of a component
that have not been hidden; and prov, which returns those visible APIs that are exported by some top-level constituent
of the component (or all the exported APIs of a simple component); we say these APIs are provided by the component.
We need to distinguish provided APIs because they can be imported by the top-level constituents of a component, and
thus by a replacement component in an upgrade, while other visible APIs cannot be. Thus, for a compound component
c, prov(c) = vis(c) ∩

⋃
c′∈cns(c) exp(c′). For a simple component c, prov(c) = vis(c) = exp(c).

Constrain If c is a compound component and A ⊂ exp(c) is a set of APIs such that a ∈ exp(c) ∧ a′ ∈ uses(a) ∩
A =⇒ a ∈ A, we define c′ = constrain(c,A) such that exp(c′) = exp(c) − A and for any component c′′,
upg?(c′, c′′) ⇐⇒ upg?(c, c′′) ∧ exp(c′) 6⊆ exp(c′′). The imp, vis, prov and cns functions all have the same values
for c and c′. The extra condition on the upgrade compatibility simply captures the restriction we mentioned above,
that a replacement component should not export every API exported by the target.

Hide If c is a compound component and A ⊂ vis(c) is a set of APIs such that exp(c) 6⊆ A and a ∈ vis(c) ∧ a′ ∈
uses(a) ∩ A =⇒ a ∈ A, we define c′ = hide(c,A) such that vis(c′) = vis(c) − A, prov(c′) = prov(c) − A,
exp(c′) = exp(c)− A, and for any component c′′, upg?(c′, c′′) ⇐⇒ upg?(c, c′′) ∧ exp(c′) 6⊆ exp(c′′) ∧ vis(c′′) ⊆
vis(c′). The additional clause in upg?(c′, c′′) (compared with that of constrain) reflects the hiding of the APIs: we
can no longer upgrade APIs that are hidden.

Upgrade The interplay between imported, exported, visible and provided APIs introduces subtleties. In particular,
the last of the three conditions imposed for well-formedness of upgrades is modified to state that for any constituent
that is not subsumed by a replacement component, either it can be upgraded with the replacement, or its visible
APIs are disjoint from the APIs exported by the replacement (i.e., it is unaffected by the upgrade). To maintain the
invariant that no two constituents export the same API, we need another condition, which was implied by the previous
condition when no APIs were constrained or hidden: if the replacement subsumes any constituents of the target, then
its exported APIs must exactly match the exported APIs of some subset of the constituents of the target. That is, if
upg?(ct, cr) ∧ ∃c ∈ cns(ct). exp(c) ⊆ exp(cr) then exp(cr) =

⋃
c∈C exp(c) for some C ⊂ cns(ct). In practice,

this restriction is rarely a problem; in most cases, a user wishes to upgrade a target with a new version of a single
constituent component, where the APIs exported by the old and new versions are either an exact match, or there are
new APIs introduced by the new component that have no implementation in the target.

369

Appendix D

Rendering of Fortress Identifiers

In order to more closely approximate mathematical notation, Fortress mandates standard rendering for various input
elements, particularly for numerals and identifiers, as specified in Section 5.17.

In this Appendix, we describe the detailed rules for rendering an identifier.

If an identifier consists of letters and possibly digits, but no underscores or other connecting punctuation, prime marks,
or apostrophes, then the rules are fairly simple:

(a) If the identifier consists of two ASCII capital letters that are the same, possibly followed by digits, then a single
capital letter is rendered double-struck, followed by full-sized (not subscripted) digits in roman font.

QQ is rendered as Q RR64 is rendered as R64
ZZ is rendered as Z ZZ512 is rendered as Z512

(b) Otherwise, if the identifier has more than two characters and begins with a capital letter, then it is rendered in roman
font. (Such names are typically used as names of types in Fortress. Note that an identifier cannot consist entirely of
capital letters, because such a token is considered to be an operator.)

Integer is rendered as Integer Matrix is rendered as Matrix
TotalOrder is rendered as TotalOrder BooleanAlgebra is rendered as BooleanAlgebra

Fred17 is rendered as Fred17 R2D2 is rendered as R2D2

(c) Otherwise, if the identifier consists of one or more letters followed by one or more digits, then the letters are
rendered in italic and the digits are rendered as roman subscripts.

a3 is rendered as a3 foo7 is rendered as foo7
M1 is rendered as M1 z128 is rendered as z128

Ω13 is rendered as Ω13 myFavoriteThings1625 is rendered as myFavoriteThings1625

(d) The following names are always rendered in roman type out of respect for tradition:

sin cos tan cot sec csc
sinh cosh tanh coth sech csch
arcsin arccos arctan arccot arcsec arccsc
arsinh arcosh artanh arcoth arsech arcsch
arg deg det exp inf sup
lg ln log gcd max min

(e) Otherwise the identifier is simply rendered entirely in italic type.

370

a is rendered as a foobar is rendered as foobar
length is rendered as length isInstanceOf is rendered as isInstanceOf
foo7a is rendered as foo7a l33tsp33k is rendered as l33tsp33k

If the identifier begins or ends with an underscore, or both, but has no other underscores or other connecting punctua-
tion, or prime marks, or apostrophes:

(f) If the identifier, ignoring its underscores, consists of two ASCII capital letters that are the same, possibly followed
by one or more digits, then a single capital letter is rendered in sans-serif (for a leading underscore), script (for a
trailing underscore), or italic san-serif (for both a leading and a trailing underscore), and any digits are rendered as
roman subscripts.

(g) Otherwise, the identifier without its underscores is rendered in boldface (for a leading underscore), roman (for a
trailing underscore), or bold italic (for both a leading and a trailing underscore); except that if the identifier, ignoring
its underscores, consists of one or more letters followed by one or more digits, then the digits are rendered as roman
subscripts regardless of the underscores.

m is rendered as m s is rendered as s
km is rendered as km kg is rendered as kg
V is rendered as V kW is rendered as kW
v is rendered as v foo13 is rendered as foo13

(Roman identifiers are typically used for names of SI dimensional units. See sections 6.1.1 and 6.2.1 of [26] for style
questions with respect to dimensions and units.)

These last two rules are actually special cases of the following general rules that apply whenever an identifier contains
at least one underscore, other connecting punctuation, prime mark, or apostrophe:

An identifier containing underscores is divided into portions by its underscores; in addition, any apostrophe, prime, or
double prime character separates portions and is also itself a portion.

(h) If any portion is empty other than the first or last, then the entire identifier is rendered in italics, underscores and
all.

Otherwise, the portions are rendered as follows. The idea is that there is a principal portion that may be preceded
and/or followed by modifiers, and there may also be a face portion:

• If the first portion is not empty, script, fraktur, sansserif, or monospace, then the principal portion is
the first portion and there is no face portion.

• If the first portion is script, fraktur, sansserif, or monospace, then the principal portion is the second
portion and the face portion is the first portion.

• If the first portion is empty and the second portion is not script, fraktur, sansserif, or monospace, then
the principal portion is the second portion and there is no face portion.

• Otherwise the principal portion is the third portion and the face portion is the second portion.

If there is no face portion, the principal portion will be rendered in ordinary italics. However, if the first portion is
empty (that is, the identifier begins with a leading underscore), then the principal portion is to be rendered in roman
boldface. If the last portion is empty (that is, the identifier ends with a trailing underscore), then the principal portion
will be roman rather than italic, or bold italic rather than bold.

If there is a face portion, then that describes an alternate typeface to be used in rendering the principal portion. If there
is no face portion, but the principal portion consists of two copies of the same letter, then it is rendered as a single
letter in a double-struck face (also known as “blackboard bold”), sans-serif, script, or italic sans-serif font according
to whether the first and last portions are (not empty, not empty), (empty, not empty), (not empty, empty), or (empty,
empty), respectively. Otherwise, if the first portion is empty (that is, the identifier begins with a leading underscore),
then the principal portion is to be rendered in a bold version of the selected face, and if the last portion is empty (that

371

is, the identifier ends with a trailing underscore), then the principal portion to be rendered in an italic (or bold italic)
version of the selected face. The bold and italic modifiers may be used only in combination with certain faces; the
following are the allowed combinations:

script

bold script

fraktur

bold fraktur

double-struck

sans-serif

bold sans-serif

italic sans-serif

bold italic sans-serif

monospace

If a combination can be properly rendered, then the principal portion is rendered but not any preceding portions or
underscores. If a combination cannot be properly rendered, then the principal portion and all portions and underscores
preceding it are rendered all in italics if possible, and otherwise all in some other default face.

If the principal portion consists of a sequence of letters followed by a sequence of digits, then the letters are rendered
in the chosen face and the digits are rendered as roman subscripts. Otherwise the entire principal portion is rendered
in the chosen face. The remaining portions (excepting the last, if it is empty) are then processed according to the
following rules:

• If a portion is bar, then a bar is rendered above what has already been rendered, excluding superscripts and
subscripts. For example, x_bar is rendered as x̄ , x17_bar is rendered as x̄17 , x_bar_bar is rendered
as ¯̄x , and foo_bar is rendered as foo . (Contrast this last with foo_baz , which is rendered as foo baz .)

• If a portion is vec, then a right-pointing arrow is rendered above what has already been rendered, exclud-
ing superscripts and subscripts. For example, v_vec is rendered as ~v , v17_vec is rendered as ~v17 , and
zoom_vec is rendered as −−−→zoom .

• If a portion is hat, then a hat is rendered above what has already been rendered, excluding superscripts and
subscripts. For example, x17_hat is rendered as x̂17 .

• If a portion is dot, then a dot is rendered above what has already been rendered, excluding superscripts and
subscripts; but if the preceding portion was also dot, then the new dot is rendered appropriately relative to the
previous dot(s). Up to four dots will be rendered side-by-side rather than vertically. For example, a_dot is ren-
dered as ȧ , a_dot_dot is rendered as ä , a_dot_dot_dot is rendered as

...a , a_dot_dot_dot_dot
is rendered as

....a . Also, a_vec_dot is rendered as ~̇v .

• If a portion is star, then an asterisk * is rendered as a superscript. For example, a_star is rendered as a∗ ,
a_star_star is rendered as a∗∗ , ZZ_star is rendered as Z∗ .

• If a portion is splat, then a number sign # is rendered as a superscript. For example, QQ_splat is rendered
as Q# .

• If a portion is prime, then a prime mark is rendered as a superscript.

• A prime character is treated the same as prime, and a double prime character is treated the same as two consec-
utive prime portions. An apostrophe is treated the same as a prime character, but only if all characters following
it in the identifier, if any, are also apostrophes. For example, a’ is rendered as a′ , a13’ is rendered as a′13 ,
and a’’ is rendered as a′′ , but don’t is rendered as don’t .

• If a portion is super and another portion follows, then that other portion is rendered as a superscript in roman
type, and enclosed in parentheses if it is all digits.

372

• If a portion is sub and another portion follows, then that other portion is rendered as a subscript in roman type,
and enclosed in parentheses if it is all digits, and preceded by a subscript-separating comma if this portion was
immediately preceded by another portion that was rendered as a subscript.

• If a portion consists entirely of capital letters and would, if considered by itself as an identifier, be the name
of a non-letter Unicode character that would be subject to replacement by preprocessing, then that Unicode
character is rendered as a subscript. For example, id_OPLUS is rendered as id⊕ , ZZ_GT is rendered as Z> ,
and QQ_star_LE is rendered as Q∗≤ .

• If the portion is the last portion, and the principal portion was a single letter (or two letters indicating a double-
struck letter), and none of the preceding rules in this list applies, it is rendered as a subscript in roman type. For
example, T_min is rendered as Tmin . Note that T_MAX is rendered simply as T MAX—because all its letters
are capital letters, it is considered to be an operator—but T_sub_MAX is rendered as TMAX .

• Otherwise, this portion and all succeeding portions are rendered in italics, along with any underscores that
appear adjacent to any of them.

Examples:

M is rendered as M M is rendered as M
v vec is rendered as ~v v vec is rendered as ~v

v1 is rendered as v1 v x is rendered as vx
v1 is rendered as v1 v x is rendered as vx

a dot is rendered as ȧ a dot dot is rendered as ä
a dot dot dot is rendered as

...
a a dot dot dot dot is rendered as

....
a

a dot dot dot dot dot is rendered as ˙....a p13’ is rendered as p′13
p’ is rendered as p′ p prime is rendered as p′

T min is rendered as Tmin T max is rendered as Tmax

foo bar is rendered as foo foo baz is rendered as foo baz

In this way, through the use of underscore characters and annotation portions delimited by underscores, the program-
mer can exercise considerable typographical control over the rendering of variable names; but if no underscores are
used, the rendering rules are quite simple.

373

Appendix E

Support for Unicode Input in ASCII

To facilitate the writing of Fortress programs using ASCII-based tools, Fortress programs are subject to ASCII con-
version, an idempotent process consisting of three steps described in this appendix. We expect that IDEs that support
Unicode may apply ASCII conversion immediately, saving programs as converted Unicode character sequences.

E.1 Word Pasting across Line Breaks

Consider any line terminator in the program for which the last non-whitespace character before the line terminator
is an ampersand (&) that is immediately preceded by a word character, and the first non-whitespace character after
the line terminator is an ampersand that is immediately followed by a word character. All the characters between the
ampersands inclusive are removed from the program. Note that the removed characters other than the two ampersands
must be whitespace characters (including one or more line terminators). This step permits very long names and
numerals to be split across line boundaries. For example:

supercalifragilisticexpiali&
&docious = 0.142857142857142857&
&142857 TIMES &

GREEK_SMALL_LETTER_&

&UPSILON_WITH_DIALYTICA_AND_TONOS

becomes

supercalifragilisticexpialidocious = 0.142857142857142857142857 TIMES &
GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTICA_AND_TONOS

To ensure the idempotence of ASCII conversion, it is a static error if an ampersand is immediately followed by another
ampersand, or if it is immediately followed by one or more whitespace characters, not including a line terminator,
followed by an ASCII letter or ampersand. In other words, if an ampersand is not the last non-whitespace character
on a line then the next non-whitespace character must not be an ampersand, nor can it be an ASCII letter unless it is
adjacent to the ampersand.

374

E.2 Converting Names of Unicode Characters and ASCII Shorthand

After word pasting across line breaks, certain ASCII character sequences are converted into single Unicode characters.
These character sequences fall into two categories: restricted words (or parts of restricted words) and ASCII shorthand
for operators and special characters. In some cases, ampersands adjacent to converted sequences are removed.

E.2.1 Determining Potentially Convertible Character Sequences

We first identify nonoverlapping contiguous subsequences of the program that may be subject to conversion in this
step. In particular, names of characters and ASCII shorthand consist of only ASCII characters, and they are not
converted within string literals.

The boundaries of string literals (and comments) are determined follows: There are three modes of processing: outside
any comment or string literal, inside a string literal and inside a comment. Within a comment, we also keep track of
“nesting depth” (this is 0 when not within a comment). Processing proceeds from left to right. Outside any comment or
string literal, encountering an unescaped string literal delimiter (i.e., a string literal delimiter not immediately preceded
by an unescaped backslash) changes processing to the mode for within a string literal (however, it is a static error if
the string literal delimiter is the right double quotation mark), and encountering the opening comment delimiter “(*”
changes processing to the mode for within a comment, incrementing the nesting depth (to 1). All other characters are
ignored, except to note they are not within a string literal. In particular, because character literal delimiters are ignored,
string literal delimiters must be escaped within character literals.

Within a string literal, all characters other than an unescaped string literal delimiter are ignored (except to note that
they are within a string literal). An unescaped string literal delimiter switches processing to the mode for outside
any comment or string literal. However, it is a static error if a line terminator appears within a string literal (Fortress
provides escape sequences to include line terminators in strings; see Section 5.10), or if the opening and closing string
literal delimiters do not “match” (again see Section 5.10).

Within a comment, all characters, including unescaped string delimiters, are ignored (except to note that they are not
within a string literal) other than the two-character opening and closing comment delimiters “(*” and “*)”. Whenever
the opening comment delimiter is encountered, the nesting depth is incremented, and each time the closing comment
delimiter is encountered, the nesting depth is decremented, until it becomes 0. At that point, processing is changed
again to the mode for outside any comment or string literal.

A contiguous subsequence of ASCII characters not within any string literal is a candidate for conversion in this step if
it is either a restricted word, or it is a maximal such subsequence that does not contain any restricted-word characters,
control characters, whitespace characters or ampersands (i.e., it must be delimited by whitespace, a control or non-
ASCII characters, string literals, restricted words, ampersands, or the beginning or end of the file). We call the latter
kind of subsequence an ASCII symbol sequence. The conversion of restricted words and ASCII symbol sequences are
described in Section E.2.2 and Section E.2.3 respectively. Whitespace characters and ampersands are not converted,
but some ampersands may be eliminated, as described in Section E.2.4.

E.2.2 Converting Restricted Words

A restricted word that “names” a Unicode character that is not protected1 (i.e., not an ASCII or control character
nor a string literal delimiter) is replaced by that character. A restricted word may name a character in various ways,
described below. In a few cases, a restricted word may name more than one character (via different ways), so the order
in which we consider these ways is important. Also, in some cases, only part of the restricted word is replaced by a
Unicode character.

1Protecting the backslash (an ASCII character) and string literal delimiters preserves the boundaries of string literals determined as described
above; protecting the other ASCII characters ensures that the ASCII conversion process is idempotent.

375

Fortress explicitly provides short ASCII names for many characters, especially ones that programmers might most
commonly want. Some characters have more than one short name. For operators, these names are given in Appendix F,
including the following common ones:

LE becomes ≤ GE becomes ≥ NE becomes 6=
BY becomes × TIMES becomes × CROSS becomes ×

DOT becomes · PRODUCT becomes
∏

SUM becomes
∑

CUP becomes ∪ CAP becomes ∩ SUBSET becomes ⊂
EMPTYSET becomes ∅ AND becomes ∧ OR becomes ∨

To provide a level of compatibility with Fortran, Appendix F also gives short names for the following ASCII (and thus
protected) characters:

LT becomes < GT becomes > EQ becomes =

These names are the only ones converted to a protected character. Furthermore, they are not replaced by the corre-
sponding character unless they are delimited by whitespace characters (not ampersands). Thus, they cannot participate
in further conversion, maintaining the idempotence of ASCII conversion.

The following non-operator characters also have short names:

ALPHA becomes A alpha becomes α BOTTOM becomes ⊥
BETA becomes B beta becomes β TOP becomes >

GAMMA becomes Γ gamma becomes γ INF becomes ∞
DELTA becomes ∆ delta becomes δ FORALL becomes ∀

EPSILON becomes E epsilon becomes ε EXISTS becomes ∃
ZETA becomes Z zeta becomes ζ
ETA becomes H eta becomes η

THETA becomes Θ theta becomes θ
IOTA becomes I iota becomes ι

KAPPA becomes K kappa becomes κ
LAMBDA becomes Λ lambda becomes λ

MU becomes M mu becomes µ
NU becomes N nu becomes ν
XI becomes Ξ xi becomes ξ

OMICRON becomes O omicron becomes o
PI becomes Π pi becomes π

RHO becomes P rho becomes ρ
SIGMA becomes Σ sigma becomes σ

TAU becomes T tau becomes τ
UPSILON becomes Υ upsilon becomes υ

PHI becomes Φ phi becomes φ
CHI becomes X chi becomes χ
PSI becomes Ψ psi becomes ψ

OMEGA becomes Ω omega becomes ω

A restricted word that is not a short name specified by Fortress is compared to names of characters specified by the
Unicode Standard [27]. Because restricted words consist only of letters, digits and underscores, while Unicode names
may include hyphens and spaces (but not underscores), hyphens and spaces in the Unicode names are replaced by
underscores for this comparison. Specifically, if a restricted word is the official Unicode 5.0 name of a character with
hyphens and spaces replaced by underscores, it is replaced by that character. For any Unicode character other than
the control characters, there is a unique official Unicode 5.0 name not shared by any other Unicode character. Since
control characters are protected, they do not present a problem in this regard.

If there is no matching official Unicode 5.0 name, the restricted word is compared to the alternative names for char-
acters specified by the Unicode Standard, again with hyphens and spaces replaced by underscores, and converted to a

376

character with such a matching name. If more than one character has a matching alternative name, then the restricted
word is converted to the first such non-protected character (i.e., the one with the smallest code point). If there is no
matching alternative name, then the restricted word is compared to official Unicode 5.0 names and any alternative
names specified in the Unicode Standard, with underscores in place of hyphens and spaces, where any of the following
substrings may be omitted:

"LETTER_"
"DIGIT_"
"RADICAL_"
"NUMERAL_"

If there are multiple such substrings in a given name, any combination of them may be omitted. Again, if there are
multiple characters with matching abridged names, the restricted word is converted to the first such non-protected
character.

If the restricted word is not converted to a single Unicode character by any of the above rules, parts of it may be
converted as follows: If the restricted word begins with the short name (i.e., the name in the table above) of a Greek
letter followed by an underscore or a digit, or ends with the short name of a Greek letter that is preceded by an
underscore, or contains the short name of a Greek letter with an underscore on each side of it, then the short name of
the Greek letter is replaced by the Greek letter itself. In the same manner, the character sequence “micro” is replaced
with the character MICRO SIGN µ (U+00B5, which looks just like the Greek lowercase mu µ but is different). If a
word-part being thus replaced has an underscore to each side, and the underscore on the right is the last character of
the restricted word, then the underscore on the left is removed as the name is replaced; this ad hoc rule is for the sake
of the abbreviations of certain dimensional units, so that, for example, micro OMEGA is converted to µΩ , signifying
micro-ohms, and G OMEGA is converted to GΩ , signifying gigaohms. Here are some other examples:

alpha becomes α OMEGA13 becomes Ω13
alpha hat becomes α hat theta elephant becomes θ elephant

OMEGA becomes Ω XI becomes Ξ

E.2.3 Converting ASCII Symbol Sequences

For the sequences of characters other than restricted words, each is converted from left to right, with the longest
possible substring being converted at once, with one exception: The sequence “(<” is not converted if it is immediately
followed by any of the following characters: ‘<’, ’|’, ‘/’, ‘\’, ‘*’, or ‘.’. That is, with this one exception, the longest
shorthand beginning from the first character, if any, is converted first. Then, the longest shorthand beginning from the
next character of the string after replacement is converted, and so on. Here are the ASCII shorthands for some of the
characters we expect to be most frequently used:

[\ becomes J \] becomes K
-> becomes → => becomes ⇒
∼> becomes |-> becomes 7→
>= becomes ≥ <= becomes ≤

=/= becomes 6= ... becomes . . .
:= becomes :=

Although the characters with string literals are generally not subject to this step of ASCII conversion, They are if they
are part of a restricted-word escape sequence or a quoted-character escape sequence. See Section 5.10 for details.

E.2.4 Eliminating Ampersands

Finally, if an ampersand is adjacent to a sequence of characters that is changed by this step of ASCII conversion
(even if the sequence was only partly changed, as long as the character adjacent to the ampersand is changed), the

377

ampersand is removed after the transformation, unless the ampersand is the first or last non-whitespace character on
the line. Thus, the expression

(GREEK_SMALL_LETTER_PHI&GREEK_SMALL_LETTER_PSI +
GREEK_SMALL_LETTER_OMEGA&GREEK_SMALL_LETTER_LAMBDA)

is converted to:

(φψ + ωλ)

in which there are two identifiers, each consisting of two Greek letters. On the other hand,

(GREEK_SMALL_LETTER_PHI GREEK_SMALL_LETTER_PSI +
GREEK_SMALL_LETTER_OMEGA GREEK_SMALL_LETTER_LAMBDA)

is converted to:

(φ ψ + ω λ)

in which there are four identifiers.

Because we never convert to protected characters, and converted sequences consist only of protected characters, this
step is idempotent: repeated application has no effect beyond the first.

E.3 Apostrophe Replacement within Numerals

The last step of ASCII conversion simply replaces apostrophes with digit-group separators when they appear in words
that would otherwise be numerals. Specifically, consider any word that is not within a string literal (determined as
described in Section E.2.1), has only digits, letters, underscores and apostrophes, and neither begins nor ends with an
apostrophe or an underscore. Call such a word a proto-numeral. If a proto-numeral begins with a digit or ends with a
radix specifier (see Section 5.13), or if it is immediately followed by a ‘.’ and then a proto-numeral that ends with a
radix specifier, or it is immediately preceded by a ‘.’, which is immediately preceded by a proto-numeral that begins
with a digit, then replace each apostrophe in that proto-numeral with a digit-group separator.

E.4 Equivalence under ASCII Conversion

Two (valid) Fortress programs are equivalent under ASCII conversion if they are identical after ASCII conversion,
except for string literals (determined as described in Section E.2.1), and the converted programs have string literals
in exactly corresponding places, and corresponding string literals evaluate to the same string. This exception and
additional rule is necessary because string literals are not subject to ASCII conversion.

378

Appendix F

Operator Precedence, Chaining, and
Enclosure

This appendix contains the detailed rules for which Unicode 5.0 characters may be used as operators, which operators
form enclosing pairs, which operators may be chained, and what precedence relationships exist among the various
operators. (If no precedence relationship is stated explicitly for any given pair of operators, then there is no precedence
relationship between those two operators. Remember that precedence is not transitive in Fortress.)

In each of the character lists below, each line gives the Unicode codepoint, the full Unicode 5.0 name, a rendering of
the character in TEX (if possible), and any ASCII shorthand or short names for the character.

F.1 Bracket Pairs for Enclosing Operators

Here are the bracket pairs that may be used as enclosing operators. Note that there is one group of four brackets;
within that group, either left bracket may be paired with either right bracket to form an enclosing operator.

U+005B LEFT SQUARE BRACKET [
U+005D RIGHT SQUARE BRACKET]

U+007B LEFT CURLY BRACKET {
U+007D RIGHT CURLY BRACKET }
U+2045 LEFT SQUARE BRACKET WITH QUILL [./
U+2046 RIGHT SQUARE BRACKET WITH QUILL /.]

U+2308 LEFT CEILING d |/
U+2309 RIGHT CEILING e \|

U+230A LEFT FLOOR b |\
U+230B RIGHT FLOOR c /|

U+27C5 LEFT S-SHAPED BAG DELIMITER |.\
U+27C6 RIGHT S-SHAPED BAG DELIMITER /.|

U+27E8 MATHEMATICAL LEFT ANGLE BRACKET 〈 <|
U+27E9 MATHEMATICAL RIGHT ANGLE BRACKET 〉 |>

U+27EA MATHEMATICAL LEFT DOUBLE ANGLE BRACKET 〈〈 <<|
U+27EB MATHEMATICAL RIGHT DOUBLE ANGLE BRACKET 〉〉 |>>

379

U+2983 LEFT WHITE CURLY BRACKET {| {\
U+2984 RIGHT WHITE CURLY BRACKET |} \}

U+2985 LEFT WHITE PARENTHESIS (\
U+2986 RIGHT WHITE PARENTHESIS \)

U+2987 Z NOTATION LEFT IMAGE BRACKET (/
U+2988 Z NOTATION RIGHT IMAGE BRACKET /)

U+2989 Z NOTATION LEFT BINDING BRACKET <||
U+298A Z NOTATION RIGHT BINDING BRACKET ||>

U+298B LEFT SQUARE BRACKET WITH UNDERBAR [.\
U+298C RIGHT SQUARE BRACKET WITH UNDERBAR \.]

U+298D LEFT SQUARE BRACKET WITH TICK IN TOP CORNER [.//
U+298E RIGHT SQUARE BRACKET WITH TICK IN BOTTOM CORNER //.]

U+298F LEFT SQUARE BRACKET WITH TICK IN BOTTOM CORNER [.\\
U+2990 RIGHT SQUARE BRACKET WITH TICK IN TOP CORNER \\.]

U+2991 LEFT ANGLE BRACKET WITH DOT <.|
U+2992 RIGHT ANGLE BRACKET WITH DOT |.>

U+2993 LEFT ARC LESS-THAN BRACKET (<
U+2994 RIGHT ARC GREATER-THAN BRACKET >)

U+2995 DOUBLE LEFT ARC GREATER-THAN BRACKET ((>
U+2996 DOUBLE RIGHT ARC LESS-THAN BRACKET <))

U+2997 LEFT BLACK TORTOISE SHELL BRACKET [*/
U+2998 RIGHT BLACK TORTOISE SHELL BRACKET /*]

U+29D8 LEFT WIGGLY FENCE [/\/
U+29D9 RIGHT WIGGLY FENCE /\/]

U+29DA LEFT DOUBLE WIGGLY FENCE [/\/\/
U+29DB RIGHT DOUBLE WIGGLY FENCE /\/\/]

U+29FC LEFT-POINTING CURVED ANGLE BRACKET <|||
U+29FD RIGHT-POINTING CURVED ANGLE BRACKET |||>

U+300C LEFT CORNER BRACKET p </
U+300D RIGHT CORNER BRACKET q \>

U+300E LEFT WHITE CORNER BRACKET <</
U+300F RIGHT WHITE CORNER BRACKET \>>

U+3010 LEFT BLACK LENTICULAR BRACKET {*/
U+3011 RIGHT BLACK LENTICULAR BRACKET /*}

U+3018 LEFT WHITE TORTOISE SHELL BRACKET [//
U+3014 LEFT TORTOISE SHELL BRACKET [/
U+3015 RIGHT TORTOISE SHELL BRACKET /]
U+3019 RIGHT WHITE TORTOISE SHELL BRACKET //]

U+3016 LEFT WHITE LENTICULAR BRACKET {/
U+3017 RIGHT WHITE LENTICULAR BRACKET /}

F.2 Vertical-Line Operators

The following are vertical-line operators:

380

U+007C VERTICAL LINE |
U+2016 DOUBLE VERTICAL LINE ‖ ||
U+2AF4 TRIPLE VERTICAL BAR BINARY RELATION |||

F.3 Arithmetic Operators

F.3.1 Multiplication and Division

The following are multiplication operators. Note that ASTERISK OPERATOR is always a multiplication operator;
ASTERISK is treated as a synonym for ASTERISK OPERATOR where appropriate, but ASTERISK also has other uses,
for example in the ASCII bracket encodings [*/ and /*] and {*/ and /*}.

U+002A ASTERISK *
U+00B7 MIDDLE DOT · DOT
U+00D7 MULTIPLICATION SIGN × TIMES BY
U+2217 ASTERISK OPERATOR ∗
U+228D MULTISET MULTIPLICATION

U+2297 CIRCLED TIMES ⊗ OTIMES
U+2299 CIRCLED DOT OPERATOR � ODOT
U+229B CIRCLED ASTERISK OPERATOR ~ CIRCLEDAST
U+22A0 SQUARED TIMES � BOXTIMES
U+22A1 SQUARED DOT OPERATOR � BOXDOT
U+22C5 DOT OPERATOR ·
U+29C6 SQUARED ASTERISK BOXAST
U+29D4 TIMES WITH LEFT HALF BLACK

U+29D5 TIMES WITH RIGHT HALF BLACK

U+2A2F VECTOR OR CROSS PRODUCT × CROSS
U+2A30 MULTIPLICATION SIGN WITH DOT ABOVE DOTTIMES
U+2A31 MULTIPLICATION SIGN WITH UNDERBAR

U+2A34 MULTIPLICATION SIGN IN LEFT HALF CIRCLE

U+2A35 MULTIPLICATION SIGN IN RIGHT HALF CIRCLE

U+2A36 CIRCLED MULTIPLICATION SIGN WITH CIRCUMFLEX ACCENT

U+2A37 MULTIPLICATION SIGN IN DOUBLE CIRCLE

U+2A3B MULTIPLICATION SIGN IN TRIANGLE TRITIMES

The following are division operators. Note that DIVISION SLASH is always a division operator; SOLIDUS is treated
as a synonym for DIVISION SLASH where appropriate, but SOLIDUS also has other uses, for example in the ASCII
bracket encodings (/ and /) and [/ and /] and {/ and /}.

U+002F SOLIDUS /
U+00F7 DIVISION SIGN ÷ DIV
U+2215 DIVISION SLASH /
U+2298 CIRCLED DIVISION SLASH � OSLASH
U+29B8 CIRCLED REVERSE SOLIDUS

U+29BC CIRCLED ANTICLOCKWISE-ROTATED DIVISION SIGN

U+29C4 SQUARED RISING DIAGONAL SLASH BOXSLASH
U+29F5 REVERSE SOLIDUS OPERATOR \
U+29F8 BIG SOLIDUS

/
U+29F9 BIG REVERSE SOLIDUS

∖
U+2A38 CIRCLED DIVISION SIGN ODIV

381

U+2AFD DOUBLE SOLIDUS OPERATOR // //
U+2AFB TRIPLE SOLIDUS BINARY RELATION ///

Note also that per is treated as a division operator.

F.3.2 Addition and Subtraction

The following three operators have the same precedence and may be mixed.

U+002B PLUS SIGN +
U+002D HYPHEN-MINUS −
U+2212 MINUS SIGN −

They each have lower precedence than any of the following multiplication and division operators:

U+002A ASTERISK *
U+002F SOLIDUS /
U+00B7 MIDDLE DOT · DOT
U+00D7 MULTIPLICATION SIGN × TIMES
U+00F7 DIVISION SIGN ÷ DIV
U+2215 DIVISION SLASH /
U+2217 ASTERISK OPERATOR ∗
U+22C5 DOT OPERATOR ·
U+2A2F VECTOR OR CROSS PRODUCT × CROSS

The following two operators have the same precedence and may be mixed.

U+2214 DOT PLUS u DOTPLUS
U+2238 DOT MINUS −̇ DOTMINUS

They each have lower precedence than this multiplication operator:

U+2A30 MULTIPLICATION SIGN WITH DOT ABOVE DOTTIMES

The following two operators have the same precedence and may be mixed.

U+2A25 PLUS SIGN WITH DOT BELOW

U+2A2A MINUS SIGN WITH DOT BELOW

The following two operators have the same precedence and may be mixed.

U+2A39 PLUS SIGN IN TRIANGLE TRIPLUS
U+2A3A MINUS SIGN IN TRIANGLE TRIMINUS

They each have lower precedence than this multiplication operator:

U+2A3B MULTIPLICATION SIGN IN TRIANGLE TRITIMES

The following two operators have the same precedence and may be mixed.

U+2295 CIRCLED PLUS ⊕ OPLUS
U+2296 CIRCLED MINUS 	 OMINUS

They each have lower precedence than any of the following multiplication and division operators:

U+2297 CIRCLED TIMES ⊗ OTIMES
U+2298 CIRCLED DIVISION SLASH � OSLASH
U+2299 CIRCLED DOT OPERATOR � ODOT
U+229B CIRCLED ASTERISK OPERATOR ~ CIRCLEDAST
U+2A38 CIRCLED DIVISION SIGN ODIV

382

The following two operators have the same precedence and may be mixed.

U+229E SQUARED PLUS � BOXPLUS
U+229F SQUARED MINUS � BOXMINUS

They each have lower precedence than any of these multiplication or division operators:

U+22A0 SQUARED TIMES � BOXTIMES
U+22A1 SQUARED DOT OPERATOR � BOXDOT
U+29C4 SQUARED RISING DIAGONAL SLASH BOXSLASH
U+29C6 SQUARED ASTERISK BOXAST

These are other miscellaneous addition and subtraction operators:

U+00B1 PLUS-MINUS SIGN ±
U+2213 MINUS-OR-PLUS SIGN ∓
U+2242 MINUS TILDE

U+2A22 PLUS SIGN WITH SMALL CIRCLE ABOVE
◦
+

U+2A23 PLUS SIGN WITH CIRCUMFLEX ACCENT ABOVE +̂
U+2A24 PLUS SIGN WITH TILDE ABOVE

∼
+

U+2A26 PLUS SIGN WITH TILDE BELOW +
∼

U+2A27 PLUS SIGN WITH SUBSCRIPT TWO +2

U+2A28 PLUS SIGN WITH BLACK TRIANGLE

U+2A29 MINUS SIGN WITH COMMA ABOVE
,
−

U+2A2B MINUS SIGN WITH FALLING DOTS

U+2A2C MINUS SIGN WITH RISING DOTS

U+2A2D PLUS SIGN IN LEFT HALF CIRCLE

U+2A2E PLUS SIGN IN RIGHT HALF CIRCLE

F.3.3 Miscellaneous Arithmetic Operators

The operators MAX, MIN, REM, MOD, GCD, LCM, CHOOSE, and per, none of which corresponds to a single Unicode
character, are considered to be arithmetic operators, having higher precedence than certain relational operators, as
described in a later section.

F.3.4 Set Intersection, Union, and Difference

The following are the set intersection operators:

U+2229 INTERSECTION ∩ CAP INTERSECT
U+22D2 DOUBLE INTERSECTION e CAPCAP
U+2A40 INTERSECTION WITH DOT

U+2A43 INTERSECTION WITH OVERBAR ∩
U+2A44 INTERSECTION WITH LOGICAL AND

U+2A4B INTERSECTION BESIDE AND JOINED WITH INTERSECTION

U+2A4D CLOSED INTERSECTION WITH SERIFS

U+2ADB TRANSVERSAL INTERSECTION

The following are the set union operators:

383

U+222A UNION ∪ CUP UNION
U+228E MULTISET UNION] UPLUS
U+22D3 DOUBLE UNION d CUPCUP
U+2A41 UNION WITH MINUS SIGN

U+2A42 UNION WITH OVERBAR ∪
U+2A45 UNION WITH LOGICAL OR

U+2A4A UNION BESIDE AND JOINED WITH UNION

U+2A4C CLOSED UNION WITH SERIFS

U+2A50 CLOSED UNION WITH SERIFS AND SMASH PRODUCT

They each have lower precedence than any of the set intersection operators.

This is a miscellaneous set operator:

U+2216 SET MINUS \ SETMINUS

F.3.5 Square Arithmetic Operators

The following are the square intersection operators:

U+2293 SQUARE CAP u SQCAP
U+2A4E DOUBLE SQUARE INTERSECTION SQCAPCAP

The following are the square union operators:

U+2294 SQUARE CUP t SQCUP
U+2A4F DOUBLE SQUARE UNION SQCUPCUP

They each have lower precedence than either of the square intersection operators.

F.3.6 Curly Arithmetic Operators

The following is the curly intersection operator:

U+22CF CURLY LOGICAL AND f CURLYAND

The following is the curly union operator:

U+22CE CURLY LOGICAL OR g CURLYOR

It has lower precedence than the curly intersection operator.

F.4 Relational Operators

F.4.1 Equivalence and Inequivalence Operators

Every operator listed in this section has lower precedence than any operator listed in Section F.3.

The following are equivalence operators. They may be chained. Moreover, they may be chained with any other single
group of chainable relational operators, as described in later sections.

384

U+003D EQUALS SIGN = EQ
U+2243 ASYMPTOTICALLY EQUAL TO ' SIMEQ
U+2245 APPROXIMATELY EQUAL TO ∼=
U+2246 APPROXIMATELY BUT NOT ACTUALLY EQUAL TO

U+2247 NEITHER APPROXIMATELY NOR ACTUALLY EQUAL TO �
U+2248 ALMOST EQUAL TO ≈ APPROX
U+224A ALMOST EQUAL OR EQUAL TO u APPROXEQ
U+224C ALL EQUAL TO

U+224D EQUIVALENT TO �
U+224E GEOMETRICALLY EQUIVALENT TO m BUMPEQV
U+2251 GEOMETRICALLY EQUAL TO + DOTEQDOT
U+2252 APPROXIMATELY EQUAL TO OR THE IMAGE OF ;
U+2253 IMAGE OF OR APPROXIMATELY EQUAL TO :
U+2256 RING IN EQUAL TO P EQRING
U+2257 RING EQUAL TO $ RINGEQ
U+225B STAR EQUALS

U+225C DELTA EQUAL TO , EQDEL
U+225D EQUAL TO BY DEFINITION EQDEF
U+225F QUESTIONED EQUAL TO

U+2261 IDENTICAL TO ≡ EQV EQUIV
U+2263 STRICTLY EQUIVALENT TO === SEQV
U+229C CIRCLED EQUALS

U+22CD REVERSED TILDE EQUALS w
U+22D5 EQUAL AND PARALLEL TO

U+29E3 EQUALS SIGN AND SLANTED PARALLEL

U+29E4 EQUALS SIGN AND SLANTED PARALLEL WITH TILDE ABOVE

U+29E5 IDENTICAL TO AND SLANTED PARALLEL

U+2A66 EQUALS SIGN WITH DOT BELOW

U+2A67 IDENTICAL WITH DOT ABOVE

U+2A6C SIMILAR MINUS SIMILAR

U+2A6E EQUALS WITH ASTERISK

U+2A6F ALMOST EQUAL TO WITH CIRCUMFLEX ACCENT

U+2A70 APPROXIMATELY EQUAL OR EQUAL TO

U+2A71 EQUALS SIGN ABOVE PLUS SIGN

U+2A72 PLUS SIGN ABOVE EQUALS SIGN

U+2A73 EQUALS SIGN ABOVE TILDE OPERATOR

U+2A75 TWO CONSECUTIVE EQUALS SIGNS

U+2A76 THREE CONSECUTIVE EQUALS SIGNS

U+2A77 EQUALS SIGN WITH TWO DOTS ABOVE AND TWO DOTS BELOW

U+2A78 EQUIVALENT WITH FOUR DOTS ABOVE

U+2AAE EQUALS SIGN WITH BUMPY ABOVE

U+FE66 SMALL EQUALS SIGN

U+FF1D FULLWIDTH EQUALS SIGN

The following are inequivalence operators. They may not be chained.

U+2244 NOT ASYMPTOTICALLY EQUAL TO 6' NSIMEQ
U+2249 NOT ALMOST EQUAL TO 6≈ NAPPROX
U+2260 NOT EQUAL TO 6= =/= NE
U+2262 NOT IDENTICAL TO 6≡ NEQV
U+226D NOT EQUIVALENT TO 6�

385

F.4.2 Plain Comparison Operators

Every operator listed in this section has lower precedence than any operator listed in Sections F.3.1, F.3.2, and F.3.3.

The following are less-than operators. They may be mixed and chained with each other and with equivalence operators
(see Section F.4.1).

U+003C LESS-THAN SIGN < LT
U+2264 LESS-THAN OR EQUAL TO ≤ <= LE
U+2266 LESS-THAN OVER EQUAL TO 5
U+2268 LESS-THAN BUT NOT EQUAL TO �
U+226A MUCH LESS-THAN � <<
U+2272 LESS-THAN OR EQUIVALENT TO .
U+22D6 LESS-THAN WITH DOT l DOTLT
U+22D8 VERY MUCH LESS-THAN ≪ <<<
U+22DC EQUAL TO OR LESS-THAN

U+22E6 LESS-THAN BUT NOT EQUIVALENT TO �
U+29C0 CIRCLED LESS-THAN

U+2A79 LESS-THAN WITH CIRCLE INSIDE

U+2A7B LESS-THAN WITH QUESTION MARK ABOVE

U+2A7D LESS-THAN OR SLANTED EQUAL TO

U+2A7F LESS-THAN OR SLANTED EQUAL TO WITH DOT INSIDE

U+2A81 LESS-THAN OR SLANTED EQUAL TO WITH DOT ABOVE

U+2A83 LESS-THAN OR SLANTED EQUAL TO WITH DOT ABOVE RIGHT

U+2A85 LESS-THAN OR APPROXIMATE

U+2A87 LESS-THAN AND SINGLE-LINE NOT EQUAL TO

U+2A89 LESS-THAN AND NOT APPROXIMATE

U+2A8D LESS-THAN ABOVE SIMILAR OR EQUAL

U+2A95 SLANTED EQUAL TO OR LESS-THAN

U+2A97 SLANTED EQUAL TO OR LESS-THAN WITH DOT INSIDE

U+2A99 DOUBLE-LINE EQUAL TO OR LESS-THAN

U+2A9B DOUBLE-LINE SLANTED EQUAL TO OR LESS-THAN

U+2A9D SIMILAR OR LESS-THAN

U+2A9F SIMILAR ABOVE LESS-THAN ABOVE EQUALS SIGN

U+2AA1 DOUBLE NESTED LESS-THAN

U+2AA3 DOUBLE NESTED LESS-THAN WITH UNDERBAR

U+2AA6 LESS-THAN CLOSED BY CURVE

U+2AA8 LESS-THAN CLOSED BY CURVE ABOVE SLANTED EQUAL

U+2AF7 TRIPLE NESTED LESS-THAN

U+2AF9 DOUBLE-LINE SLANTED LESS-THAN OR EQUAL TO

U+FE64 SMALL LESS-THAN SIGN

U+FF1C FULLWIDTH LESS-THAN SIGN

The following are greater-than operators. They may be mixed and chained with each other and with equivalence
operators (see Section F.4.1).

U+003E GREATER-THAN SIGN > GT
U+2265 GREATER-THAN OR EQUAL TO ≥ >= GE
U+2267 GREATER-THAN OVER EQUAL TO =
U+2269 GREATER-THAN BUT NOT EQUAL TO 	
U+226B MUCH GREATER-THAN � >>
U+2273 GREATER-THAN OR EQUIVALENT TO &
U+22D7 GREATER-THAN WITH DOT m DOTGT
U+22D9 VERY MUCH GREATER-THAN ≫ >>>

386

U+22DD EQUAL TO OR GREATER-THAN

U+22E7 GREATER-THAN BUT NOT EQUIVALENT TO �
U+29C1 CIRCLED GREATER-THAN

U+2A7A GREATER-THAN WITH CIRCLE INSIDE

U+2A7C GREATER-THAN WITH QUESTION MARK ABOVE

U+2A7E GREATER-THAN OR SLANTED EQUAL TO

U+2A80 GREATER-THAN OR SLANTED EQUAL TO WITH DOT INSIDE

U+2A82 GREATER-THAN OR SLANTED EQUAL TO WITH DOT ABOVE

U+2A84 GREATER-THAN OR SLANTED EQUAL TO WITH DOT ABOVE LEFT

U+2A86 GREATER-THAN OR APPROXIMATE

U+2A88 GREATER-THAN AND SINGLE-LINE NOT EQUAL TO

U+2A8A GREATER-THAN AND NOT APPROXIMATE

U+2A8E GREATER-THAN ABOVE SIMILAR OR EQUAL

U+2A96 SLANTED EQUAL TO OR GREATER-THAN

U+2A98 SLANTED EQUAL TO OR GREATER-THAN WITH DOT INSIDE

U+2A9A DOUBLE-LINE EQUAL TO OR GREATER-THAN

U+2A9C DOUBLE-LINE SLANTED EQUAL TO OR GREATER-THAN

U+2A9E SIMILAR OR GREATER-THAN

U+2AA0 SIMILAR ABOVE GREATER-THAN ABOVE EQUALS SIGN

U+2AA2 DOUBLE NESTED GREATER-THAN

U+2AA7 GREATER-THAN CLOSED BY CURVE

U+2AA9 GREATER-THAN CLOSED BY CURVE ABOVE SLANTED EQUAL

U+2AF8 TRIPLE NESTED GREATER-THAN

U+2AFA DOUBLE-LINE SLANTED GREATER-THAN OR EQUAL TO

U+FE65 SMALL GREATER-THAN SIGN

U+FF1E FULLWIDTH GREATER-THAN SIGN

The following are miscellaneous plain comparison operators. They may not be mixed or chained.

U+226E NOT LESS-THAN ≮ NLT
U+226F NOT GREATER-THAN ≯ NGT
U+2270 NEITHER LESS-THAN NOR EQUAL TO � NLE
U+2271 NEITHER GREATER-THAN NOR EQUAL TO � NGE
U+2274 NEITHER LESS-THAN NOR EQUIVALENT TO 6.
U+2275 NEITHER GREATER-THAN NOR EQUIVALENT TO 6&
U+2276 LESS-THAN OR GREATER-THAN ≶
U+2277 GREATER-THAN OR LESS-THAN ≷
U+2278 NEITHER LESS-THAN NOR GREATER-THAN

U+2279 NEITHER GREATER-THAN NOR LESS-THAN

U+22DA LESS-THAN EQUAL TO OR GREATER-THAN Q
U+22DB GREATER-THAN EQUAL TO OR LESS-THAN R
U+2A8B LESS-THAN ABOVE DOUBLE-LINE EQUAL ABOVE GREATER-THAN

U+2A8C GREATER-THAN ABOVE DOUBLE-LINE EQUAL ABOVE LESS-THAN

U+2A8F LESS-THAN ABOVE SIMILAR ABOVE GREATER-THAN

U+2A90 GREATER-THAN ABOVE SIMILAR ABOVE LESS-THAN

U+2A91 LESS-THAN ABOVE GREATER-THAN ABOVE DOUBLE-LINE EQUAL

U+2A92 GREATER-THAN ABOVE LESS-THAN ABOVE DOUBLE-LINE EQUAL

U+2A93 LESS-THAN ABOVE SLANTED EQUAL ABOVE GREATER-THAN ABOVE SLANTED EQUAL

U+2A94 GREATER-THAN ABOVE SLANTED EQUAL ABOVE LESS-THAN ABOVE SLANTED EQUAL

U+2AA4 GREATER-THAN OVERLAPPING LESS-THAN

U+2AA5 GREATER-THAN BESIDE LESS-THAN

The following are not really comparison operators, but it is convenient to list them here because they also have lower

387

precedence than any operator listed in Sections F.3.1, F.3.2, and F.3.3:

U+0023 NUMBER SIGN #
U+003A COLON :

F.4.3 Set Comparison Operators

Every operator listed in this section has lower precedence than any operator listed in Section F.3.4.

The following are subset comparison operators. They may be mixed and chained with each other and with equivalence
operators (see Section F.4.1).

U+2282 SUBSET OF ⊂ SUBSET
U+2286 SUBSET OF OR EQUAL TO ⊆ SUBSETEQ
U+228A SUBSET OF WITH NOT EQUAL TO (SUBSETNEQ
U+22D0 DOUBLE SUBSET b SUBSUB
U+27C3 OPEN SUBSET

U+2ABD SUBSET WITH DOT

U+2ABF SUBSET WITH PLUS SIGN BELOW

U+2AC1 SUBSET WITH MULTIPLICATION SIGN BELOW

U+2AC3 SUBSET OF OR EQUAL TO WITH DOT ABOVE

U+2AC5 SUBSET OF ABOVE EQUALS SIGN

U+2AC7 SUBSET OF ABOVE TILDE OPERATOR

U+2AC9 SUBSET OF ABOVE ALMOST EQUAL TO

U+2ACB SUBSET OF ABOVE NOT EQUAL TO

U+2ACF CLOSED SUBSET

U+2AD1 CLOSED SUBSET OR EQUAL TO

U+2AD5 SUBSET ABOVE SUBSET

The following are superset comparison operators. They may be mixed and chained with each other and with equiva-
lence operators (see Section F.4.1).

U+2283 SUPERSET OF ⊃ SUPSET
U+2287 SUPERSET OF OR EQUAL TO ⊇ SUPSETEQ
U+228B SUPERSET OF WITH NOT EQUAL TO) SUPSETNEQ
U+22D1 DOUBLE SUPERSET c SUPSUP
U+27C4 OPEN SUPERSET

U+2ABE SUPERSET WITH DOT

U+2AC0 SUPERSET WITH PLUS SIGN BELOW

U+2AC2 SUPERSET WITH MULTIPLICATION SIGN BELOW

U+2AC4 SUPERSET OF OR EQUAL TO WITH DOT ABOVE

U+2AC6 SUPERSET OF ABOVE EQUALS SIGN

U+2AC8 SUPERSET OF ABOVE TILDE OPERATOR

U+2ACA SUPERSET OF ABOVE ALMOST EQUAL TO

U+2ACC SUPERSET OF ABOVE NOT EQUAL TO

U+2AD0 CLOSED SUPERSET

U+2AD2 CLOSED SUPERSET OR EQUAL TO

U+2AD6 SUPERSET ABOVE SUPERSET

The following are miscellaneous set comparison operators. They may not be mixed or chained.

U+2284 NOT A SUBSET OF 6⊂ NSUBSET
U+2285 NOT A SUPERSET OF 6⊃ NSUPSET
U+2288 NEITHER A SUBSET OF NOR EQUAL TO * NSUBSETEQ

388

U+2289 NEITHER A SUPERSET OF NOR EQUAL TO + NSUPSETEQ
U+2AD3 SUBSET ABOVE SUPERSET

U+2AD4 SUPERSET ABOVE SUBSET

U+2AD7 SUPERSET BESIDE SUBSET

U+2AD8 SUPERSET BESIDE AND JOINED BY DASH WITH SUBSET

F.4.4 Square Comparison Operators

Every operator listed in this section has lower precedence than any operator listed in Section F.3.5.

The following are square “image of” comparison operators. They may be mixed and chained with each other and with
equivalence operators (see Section F.4.1).

U+228F SQUARE IMAGE OF @ SQSUBSET
U+2291 SQUARE IMAGE OF OR EQUAL TO v SQSUBSETEQ
U+22E4 SQUARE IMAGE OF OR NOT EQUAL TO

The following are square “original of” comparison operators. They may be mixed and chained with each other and
with equivalence operators (see Section F.4.1).

U+2290 SQUARE ORIGINAL OF A SQSUPSET
U+2292 SQUARE ORIGINAL OF OR EQUAL TO w SQSUPSETEQ
U+22E5 SQUARE ORIGINAL OF OR NOT EQUAL TO

The following are miscellaneous square comparison operators. They may not be mixed or chained.

U+22E2 NOT SQUARE IMAGE OF OR EQUAL TO 6v
U+22E3 NOT SQUARE ORIGINAL OF OR EQUAL TO 6w

F.4.5 Curly Comparison Operators

Every operator listed in this section has lower precedence than any operator listed in Section F.3.6.

The following are curly “precedes” comparison operators. They may be mixed and chained with each other and with
equivalence operators (see Section F.4.1).

U+227A PRECEDES ≺ PREC
U+227C PRECEDES OR EQUAL TO 4 PRECEQ
U+227E PRECEDES OR EQUIVALENT TO - PRECSIM
U+22B0 PRECEDES UNDER RELATION

U+22DE EQUAL TO OR PRECEDES 2 EQPREC
U+22E8 PRECEDES BUT NOT EQUIVALENT TO � PRECNSIM
U+2AAF PRECEDES ABOVE SINGLE-LINE EQUALS SIGN

U+2AB1 PRECEDES ABOVE SINGLE-LINE NOT EQUAL TO

U+2AB3 PRECEDES ABOVE EQUALS SIGN

U+2AB5 PRECEDES ABOVE NOT EQUAL TO

U+2AB7 PRECEDES ABOVE ALMOST EQUAL TO

U+2AB9 PRECEDES ABOVE NOT ALMOST EQUAL TO

U+2ABB DOUBLE PRECEDES

The following are curly “succeeds” comparison operators. They may be mixed and chained with each other and with
equivalence operators (see Section F.4.1).

389

U+227B SUCCEEDS � SUCC
U+227D SUCCEEDS OR EQUAL TO < SUCCEQ
U+227F SUCCEEDS OR EQUIVALENT TO % SUCCSIM
U+22B1 SUCCEEDS UNDER RELATION

U+22DF EQUAL TO OR SUCCEEDS 3 EQSUCC
U+22E9 SUCCEEDS BUT NOT EQUIVALENT TO � SUCCNSIM
U+2AB0 SUCCEEDS ABOVE SINGLE-LINE EQUALS SIGN

U+2AB2 SUCCEEDS ABOVE SINGLE-LINE NOT EQUAL TO

U+2AB4 SUCCEEDS ABOVE EQUALS SIGN

U+2AB6 SUCCEEDS ABOVE NOT EQUAL TO

U+2AB8 SUCCEEDS ABOVE ALMOST EQUAL TO

U+2ABA SUCCEEDS ABOVE NOT ALMOST EQUAL TO

U+2ABC DOUBLE SUCCEEDS

The following are miscellaneous curly comparison operators. They may not be mixed or chained.

U+2280 DOES NOT PRECEDE ⊀ NPREC
U+2281 DOES NOT SUCCEED � NSUCC
U+22E0 DOES NOT PRECEDE OR EQUAL 64
U+22E1 DOES NOT SUCCEED OR EQUAL 6<

F.4.6 Triangular Comparison Operators

The following are triangular “subgroup” comparison operators. They may be mixed and chained with each other and
with equivalence operators (see Section F.4.1).

U+22B2 NORMAL SUBGROUP OF C
U+22B4 NORMAL SUBGROUP OF OR EQUAL TO E

The following are triangular “contains as subgroup” comparison operators. They may be mixed and chained with each
other and with equivalence operators (see Section F.4.1).

U+22B3 CONTAINS AS NORMAL SUBGROUP B
U+22B5 CONTAINS AS NORMAL SUBGROUP OR EQUAL TO D

The following are miscellaneous triangular comparison operators. They may not be mixed or chained.

U+22EA NOT NORMAL SUBGROUP OF 6
U+22EB DOES NOT CONTAIN AS NORMAL SUBGROUP 7
U+22EC NOT NORMAL SUBGROUP OF OR EQUAL TO 5
U+22ED DOES NOT CONTAIN AS NORMAL SUBGROUP OR EQUAL 4

F.4.7 Chickenfoot Comparison Operators

The following are chickenfoot “smaller than” comparison operators. They may be mixed and chained with each other
and with equivalence operators (see Section F.4.1).

U+2AAA SMALLER THAN <− SMALLER
U+2AAC SMALLER THAN OR EQUAL TO ≤− SMALLEREQ

The following are chickenfoot “larger than” comparison operators. They may be mixed and chained with each other
and with equivalence operators (see Section F.4.1).

U+2AAB LARGER THAN −> LARGER
U+2AAD LARGER THAN OR EQUAL TO −≥ LARGEREQ

390

F.4.8 Miscellaneous Relational Operators

The following operators are considered to be relational operators, having higher precedence than certain boolean
operators, as described in a later section.

U+2208 ELEMENT OF ∈ IN
U+2209 NOT AN ELEMENT OF /∈ NOTIN
U+220A SMALL ELEMENT OF ∈
U+220B CONTAINS AS MEMBER 3 CONTAINS
U+220C DOES NOT CONTAIN AS MEMBER 63
U+220D SMALL CONTAINS AS MEMBER 3
U+22F2 ELEMENT OF WITH LONG HORIZONTAL STROKE

U+22F3 ELEMENT OF WITH VERTICAL BAR AT END OF HORIZONTAL STROKE

U+22F4 SMALL ELEMENT OF WITH VERTICAL BAR AT END OF HORIZONTAL STROKE

U+22F5 ELEMENT OF WITH DOT ABOVE ∈̇
U+22F6 ELEMENT OF WITH OVERBAR ∈
U+22F7 SMALL ELEMENT OF WITH OVERBAR ∈
U+22F8 ELEMENT OF WITH UNDERBAR ∈
U+22F9 ELEMENT OF WITH TWO HORIZONTAL STROKES

U+22FA CONTAINS WITH LONG HORIZONTAL STROKE

U+22FB CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE

U+22FC SMALL CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE

U+22FD CONTAINS WITH OVERBAR 3
U+22FE SMALL CONTAINS WITH OVERBAR 3
U+22FF Z NOTATION BAG MEMBERSHIP

F.5 Boolean Operators

Every operator listed in this section has lower precedence than any operator listed in Section F.4.

The following are the Boolean conjunction operators:

U+2227 LOGICAL AND ∧ AND
U+27D1 AND WITH DOT

U+2A51 LOGICAL AND WITH DOT ABOVE ∧̇
U+2A53 DOUBLE LOGICAL AND

U+2A55 TWO INTERSECTING LOGICAL AND ∧∧
U+2A5A LOGICAL AND WITH MIDDLE STEM

U+2A5C LOGICAL AND WITH HORIZONTAL DASH

U+2A5E LOGICAL AND WITH DOUBLE OVERBAR

U+2A60 LOGICAL AND WITH DOUBLE UNDERBAR

The following are the Boolean disjunction operators:

U+2228 LOGICAL OR ∨ OR
U+2A52 LOGICAL OR WITH DOT ABOVE ∨̇
U+2A54 DOUBLE LOGICAL OR

U+2A56 TWO INTERSECTING LOGICAL OR ∨∨
U+2A5B LOGICAL OR WITH MIDDLE STEM

U+2A5D LOGICAL OR WITH HORIZONTAL DASH

U+2A62 LOGICAL OR WITH DOUBLE OVERBAR

U+2A63 LOGICAL OR WITH DOUBLE UNDERBAR

391

They each have lower precedence than any of the Boolean conjunction operators.

The following are miscellaneous Boolean operators:

U+2192 RIGHTWARDS ARROW → -> IMPLIES
U+2194 LEFT RIGHT ARROW ↔ <-> IFF
U+22BB XOR Y
U+22BC NAND Z
U+22BD NOR ∨

F.6 Other Operators

Each of the following operators has no defined precedence relationships to any of the other operators listed in this
appendix.

U+0021 EXCLAMATION MARK !
U+0024 DOLLAR SIGN $
U+0025 PERCENT SIGN %
U+003F QUESTION MARK ?
U+0040 COMMERCIAL AT @
U+005E CIRCUMFLEX ACCENT ˆ
U+007E TILDE ˜
U+00A1 INVERTED EXCLAMATION MARK ¡
U+00A2 CENT SIGN CENTS
U+00A3 POUND SIGN

U+00A4 CURRENCY SIGN

U+00A5 YEN SIGN

U+00A6 BROKEN BAR

U+00AC NOT SIGN ¬ NOT
U+00B0 DEGREE SIGN ◦ DEGREES
U+00BF INVERTED QUESTION MARK ¿
U+203C DOUBLE EXCLAMATION MARK !! !!
U+2190 LEFTWARDS ARROW ← <-
U+2191 UPWARDS ARROW ↑ UPARROW
U+2193 DOWNWARDS ARROW ↓ DOWNARROW
U+2195 UP DOWN ARROW l UPDOWNARROW
U+2196 NORTH WEST ARROW ↖ NWARROW
U+2197 NORTH EAST ARROW ↗ NEARROW
U+2198 SOUTH EAST ARROW ↘ SEARROW
U+2199 SOUTH WEST ARROW ↙ SWARROW
U+219A LEFTWARDS ARROW WITH STROKE 8 <-/-
U+219B RIGHTWARDS ARROW WITH STROKE 9 -/->
U+219C LEFTWARDS WAVE ARROW

U+219D RIGHTWARDS WAVE ARROW LEADSTO
U+219E LEFTWARDS TWO HEADED ARROW

U+219F UPWARDS TWO HEADED ARROW

U+21A0 RIGHTWARDS TWO HEADED ARROW

U+21A1 DOWNWARDS TWO HEADED ARROW

U+21A2 LEFTWARDS ARROW WITH TAIL

U+21A3 RIGHTWARDS ARROW WITH TAIL

U+21A4 LEFTWARDS ARROW FROM BAR

392

U+21A5 UPWARDS ARROW FROM BAR

U+21A7 DOWNWARDS ARROW FROM BAR

U+21A8 UP DOWN ARROW WITH BASE

U+21A9 LEFTWARDS ARROW WITH HOOK

U+21AA RIGHTWARDS ARROW WITH HOOK

U+21AB LEFTWARDS ARROW WITH LOOP

U+21AC RIGHTWARDS ARROW WITH LOOP

U+21AD LEFT RIGHT WAVE ARROW

U+21AE LEFT RIGHT ARROW WITH STROKE

U+21AF DOWNWARDS ZIGZAG ARROW

U+21B0 UPWARDS ARROW WITH TIP LEFTWARDS

U+21B1 UPWARDS ARROW WITH TIP RIGHTWARDS

U+21B2 DOWNWARDS ARROW WITH TIP LEFTWARDS

U+21B3 DOWNWARDS ARROW WITH TIP RIGHTWARDS

U+21B4 RIGHTWARDS ARROW WITH CORNER DOWNWARDS

U+21B5 DOWNWARDS ARROW WITH CORNER LEFTWARDS

U+21B6 ANTICLOCKWISE TOP SEMICIRCLE ARROW

U+21B7 CLOCKWISE TOP SEMICIRCLE ARROW

U+21B8 NORTH WEST ARROW TO LONG BAR

U+21B9 LEFTWARDS ARROW TO BAR OVER RIGHTWARDS ARROW TO BAR

U+21BA ANTICLOCKWISE OPEN CIRCLE ARROW

U+21BB CLOCKWISE OPEN CIRCLE ARROW

U+21BC LEFTWARDS HARPOON WITH BARB UPWARDS ↼ LEFTHARPOONUP
U+21BD LEFTWARDS HARPOON WITH BARB DOWNWARDS ↽ LEFTHARPOONDOWN
U+21BE UPWARDS HARPOON WITH BARB RIGHTWARDS � UPHARPOONRIGHT
U+21BF UPWARDS HARPOON WITH BARB LEFTWARDS � UPHARPOONLEFT
U+21C0 RIGHTWARDS HARPOON WITH BARB UPWARDS ⇀ RIGHTHARPOONUP
U+21C1 RIGHTWARDS HARPOON WITH BARB DOWNWARDS ⇁ RIGHTHARPOONDOWN
U+21C2 DOWNWARDS HARPOON WITH BARB RIGHTWARDS � DOWNHARPOONRIGHT
U+21C3 DOWNWARDS HARPOON WITH BARB LEFTWARDS � DOWNHARPOONLEFT
U+21C4 RIGHTWARDS ARROW OVER LEFTWARDS ARROW � RIGHTLEFTARROWS
U+21C5 UPWARDS ARROW LEFTWARDS OF DOWNWARDS ARROW

U+21C6 LEFTWARDS ARROW OVER RIGHTWARDS ARROW � LEFTRIGHTARROWS
U+21C7 LEFTWARDS PAIRED ARROWS ⇔ LEFTLEFTARROWS
U+21C8 UPWARDS PAIRED ARROWS � UPUPARROWS
U+21C9 RIGHTWARDS PAIRED ARROWS ⇒ RIGHTRIGHTARROWS
U+21CA DOWNWARDS PAIRED ARROWS � DOWNDOWNARROWS
U+21CB LEFTWARDS HARPOON OVER RIGHTWARDS HARPOON

U+21CC RIGHTWARDS HARPOON OVER LEFTWARDS HARPOON
 RIGHTLEFTHARPOONS
U+21CD LEFTWARDS DOUBLE ARROW WITH STROKE :
U+21CE LEFT RIGHT DOUBLE ARROW WITH STROKE <
U+21CF RIGHTWARDS DOUBLE ARROW WITH STROKE ;
U+21D0 LEFTWARDS DOUBLE ARROW ⇐
U+21D1 UPWARDS DOUBLE ARROW ⇑
U+21D2 RIGHTWARDS DOUBLE ARROW ⇒ =>
U+21D3 DOWNWARDS DOUBLE ARROW ⇓
U+21D4 LEFT RIGHT DOUBLE ARROW ⇔ <=>
U+21D5 UP DOWN DOUBLE ARROW m
U+21D6 NORTH WEST DOUBLE ARROW

U+21D7 NORTH EAST DOUBLE ARROW

U+21D8 SOUTH EAST DOUBLE ARROW

U+21D9 SOUTH WEST DOUBLE ARROW

393

U+21DA LEFTWARDS TRIPLE ARROW W
U+21DB RIGHTWARDS TRIPLE ARROW V
U+21DC LEFTWARDS SQUIGGLE ARROW

U+21DD RIGHTWARDS SQUIGGLE ARROW
U+21DE UPWARDS ARROW WITH DOUBLE STROKE

U+21DF DOWNWARDS ARROW WITH DOUBLE STROKE

U+21E0 LEFTWARDS DASHED ARROW L99
U+21E1 UPWARDS DASHED ARROW

U+21E2 RIGHTWARDS DASHED ARROW 99K
U+21E3 DOWNWARDS DASHED ARROW

U+21E4 LEFTWARDS ARROW TO BAR

U+21E5 RIGHTWARDS ARROW TO BAR

U+21E6 LEFTWARDS WHITE ARROW

U+21E7 UPWARDS WHITE ARROW

U+21E8 RIGHTWARDS WHITE ARROW

U+21E9 DOWNWARDS WHITE ARROW

U+21EA UPWARDS WHITE ARROW FROM BAR

U+21EB UPWARDS WHITE ARROW ON PEDESTAL

U+21EC UPWARDS WHITE ARROW ON PEDESTAL WITH HORIZONTAL BAR

U+21ED UPWARDS WHITE ARROW ON PEDESTAL WITH VERTICAL BAR

U+21EE UPWARDS WHITE DOUBLE ARROW

U+21EF UPWARDS WHITE DOUBLE ARROW ON PEDESTAL

U+21F0 RIGHTWARDS WHITE ARROW FROM WALL

U+21F1 NORTH WEST ARROW TO CORNER

U+21F2 SOUTH EAST ARROW TO CORNER

U+21F3 UP DOWN WHITE ARROW

U+21F4 RIGHT ARROW WITH SMALL CIRCLE

U+21F5 DOWNWARDS ARROW LEFTWARDS OF UPWARDS ARROW

U+21F6 THREE RIGHTWARDS ARROWS

U+21F7 LEFTWARDS ARROW WITH VERTICAL STROKE

U+21F8 RIGHTWARDS ARROW WITH VERTICAL STROKE

U+21F9 LEFT RIGHT ARROW WITH VERTICAL STROKE

U+21FA LEFTWARDS ARROW WITH DOUBLE VERTICAL STROKE

U+21FB RIGHTWARDS ARROW WITH DOUBLE VERTICAL STROKE

U+21FC LEFT RIGHT ARROW WITH DOUBLE VERTICAL STROKE

U+21FD LEFTWARDS OPEN-HEADED ARROW

U+21FE RIGHTWARDS OPEN-HEADED ARROW

U+21FF LEFT RIGHT OPEN-HEADED ARROW

U+2201 COMPLEMENT {
U+2202 PARTIAL DIFFERENTIAL ∂ DEL
U+2204 THERE DOES NOT EXIST 6 ∃
U+2206 INCREMENT ∆
U+220F N-ARY PRODUCT

∏
PRODUCT

U+2210 N-ARY COPRODUCT
∐

COPRODUCT
U+2211 N-ARY SUMMATION

∑
SUM

U+2218 RING OPERATOR ◦ CIRC RING COMPOSE
U+2219 BULLET OPERATOR • BULLET
U+221A SQUARE ROOT

√
SQRT

U+221B CUBE ROOT CBRT
U+221C FOURTH ROOT FOURTHROOT
U+221D PROPORTIONAL TO ∝ PROPTO
U+2223 DIVIDES | DIVIDES

394

U+2224 DOES NOT DIVIDE -
U+2225 PARALLEL TO ‖ PARALLEL
U+2226 NOT PARALLEL TO ∦ NPARALLEL
U+222B INTEGRAL

∫
U+222C DOUBLE INTEGRAL

U+222D TRIPLE INTEGRAL

U+222E CONTOUR INTEGRAL
∮

U+222F SURFACE INTEGRAL

U+2230 VOLUME INTEGRAL

U+2231 CLOCKWISE INTEGRAL

U+2232 CLOCKWISE CONTOUR INTEGRAL

U+2233 ANTICLOCKWISE CONTOUR INTEGRAL

U+2234 THEREFORE ∴
U+2235 BECAUSE ∵
U+2236 RATIO

U+2237 PROPORTION

U+2239 EXCESS

U+223A GEOMETRIC PROPORTION

U+223B HOMOTHETIC

U+223C TILDE OPERATOR ∼
U+223D REVERSED TILDE v
U+223E INVERTED LAZY S

U+223F SINE WAVE

U+2240 WREATH PRODUCT o WREATH
U+2241 NOT TILDE �
U+224B TRIPLE TILDE

U+224F DIFFERENCE BETWEEN l BUMPEQ
U+2250 APPROACHES THE LIMIT

.= DOTEQ
U+2258 CORRESPONDS TO

U+2259 ESTIMATES

U+225A EQUIANGULAR TO

U+225E MEASURED BY

U+226C BETWEEN G
U+228C MULTISET

U+229A CIRCLED RING OPERATOR } CIRCLEDRING
U+229D CIRCLED DASH �
U+22A2 RIGHT TACK ` VDASH TURNSTILE
U+22A3 LEFT TACK a DASHV
U+22A6 ASSERTION `
U+22A7 MODELS �
U+22A8 TRUE |=
U+22A9 FORCES
U+22AA TRIPLE VERTICAL BAR RIGHT TURNSTILE �
U+22AB DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE

U+22AC DOES NOT PROVE 0
U+22AD NOT TRUE

U+22AE DOES NOT FORCE 1
U+22AF NEGATED DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE 3
U+22B6 ORIGINAL OF

U+22B7 IMAGE OF

U+22B8 MULTIMAP (
U+22B9 HERMITIAN CONJUGATE MATRIX

395

U+22BA INTERCALATE ᵀ
U+22BE RIGHT ANGLE WITH ARC

U+22BF RIGHT TRIANGLE

U+22C0 N-ARY LOGICAL AND
∧

BIGAND ALL
U+22C1 N-ARY LOGICAL OR

∨
BIGOR ANY

U+22C2 N-ARY INTERSECTION
⋂

BIGCAP BIGINTERSECT
U+22C3 N-ARY UNION

⋃
BIGCUP BIGUNION

U+22C4 DIAMOND OPERATOR � DIAMOND
U+22C6 STAR OPERATOR ? STAR
U+22C7 DIVISION TIMES >
U+22C8 BOWTIE ./
U+22C9 LEFT NORMAL FACTOR SEMIDIRECT PRODUCT n
U+22CA RIGHT NORMAL FACTOR SEMIDIRECT PRODUCT o
U+22CB LEFT SEMIDIRECT PRODUCT h
U+22CC RIGHT SEMIDIRECT PRODUCT i
U+22D4 PITCHFORK t
U+22EE VERTICAL ELLIPSIS

U+22EF MIDLINE HORIZONTAL ELLIPSIS

U+22F0 UP RIGHT DIAGONAL ELLIPSIS

U+22F1 DOWN RIGHT DIAGONAL ELLIPSIS

U+27C0 THREE DIMENSIONAL ANGLE

U+27C1 WHITE TRIANGLE CONTAINING SMALL WHITE TRIANGLE

U+27C2 PERPENDICULAR PERP
U+27D0 WHITE DIAMOND WITH CENTRED DOT

U+27D2 ELEMENT OF OPENING UPWARDS

U+27D3 LOWER RIGHT CORNER WITH DOT

U+27D4 UPPER LEFT CORNER WITH DOT

U+27D5 LEFT OUTER JOIN

U+27D6 RIGHT OUTER JOIN

U+27D7 FULL OUTER JOIN

U+27D8 LARGE UP TACK

U+27D9 LARGE DOWN TACK

U+27DA LEFT AND RIGHT DOUBLE TURNSTILE

U+27DB LEFT AND RIGHT TACK

U+27DC LEFT MULTIMAP

U+27DD LONG RIGHT TACK

U+27DE LONG LEFT TACK

U+27DF UP TACK WITH CIRCLE ABOVE

U+27E0 LOZENGE DIVIDED BY HORIZONTAL RULE

U+27E1 WHITE CONCAVE-SIDED DIAMOND

U+27E2 WHITE CONCAVE-SIDED DIAMOND WITH LEFTWARDS TICK

U+27E3 WHITE CONCAVE-SIDED DIAMOND WITH RIGHTWARDS TICK

U+27E4 WHITE SQUARE WITH LEFTWARDS TICK

U+27E5 WHITE SQUARE WITH RIGHTWARDS TICK

U+27F0 UPWARDS QUADRUPLE ARROW

U+27F1 DOWNWARDS QUADRUPLE ARROW

U+27F2 ANTICLOCKWISE GAPPED CIRCLE ARROW

U+27F3 CLOCKWISE GAPPED CIRCLE ARROW

U+27F4 RIGHT ARROW WITH CIRCLED PLUS

U+27F5 LONG LEFTWARDS ARROW

U+27F6 LONG RIGHTWARDS ARROW

U+27F7 LONG LEFT RIGHT ARROW

396

U+27F8 LONG LEFTWARDS DOUBLE ARROW

U+27F9 LONG RIGHTWARDS DOUBLE ARROW

U+27FA LONG LEFT RIGHT DOUBLE ARROW

U+27FB LONG LEFTWARDS ARROW FROM BAR

U+27FC LONG RIGHTWARDS ARROW FROM BAR

U+27FD LONG LEFTWARDS DOUBLE ARROW FROM BAR

U+27FE LONG RIGHTWARDS DOUBLE ARROW FROM BAR

U+27FF LONG RIGHTWARDS SQUIGGLE ARROW

U+2900 RIGHTWARDS TWO-HEADED ARROW WITH VERTICAL STROKE

U+2901 RIGHTWARDS TWO-HEADED ARROW WITH DOUBLE VERTICAL STROKE

U+2902 LEFTWARDS DOUBLE ARROW WITH VERTICAL STROKE

U+2903 RIGHTWARDS DOUBLE ARROW WITH VERTICAL STROKE

U+2904 LEFT RIGHT DOUBLE ARROW WITH VERTICAL STROKE

U+2905 RIGHTWARDS TWO-HEADED ARROW FROM BAR

U+2906 LEFTWARDS DOUBLE ARROW FROM BAR

U+2907 RIGHTWARDS DOUBLE ARROW FROM BAR

U+2908 DOWNWARDS ARROW WITH HORIZONTAL STROKE

U+2909 UPWARDS ARROW WITH HORIZONTAL STROKE

U+290A UPWARDS TRIPLE ARROW

U+290B DOWNWARDS TRIPLE ARROW

U+290C LEFTWARDS DOUBLE DASH ARROW

U+290D RIGHTWARDS DOUBLE DASH ARROW

U+290E LEFTWARDS TRIPLE DASH ARROW

U+290F RIGHTWARDS TRIPLE DASH ARROW

U+2910 RIGHTWARDS TWO-HEADED TRIPLE DASH ARROW

U+2911 RIGHTWARDS ARROW WITH DOTTED STEM

U+2912 UPWARDS ARROW TO BAR

U+2913 DOWNWARDS ARROW TO BAR

U+2914 RIGHTWARDS ARROW WITH TAIL WITH VERTICAL STROKE

U+2915 RIGHTWARDS ARROW WITH TAIL WITH DOUBLE VERTICAL STROKE

U+2916 RIGHTWARDS TWO-HEADED ARROW WITH TAIL

U+2917 RIGHTWARDS TWO-HEADED ARROW WITH TAIL WITH VERTICAL STROKE

U+2918 RIGHTWARDS TWO-HEADED ARROW WITH TAIL WITH DOUBLE VERTICAL STROKE

U+2919 LEFTWARDS ARROW-TAIL

U+291A RIGHTWARDS ARROW-TAIL

U+291B LEFTWARDS DOUBLE ARROW-TAIL

U+291C RIGHTWARDS DOUBLE ARROW-TAIL

U+291D LEFTWARDS ARROW TO BLACK DIAMOND

U+291E RIGHTWARDS ARROW TO BLACK DIAMOND

U+291F LEFTWARDS ARROW FROM BAR TO BLACK DIAMOND

U+2920 RIGHTWARDS ARROW FROM BAR TO BLACK DIAMOND

U+2921 NORTH WEST AND SOUTH EAST ARROW

U+2922 NORTH EAST AND SOUTH WEST ARROW

U+2923 NORTH WEST ARROW WITH HOOK

U+2924 NORTH EAST ARROW WITH HOOK

U+2925 SOUTH EAST ARROW WITH HOOK

U+2926 SOUTH WEST ARROW WITH HOOK

U+2927 NORTH WEST ARROW AND NORTH EAST ARROW

U+2928 NORTH EAST ARROW AND SOUTH EAST ARROW

U+2929 SOUTH EAST ARROW AND SOUTH WEST ARROW

U+292A SOUTH WEST ARROW AND NORTH WEST ARROW

U+292B RISING DIAGONAL CROSSING FALLING DIAGONAL

397

U+292C FALLING DIAGONAL CROSSING RISING DIAGONAL

U+292D SOUTH EAST ARROW CROSSING NORTH EAST ARROW

U+292E NORTH EAST ARROW CROSSING SOUTH EAST ARROW

U+292F FALLING DIAGONAL CROSSING NORTH EAST ARROW

U+2930 RISING DIAGONAL CROSSING SOUTH EAST ARROW

U+2931 NORTH EAST ARROW CROSSING NORTH WEST ARROW

U+2932 NORTH WEST ARROW CROSSING NORTH EAST ARROW

U+2933 WAVE ARROW POINTING DIRECTLY RIGHT

U+2934 ARROW POINTING RIGHTWARDS THEN CURVING UPWARDS

U+2935 ARROW POINTING RIGHTWARDS THEN CURVING DOWNWARDS

U+2936 ARROW POINTING DOWNWARDS THEN CURVING LEFTWARDS

U+2937 ARROW POINTING DOWNWARDS THEN CURVING RIGHTWARDS

U+2938 RIGHT-SIDE ARC CLOCKWISE ARROW

U+2939 LEFT-SIDE ARC ANTICLOCKWISE ARROW

U+293A TOP ARC ANTICLOCKWISE ARROW

U+293B BOTTOM ARC ANTICLOCKWISE ARROW

U+293C TOP ARC CLOCKWISE ARROW WITH MINUS

U+293D TOP ARC ANTICLOCKWISE ARROW WITH PLUS

U+293E LOWER RIGHT SEMICIRCULAR CLOCKWISE ARROW

U+293F LOWER LEFT SEMICIRCULAR ANTICLOCKWISE ARROW

U+2940 ANTICLOCKWISE CLOSED CIRCLE ARROW

U+2941 CLOCKWISE CLOSED CIRCLE ARROW

U+2942 RIGHTWARDS ARROW ABOVE SHORT LEFTWARDS ARROW

U+2943 LEFTWARDS ARROW ABOVE SHORT RIGHTWARDS ARROW

U+2944 SHORT RIGHTWARDS ARROW ABOVE LEFTWARDS ARROW

U+2945 RIGHTWARDS ARROW WITH PLUS BELOW

U+2946 LEFTWARDS ARROW WITH PLUS BELOW

U+2947 RIGHTWARDS ARROW THROUGH X

U+2948 LEFT RIGHT ARROW THROUGH SMALL CIRCLE

U+2949 UPWARDS TWO-HEADED ARROW FROM SMALL CIRCLE

U+294A LEFT BARB UP RIGHT BARB DOWN HARPOON

U+294B LEFT BARB DOWN RIGHT BARB UP HARPOON

U+294C UP BARB RIGHT DOWN BARB LEFT HARPOON

U+294D UP BARB LEFT DOWN BARB RIGHT HARPOON

U+294E LEFT BARB UP RIGHT BARB UP HARPOON

U+294F UP BARB RIGHT DOWN BARB RIGHT HARPOON

U+2950 LEFT BARB DOWN RIGHT BARB DOWN HARPOON

U+2951 UP BARB LEFT DOWN BARB LEFT HARPOON

U+2952 LEFTWARDS HARPOON WITH BARB UP TO BAR

U+2953 RIGHTWARDS HARPOON WITH BARB UP TO BAR

U+2954 UPWARDS HARPOON WITH BARB RIGHT TO BAR

U+2955 DOWNWARDS HARPOON WITH BARB RIGHT TO BAR

U+2956 LEFTWARDS HARPOON WITH BARB DOWN TO BAR

U+2957 RIGHTWARDS HARPOON WITH BARB DOWN TO BAR

U+2958 UPWARDS HARPOON WITH BARB LEFT TO BAR

U+2959 DOWNWARDS HARPOON WITH BARB LEFT TO BAR

U+295A LEFTWARDS HARPOON WITH BARB UP FROM BAR

U+295B RIGHTWARDS HARPOON WITH BARB UP FROM BAR

U+295C UPWARDS HARPOON WITH BARB RIGHT FROM BAR

U+295D DOWNWARDS HARPOON WITH BARB RIGHT FROM BAR

U+295E LEFTWARDS HARPOON WITH BARB DOWN FROM BAR

U+295F RIGHTWARDS HARPOON WITH BARB DOWN FROM BAR

398

U+2960 UPWARDS HARPOON WITH BARB LEFT FROM BAR

U+2961 DOWNWARDS HARPOON WITH BARB LEFT FROM BAR

U+2962 LEFTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPOON WITH BARB DOWN

U+2963 UPWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOON WITH BARB RIGHT

U+2964 RIGHTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARPOON WITH BARB DOWN

U+2965 DOWNWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPOON WITH BARB RIGHT

U+2966 LEFTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARPOON WITH BARB UP

U+2967 LEFTWARDS HARPOON WITH BARB DOWN ABOVE RIGHTWARDS HARPOON WITH BARB DOWN

U+2968 RIGHTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPOON WITH BARB UP

U+2969 RIGHTWARDS HARPOON WITH BARB DOWN ABOVE LEFTWARDS HARPOON WITH BARB DOWN

U+296A LEFTWARDS HARPOON WITH BARB UP ABOVE LONG DASH

U+296B LEFTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH

U+296C RIGHTWARDS HARPOON WITH BARB UP ABOVE LONG DASH

U+296D RIGHTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH

U+296E UPWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPOON WITH BARB RIGHT

U+296F DOWNWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOON WITH BARB RIGHT

U+2970 RIGHT DOUBLE ARROW WITH ROUNDED HEAD

U+2971 EQUALS SIGN ABOVE RIGHTWARDS ARROW

U+2972 TILDE OPERATOR ABOVE RIGHTWARDS ARROW

U+2973 LEFTWARDS ARROW ABOVE TILDE OPERATOR

U+2974 RIGHTWARDS ARROW ABOVE TILDE OPERATOR

U+2975 RIGHTWARDS ARROW ABOVE ALMOST EQUAL TO

U+2976 LESS-THAN ABOVE LEFTWARDS ARROW

U+2977 LEFTWARDS ARROW THROUGH LESS-THAN

U+2978 GREATER-THAN ABOVE RIGHTWARDS ARROW

U+2979 SUBSET ABOVE RIGHTWARDS ARROW

U+297A LEFTWARDS ARROW THROUGH SUBSET

U+297B SUPERSET ABOVE LEFTWARDS ARROW

U+297C LEFT FISH TAIL

U+297D RIGHT FISH TAIL

U+297E UP FISH TAIL

U+297F DOWN FISH TAIL

U+2980 TRIPLE VERTICAL BAR DELIMITER

U+2981 Z NOTATION SPOT

U+2982 Z NOTATION TYPE COLON

U+2999 DOTTED FENCE

U+299A VERTICAL ZIGZAG LINE

U+299B MEASURED ANGLE OPENING LEFT

U+299C RIGHT ANGLE VARIANT WITH SQUARE

U+299D MEASURED RIGHT ANGLE WITH DOT

U+299E ANGLE WITH S INSIDE

U+299F ACUTE ANGLE

U+29A0 SPHERICAL ANGLE OPENING LEFT

U+29A1 SPHERICAL ANGLE OPENING UP

U+29A2 TURNED ANGLE

U+29A3 REVERSED ANGLE

U+29A4 ANGLE WITH UNDERBAR

U+29A5 REVERSED ANGLE WITH UNDERBAR

U+29A6 OBLIQUE ANGLE OPENING UP

U+29A7 OBLIQUE ANGLE OPENING DOWN

U+29A8 MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING UP AND RIGHT

U+29A9 MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING UP AND LEFT

399

U+29AA MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING DOWN AND RIGHT

U+29AB MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING DOWN AND LEFT

U+29AC MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING RIGHT AND UP

U+29AD MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING LEFT AND UP

U+29AE MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING RIGHT AND DOWN

U+29AF MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING LEFT AND DOWN

U+29B0 REVERSED EMPTY SET

U+29B1 EMPTY SET WITH OVERBAR

U+29B2 EMPTY SET WITH SMALL CIRCLE ABOVE

U+29B3 EMPTY SET WITH RIGHT ARROW ABOVE

U+29B4 EMPTY SET WITH LEFT ARROW ABOVE

U+29B5 CIRCLE WITH HORIZONTAL BAR

U+29B6 CIRCLED VERTICAL BAR

U+29B7 CIRCLED PARALLEL

U+29B9 CIRCLED PERPENDICULAR

U+29BA CIRCLE DIVIDED BY HORIZONTAL BAR AND TOP HALF DIVIDED BY VERTICAL BAR

U+29BB CIRCLE WITH SUPERIMPOSED X

U+29BD UP ARROW THROUGH CIRCLE

U+29BE CIRCLED WHITE BULLET

U+29BF CIRCLED BULLET

U+29C2 CIRCLE WITH SMALL CIRCLE TO THE RIGHT

U+29C3 CIRCLE WITH TWO HORIZONTAL STROKES TO THE RIGHT

U+29C5 SQUARED FALLING DIAGONAL SLASH

U+29C7 SQUARED SMALL CIRCLE

U+29C8 SQUARED SQUARE

U+29C9 TWO JOINED SQUARES

U+29CA TRIANGLE WITH DOT ABOVE

U+29CB TRIANGLE WITH UNDERBAR

U+29CC S IN TRIANGLE

U+29CD TRIANGLE WITH SERIFS AT BOTTOM

U+29CE RIGHT TRIANGLE ABOVE LEFT TRIANGLE

U+29CF LEFT TRIANGLE BESIDE VERTICAL BAR

U+29D0 VERTICAL BAR BESIDE RIGHT TRIANGLE

U+29D1 BOWTIE WITH LEFT HALF BLACK

U+29D2 BOWTIE WITH RIGHT HALF BLACK

U+29D3 BLACK BOWTIE

U+29D6 WHITE HOURGLASS

U+29D7 BLACK HOURGLASS

U+29DC INCOMPLETE INFINITY

U+29DD TIE OVER INFINITY

U+29DE INFINITY NEGATED WITH VERTICAL BAR

U+29DF DOUBLE-ENDED MULTIMAP

U+29E0 SQUARE WITH CONTOURED OUTLINE

U+29E1 INCREASES AS

U+29E2 SHUFFLE PRODUCT

U+29E6 GLEICH STARK

U+29E7 THERMODYNAMIC

U+29E8 DOWN-POINTING TRIANGLE WITH LEFT HALF BLACK

U+29E9 DOWN-POINTING TRIANGLE WITH RIGHT HALF BLACK

U+29EA BLACK DIAMOND WITH DOWN ARROW

U+29EB BLACK LOZENGE

U+29EC WHITE CIRCLE WITH DOWN ARROW

400

U+29ED BLACK CIRCLE WITH DOWN ARROW

U+29EE ERROR-BARRED WHITE SQUARE

U+29EF ERROR-BARRED BLACK SQUARE

U+29F0 ERROR-BARRED WHITE DIAMOND

U+29F1 ERROR-BARRED BLACK DIAMOND

U+29F2 ERROR-BARRED WHITE CIRCLE

U+29F3 ERROR-BARRED BLACK CIRCLE

U+29F4 RULE-DELAYED

U+29F6 SOLIDUS WITH OVERBAR

U+29F7 REVERSE SOLIDUS WITH HORIZONTAL STROKE

U+29FA DOUBLE PLUS

U+29FB TRIPLE PLUS

U+29FE TINY

U+29FF MINY

U+2A00 N-ARY CIRCLED DOT OPERATOR
⊙

BIGODOT
U+2A01 N-ARY CIRCLED PLUS OPERATOR

⊕
BIGOPLUS

U+2A02 N-ARY CIRCLED TIMES OPERATOR
⊗

BIGOTIMES
U+2A03 N-ARY UNION OPERATOR WITH DOT BIGUDOT
U+2A04 N-ARY UNION OPERATOR WITH PLUS BIGUPLUS
U+2A05 N-ARY SQUARE INTERSECTION OPERATOR BIGSQCAP
U+2A06 N-ARY SQUARE UNION OPERATOR BIGSQCUP
U+2A07 TWO LOGICAL AND OPERATOR

U+2A08 TWO LOGICAL OR OPERATOR

U+2A09 N-ARY TIMES OPERATOR BIGTIMES
U+2A0A MODULO TWO SUM

U+2A10 CIRCULATION FUNCTION

U+2A11 ANTICLOCKWISE INTEGRATION

U+2A12 LINE INTEGRATION WITH RECTANGULAR PATH AROUND POLE

U+2A13 LINE INTEGRATION WITH SEMICIRCULAR PATH AROUND POLE

U+2A14 LINE INTEGRATION NOT INCLUDING THE POLE

U+2A1D JOIN on JOIN
U+2A1E LARGE LEFT TRIANGLE OPERATOR

U+2A1F Z NOTATION SCHEMA COMPOSITION

U+2A20 Z NOTATION SCHEMA PIPING

U+2A21 Z NOTATION SCHEMA PROJECTION

U+2A32 SEMIDIRECT PRODUCT WITH BOTTOM CLOSED

U+2A33 SMASH PRODUCT

U+2A3C INTERIOR PRODUCT

U+2A3D RIGHTHAND INTERIOR PRODUCT

U+2A3E Z NOTATION RELATIONAL COMPOSITION

U+2A3F AMALGAMATION OR COPRODUCT

U+2A57 SLOPING LARGE OR

U+2A58 SLOPING LARGE AND

U+2A61 SMALL VEE WITH UNDERBAR

U+2A64 Z NOTATION DOMAIN ANTIRESTRICTION

U+2A65 Z NOTATION RANGE ANTIRESTRICTION

U+2A68 TRIPLE HORIZONTAL BAR WITH DOUBLE VERTICAL STROKE

U+2A69 TRIPLE HORIZONTAL BAR WITH TRIPLE VERTICAL STROKE

U+2A6A TILDE OPERATOR WITH DOT ABOVE

U+2A6B TILDE OPERATOR WITH RISING DOTS

U+2A6D CONGRUENT WITH DOT ABOVE

U+2ACD SQUARE LEFT OPEN BOX OPERATOR

401

U+2ACE SQUARE RIGHT OPEN BOX OPERATOR

U+2AD9 ELEMENT OF OPENING DOWNWARDS

U+2ADA PITCHFORK WITH TEE TOP

U+2ADC FORKING

U+2ADD NONFORKING

U+2ADE SHORT LEFT TACK

U+2ADF SHORT DOWN TACK

U+2AE0 SHORT UP TACK

U+2AE1 PERPENDICULAR WITH S

U+2AE2 VERTICAL BAR TRIPLE RIGHT TURNSTILE

U+2AE3 DOUBLE VERTICAL BAR LEFT TURNSTILE

U+2AE4 VERTICAL BAR DOUBLE LEFT TURNSTILE

U+2AE5 DOUBLE VERTICAL BAR DOUBLE LEFT TURNSTILE

U+2AE6 LONG DASH FROM LEFT MEMBER OF DOUBLE VERTICAL

U+2AE7 SHORT DOWN TACK WITH OVERBAR

U+2AE8 SHORT UP TACK WITH UNDERBAR

U+2AE9 SHORT UP TACK ABOVE SHORT DOWN TACK

U+2AEA DOUBLE DOWN TACK

U+2AEB DOUBLE UP TACK

U+2AEC DOUBLE STROKE NOT SIGN

U+2AED REVERSED DOUBLE STROKE NOT SIGN

U+2AEE DOES NOT DIVIDE WITH REVERSED NEGATION SLASH

U+2AEF VERTICAL LINE WITH CIRCLE ABOVE

U+2AF0 VERTICAL LINE WITH CIRCLE BELOW

U+2AF1 DOWN TACK WITH CIRCLE BELOW

U+2AF2 PARALLEL WITH HORIZONTAL STROKE

U+2AF3 PARALLEL WITH TILDE OPERATOR

U+2AF5 TRIPLE VERTICAL BAR WITH HORIZONTAL STROKE

U+2AF6 TRIPLE COLON OPERATOR

U+2AFB TRIPLE SOLIDUS BINARY RELATION

U+2AFC LARGE TRIPLE VERTICAL BAR OPERATOR

U+2AFE WHITE VERTICAL BAR

U+2AFF N-ARY WHITE VERTICAL BAR

402

Appendix G

Simplified Grammar for Application
Programmers and Library Writers

In this chapter, we provide a simplified grammar of the Fortress concrete syntax as documentation, to enable Fortress
programmers to understand it more easily. The full Fortress grammar is described in Appendix H.

The simplified grammar does not describe the details of the uses of operators, whitespaces, and semicolons. Instead,
they are described as follows according to three different contexts influencing the whitespace-sensitivity of expres-
sions:

statement Expressions immediately enclosed by a block expression are in a statement-like context. Multiple expres-
sions can appear on a line if they are separated (or terminated) by semicolons. If an expression can legally end
at the end of a line, it does; if it cannot, it does not. A prefix or infix operator that lacks its last operand prevents
an expression from ending. For example,

an = expression+
spanning+
four+
lines

a = oneLiner
four(); on(); one(); line();

nested An expression or list of expressions immediately enclosed by parentheses or braces is nested. Multiple ex-
pressions are separated by commas, and the end of a line does not end an expression. Because of this effect,
the meaning of a several lines of code can change if they are wrapped in parentheses. Parentheses can also be
used to ensure that a multiline expression is not terminated prematurely without paying special attention to line
endings.

lhs = rhs
−aSeparateExpression

postProfit(revenue
−expenses)

pasted Fortress has special syntax for matrix pasting. Within square brackets, whitespace-separated expressions are
treated (depending on their type) as either matrix elements or submatrices within a row. Because whitespace
is the separator, it also ends expressions where possible. In addition, newline-or-semicolon-separated rows are
pasted vertically along their columns. Higher-dimensional pasting is expressed with repeated semicolons, but
repeated newlines do not have the same effect.

403

id2a = [1 0; 0 1]
id2b = [1 0;

0 1]
id2c = [1 0

0 1]
cube2 = [1 0; 0 1; ; 1− 1; 1 1]

A restricted form of the pasting syntax can also be used on the left hand side of variable declarations to express
both declaration and submatrix decomposition.

[top
bot] = X
[left right] = Y
Z = [top · left top · right ;

bot · left bot · right]

Section 6.5 describes matrix unpasting in detail and includes more examples.

The simplified grammar is written in the extended BNF form with the following three postfix operators:

• ?: which means that its argument (the symbol or group of symbols in parentheses to the left of the operator) can
appear zero or one time

• ∗: which means that its argument can appear zero or more times

• +: which means that its argument can appear one or more times

G.1 Components and APIs

File ::= CompilationUnit
| Imports? Exports Decls?
| Imports? AbsDecls
| Imports AbsDecls?

CompilationUnit ::= Component
| Api

Component ::= component DottedId Imports? Exports Decls? end
Api ::= api DottedId Imports? AbsDecls? end
Imports ::= Import+

Import ::= import ImportFrom
| import AliasedDottedIds

ImportFrom ::= * (except Names)? from DottedId
| AliasedNames from DottedId

Names ::= Name
| { NameList }

NameList ::= Name(, Name)∗

AliasedNames ::= AliasedName
| { AliasedNameList }

AliasedName ::= Id (as DottedId)?
| opr Op (as Op)?
| opr LeftEncloser RightEncloser (as LeftEncloser RightEncloser)?

AliasedNameList ::= AliasedName(, AliasedName)∗

404

AliasedDottedIds ::= AliasedDottedId
| { AliasedDottedIdList }

AliasedDottedId ::= DottedId (as DottedId)?
AliasedDottedIdList ::= AliasedDottedId(, AliasedDottedId)∗

Exports ::= Export+

Export ::= export DottedIds
DottedIds ::= DottedId

| { DottedIdList }
DottedIdList ::= DottedId(, DottedId)∗

G.2 Top-level Declarations

Decls ::= Decl+

Decl ::= TraitDecl
| ObjectDecl
| VarDecl
| FnDecl
| DimUnitDecl
| TypeAlias
| TestDecl
| PropertyDecl
| ExternalSyntax

AbsDecls ::= AbsDecl+

AbsDecl ::= AbsTraitDecl
| AbsObjectDecl
| AbsVarDecl
| AbsFnDecl
| DimUnitDecl
| TypeAlias
| TestDecl
| PropertyDecl
| AbsExternalSyntax

G.3 Trait and Object Declarations

A TraitHeader may have 0 or 1 of each TraitClause.

TraitDecl ::= TraitHeader GoInATrait? end
TraitHeader ::= TraitMods? trait Id StaticParams? Extends? TraitClauses?
TraitClauses ::= TraitClause+

TraitClause ::= Excludes
| Comprises
| Where

GoInATrait ::= GoFrontInATrait GoBackInATrait?
| GoBackInATrait

405

GoFrontInATrait ::= GoesFrontInATrait+

GoesFrontInATrait ::= AbsFldDecl
| GetterSetterDecl
| PropertyDecl

GoBackInATrait ::= GoesBackInATrait+

GoesBackInATrait ::= MdDecl
| PropertyDecl

ObjectDecl ::= ObjectHeader GoInAnObject? end
ObjectHeader ::= ObjectMods? object Id StaticParams? ObjectValParam? Extends? FnClauses
ObjectValParam ::= (ObjectParams?)
ObjectParams ::= (ObjectParam ,)∗ (ObjectVarargs ,)? ObjectKeyword(,ObjectKeyword)∗

| (ObjectParam ,)∗ ObjectVarargs
| ObjectParam (, ObjectParam)∗

ObjectVarargs ::= transient Varargs
ObjectKeyword ::= ObjectParam = Expr
ObjectParam ::= FldMods? Param

| transient Param
GoInAnObject ::= GoFrontInAnObject GoBackInAnObject?

| GoBackInAnObject
GoFrontInAnObject ::= GoesFrontInAnObject+

GoesFrontInAnObject ::= FldDecl
| GetterSetterDef
| PropertyDecl

GoBackInAnObject ::= GoesBackInAnObject+

GoesBackInAnObject ::= MdDef
| PropertyDecl

AbsTraitDecl ::= TraitHeader AbsGoInATrait? end
AbsGoInATrait ::= AbsGoFrontInATrait AbsGoBackInATrait?

| AbsGoBackInATrait
AbsGoFrontInATrait ::= AbsGoesFrontInATrait+

AbsGoesFrontInATrait ::= ApiFldDecl
| AbsGetterSetterDecl
| PropertyDecl

AbsGoBackInATrait ::= AbsGoesBackInATrait+

AbsGoesBackInATrait ::= AbsMdDecl
| AbsCoercion
| PropertyDecl

AbsObjectDecl ::= ObjectHeader AbsGoInAnObject? end
AbsGoInAnObject ::= AbsGoFrontInAnObject AbsGoBackInAnObject?

| AbsGoBackInAnObject
AbsGoFrontInAnObject ::= AbsGoesFrontInAnObject+

AbsGoesFrontInAnObject ::= ApiFldDecl
| AbsGetterSetterDecl
| PropertyDecl

AbsGoBackInAnObject ::= AbsGoesBackInAnObject+

AbsGoesBackInAnObject ::= AbsMdDecl
| AbsCoercion
| PropertyDecl

406

G.4 Variable Declarations

VarDecl ::= VarWTypes InitVal
| VarWoTypes = Expr
| VarWoTypes : TypeRef ... InitVal
| VarWoTypes : SimpleTupleType InitVal

VarWTypes ::= VarWType
| (VarWType(, VarWType)+)

VarWType ::= VarMods? Id IsType
VarWoTypes ::= VarWoType

| (VarWoType(, VarWoType)+)
VarWoType ::= VarMods? Id
InitVal ::= (= | :=) Expr
AbsVarDecl ::= VarWTypes

| VarWoTypes : TypeRef ...
| VarWoTypes : SimpleTupleType

G.5 Function Declarations

FnDecl ::= FnDef
| AbsFnDecl

FnDef ::= FnMods? FnHeaderFront FnHeaderClause = Expr
AbsFnDecl ::= FnMods? FnHeaderFront FnHeaderClause

| Name : ArrowType
FnHeaderFront ::= Id StaticParams? ValParam

| OpHeaderFront

G.6 Dimension, Unit, Type Alias, Test, Property, and External Syntax Dec-
larations

DimUnitDecl ::= dim Id (= DimRef)? (default Id)?
| (unit | SI unit) Id+ (: DimRef)? (= Expr)?
| dim Id (= DimRef)? (unit | SI unit) Id+ (= Expr)?

TypeAlias ::= type Id StaticParams? = TypeRef
TestDecl ::= test Id [GeneratorList] = Expr
PropertyDecl ::= property (Id =)? (∀ ValParam)? Expr
ExternalSyntax ::= syntax OpenExpander Id CloseExpander = Expr
OpenExpander ::= Id

| LeftEncloser
CloseExpander ::= Id

| RightEncloser
| end

AbsExternalSyntax ::= syntax OpenExpander Id CloseExpander

G.7 Headers

Each modifier should not appear multiple times in a declaration.

407

Extends ::= extends TraitTypes
Excludes ::= excludes TraitTypes
Comprises ::= comprises ComprisingTypes
TraitTypes ::= TraitType

| { TraitTypeList }
TraitTypeList ::= TraitType(, TraitType)∗

ComprisingTypes ::= TraitType
| { ComprisingTypeList }

ComprisingTypeList ::= . . .
| TraitType(, TraitType)∗ (, . . .)?

Where ::= where { WhereClauseList }
WhereClauseList ::= WhereClause(, WhereClause)∗

WhereClause ::= Id Extends
| TypeAlias
| NatConstraint
| IntConstraint
| BoolConstraint
| UnitConstraint
| TypeRef coerces TypeRef
| TypeRef widens TypeRef

NatConstraint ::= nat Id
| NatRef < NatRef
| NatRef ≤ NatRef
| NatRef > NatRef
| NatRef ≥ NatRef
| NatRef = NatRef
| (NatConstraint)

NatRef ::= StaticArg
IntConstraint ::= int Id

| NatRef < NatRef
| NatRef ≤ NatRef
| NatRef > NatRef
| NatRef ≥ NatRef
| NatRef = NatRef
| (IntConstraint)

BoolConstraint ::= bool Id
| NOT BoolRef
| BoolRef OR BoolRef
| BoolRef AND BoolRef
| BoolRef IMPLIES BoolRef
| BoolRef = BoolRef
| (BoolConstraint)

BoolRef ::= StaticArg
UnitConstraint ::= unit Id

| UnitRef = UnitRef
FnHeaderClause ::= IsType? FnClauses
FnClauses ::= Throws? Where? Contract
Throws ::= throws MayTraitTypes
MayTraitTypes ::= {}

| TraitTypes

408

Contract ::= Requires? Ensures? Invariant?
Requires ::= requires { ExprList? }
Ensures ::= ensures { ProvidedList? }
ProvidedList ::= Provided(, Provided)∗

Provided ::= Expr (provided Expr)?
Invariant ::= invariant { ExprList? }
CoercionClauses ::= Throws? CoercionWhere? Contract
CoercionWhere ::= where { CoercionWhereClauseList }
CoercionWhereClauseList ::= CoercionWhereClause(, CoercionWhereClause)∗

CoercionWhereClause ::= WhereClause
| TypeRef widens or coerces TypeRef

UniversalMod ::= private | test
TraitMod ::= value | UniversalMod
TraitMods ::= TraitMod+

ObjectMods ::= TraitMods
FnMod ::= LocalFnMod | UniversalMod
FnMods ::= FnMod+

VarMod ::= var | UniversalMod
VarMods ::= VarMod+

AbsFldMod ::= hidden | settable | wrapped | UniversalMod
AbsFldMods ::= AbsFldMod+

FldMod ::= var | AbsFldMod
FldMods ::= FldMod+

ApiFldMod ::= hidden | settable | UniversalMod
ApiFldMods ::= ApiFldMod+

LocalFnMod ::= atomic | io
LocalFnMods ::= LocalFnMod+

StaticParams ::= JStaticParamListK
StaticParamList ::= StaticParam(, StaticParam)∗

StaticParam ::= Id Extends? (absorbs unit)?
| nat Id
| int Id
| bool Id
| dim Id
| unit Id (: DimRef)? (absorbs unit)?
| opr Op
| ident Id

G.8 Parameters

ValParam ::= BindId
| (Params?)

Params ::= (Param ,)∗ (Varargs ,)? Keyword(,Keyword)∗

| (Param ,)∗ Varargs
| Param(, Param)∗

VarargsParam ::= Id : TypeRef ...
Varargs ::= VarargsParam
Keyword ::= Param = Expr
PlainParam ::= BindId IsType?

| TypeRef
Param ::= PlainParam

409

OpHeaderFront ::= opr StaticParams? (LeftEncloser | Encloser) Params (RightEncloser | Encloser)
(:= (SubscriptAssignParam))?

| opr StaticParams? ValParam Op
| opr (Op | Encloser) StaticParams? ValParam

SubscriptAssignParam ::= Varargs
| Param

G.9 Method Declarations

MdDecl ::= MdDef
| AbsMdDecl

MdDef ::= FnMods? MdHeaderFront FnHeaderClause = Expr
| Coercion

AbsMdDecl ::= abstract ? FnMods? MdHeaderFront FnHeaderClause
MdHeaderFront ::= (Receiver .)?Id StaticParams? MdValParam

| OpHeaderFront
Receiver ::= Id

| self
GetterSetterDecl ::= GetterSetterDef

| AbsGetterSetterDecl
GetterSetterDef ::= FnMods? GetterSetterMod MdHeaderFront FnHeaderClause = Expr
GetterSetterMod ::= getter | setter
AbsGetterSetterDecl ::= abstract ? FnMods? GetterSetterMod MdHeaderFront FnHeaderClause
Coercion ::= widening ? coercion StaticParams?(Id IsType)CoercionClauses = Expr
AbsCoercion ::= widening ? coercion StaticParams?(Id IsType)CoercionClauses

G.10 Method Parameters

MdValParam ::= (MdParams?)
MdParams ::= (MdParam ,)∗ (Varargs ,)? MdKeyword(,MdKeyword)∗

| (MdParam ,)∗ Varargs
| MdParam(, MdParam)∗

MdKeyword ::= MdParam = Expr
MdParam ::= Param

| self

G.11 Field Declarations

FldDecl ::= FldWTypes InitVal
| FldWoTypes = Expr
| FldWoTypes : TypeRef ... InitVal
| FldWoTypes : SimpleTupleType InitVal

FldWTypes ::= FldWType
| (FldWType(, FldWType)+)

FldWType ::= FldMods? Id IsType
FldWoTypes ::= FldWoType

| (FldWoType(, FldWoType)+)
FldWoType ::= FldMods? Id

410

G.12 Abstract Field Declarations

AbsFldDecl ::= AbsFldWTypes
| AbsFldWoTypes : TypeRef ...
| AbsFldWoTypes : SimpleTupleType

AbsFldWTypes ::= AbsFldWType
| (AbsFldWType(, AbsFldWType)+)

AbsFldWType ::= AbsFldMods? Id IsType
AbsFldWoTypes ::= AbsFldWoType

| (AbsFldWoType(, AbsFldWoType)+)
AbsFldWoType ::= AbsFldMods? Id
ApiFldDecl ::= ApiFldMods? Id IsType

G.13 Expressions

Expr ::= AssignLefts AssignOp Expr
| OpExpr
| DelimitedExpr
| FlowExpr
| fn ValParam IsType? Throws? ⇒ Expr
| Expr as TypeRef
| Expr asif TypeRef
| UnitExpr

UnitExpr ::= UnitRef
| Expr UnitRef
| Expr · UnitRef
| Expr / UnitRef
| Expr per UnitRef
| Expr in UnitRef

UnitRef ::= StaticArg
AssignLefts ::= (AssignLeft(, AssignLeft)∗)

| AssignLeft
AssignLeft ::= SubscriptExpr

| FieldSelection
| BindId

SubscriptExpr ::= Primary [ExprList?]
FieldSelection ::= Primary . Id
OpExpr ::= EncloserOp OpExpr? EncloserOp?

| OpExpr EncloserOp OpExpr?
| Primary

EncloserOp ::= Encloser
| Op

411

Primary ::= Comprehension
| IdJStaticArgList K
| BaseExpr
| LeftEncloser ExprList? RightEncloser
| Primary[ExprList?]
| Primary . Id (JStaticArgList K)? TupleExpr
| Primary . Id (JStaticArgList K)?()
| Primary . Id
| Primary ˆ BaseExpr
| Primary ExponentOp
| Primary TupleExpr
| Primary()
| Primary Primary
| TraitType . coercion (JStaticArgList K)?(Expr)

FlowExpr ::= exit Id? (with Expr)?
| Accumulator ([GeneratorList])? Expr
| atomic AtomicBack
| tryatomic AtomicBack
| spawn Expr
| throw Expr

AtomicBack ::= AssignLefts AssignOp Expr
| OpExpr
| DelimitedExpr

GeneratorList ::= Generator(, Generator)∗

Generator ::= Id←Expr
| (Id , IdList)←Expr
| Expr

G.14 Expressions Enclosed by Keywords

DelimitedExpr ::= TupleExpr
| object Extends? GoInAnObject end
| Do
| label Id BlockElems end Id
| while Expr Do
| for GeneratorList DoFront end
| if Expr then BlockElems Elifs? Else? end
| (if Expr then BlockElems Elifs? Else end ?)
| case Expr Op? of CaseClauses CaseElse? end
| case (largest | smallest) Op? of CaseClauses end
| typecase TypecaseBindings of TypecaseClauses CaseElse? end
| try BlockElems Catch? (forbid TraitTypes)? (finally BlockElems)? end

Do ::= (DoFront also)∗ DoFront end
DoFront ::= (at Expr)? atomic ? do BlockElems?
TupleExpr ::= ((Expr ,)∗ (Expr ... ,)? Binding (, Binding)∗)

| NoKeyTuple
NoKeyTuple ::= ((Expr ,)∗ Expr ...)

| ((Expr ,)∗ Expr)

412

Elifs ::= Elif +

Elif ::= elif Expr then BlockElems
Else ::= else BlockElems
CaseClauses ::= CaseClause+

CaseClause ::= Expr ⇒ BlockElems
CaseElse ::= else ⇒ BlockElems
TypecaseBindings ::= (BindingList)

| Binding
| Id

BindingList ::= Binding(, Binding)∗

Binding ::= BindId = Expr
TypecaseClauses ::= TypecaseClause+

TypecaseClause ::= TypecaseTypeRefs ⇒ BlockElems
TypecaseTypeRefs ::= (TypeRefList)

| TypeRef
Catch ::= catch Id CatchClauses
CatchClauses ::= CatchClause+

CatchClause ::= TraitType ⇒ BlockElems
Comprehension ::= { Expr | GeneratorList }

| { Entry | GeneratorList }
| 〈 Expr | GeneratorList 〉
| [ArrayComprehensionClause+]

Entry ::= Expr 7→ Expr
ArrayComprehensionLeft ::= IdOrInt 7→ Expr

| (IdOrInt , IdOrIntList) 7→ Expr
ArrayComprehensionClause ::= ArrayComprehensionLeft | GeneratorList
IdOrInt ::= Id

| IntLiteral
IdOrIntList ::= IdOrInt(, IdOrInt)∗

BaseExpr ::= NoKeyTuple
| Literal
| Id
| self

ExprList ::= Expr(, Expr)∗

G.15 Local Declarations

BlockElems ::= BlockElem+

BlockElem ::= LocalVarFnDecl
| Expr(, GeneratorList)?

LocalVarFnDecl ::= LocalFnDecl+

| LocalVarDecl
LocalFnDecl ::= LocalFnMods? FnHeaderFront FnHeaderClause = Expr
LocalVarDecl ::= LocalVarWTypes InitVal

| LocalVarWTypes
| LocalVarWoTypes = Expr
| LocalVarWoTypes : TypeRef ... InitVal?
| LocalVarWoTypes : SimpleTupleType InitVal?

LocalVarWTypes ::= LocalVarWType
| (LocalVarWType(, LocalVarWType)+)

LocalVarWType ::= var ? Id IsType

413

LocalVarWoTypes ::= LocalVarWoType
| (LocalVarWoType(, LocalVarWoType)+)

LocalVarWoType ::= var ? Id
| Unpasting

Unpasting ::= [UnpastingElems]
UnpastingElems ::= UnpastingElem RectSeparator UnpastingElems

| UnpastingElem
UnpastingElem ::= Id ([UnpastingDim])?

| Unpasting
UnpastingDim ::= ExtentRange (× ExtentRange)+

G.16 Literals

Literal ::= ()
| NumericLiteral
| CharLiteral
| StringLiteral
| { Entry (, Entry)∗ }
| [RectElements]

RectElements ::= Expr MultiDimCons∗

MultiDimCons ::= RectSeparator Expr
RectSeparator ::= ; +

| Whitespace

G.17 Types

IsType ::= : TypeRef
TypeRef : := TraitType

| ArrowType
| TupleType
| (TypeRef ?)
| DimType

TraitType ::= DottedId (JStaticArgList K)?
| { TypeRef 7→ TypeRef }
| 〈 TypeRef 〉
| TypeRef [ArraySize?]
| TypeRef ˆ StaticArg
| TypeRef ˆ (ExtentRange (× ExtentRange)∗)

ArrowType ::= TypeRef → TypeRef Throws?
DimType ::= DimRef

| TypeRef DimRef
| TypeRef · DimRef
| TypeRef / DimRef
| TypeRef per DimRef
| TypeRef UnitRef
| TypeRef · UnitRef
| TypeRef / UnitRef
| TypeRef per UnitRef
| TypeRef in DimRef

DimRef ::= StaticArg

414

TupleType ::= ((TypeRef ,)∗ (TypeRef ... ,)? KeywordType(, KeywordType)∗)
| ((TypeRef ,)∗ TypeRef ...)
| SimpleTupleType

KeywordType ::- Id = TypeRef
SimpleTupleType ::= (TypeRef , TypeRefList)
TypeRefList ::= TypeRef (, TypeRef)∗

StaticArgList ::= StaticArg(, StaticArg)∗

StaticArg ::= Number
| Op
| true
| false
| Unity
| dimensionless
| StaticArg + StaticArg
| StaticArg · StaticArg
| StaticArg StaticArg
| StaticArg / StaticArg
| 1 / StaticArg
| StaticArg ˆ StaticArg
| StaticArg per StaticArg
| DUPreOp StaticArg
| StaticArg DUPostOp
| NOT StaticArg
| StaticArg OR StaticArg
| StaticArg AND StaticArg
| StaticArg IMPLIES StaticArg
| TypeRef
| (StaticArg)

DUPreOp ::= square | cubic | inverse
DUPostOp ::= squared | cubed
ArraySize ::= ExtentRange(, ExtentRange)∗

ExtentRange ::= StaticArg?# StaticArg?
| StaticArg? : StaticArg?
| StaticArg

Number ::= IntLiteral

G.18 Symbols and Operators

AssignOp ::= := | Op =
Accumulator ::=

∑
|
∏
| BIG Op

G.19 Identifiers

IdList ::= Id(, Id)∗

Name ::= Id
| opr Op

DottedId ::= Id(. Id)∗

BindId ::= Id
|

415

Appendix H

Full Grammar for Fortress Implementors

In this chapter, we provide a complete definition of the Fortress concrete syntax. This syntax has been extracted from
the parser-generator source files of an open source partial Fortress reference implementation [13], available at:

http://fortress.sunsource.net

The parser of this reference implementation is generated by Rats! [12], which generates “packrat parsers” that memoize
intermediate results to ensure linear time performance in the presence of unlimited lookahead and backtracking. Rats!
includes production naming, module modifications, and semantic predicates. Actions that generate semantic values
are omitted for simplicity. See [12] for more information about the Rats! parser generator.

H.1 Components and APIs

File =
CompilationUnit w

/ (w Imports)? w Exports (w Decls)? w
/ (w Imports)? w AbsDecls w
/ w Imports (w AbsDecls)? w

CompilationUnit =
w Component w

/ w Api

Component = "component" w DottedId (w Imports)? w Exports (w Decls)? w "end"

Api = "api" w DottedId (w Imports)? (w AbsDecls)? w "end"

Imports = Import (wr Import)*

Import =
"import" wr ImportFrom

/ "import" wr AliasedDottedIds

ImportFrom =
"*" (wr "except" wr Names)? wr "from" wr DottedId

/ AliasedNames wr "from" wr DottedId

Names =
Name

/ "{" w NameList w "}"

416

http://fortress.sunsource.net

NameList = Name (w "," w Name)*

AliasedNames =
AliasedName

/ "{" w AliasedNameList w "}"

AliasedName =
Id (wr "as" wr DottedId)?

/ "opr" w Op (w "as" w Op)?
/ "opr" w LeftEncloser w RightEncloser (w "as" w LeftEncloser w RightEncloser)?

AliasedNameList = AliasedName (w "," w AliasedName)*

AliasedDottedIds =
AliasedDottedId

/ "{" w AliasedDottedIdList w "}"

AliasedDottedId = DottedId (wr "as" wr DottedId)?

AliasedDottedIdList = AliasedDottedId (w "," w AliasedDottedId)*

Exports = Export (wr Export)*

Export = "export" wr DottedIds

DottedIds =
DottedId

/ "{" w DottedIdList w "}"

DottedIdList = DottedId (w "," w DottedId)*

H.2 Top-level Declarations

Decls = Decl (br Decl)*

Decl =
TraitDecl

/ ObjectDecl
/ VarDecl
/ FnDecl

/* Not Yet Implemented ***************************
/ DimUnitDecl

** */
/ TypeAlias
/ TestDecl
/ PropertyDecl
/ ExternalSyntax

AbsDecls = AbsDecl (br AbsDecl)*

AbsDecl =
AbsTraitDecl

/ AbsObjectDecl
/ AbsVarDecl
/ AbsFnDecl

/* Not Yet Implemented ***************************
/ DimUnitDecl

** */
/ TypeAlias
/ TestDecl
/ PropertyDecl
/ AbsExternalSyntax

417

H.3 Trait and Object Declarations

TraitDecl = TraitHeader (w GoInATrait)? w "end"

TraitHeader = TraitMods? "trait" w Id (w StaticParams)? (w Extends)? (TraitClauses)?

/* Each trait clause cannot appear more than once. */
TraitClauses = (w TraitClause)+

TraitClause =
w Excludes

/ w Comprises
/ w Where

GoInATrait =
GoFrontInATrait (br GoBackInATrait)?

/ GoBackInATrait

GoFrontInATrait = GoesFrontInATrait (br GoesFrontInATrait)*

GoesFrontInATrait =
AbsFldDecl

/ GetterSetterDecl
/ PropertyDecl

GoBackInATrait = GoesBackInATrait (br GoesBackInATrait)*

GoesBackInATrait =
MdDecl

/ PropertyDecl

ObjectDecl = ObjectHeader (w GoInAnObject)? w "end"

ObjectHeader = ObjectMods? "object" w Id (w StaticParams)? (w ObjectValParam)?
(w Extends)? FnClauses

ObjectValParam = "(" (w Params)? w ")"

Varargs := "transient" wr VarargsParam

Param :=
FldMods? PlainParam

/ "transient" wr PlainParam

GoInAnObject =
GoFrontInAnObject (br GoBackInAnObject)?

/ GoBackInAnObject

GoFrontInAnObject = GoesFrontInAnObject (br GoesFrontInAnObject)*

GoesFrontInAnObject =
FldDecl

/ GetterSetterDef
/ PropertyDecl

GoBackInAnObject = GoesBackInAnObject (br GoesBackInAnObject)*

GoesBackInAnObject =
MdDef

/ PropertyDecl

AbsTraitDecl = TraitHeader (w AbsGoInATrait)? w "end"

AbsGoInATrait =
AbsGoFrontInATrait (br AbsGoBackInATrait)?

418

/ AbsGoBackInATrait

AbsGoFrontInATrait = AbsGoesFrontInATrait (br AbsGoesFrontInATrait)*

AbsGoesFrontInATrait =
ApiFldDecl

/ AbsGetterSetterDecl
/ PropertyDecl

AbsGoBackInATrait = AbsGoesBackInATrait (br AbsGoesBackInATrait)*

AbsGoesBackInATrait =
AbsMdDecl

/ AbsCoercion
/ PropertyDecl

AbsObjectDecl = ObjectHeader (w AbsGoInAnObject)? w "end"

AbsGoInAnObject =
AbsGoFrontInAnObject (br AbsGoBackInAnObject)?

/ AbsGoBackInAnObject

AbsGoFrontInAnObject = AbsGoesFrontInAnObject (br AbsGoesFrontInAnObject)*

AbsGoesFrontInAnObject =
ApiFldDecl

/ AbsGetterSetterDecl
/ PropertyDecl

AbsGoBackInAnObject = AbsGoesBackInAnObject (br AbsGoesBackInAnObject)*

AbsGoesBackInAnObject =
AbsMdDecl

/ AbsCoercion
/ PropertyDecl

H.4 Variable Declarations

VarDecl =
VarWTypes w InitVal

/ VarWoTypes w "=" w NoNewlineExpr
/ VarWoTypes w ":" w TypeRef w "..." w InitVal
/ VarWoTypes w ":" w SimpleTupleType w InitVal

VarWTypes =
VarWType

/ "(" w VarWType (w "," w VarWType)+ w ")"

VarWType = VarMods? Id w IsType

VarWoTypes =
VarWoType

/ "(" w VarWoType (w "," w VarWoType)+ w ")"

VarWoType = VarMods? Id

InitVal = ("=" / ":=") w NoNewlineExpr

AbsVarDecl =
VarWTypes

/ VarWoTypes w ":" w TypeRef w "..."
/ VarWoTypes w ":" w SimpleTupleType

419

H.5 Function Declarations

FnDecl =
FnDef

/ AbsFnDecl

FnDef = FnMods? FnHeaderFront FnHeaderClause w "=" w NoNewlineExpr

AbsFnDecl =
FnMods? FnHeaderFront FnHeaderClause

/ Name w ":" w ArrowType

FnHeaderFront =
Id (w StaticParams)? w ValParam

/ OpHeaderFront

H.6 Dimension, Unit, Type Alias, Test, Property, and External Syntax Dec-
larations

/* Not Yet Implemented ***************************
DimUnitDecl =

"dim" w Id (w "=" w DimRef)? (w "default" w Id)?
/ ("unit" / "SI_unit") w Id (wr Id)* (w ":" w DimRef)? (w "=" w NoNewlineExpr)?
/ "dim" w Id (w "=" w DimRef)? s ("unit" / "SI_unit") w Id (wr Id)* (w "=" w NoNewlineExpr)?

** */

TypeAlias = "type" w Id (w StaticParams)? w "=" w TypeRef

TestDecl = "test" w Id w "[" w GeneratorList w "]" w "=" w NoNewlineExpr

PropertyDecl = "property" (w Id w "=")? (w "FORALL" w ValParam)? w NoNewlineExpr

ExternalSyntax = "syntax" w OpenExpander w Id w CloseExpander w "=" w NoNewlineExpr

OpenExpander =
Id

/ LeftEncloser

CloseExpander =
Id

/ RightEncloser
/ "end"

AbsExternalSyntax = "syntax" w OpenExpander w Id w CloseExpander

H.7 Headers

Extends = "extends" w TraitTypes

Excludes = "excludes" w TraitTypes

Comprises = "comprises" w ComprisingTypes

TraitTypes =
TraitType

/ "{" w TraitTypeList w "}"

TraitTypeList = TraitType (w "," w TraitType)*

420

ComprisingTypes =
TraitType

/ "{" w ComprisingTypeList w "}"

ComprisingTypeList =
"..."

/ TraitType (w "," w TraitType)* (w "," w "...")?

Where = "where" w "{" w WhereClauseList w "}"

WhereClauseList = WhereClause (w "," w WhereClause)*

WhereClause =
Id w Extends

/ TypeAlias
/ NatConstraint
/ IntConstraint
/ BoolConstraint
/ UnitConstraint

/* Not Yet Implemented ***************************
/ TypeRef w "coerces" w TypeRef
/ TypeRef w "widens" w TypeRef

** */

NatConstraint =
"nat" w Id

/* Not Yet Implemented ***************************
/ NatRef w "LT" w NatRef
/ NatRef w "LE" w NatRef
/ NatRef w "GT" w NatRef
/ NatRef w "GE" w NatRef
/ NatRef w "=" w NatRef

** */
/ "(" w NatConstraint w ")"

/* Not Yet Implemented ***************************
NatRef = StaticArg

** */

IntConstraint =
"int" w Id

/* Not Yet Implemented ***************************
/ NatRef w "LT" w NatRef
/ NatRef w "LE" w NatRef
/ NatRef w "GT" w NatRef
/ NatRef w "GE" w NatRef
/ NatRef w "=" w NatRef

** */
/ "(" w IntConstraint w ")"

BoolConstraint =
"bool" w Id

/* Not Yet Implemented ***************************
/ "NOT" w BoolRef
/ BoolRef w "OR" w BoolRef
/ BoolRef w "AND" w BoolRef
/ BoolRef w "IMPLIES" w BoolRef
/ BoolRef w "=" w BoolRef

** */
/ "(" w BoolConstraint w ")"

/* Not Yet Implemented ***************************
BoolRef = StaticArg

** */

421

UnitConstraint =
"unit" w Id

/* Not Yet Implemented ***************************
/ UnitRef w "=" w UnitRef

** */

FnHeaderClause = (w IsType)? FnClauses

FnClauses = (w Throws)? (w Where)? Contract

Throws = "throws" w MayTraitTypes

MayTraitTypes =
"{" w "}"

/ TraitTypes

Contract = (w Requires)? (w Ensures)? (w Invariant)?

Requires = "requires" w "{" (w ExprList)? w "}"

Ensures = "ensures" w "{" (w ProvidedList)? w "}"

ProvidedList = Provided (w "," w Provided)*

Provided = Expr (w "provided" w Expr)?

Invariant = "invariant" w "{" (w ExprList)? w "}"

CoercionClauses = (w Throws)? (w CoercionWhere)? w Contract

CoercionWhere = "where" w "{" w CoercionWhereClauseList w "}"

CoercionWhereClauseList = CoercionWhereClause (w "," w CoercionWhereClause)*

CoercionWhereClause =
WhereClause

/ TypeRef w "widens" w "or" w "coerces" w TypeRef

UniversalMod =
"private"

/ "test"

TraitMod =
"value"

/ UniversalMod

/* Each modifier cannot appear more than once. */
TraitMods = TraitMod wr (TraitMod wr)*

/* Each modifier cannot appear more than once. */
ObjectMods = TraitMods

FnMod =
LocalFnMod

/ UniversalMod

/* Each modifier cannot appear more than once. */
FnMods = FnMod wr (FnMod wr)*

VarMod =
"var"

/ UniversalMod

/* Each modifier cannot appear more than once. */
VarMods = VarMod wr (VarMod wr)*

422

AbsFldMod =
"hidden"

/ "settable"
/ "wrapped"
/ UniversalMod

/* Each modifier cannot appear more than once. */
AbsFldMods = AbsFldMod wr (AbsFldMod wr)*

FldMod =
"var"

/ AbsFldMod

/* Each modifier cannot appear more than once. */
FldMods = FldMod wr (FldMod wr)*

ApiFldMod =
"hidden"

/ "settable"
/ UniversalMod

/* Each modifier cannot appear more than once. */
ApiFldMods = ApiFldMod wr (ApiFldMod wr)*

LocalFnMod =
"atomic"

/ "io"

/* Each modifier cannot appear more than once. */
LocalFnMods = LocalFnMod wr (LocalFnMod wr)*

StaticParams = "[\" w StaticParamList w "\]"

StaticParamList = StaticParam (w "," w StaticParam)*

StaticParam =
Id (w Extends)? (w "absorbs" w "unit")?

/ "nat" w Id
/ "int" w Id
/ "bool" w Id
/ "dim" w Id

/* Not Yet Implemented ***************************
/ "unit" w Id (w ":" w DimRef)? (w "absorbs" w "unit")?

** */
/ "opr" w Op
/ "ident" w Id

H.8 Parameters

ValParam =
BindId

/ "(" (w Params)? w ")"

Params =
(Param w "," w)* (Varargs w "," w)? Keyword (w "," w Keyword)*

/ (Param w "," w)* Varargs
/ Param (w "," w Param)*

VarargsParam = Id w ":" w TypeRef w "..."

Varargs = VarargsParam

423

Keyword = Param w "=" w Expr

PlainParam =
BindId (w IsType)?

/ TypeRef

Param = PlainParam

OpHeaderFront =
"opr" (w StaticParams)? w (LeftEncloser / Encloser) w Params w
(RightEncloser / Encloser) (w ":=" w "(" w SubscriptAssignParam w ")")?

/ "opr" (w StaticParams)? w ValParam w Op
/ "opr" w (Op / Encloser) (w StaticParams)? w ValParam

SubscriptAssignParam =
Varargs

/ Param

H.9 Method Declarations

MdDecl =
MdDef

/ AbsMdDecl

MdDef =
FnMods? MdHeaderFront FnHeaderClause w "=" w NoNewlineExpr

/ Coercion

AbsMdDecl = ("abstract" wr)? FnMods? MdHeaderFront FnHeaderClause

MdHeaderFront =
(Receiver ".")? Id (w StaticParams)? w ValParam

/ OpHeaderFront

Receiver =
Id

/ "self"

GetterSetterDecl =
GetterSetterDef

/ AbsGetterSetterDecl

GetterSetterDef = FnMods? GetterSetterMod MdHeaderFront FnHeaderClause w "=" w NoNewlineExpr

GetterSetterMod =
"getter" wr

/ "setter" wr

AbsGetterSetterDecl = (abstract wr)? FnMods? GetterSetterMod MdHeaderFront FnHeaderClause

Coercion = ("widening" w)? "coercion" (w StaticParams)? w "(" w Id w IsType w ")"
CoercionClauses w "=" w NoNewlineExpr

AbsCoercion = ("widening" w)? "coercion" (w StaticParams)? w "(" w Id w IsType w ")"
CoercionClauses

H.10 Method Parameters

ValParam := "(" (w Params)? w ")"

424

Param :=
PlainParam

/ "self"

H.11 Field Declarations

FldDecl = VarDecl

VarWType := FldMods? Id w IsType

VarWoType := FldMods? Id

H.12 Abstract Field Declarations

AbsFldDecl = AbsVarDecl

VarWType := AbsFldMods? Id w IsType

VarWoType := AbsFldMods? Id

ApiFldDecl = ApiFldMods? Id w IsType

H.13 Expressions

/* Expr and UnitExpr are mutually left recursive.
We’ve inlined them into each other and removed the left recursion. */

Expr = ExprFront ExprTail*

Expr ExprFront =
<Assign> AssignLefts w AssignOp w Expr

/ OpExpr
/ DelimitedExpr
/ <Flow> FlowExpr
/ <Fn> "fn" w ValParam (w IsType)? (w Throws)? w "=>" w Expr

/* Not Yet Implemented ***************************
/ UnitRef

** */

ExprTail =
<As> As

/ <Asif> AsIf
/* Not Yet Implemented ***************************

/ w UnitRef
/ w "DOT" w UnitRef
/ w "/" w UnitRef
/ w "per" w UnitRef
/ w "in" w UnitRef

** */

As = w "as" w TypeRef

AsIf = w "asif" w TypeRef

/* Not Yet Implemented ***************************
UnitExpr =

UnitRef
/ Expr w UnitRef
/ Expr w "DOT" w UnitRef

425

/ Expr w "/" w UnitRef
/ Expr w "per" w UnitRef
/ Expr w "in" w UnitRef

UnitRef = StaticArg

** */

AssignLefts =
"(" w AssignLeft (w "," w AssignLeft)* w ")"

/ AssignLeft

AssignLeft =
PrimaryFront AssignLeftTail*

/ BindId

AssignLeftTail =
SubscriptAssign

/ FieldSelectionAssign

SubscriptAssign = "[" (w ExprList)? w "]"

FieldSelectionAssign = "." Id

OpExpr =
OpExprNoEnc

/ OpExprLeftEncloser
/ Encloser

OpExprNoEnc =
OpExprPrimary

/ OpExprPrefix
/ Op

TightInfixRight =
Encloser OpExprPrimary

/ Encloser OpExprPrefix
/ <Primary> Encloser wr OpExprPrimary
/ <Loose> Encloser wr LooseInfix
/ <LeftLoose> Encloser wr LeftLooseInfix
/ Encloser

LeftLooseInfix =
OpExprLeftEncloser

/ <Primary> Encloser wr OpExprPrimary
/ <Prefix> Encloser wr OpExprPrefix
/ <Left> Encloser wr OpExprLeftEncloser

OpExprLeftEncloser = Encloser OpExprNoEnc

OpExprPrimary =
Primary TightInfixPostfix

/ Primary TightInfixRight
/ <Primary> Primary wr OpExprPrimary
/ <Loose> Primary wr LooseInfix
/ <LeftLoose> Primary wr LeftLooseInfix
/ Primary

OpExprPrefix =
Op OpExprPrimary

/ Op OpExprPrefix
/ Op OpExprLeftEncloser
/ <Primary> Op wr OpExprPrimary
/ <Prefix> Op wr OpExprPrefix
/ <Left> Op wr OpExprLeftEncloser

426

TightInfixPostfix =
Op OpExprPrimary

/ Op OpExprPrefix
/ Op OpExprLeftEncloser
/ <Primary> Op wr OpExprPrimary
/ <Prefix> Op wr OpExprPrefix
/ <Left> Op wr OpExprLeftEncloser
/ Op

LooseInfix =
Op wr OpExprPrimary

/ Op wr OpExprPrefix
/ <Left> Op wr OpExprLeftEncloser

Primary = PrimaryFront PrimaryTail*

PrimaryFront =
Comprehension

/ Id "[\" w StaticArgList w "\]"
/ BaseExpr
/ LeftEncloser (w ExprList)? w RightEncloser

/* Not Yet Implemented ***************************
/ TraitType ".coercion" ("[\" w StaticArgList w "\]")? "(" w Expr w ")"

** */

PrimaryTail =
SubscriptExpr

/ MethodInvocation
/ FieldSelection
/ ExponentExpr
/ TightJuxtaposition

SubscriptExpr = "[" (w ExprList)? w "]"

MethodInvocation = /* REVERSE ORDER */
"." Id ("[\" w StaticArgList w "\]")? TupleExpr

/ "." Id ("[\" w StaticArgList w "\]")? "(" w ")"

FieldSelection = "." Id

ExponentExpr =
"ˆ" BaseExpr

/ ExponentOp

TightJuxtaposition = /* REVERSE ORDER */
TupleExpr

/ "(" w ")"
/ Primary

FlowExpr =
"exit" (w Id)? (w "with" w Expr)?

/ Accumulator (w "[" w GeneratorList w "]")? w Expr
/ "atomic" w AtomicBack
/ "tryatomic" w AtomicBack
/ "spawn" w Expr
/ "throw" w Expr

AtomicBack =
AssignLefts w AssignOp w Expr

/ OpExpr
/ DelimitedExpr

GeneratorList = Generator (w "," w Generator)*

Generator =

427

Id w "<-" w Expr
/ "(" w Id w "," w IdList w ")" w "<-" w Expr
/ Expr

H.14 Expressions Enclosed by Keywords

DelimitedExpr =
TupleExpr

/ "object" (w Extends)? (w GoInAnObject)? w "end"
/ Do
/ "label" w Id w BlockElems w "end" w Id
/ "while" w Expr w Do
/ "for" w GeneratorList w DoFront w "end"
/ "if" w Expr w "then" w BlockElems (w Elifs)? (w Else)? w "end"
/ "(" w "if" w Expr w "then" w BlockElems (w Elifs)? w Else (w "end")? w ")"
/ "case" w Expr (w Op)? w "of" w CaseClauses (w CaseElse)? w "end"
/ "case" w ("largest" / "smallest") (w Op)? w "of" w CaseClauses w "end"
/ "typecase" w TypecaseBindings w "of" w TypecaseClauses (br CaseElse)? w "end"
/ "try" w BlockElems (w Catch)? (w "forbid" w TraitTypes)? (w "finally" w BlockElems)? w "end"

Do = DoFront w "end"
/* Not Yet Implemented ***************************
(DoFront w "also" w)* DoFront w "end"

** */

DoFront = "do" (w BlockElems)?
/* Not Yet Implemented ***************************

("at" w Expr w)? ("atomic" w)? "do" (w BlockElems)?

** */

TupleExpr =
"(" w (Expr w "," w)* (Expr w "..." w "," w)? Binding (w "," w Binding)* w ")"

/ NoKeyTuple

NoKeyTuple =
"(" w (Expr w "," w)* Expr w "..." w ")"

/ "(" w (Expr w "," w)* Expr w ")"

Elifs = Elif (w Elif)*

Elif = "elif" w Expr w "then" w BlockElems

Else = "else" w BlockElems

CaseClauses = CaseClause (br CaseClause)*

/* CaseClause is defined in LocalDecl.rats */

CaseElse = "else" w match w BlockElems

TypecaseBindings =
"(" w BindingList w ")"

/ Binding
/ Id

BindingList = Binding (w "," w Binding)*

Binding = BindId w "=" w Expr

TypecaseClauses = TypecaseClause (br TypecaseClause)*

TypecaseClause = TypecaseTypeRefs w match w BlockElems

428

TypecaseTypeRefs =
"(" w TypeRefList w ")"

/ TypeRef

Catch = "catch" w Id w CatchClauses

CatchClauses = CatchClause (br CatchClause)*

CatchClause = TraitType w match w BlockElems

Comprehension =
"{" w Expr wr bar wr GeneratorList w "}"

/ "{" w Entry wr bar wr GeneratorList w "}"
/ "<|" w Expr wr bar wr GeneratorList w "|>"
/ "[" w ArrayComprehensionClause (br ArrayComprehensionClause)* w "]"

/* The operator "|->" should not be in the left-hand sides of map expressions
and map/array comprehensions.

*/
mapstoOp = !("|->" w Expr (w mapsto / wr bar)) "|->"

Entry = Expr w mapsto w Expr

ArrayComprehensionLeft =
IdOrInt w mapsto w Expr

/ "(" w IdOrInt w "," w IdOrIntList w ")" w mapsto w Expr

/* ArrayComprehensionClause is defined in Symbol.rats */

IdOrInt =
Id

/ IntLiteral

IdOrIntList = IdOrInt (w "," w IdOrInt)*

BaseExpr =
NoKeyTuple

/ Literal
/ Id
/ "self"

ExprList = Expr (w "," w Expr)*

H.15 Local Declarations

BlockElems =
BlockElem br BlockElems

/ BlockElem
&(w Elifs / w Else / br CaseClause / br TypecaseTypeRefs / br CaseElse
/ w "end" / w Catch / w "forbid" / w "finally")

/ BlockElem w ";"
&(w Elifs / w Else / w CaseClause / w TypecaseTypeRefs / w CaseElse
/ w "end" / w Catch / w "forbid" / w "finally")

BlockElem =
LocalVarFnDecl

/ NoNewlineExpr (s "," w NoNewlineGeneratorList)?

LocalVarFnDecl =
LocalFnDecl (br LocalFnDecl)*

/ LocalVarDecl

LocalFnDecl = LocalFnMods? FnHeaderFront FnHeaderClause w "=" w NoNewlineExpr

429

VarDecl :=
VarWTypes s InitVal

/ VarWTypes
/ VarWoTypes s "=" s NoNewlineExpr
/ VarWoTypes s ":" s TypeRef s "..." (s InitVal)?
/ VarWoTypes s ":" s SimpleTupleType (s InitVal)?

LocalVarDecl = VarDecl

VarWType := ("var" wr)? Id s ":" s TypeRef

VarWoType :=
("var" wr)? Id

/ Unpasting

Unpasting = "[" w UnpastingElems w "]"

UnpastingElems =
UnpastingElem RectSeparator UnpastingElems

/ UnpastingElem

UnpastingElem =
Id ("[" w UnpastingDim w "]")?

/ Unpasting

UnpastingDim = ExtentRange (w "BY" w ExtentRange)+

CaseClause = NoNewlineExpr w match w BlockElems

H.16 Literals

Literal =
"(" w ")"

/ NumericLiteral
/ CharLiteral
/ StringLiteral
/ "{" w Entry (w "," w Entry)* w "}"
/ "[" w RectElements w "]"

RectElements = NoSpaceExpr MultiDimCons*

MultiDimCons = RectSeparator NoSpaceExpr

/* RectSeparator is defined in Spacing.rats */

NumericLiteral =
FloatLiteral

/ IntLiteral

FloatLiteral = DigitString "." DigitString

IntLiteral = DigitString

DigitString = [0-9]+

CharLiteral = "’" CharLiteralContent "’"

StringLiteral = ["] StringLiteralContent* ["]
StringLiteralContent =

EscapeSequence
/ (!["\\] _)

EscapeSequence = ’\\’ [btnfr"’\\]

430

CharLiteralContent = (!"’" _)

H.17 Expressions without Newlines

NoNewlineExpr = Expr
Expr := ...
ExprFront :=

<Assign> AssignLefts s AssignOp w NoNewlineExpr
/ ...

ExprTail :=
<As> NoNewlineAs

/ <AsIf> NoNewlineAsIf
/* **
* Not Yet Implemented ***************************

/ s UnitRef
/ s "DOT" w UnitRef
/ s "/" w UnitRef
/ s "per" w UnitRef
/ s "in" w UnitRef

** */

NoNewlineAs = s "as" w TypeRef

NoNewlineAsIf = s "asif" w TypeRef

TightInfixRight := ...
/ <Primary> Encloser sr OpExprPrimary
/ <Loose> Encloser sr LooseInfix
/ <LeftLoose> Encloser sr LeftLooseInfix

LeftLooseInfix := ...
/ <Primary> Encloser sr OpExprPrimary
/ <Prefix> Encloser sr OpExprPrefix
/ <Left> Encloser sr OpExprLeftEncloser

OpExprPrimary := ...
/ <Primary> Primary sr OpExprPrimary
/ <Loose> Primary sr LooseInfix
/ <LeftLoose> Primary sr LeftLooseInfix

OpExprPrefix := ...
/ <Primary> Op sr OpExprPrimary
/ <Prefix> Op sr OpExprPrefix
/ <Left> Op sr OpExprLeftEncloser

TightInfixPostfix := ...
/ <Primary> Op sr OpExprPrimary
/ <Prefix> Op sr OpExprPrefix
/ <Left> Op sr OpExprLeftEncloser

LooseInfix := ...
/ <Left> Op sr OpExprLeftEncloser

GeneratorList := Generator (s "," w Generator)*

NoNewlineGeneratorList = GeneratorList

H.18 Expressions within Array Expressions

ExprFront -= <Flow> , <Fn>

431

NoSpaceExpr = ExprFront

TightInfixRight -= <Primary>, <Loose>, <LeftLoose>

OpExprPrimary -= <Primary>, <Loose>, <LeftLoose>

OpExprPrefix -= <Primary>, <Prefix>, <Left>

TightInfixPostfix -= <Primary>, <Prefix>, <Left>

H.19 Types

IsType = ":" w TypeRef

/* TypeRef and TraitType/ArrowType/DimType are mutually left recursive.
We’ve inlined them into each other and removed the left recursion. */

TypeRef =
TraitType

/* Not Yet Implemented ***************************
/ DimType

** */
/ TypeRefFront TypeRefTail*

TypeRefFront =
TupleType

/ "(" (w TypeRef)? w ")"

TraitType = TraitTypeFront TypeRefTail*

TraitTypeFront =
DottedId (w "[\" w StaticArgList w "\]")?

/ "{" w TypeRef w mapsto w TypeRef w "}"
/ "<|" w TypeRef w "|>"

TypeRefTail =
ArrayTypeTail

/ MatrixTypeTail
/ ArrowTypeTail

/* Not Yet Implemented ***************************
/ sr DimRef
/ w "DOT" w DimRef
/ w "/" w DimRef
/ w "per" w DimRef
/ sr UnitRef
/ w "DOT" w UnitRef
/ w "/" w UnitRef
/ w "per" w UnitRef
/ w "in" w DimRef

** */

ArrayTypeTail = w "[" (w ArraySize)? w "]"

MatrixTypeTail =
"ˆ" StaticArgFront

/ "ˆ" "(" w ExtentRange (w "BY" w ExtentRange)* w ")"

ArrowTypeTail = w "->" w TypeRef (w Throws)?

ArrowType = (TraitTypeFront / TypeRefFront) ArrowTypeActionTail*

ArrowTypeActionTail = ArrowTypeAction
ArrowTypeAction = w "->" w TypeRef (w Throws)?

432

TupleType =
"(" w (TypeRef w "," w)* (TypeRef w "..." w "," w)? KeywordType (w "," w KeywordType)* w ")"

/ "(" w (TypeRef w "," w)* TypeRef w "..." w ")"
/ SimpleTupleType

KeywordType = Id w "=" w TypeRef

SimpleTupleType = "(" w TypeRef w "," w TypeRefList w ")"

TypeRefList = TypeRef (w "," w TypeRef)*

/* Not Yet Implemented ***************************
DimType = DimTypeFront TypeRefTail*

DimTypeFront = DimRef

DimRef = StaticArg

** */

StaticArgList = StaticArg (w "," w StaticArg)*

StaticArg = StaticArgFront StaticArgTail*

StaticArgFront =
Number

/ Op
/* Not Yet Implemented ***************************

/ "true"
/ "false"
/ "Unity"
/ "dimensionless"

** */
/ "1" w "/" w StaticArg

/* Not Yet Implemented ***************************
/ DUPreOp sr StaticArg
/ "NOT":op w StaticArg

** */
/ TypeRef
/ "(" StaticArg ")"

StaticArgTail =
SumStaticArg

/ ProductStaticArg
/ QuotientStaticArg
/ ExponentStaticArg

/* Not Yet Implemented ***************************
/ w "per" w StaticArg
/ w DUPostOp
/ w "OR":op w StaticArg
/ w "AND":op w StaticArg
/ w "IMPLIES":op w StaticArg

** */

SumStaticArg = w "+" w StaticArg

ProductStaticArg = (w "DOT" w / sr) StaticArg

QuotientStaticArg = w "/" w StaticArg

ExponentStaticArg = "ˆ" StaticArg

/* Not Yet Implemented ***************************
DUPreOp =

"square"
/ "cubic"

433

/ "inverse"

** */

/* Not Yet Implemented ***************************
DUPostOp =

squared
/ cubed

** */

ArraySize = ExtentRange (w "," w ExtentRange)*

ExtentRange =
(StaticArg w)? "#" (w StaticArg)?

/* Not Yet Implemented ***************************
/ (StaticArg w)? ":" (w StaticArg)?

** */
/ StaticArg

Number = IntLiteral

H.20 Symbols and Operators

Encloser = encloser

LeftEncloser = leftEncloser

RightEncloser = rightEncloser

ExponentOp = exponentOp

bar = &("|" wr GeneratorList closingComprehension) "|"
closingComprehension =

w "}"
/ w "|>"
/ br ArrayComprehensionClause
/ w "]"

sd = [*.]?
bars = "|" (sd "|")*
slashes = "/" (sd "/")*

/ "\\" (sd "\\")*
lesses = "<" (sd "<")*
greaters = ">" (sd ">")*

encloser =
"///" / "//"

/ !(bar) bars !([*.>/\\] / "->")

leftEncloser =
leftEncloserMulti

/ !(’|’) _

leftEncloserMulti =
"(" ("/"+ / "\\"+)

/ "[" (sd slashes)
/ "{" (sd slashes)
/ lesses sd (slashes / bars)
/ bars sd slashes
/ "{*" / "[*"

rightEncloser =
rightEncloserMulti

/ !(’|’) _

434

rightEncloserMulti =
"/"+ ")"

/ "\\"+ ")"
/ slashes sd (greaters / bars / [\]}])
/ bars sd greaters
/ "*]" / "*}"
/ "]" / "}"

exponentOp = "ˆT" / "ˆ"

OpName = !(accumulator / "BY") id

Op = compOp / op !(equalsOp)

compOp =
"==="

/ "=/="
/ "<="
/ ">="

multiOp =
"-/->"

/ "<-/-"
/ "-->"
/ "==>"
/ ">>>"
/ mapstoOp
/ "<<<"
/ "<->"
/ "<=>"
/ "->"
/ doublerightarrow
/ ">>"
/ "<<"
/ "**"
/ "!!"

singleOp = !(encloser / leftEncloser / rightEncloser / multiOp / compOp / match) _

op = OpName
/ multiOp
/ singleOp
/ exponentOp

CompoundOp = op equalsOp

/* The operator "=>" should not be in the left-hand sides of case/typecase expressions. */
doublerightarrow = "=>" &(w NoNewlineExpr w match)
match = "=>"

/* The operator "BY" should not be used with ExtentRange. */
crossOp = "BY":op &(w ExtentRange)

equalsOp = "=":singleOp

AssignOp =
":="

/ CompoundOp

accumulator = "SUM" / "PROD"

Accumulator =
"SUM"

/ "PROD"
/ "BIG" w Op

435

ArrayComprehensionClause = ArrayComprehensionLeft wr bar wr GeneratorList

H.21 Identifiers

id = idstart idrest*
idstart = UnicodeIdStart / _
idrest = UnicodeIdStart / "’" / UnicodeIdRest
IdName = id

Id = IdName

IdList = Id (w "," w Id)*

Name =
Id

/ "opr" w Op

DottedId = /* If we find ..., the dot doesn’t count */
Id &(w "...")

/ Id ("." Id)*

BindId =
Id

/ _

H.22 Spaces and Comments

Whitespace = Space / Newline
Space = ’ ’ / ’\t’ / ’\f’ / Comment
Newline = ’\r’ ’\n’ / ’\r’ / ’\n’
Comment = "(*" (w CommentContent)* w "*)"
CommentContent = Comment / (’*’ !’)’ / !’*’ _)

w = wr?
wr = Whitespace w

s = sr?
sr = Space s

nl = s Newline w
br = nl / s ";" w

RectSeparator =
w ";"+ w

/ sr
/ nl

436

Appendix I

Changes between Fortress 1.0 α and 1.0 β
Specifications

• The Fortress type hierarchy has changed: Any is the single root of type hierarchy. The immediate subtypes of
Any are Tuple , () , and Object . Some library code has changed due to the change of type hierarchy.

• Numeric literals may include narrow spaces.

• Elaborated stories:

– Execution of a program including top-level initialization (Chapter 4)

– Reduction variables (Section 4.4)

– Lexical structure (Chapter 5)

– Declarations (Chapter 6)

– Names (Chapter 7)

– Field accesses and field initialization order for objects (Section 10.2).

– Operator and identifier parameters (Section 11.5)

– Evaluation order of each expression (Chapter 13)

– Spawn expressions (Section 13.23)

– Static expressions (Section 13.26)

– Overloading (Chapter 15 and Chapter 33)

– Coercion (Chapter 17)

– Support for Unicode input in ASCII (Appendix E)

• Libraries have changed:

– The trait Tuple has been added. (Section 23.3)

– Methods are added to the trait Boolean . (Section 24.1)

– Basic integers have more properties. (Section 25.2)

– The trait Thread is parameterized with a static type of the expression spawned. (Chapter 28)

437

– Traits describing algebraic constraints have been revised. Only the traits HasLeftZeroes and HasRightZeroes
have identifier parameters. More traits have been added. (Chapter 37)

• Some syntax has changed:

– Concrete syntax grammar is written in Extended BNF using ‘?’ for optional things instead of enclosing
square brackets.

– Grammars in the specification have been updated to the grammar implemented in the Fortress interpreter
(but not all language features have been implemented). Here are the syntax changes:

∗ A file may contain a single component or API. The enclosing component or API declaration may be
omitted.

∗ At least one export statement is required for a component.

∗ Top-level variable declarations and field declarations should have initial-value expressions.

∗ A single declaration may declare multiple top-level variables, local variables, or fields depending on
the context. Immutable variables cannot be declared using the “ := ” token.

∗ A default unit for a dimension must be an identifier.

∗ No abstract declarations of dimensions, units, and type aliases.

∗ Trait headers can have the excludes , comprises , and where clauses in any order.

∗ No empty comprises clauses. A comprises clause of a trait T may include “ . . . ” to hide some
of T ’s subtraits. A type listed in the comprises clause must be defined within the same component
(or possibly an API imported by the component).

∗ More where -clause constraints and bool static arguments are added.

∗ Each contract clause (requires clause, ensures clause, and invariant clause) requires its sub-
clauses or subexpressions to be separated by commas and enclosed by curly braces.

∗ Each modifier must not appear multiple times.

∗ Method declarations other than getter and setter declarations occur syntactically after field declara-
tions and getter and setter declarations. Property declarations can be freely commingled with the field
and method declarations. A getter or setter modifier should be the last modifier of a method
declaration.

∗ Local function declarations have the same syntax as top-level function declarations except that local
function declarations must not have the modifiers “ private ” and “ test ”.

∗ The second value parameter of a subscripted assignment operator method declaration must contain
exactly one non-keyword value parameter.

∗ Left-hand sides of assignment expressions are (possibly multiple of) array indexing, field accesses,
the ‘ ’ token, or identifiers.

∗ Object expressions may include property declarations.

∗ The else clause of case or typecase expressions has the ‘⇒ ’ token right after “ else ”.

∗ A typecase expression uses “ of ” instead of “ in ” after its bindings.

∗ A parallel block expression syntax has been enriched.

∗ The ‘ ’ token can be used in any place where a binding can occur.

438

∗ An index in left-hand sides of array comprehensions is either an identifier or an integer numeral.

∗ Matrix and vector types can be abbreviated using superscripts.

∗ Alternative mathematical notations for arrow types are not supported any more.

∗ DimRef, UnitRef, NatRef, IntRef, and BoolRef are merged with StaticArg.

• More examples are added.

439

Bibliography

[1] Ole Agesen, Lars Bak, Craig Chambers, Bay-Wei Chang, Urs Hlzle, John Maloney, Randall B. Smith, David
Ungar, and Mario Wolczko. The Self Programmer’s Reference Manual. http://research.sun.com/
self/release 4.0/Self-4.0/manuals/Self-4.1-Pgmers-Ref.pdf, 2000.

[2] Eric Allen, Victor Luchangco, and Sam Tobin-Hochstadt. Encapsulated Upgradable Components, March 2005.

[3] R. Blumofe and C. Leiserson. Scheduling multithreaded computations by work stealing. In Proceedings of
the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico., pages 356–368,
November 1994.

[4] Robert D. Blumofe, Christopher F. Joerg, Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An
efficient multithreaded run-time system. In Proceedings of the ACM Conference on Programming Language
Design and Implementation, pages 132–141, Montreal, Canada, 17–19 June 1998. ACM, SIGPLAN Notices.

[5] Gilad Bracha, Guy Steele, Bill Joy, and James Gosling. Java(TM) Language Specification, The (3rd Edition)
(Java Series). Addison-Wesley Professional, July 2005.

[6] R. Cartwright and G. Steele. Compatible genericity with run-time types for the Java Programming Language. In
OOPSLA, 1998.

[7] William Clinger. Macros that work. In Proceedings of the ACM Symposium on Principles of Programming
Languages, pages 155–162. ACM Press, 1991.

[8] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew P. Black. Traits: A mechanism
for fine-grained reuse. ACM Trans. Program. Lang. Syst., 28(2):331–388, 2006.

[9] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstraction in scheme. Journal of LISP and
Symbolic Computation, 5(4):295–326, 1992.

[10] Robert B. Findler, Mario Latendresse, and Matthias Felleisen. Behavioral contracts and behavioral subtyping. In
ESEC/FSE-9: Proceedings of the 8th European software engineering conference held jointly with 9th ACM SIG-
SOFT international symposium on Foundations of software engineering, pages 229–236. ACM Press, September
2001.

[11] Seth C. Goldstein, Klaus E. Schauser, and Dave E. Culler. Lazy Threads: Implementing a Fast Parallel Call.
Journal of Parallel and Distributed Computing, 37(1), August 1996.

[12] Robert Grimm. Rats! – an easily extensible parser generator. http://cs.nyu.edu/∼rgrimm/xtc/
rats.html.

[13] Sun’s Programming Language Research Group. Project fortress. http://fortress.sunsource.net.

[14] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A minimal core calculus for Java
and GJ. In Loren Meissner, editor, Proceedings of the 1999 ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages & Applications (OOPSLA‘99), volume 34(10), pages 132–146, N. Y., 1999.

440

http://research.sun.com/self/release_4.0/Self-4.0/manuals/Self-4.1-Pgmers-Ref.pdf
http://research.sun.com/self/release_4.0/Self-4.0/manuals/Self-4.1-Pgmers-Ref.pdf
http://cs.nyu.edu/~rgrimm/xtc/rats.html
http://cs.nyu.edu/~rgrimm/xtc/rats.html
http://fortress.sunsource.net

[15] Richard Kelsey, William Clinger, and Jonathan Rees. Revised5 report on the algorithmic language Scheme. ACM
SIGPLAN Notices, 33(9):26–76, 1998.

[16] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rmy, and Jrme Vouillon. The Objective Caml System,
release 3.08. http://caml.inria.fr/distrib/ocaml-3.08/ocaml-3.08-refman.pdf, 2004.

[17] J. Matthews, R. B. Findler, M. Flatt, and M. Felleisen. A Visual Environment for Developing Context-Sensitive
Term Rewriting Systems (system description). In V. van Oostrom, editor, Rewriting Techniques and Applications,
15th International Conference, RTA-04, LNCS 3091, pages 301–311, Valencia, Spain, June 3-5, 2004. Springer.

[18] B. Meyer. Object-oriented Software Construction. Prentice Hall, 1988.

[19] Todd Millstein and Craig Chambers. Modular statically typed multimethods. Information and Computation,
175(1):76–118, May 2002.

[20] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard ML (Revised). The
MIT Press, 1997.

[21] Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy task creation: A technique for increasing the
granularity of parallel programs. Technical Report TM-449, MIT/LCS, 1991.

[22] G. M. Morton. A computer oriented geodetic data base and a new technique in file sequencing. Technical report,
IBM Ltd., March 1966.

[23] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Stphane Micheloud, Nikolay Mihaylov, Michel
Schinz, Erik Stenman, and Matthias Zenger. The Scala Language Specification. http://scala.epfl.ch/
docu/files/ScalaReference.pdf, 2004.

[24] OpenMP Architecture Review Board. OpenMP Fortran Application Program Interface Version 2.0. http:
//www.openmp.org/specs/mp-documents/fspec20 bars.pdf, November 2000.

[25] Simon Peyton-Jones. Haskell 98 Language and Libraries. Cambridge University Press, 2003.

[26] Barry N. Taylor. Guide for the use of the international system of units (si). Technical report, United States
Department of Commerce, National Institute of Standards and Technology, April 1995.

[27] The Unicode Consortium. The Unicode Standard, Version 4.0. Addison-Wesley, 2003.

[28] Java(TM) 2 Platform Standard Edition 6.0 API Specification. http://download.java.net/jdk6/
docs/api/index.html.

441

http://caml.inria.fr/distrib/ocaml-3.08/ocaml-3.08-refman.pdf
http://scala.epfl.ch/docu/files/ScalaReference.pdf
http://scala.epfl.ch/docu/files/ScalaReference.pdf
http://www.openmp.org/specs/mp-documents/fspec20_bars.pdf
http://www.openmp.org/specs/mp-documents/fspec20_bars.pdf
http://download.java.net/jdk6/docs/api/index.html
http://download.java.net/jdk6/docs/api/index.html

	I Preliminaries
	Introduction
	Fortress in a Nutshell
	Acknowledgments
	Organization

	Overview
	The Fortress Programming Environment
	Exports, Imports, and Linking Components
	Automatic Generation of APIs
	Rendering
	Some Common Types in Fortress
	Functions in Fortress
	Some Common Expressions in Fortress
	For Loops Are Parallel by Default
	Atomic Expressions
	Dimensions and Units
	Aggregate Expressions
	Comprehensions
	Summations and Products
	Tests and Properties
	Objects and Traits
	Features for Library Development

	II Fortress for Application Programmers
	Programs
	Evaluation
	Values
	Normal and Abrupt Completion of Evaluation
	Memory and Memory Operations
	Threads and Parallelism
	Environments
	Input and Output Actions

	Lexical Structure
	Characters
	Words and Chunks
	Lines, Pages and Position
	ASCII Conversion
	Input Elements and Scanning
	Comments
	Whitespace Elements
	Reserved Words
	Character Literals
	String Literals
	Boolean Literals
	The Void Literal
	Numerals
	Operator Tokens
	Identifiers
	Special Tokens
	Rendering of Fortress Programs

	Declarations
	Kinds of Declarations
	Top-Level Variable Declarations
	Local Variable Declarations
	Local Function Declarations
	Matrix Unpasting

	Names
	Namespaces
	Reach and Scope of a Declaration
	Qualified Names

	Types
	Relationships between Types
	Trait Types
	Object Trait Types
	Tuple Types
	Arrow Types
	Bottom Type
	Types in the Fortress Standard Libraries
	Intersection and Union Types
	Type Aliases

	Traits
	Trait Declarations
	Method Declarations
	Abstract Field Declarations
	Method Contracts
	Value Traits

	Objects
	Object Declarations
	Field Declarations
	Value Objects
	Object Equivalence

	Static Parameters
	Type Parameters
	Nat and Int Parameters
	Bool Parameters
	Dimension and Unit Parameters
	Operator and Identifier Parameters
	Where Clauses

	Functions
	Function Declarations
	Function Applications
	Abstract Function Declarations
	Function Contracts

	Expressions
	Literals
	Identifier References
	Dotted Field Accesses
	Dotted Method Invocations
	Naked Method Invocations
	Function Calls
	Function Expressions
	Operator Applications
	Object Expressions
	Assignments
	Do Expressions
	Label and Exit
	While Loops
	Generators
	For Loops
	Ranges
	Summations and Other Reduction Expressions
	If Expressions
	Case Expressions
	Extremum Expressions
	Typecase Expressions
	Atomic Expressions
	Spawn Expressions
	Throw Expressions
	Try Expressions
	Static Expressions
	Aggregate Expressions
	Comprehensions
	Type Ascription
	Type Assumption
	Expression-like Functions

	Exceptions
	Causes of Exceptions
	Types of Exceptions
	Information of Exceptions

	Overloading and Multiple Dispatch
	Terminology and Notation
	Applicability to Named Functional Calls
	Applicability to Dotted Method Calls
	Applicability for Functionals with Varargs and Keyword Parameters
	Overloading Resolution

	Operators
	Operator Names
	Operator Precedence
	Operator Fixity
	Chained and Multifix Operators
	Enclosing Operators
	Conditional Operators
	Juxtaposition
	Overview of Operators in the Fortress Standard Libraries

	Conversions and Coercions
	Principles of Coercion
	Coercion Declarations
	Coercion Invocations
	Applicability with Coercion
	Coercion Resolution
	Restrictions on Coercion Declarations
	Coercions for Tuple and Arrow Types
	Automatic Widening

	Dimensions and Units
	Tests and Properties
	The Purpose of Tests and Properties
	Test Declarations
	Other Test Constructs
	Running Tests
	Test Suites
	Property Declarations

	Type Inference
	What Is Inferred
	Type Inference Procedure
	Finding ``Closest Expressible Types'' for Inferred Types

	Memory Model
	Principles
	Programming Discipline
	Read and Write Atomicity
	Ordering Dependencies among Operations

	Components and APIs
	Overview
	Components
	APIs
	Tests in Components and APIs
	Type Inference for Components
	Initialization Order for Components
	Basic Fortress Operations
	Advanced Features of Fortress Operations

	III Fortress APIs and Documentation for Application Programmers
	Objects
	The Trait Fortress.Core.Any
	The Trait Fortress.Core.Object
	The Trait Fortress.Core.Tuple

	Booleans and Boolean Intervals
	The Trait Fortress.Core.Boolean
	The Trait Fortress.Standard.BooleanInterval
	Top-level BooleanInterval Values

	Numbers
	Rational Numbers
	Integers

	Negated Relational Operators
	Negated Equivalence Operators
	Negated Comparison Operators

	Exceptions
	The Trait Fortress.Standard.Exception
	The Trait Fortress.Standard.CheckedException
	The Trait Fortress.Standard.UncheckedException

	Threads
	The Trait Fortress.Standard.Thread

	Dimensions and Units
	Fortress.SIUnits
	Fortress.EnglishUnits
	Fortress.InformationUnits

	Tests
	The Object Fortress.Standard.TestSuite
	Test Functions

	Convenience Functions and Types
	Convenience Functions
	Convenience Types

	IV Fortress for Library Writers
	Parallelism and Locality
	Regions
	Distributed Arrays
	Abortable Atomicity
	Shared and Local Data
	Distributions
	Early Termination of Threads
	Placing Threads
	Use and Definition of Generators

	Overloaded Functional Declarations
	Principles of Overloading
	Subtype Rule
	Incompatibility Rule
	Meet Rule
	Coercion and Overloading Resolution

	Operator Declarations
	Infix/Multifix Operator Declarations
	Prefix Operator Declarations
	Postfix Operator Declarations
	Nofix Operator Declarations
	Bracketing Operator Declarations
	Subscripting Operator Method Declarations
	Subscripted Assignment Operator Method Declarations
	Conditional Operator Declarations
	Big Operator Declarations

	Dimensions and Units Declarations
	Dimensions Declarations
	Units Declarations
	Abbreviating Dimension and Unit Declarations
	Absorbing Units

	Support for Domain-Specific Languages
	Definitions of Syntax Expanders
	Declarations of Syntax Expanders
	Restrictions on Delimiters
	Processing Syntax Expanders
	Expanders for Fortress

	V Fortress APIs and Documentation for Library Writers
	Algebraic Constraints
	Predicates and Equivalence Relations
	Partial and Total Orders
	Operators and Their Properties
	Lattices
	Monoids, Groups, Rings, and Fields
	Boolean Algebras

	Numbers
	The Trait Fortress.Standard.RationalQuantity
	The Trait Fortress.Standard.TotalComparison
	Top-level Total Comparison Values
	The Trait Fortress.Standard.Comparison
	Top-level Comparison Value

	Components and APIs
	Memory Sequences and Binary Words
	The Trait Fortress.Core.LinearSequence
	Constructing Linear Sequences
	The Trait Fortress.Core.HeapSequence
	Constructing Heap Sequences
	The Trait Fortress.Core.BinaryWord
	The Trait Fortress.Core.BinaryEndianWord
	The Trait Fortress.Core.BasicBinaryOperations
	The Trait Fortress.Core.BasicBinaryWordOperations
	The Trait Fortress.Core.BinaryLinearEndianSequence
	The Trait Fortress.Core.BinaryEndianLinearEndianSequence
	The Trait Fortress.Core.BinaryHeapEndianSequence
	The Trait Fortress.Core.BinaryEndianHeapEndianSequence
	The Trait Fortress.Core.BasicBinaryHeapSubsequenceOperations

	VI Appendices
	Fortress Calculi
	Basic Core Fortress
	Syntax
	Dynamic Semantics
	Static Semantics

	Core Fortress with Where Clauses
	Syntax
	Dynamic Semantics
	Static Semantics

	Core Fortress with Overloading
	Syntax
	Dynamic Semantics
	Static Semantics

	Acyclic Core Fortress with Field Definitions
	Syntax
	Dynamic Semantics
	Static Semantics

	Overloaded Functional Declarations
	Proof of Coercion Resolution for Functions
	Proof of Overloading Resolution for Functions

	Components and APIs
	Rendering of Fortress Identifiers
	Support for Unicode Input in ASCII
	Word Pasting across Line Breaks
	Converting Names of Unicode Characters and ASCII Shorthand
	Determining Potentially Convertible Character Sequences
	Converting Restricted Words
	Converting ASCII Symbol Sequences
	Eliminating Ampersands

	Apostrophe Replacement within Numerals
	Equivalence under ASCII Conversion

	Operator Precedence, Chaining, and Enclosure
	Bracket Pairs for Enclosing Operators
	Vertical-Line Operators
	Arithmetic Operators
	Multiplication and Division
	Addition and Subtraction
	Miscellaneous Arithmetic Operators
	Set Intersection, Union, and Difference
	Square Arithmetic Operators
	Curly Arithmetic Operators

	Relational Operators
	Equivalence and Inequivalence Operators
	Plain Comparison Operators
	Set Comparison Operators
	Square Comparison Operators
	Curly Comparison Operators
	Triangular Comparison Operators
	Chickenfoot Comparison Operators
	Miscellaneous Relational Operators

	Boolean Operators
	Other Operators

	Simplified Grammar for Application Programmers and Library Writers
	Components and APIs
	Top-level Declarations
	Trait and Object Declarations
	Variable Declarations
	Function Declarations
	Dimension, Unit, Type Alias, Test, Property, and External Syntax Declarations
	Headers
	Parameters
	Method Declarations
	Method Parameters
	Field Declarations
	Abstract Field Declarations
	Expressions
	Expressions Enclosed by Keywords
	Local Declarations
	Literals
	Types
	Symbols and Operators
	Identifiers

	Full Grammar for Fortress Implementors
	Components and APIs
	Top-level Declarations
	Trait and Object Declarations
	Variable Declarations
	Function Declarations
	Dimension, Unit, Type Alias, Test, Property, and External Syntax Declarations
	Headers
	Parameters
	Method Declarations
	Method Parameters
	Field Declarations
	Abstract Field Declarations
	Expressions
	Expressions Enclosed by Keywords
	Local Declarations
	Literals
	Expressions without Newlines
	Expressions within Array Expressions
	Types
	Symbols and Operators
	Identifiers
	Spaces and Comments

	Changes between Fortress 1.0 and 1.0 Specifications

