
CS 239, Jens Palsberg Mar 22, 2004

Final Exam
Each of the four questions is worth five points, for a total of 20 points. Write your name

and id number at the top of the first page you submit. Write the solutions for different
questions on different sheets of paper. Don’t submit this handout.

1. [Fast Control-Flow Analysis] Consider the following lambda-term:

G = (λ1f.(f(f(λ2x.x))))(λ3y.y)

Show the graph for G that is used by the Heintze/McAllester O(n2) time flow analysis
algorithm. What is the label set for G produced by the algorithm?

2. [Flow Analysis] Consider a subset of Java in which classes are defined by the following
grammar:

InterfaceDecl ::= interface id { Header∗ }
Header ::= void id (Type id);

ClassDecl ::= class id implements id { VarDecl∗ MethodDecl∗ }
VarDecl ::= Type id ;

Type ::= id | boolean
MethodDecl ::= public void id (Type id) { VarDecl∗ Statement∗ }
Statement ::= if (Exp) { Statement∗ } else { Statement∗ }

::= id = Exp ;

::= Exp . id (Exp)

Exp ::= true | false | id | this | new id ()

We use the term flow analysis to denote any program analysis which for every expression e

in a program produces a set S of class names such that if e evaluates to a C-object, then
C ∈ S. Define a flow analysis which is flow sensitive, that is, for a local variable x (local to
some method), after the statements,

x = new A();

x = new B();

the flow set for x is preferably { B }, rather than { A, B }.

1

3. [Recursive Types] Here is a grammar for types:

t ::= α | t → t | µα.t

where α ranges over an infinite set of type variables, and the type µα.t is a recursive type.
Consider the following type rules for λ-calculus expressions:

A ` x : t (A(x) = t) (1)

A[x : s] ` e : t

A ` λx.e : s → t
(2)

A ` e1 : s → t A ` e2 : s

A ` e1e2 : t
(3)

A ` e : µα.t

A ` e : t[α := (µα.t)]
(4)

A ` e : t[α := (µα.t)]

A ` e : µα.t
(5)

Prove in reasonable detail that for all closed e, we can derive ∅ ` e : µα.(α → α).

4. [Stack Machine] Here is a grammar for the action sequence of a stack machine:

(actions) a ::= halt

| incr; a

| add; a

| push v; a

| pop;a

| iftrue v1 else v2; a

(values) v ::= c | true | false

where c ranges over integer constants. A stack is a finite list of values. We use s to range
over stacks, and we use the notation (v s) to denote a stack with top element v and the rest
of the stack being s. A state in the stack machine is either a pair 〈s, a〉 or a final state v.
We use σ to range over states. A small-step operational semantics for the language is given
by the reflexive, transitive closure of the relation →:

〈(v s), halt〉 → v (6)

〈(c s), incr; a〉 → 〈(c′ s), a〉 where c′ = c + 1 (7)

〈(c1 (c2 s)), add; a〉 → 〈(c′ s), a〉 where c′ = c1 + c2 (8)

〈s, push v ; a〉 → 〈(v s), a〉 (9)

〈(v s), pop; a〉 → 〈s, a〉 (10)

〈(true s), iftrue v1 else v2 ; a〉 → 〈(v1 s), a〉 (11)

〈(false s), iftrue v1 else v2 ; a〉 → 〈(v2 s), a〉 (12)

A state σ is stuck if it is not a final state and there is no state σ ′ such that σ → σ′. A state
σ goes wrong if ∃σ′ : σ →∗ σ′ and σ′ is stuck.

Define a type system with the property that a well-typed state cannot go wrong. Argue
informally why the property holds.

2

