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Abstract { This paper presents a new approach to
local instruction scheduling based on integer programming
that produces optimal instruction schedules in a reasonable
time, even for very large basic blocks. The new approach
�rst uses a set of graph transformations to simplify the data-
dependency graph while preserving the optimality of the �nal
schedule. The simpli�ed graph results in a simpli�ed integer
program which can be solved much faster. A new integer-
programming formulation is then applied to the simpli�ed
graph. Various techniques are used to simplify the formu-
lation, resulting in fewer integer-program variables, fewer
integer-program constraints and fewer terms in some of the
remaining constraints, thus reducing integer-program solu-
tion time. The new formulation also uses certain adap-
tively added constraints (cuts) to reduce solution time. The
proposed optimal instruction scheduler is built within the
Gnu Compiler Collection (GCC) and is evaluated experi-
mentally using the SPEC95 
oating point benchmarks. Al-
though optimal scheduling for the target processor is consid-
ered intractable, all of the benchmarks' basic blocks are op-
timally scheduled, including blocks with up to 1000 instruc-
tions, while total compile time increases by only 14%.

1 Introduction

Instruction scheduling is one of the most important compiler
optimizations because of its role in increasing pipeline uti-
lization. Conventional approaches to instruction scheduling
are based on heuristics and may produce schedules that are
suboptimal. Prior work has considered optimal instruction
scheduling, but no approach has been proposed that can
optimally schedule a large number of instructions in reason-
able time. This paper presents a new approach to optimal
instruction scheduling which uses a combination of graph
transformations and an advanced integer-programming for-
mulation. The new approach produces optimal schedules
in reasonable time even for scheduling problems with 1000
instructions.

This research was supported by Equator Technologies, Men-
tor Graphics' Embedded Software Division, Microsoft Research, the
National Science Foundation's CCR Division under grant #CCR-
9711676, and by the University of California's MICRO program.

1.1 Local Instruction Scheduling

The local instruction scheduling problem is to �nd a min-
imum length instruction schedule for a basic block. This
instruction scheduling problem becomes complicated (inter-
esting) for pipelined processors because of data hazards and
structural hazards [11]. A data hazard occurs when an in-
struction i produces a result that is used by a following in-
struction j, and it is necessary to delay j's execution until
i's result is available. A structural hazard occurs when a
resource limitation causes an instruction's execution to be
delayed.

The complexity of local instruction scheduling can de-
pend on the maximum data-hazard latency which occurs
among the target processor's instructions. In this paper,
latency is de�ned to be the di�erence between the cycle
in which instruction i executes and the �rst cycle in which
data-dependent instruction j can execute. Note that other
authors de�ne latency (delay) to be the cycle di�erence mi-
nus one, e.g., [2, 17]. We prefer the present de�nition be-
cause it naturally allows write-after-read data dependencies
to be represented by a latency of 0 (write-after-read depen-
dent instructions can execute in the same cycle on a typical
multiple-issue processor, because the read occurs before the
write within the pipeline).

Instruction scheduling for a single-issue processor with
a maximum latency of two is easy. Instructions can be
optimally scheduled in polynomial time following the ap-
proach proposed by Bernstein and Gertner [2]. Instruc-
tion scheduling for more complex processors is hard. No
polynomial-time algorithm is known for optimally schedul-
ing a single-issue processor with a maximum latency of three
or more [2]. Optimal scheduling is NP-complete for realistic
multiple-issue processors [3]. Because optimal instruction
scheduling for these more complex processors is considered
intractable, production compilers use suboptimal heuristic
approaches. The most common approach is list scheduling,
where instructions are represented as nodes in a directed
acyclic data-dependency graph (DAG) [15]. A graph edge
represents a data dependency, an edge weight represents the
corresponding latency, and each DAG node is assigned a
priority. Critical-path list scheduling is a common variation,
where an instruction's priority is based on the maximum-
length path through the DAG from the node representing
the instruction to any leaf node [15]. While critical-path list
scheduling is usually e�ective, it can produce suboptimal re-
sults even for small scheduling problems. Consider the DAG
in Figure 1, taken from [17], where each edge is labeled with
its latency and each node is labeled with its critical-path
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Figure 1: Simple example where critical-path list scheduling
can produce a suboptimal schedule.

priority. For this DAG, nodes A, B and C all have the same
priority, so the scheduler can arbitrarily select the order of
these instructions. If the initial order is A, C, B or C, A,
B, the next cycle will be a stall because the latency from B

to D or from B to E is not satis�ed. Other orders of A, B
and C will produce an optimal schedule which has no stall.

1.2 Optimal Instruction Scheduling

Although optimal instruction scheduling for complex proces-
sors is hard in theory, in practice it may be possible to op-
timally solve important instances of instruction scheduling
problems in reasonable time using methods from combinato-
rial optimization. Prior work has used various combinatorial
optimization approaches to optimally schedule instructions
for complex processors. However none of these approaches
can optimally schedule large basic blocks in reasonable time.

Ertl and Krall [8] use constraint logic programming and
consistency techniques to optimally schedule instructions for
a single-issue processor with a maximum latency greater
than two. Vegdahl [23] and Kessler [13] use dynamic pro-
gramming to optimally schedule instructions. Chou and
Chung [6] and Tomiyama et al. [22] use approaches that
implicitly enumerate all possible schedules to �nd an opti-
mal schedule. For e�ciency, [6] and [22] propose techniques
to prune the enumeration tree so that redundant or equiv-
alent schedules are not explicitly enumerated. Experimen-
tal results for these various approaches show that they are
e�ective only for small to medium-sized basic blocks (30 in-
structions or less).

Prior work has also used integer programming to opti-
mally schedule instructions. An integer program is a linear
program, with the added requirement that all problem vari-
ables must be assigned a solution value that is an integer.
Like the other approaches to optimal instruction schedul-
ing, prior work using integer programming has only pro-
duced approaches that are e�ective for small to medium-
sized scheduling problems. Arya [1] proposes an integer pro-
gramming formulation for vector processors, although the
basic approach is general and can be applied to other pro-
cessor types. The experimental results in [1] suggest the
formulation can signi�cantly improve the instruction sched-
ule. However, the results are limited to only three small to
medium-sized problems (12 to 36 instructions). Only the
smallest problem is solved optimally, with the other prob-
lems timing out before an optimal solution is found. Leupers
and Marwedel [14] propose an integer programming formu-
lation for optimally scheduling a multiple-issue processor.
Although their work focuses on DSP processors, again the
basic approach is general and can be used for other processor
types. The experimental results in [14] are also limited to a
few small to medium-sized problems (8 to 37 instructions).
While the solution time might be acceptable for the largest
problem studied (37 instructions solves in 130 seconds), the
solution time does not appear to scale well with problem size
(the next smaller problem, 24 instructions, solves in 7 sec-

onds). Thus the approach does not appear practical for large
instruction scheduling problems. Chang, Chen and King [5]
propose an integer programming formulation that combines
local instruction scheduling with local register allocation.
Experimental results are given for one simple 10-instruction
example which takes 20 minutes to solve optimally. These
results suggest that the approach has very limited practical-
ity.

Although prior work using integer programming has pro-
duced limited success for optimal instruction scheduling, in-
teger programming has been used successfully to optimally
solve various other compiler optimization problems, includ-
ing array dependence analysis [19], data layout for paral-
lel programs [4] and global register allocation [9]. Inte-
ger programming is the method of choice for solving many
large-scale real-world combinatorial optimization problems
in other �elds [16], including other scheduling problems such
as airline crew scheduling. This successful use of integer
programming elsewhere suggests that improved integer pro-
gramming formulations may be the key to solving large-scale
instruction scheduling problems.

This paper presents a new approach to optimal instruc-
tion scheduling based on integer programming, the �rst ap-
proach which can solve very large scheduling problems in
reasonable time. The paper is organized as follows. Section
2 describes a basic integer-programming formulation for op-
timal instruction scheduling, which is representative of for-
mulations proposed in prior work. The material in Section
2 provides the reader with background on how instruction
scheduling can be formulated as an integer programming
problem, and provides a basis for comparing the new integer-
programming formulation. Experimental results in Section
2 show that the basic formulation cannot solve large instruc-
tion scheduling problems in reasonable time, which is consis-
tent with the results from prior work. Section 3 introduces
a set of DAG transformations which can signi�cantly sim-
plify the DAG, while preserving the optimality of the sched-
ule. The simpli�ed DAG leads to simpli�ed integer pro-
grams which are shown experimentally to solve signi�cantly
faster. Section 4 introduces a new integer-programming for-
mulation that simpli�es the integer program by reducing the
number of integer-program variables, reducing the number
of integer-program constraints, and simplifying the terms in
some of the remaining constraints. The simpli�ed integer
programs are shown experimentally to solve dramatically
faster. The last section summarizes the paper's contribu-
tions and outlines future work.

2 Basic Integer-Programming Formulation

This section describes a basic integer-programming formula-
tion for optimal instruction scheduling, which is representa-
tive of formulations proposed in prior work. The basic for-
mulation provides background for the DAG transformations
presented in Section 3 and the new integer-programming
formulation presented in Section 4.

2.1 Optimal Instruction Scheduling, Basic Formulation

In the basic formulation, the basic block is initially sched-
uled using critical-path list scheduling. The length U of the
resulting schedule is an upper bound on the length of an
optimal schedule. Next, a lower bound L on the schedule
length is computed. Given the DAG's critical path c and
the processor's issue rate r, a lower bound on the schedule
for a basic block with n instructions is:

122



x , x , ... , x
1
1 1

2
1
n

x , x , ... , x1 2
2
n

2

x , x , ... , x1
3 3

2
3
n

x , x , ... , x1
4 4

2
4
n

x , x , ... , x
1 2

5
n

5 5

x , x , ... , x1
m m

2
m
n

2
C1

C2

C3

C4

C5

Cm

Figure 2: The array of 0-1 scheduling variables for a basic
block with n instructions for a schedule of m clock cycles.

L = 1 +maxfc; dn=re � 1g

If U = L, the schedule is optimal, and an integer program
is unnecessary. If U > L, an integer program is produced (as
described below) to �nd a length U�1 schedule. If the inte-
ger program is infeasible, the length U schedule is optimal.
Otherwise a length U � 1 schedule was found and a second
integer program is produced to �nd a length U � 2 sched-
ule. This cycle repeats until a minimum-length schedule is
found.

To produce anm clock-cycle schedule for an n-instruction
basic block, a 0-1 integer-program scheduling variable is cre-
ated for each instruction, for each clock cycle in the schedule.
The scheduling variable xji represents the decision to sched-
ule (1) or not schedule (0) instruction i in clock cycle j. The
scheduling variables for the corresponding clock cycles are
illustrated in Figure 2.

A solution for the scheduling variables must be con-
strained so that a valid schedule is produced. A constraint
is used for each instruction i to ensure that i is scheduled at
exactly one of the m cycles, a must-schedule constraint with
the following form:

mX

j=1

xji = 1

Additional constraints must ensure the schedule meets
the processor's issue requirements. Consider a statically
scheduled r-issue processor that allows any r instructions
to issue in a given clock cycle, independent of the instruc-
tion type. For this r-issue processor, an issue constraint of
the following form is used for each clock cycle j :

nX

i=1

xji � r

If a multiple-issue processor has issue restrictions for var-
ious types of instructions, a separate issue constraint can be
used for each instruction type [14].

A set of dependency constraints is used to ensure that
the data dependencies are satis�ed. For each instruction i,
the following expression resolves the clock cycle in which i
is scheduled:

mX

j=1

j � xji

Because only one xi variable is set to 1 and the rest are
set to 0 in an integer program solution, the expression pro-
duces the corresponding coe�cient j, which is the clock cycle

in which instruction i is scheduled. Using this expression, a
dependency constraint of the following form is produced for
each edge in the DAG to enforce the dependency of instruc-
tion i on instruction k, where the latency from k to i is the
constant Lki:

mX

j=1

j � xjk + Lki �

mX

j=1

j � xji

Prior work has proposed a basic method for simplifying
the integer program and hence reducing integer-program so-
lution time. Upper and lower bounds can be determined
for the cycle in which an instruction i can be scheduled,
thereby reducing an instruction's scheduling range. All of i's
scheduling variables for cycles outside the scheduling range
set by i's upper and lower bounds are unnecessary and can
be eliminated. After scheduling range reduction, if any in-
struction's scheduling range is empty (its upper bound is
less than its lower bound), no length m schedule exists and
an integer program is not needed.

Chang, Chen and King propose using the critical path
distance from any leaf node (any root node) or the number
of successors (predecessors) to determine an upper bound
(lower bound) for each instruction [5]. For the r-issue pro-
cessor de�ned above, a lower bound Li on i's scheduling
range is set by:

Li = 1 +maxfcri; d(1 + pi)=re � 1g (1)

where cri is the critical path distance from any root node
to i, and pi is the number of i's predecessors. Similarly, an
upper bound Ui on i's scheduling range is set by:

Ui = m�maxfcli; d(1 + si)=re � 1g (2)

where cli is the critical path distance from i to any leaf node,
and si is the number of i's successors.

Collectively, the reduced set of scheduling variables, the
must-schedule constraints, the issue constraints, and the de-
pendency constraints constitute a basic 0-1 integer program-
ming formulation for �nding a schedule of lengthm. Applied
iteratively as described above, this formulation produces an
optimal instruction schedule.

2.2 Basic Formulation, Experimental Results

The basic formulation is built inside the Gnu Compiler Col-
lection (GCC), and is compared experimentally with critical-
path list scheduling. As shown in [2], optimal instruction-
scheduling for a single-issue processor with a two-cycle max-
imum latency can be done in polynomial time. However,
optimal scheduling for a single-issue processor with a three-
cycle maximum latency, the next harder scheduling problem,
is considered intractable [2]. If this easiest hard schedul-
ing problem cannot be solved optimally in reasonable time,
there is little hope for optimally scheduling more complex
processors. Thus, this paper focuses on optimal schedul-
ing for a single-issue processor with a three-cycle maximum
latency.

The SPEC95 
oating point benchmarks were compiled
using GCC 2.8.0 with GCC's instruction scheduler replaced
by an optimal instruction scheduler using the basic formula-
tion. The benchmarks were compiled using GCC's highest
level of optimization (-O3) and were targeted to a single-
issue processor with a maximum latency of three cycles. The
target processor has a latency of 3 cycles for loads, 2 cycles
for all 
oating point operations and 1 cycle for all integer
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operations. The SPEC95 integer benchmarks are not in-
cluded in this experiment because for this processor model
there would be no instructions with a 2-cycle latency, which
makes the scheduling problems easier to solve.

The optimal instruction scheduler is given a 1000 second
time limit to �nd an optimal schedule. If an optimal sched-
ule is not found within the time limit, the best improved
schedule produced using integer programming (if any) is se-
lected, otherwise the schedule produced by list scheduling is
selected. The integer programs are solved using CPLEX 6.5,
a commercial integer-programming solver [12], running on
an HP C3000 workstation with a 400MHz PA-8500 proces-
sor and 512MB of main memory. The experimental results
for the basic formulation are shown in Table 1.

Basic Formulation
Total Basic Blocks (BB) 7,402
BB from List Scheduling

shown to be Optimal w/o IP 6,885
BB Passed to IP Formulation 517
BB IP Solved Optimally 482
BB IP Timed Out 35
BB IP Improved and Optimal 15
BB IP Improved but Non-Optimal 0
Total Cycles IP Improved 15
Total Scheduling Time (sec.) 35,879

Table 1: Experimental results using the basic integer pro-
gramming formulation.

Various observations are made about these data. First,
using only list scheduling most of the schedules, 6,885 (93%),
are shown to be optimal because the upper bound U equals
the lower bound L or because after scheduling range reduc-
tion for a schedule of length U � 1, an instruction's schedul-
ing range is empty. This is not surprising because this group
of basic blocks includes such trivial problems as basic blocks
with one instruction. For the 517 non-trivial problems that
require an integer program, 482 (93%) are solved optimally
and 35 (7%) are not solved using a total of 35,879 CPU sec-
onds (10.0 hours). As a point of reference, the entire bench-
mark suite compiles in 708 seconds (11.8 minutes) when only
list scheduling is used. Thus, the basic formulation fails in
two important respects: not all basic blocks are scheduled
optimally, and the scheduling time is long. Only 15 of the
basic blocks (3% of the non-trivial basic blocks) have an im-
proved schedule, and the total static cycle improvement is
only 15 cycles, a modest speedup. Speedup will be much
higher for a more complex processor (longer latency and
wider issue). For example, results in [21] for the multiple-
issue Alpha 21164 processor show that list scheduling is sub-
optimal for more than 50% of the basic blocks studied. The
proper conclusion to draw from the results in Table 1 is not
that optimal instruction scheduling does not provide sig-
ni�cant speedup, but that the basic integer-programming
formulation cannot produce optimal schedules in reasonable
time, even for the easiest of the hard scheduling problems.
A much better approach to optimal instruction scheduling
is needed.

3 DAG Transformations

A set of graph transformations is proposed which can sim-
plify the DAG before the integer program is produced. These

transformations are fast (low-order polynomial time in the
size of the DAG) and are shown to preserve the optimality
of the �nal schedule. The integer program produced from a
transformed DAG is signi�cantly simpli�ed and solves much
faster.

3.1 DAG Standard Form

The transformations described in the following sections are
for DAGs in standard form. A DAG in standard form has
a single root node and a single leaf node. A DAG with
multiple leaf and root nodes is transformed into a DAG in
standard form by adding an arti�cial leaf node and an ar-
ti�cial root node. The arti�cial root node is the immediate
predecessor of all root nodes. A latency-one edge extends
from the arti�cial root node to each root node in the DAG.
Similarly, an arti�cial leaf node is the immediate successor
of all DAG leaf nodes. A latency-one edge extends from
each leaf node of the DAG to the arti�cial leaf node. These
arti�cial nodes do not a�ect the optimal schedule length of
the original DAG nodes and are removed after scheduling is
complete.

3.2 DAG Partitioning

Some DAGs can be partitioned into smaller subDAGs which
can be optimally scheduled individually, and the subDAG
schedules can be recombined to form a schedule that is op-
timal for the entire DAG. Partitioning is advantageous be-
cause the integer-program solution time is super-linear in
the size of the DAG, and thus the total time to solve the
partitions is less than the time to solve the original prob-
lem. Partitioning is also advantageous because even though
the original DAG may require an integer program to �nd
its optimal schedule, one or more partitions may be optimal
from list scheduling and an integer program is not required
for those partitions.

A DAG can be partitioned at a partition node. A par-
tition node is a node that dominates the DAG's leaf node
and post-dominates its root node. A partition node forms
a barrier in the schedule. No nodes above a partition node
may be scheduled after the partition node, and no nodes
below the partition node may be scheduled before the parti-
tion node. An e�cient algorithm for �nding partition nodes
is described in Section 3.5.1. The algorithm's worst-case ex-
ecution time is O(e), where e is the number of edges in the
DAG.

Figure 3a shows a DAG which can be divided into two
partitions at partition node D. Nodes A, B, C, and D
form one partition, and nodes D, E, F , and G form the
other partition. As illustrated, the two partitions are each
optimally scheduled, and the schedules are then combined
to form an optimal schedule for the entire DAG.

3.3 Redundant Edge Elimination

A DAG may include redundant edges. An edge between
nodes A and B (edgeAB) is redundant if there is another
path PAB fromA to B, and the distance along PAB is greater
than or equal to the distance across edgeAB. The distance
along a path is the sum of the latencies of the path's edges.
The distance across an edge is the edge's latency. In a sched-
ule of the DAG nodes, edgeAB enforces the partial order of
A and B and the minimum latency between A and B. How-
ever, because PAB enforces both of these conditions, edgeAB
is unnecessary and can be removed. Each DAG edge requires
a dependency constraint in the integer program. Therefore,
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Figure 3: Example DAG that can be partitioned.
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Figure 4: Example redundant edge, edgeBE.

removing redundant edges reduces the integer program's size
and hence reduces its solution time. Removing redundant
edges can also create new opportunities for partitioning, fur-
ther simplifying the integer program. An e�cient algorithm
for �nding redundant edges in a DAG partition is described
in Section 3.5.2. The algorithm's worst-case execution time
is O(nP eP ) where nP is the number of nodes and eP is the
number of edges in the DAG partition.

In Figure 4, edgeBE is a redundant edge which can be
removed. When edgeBE is removed, the DAG is reduced to
the DAG shown in Figure 3, which can then be partitioned.

3.4 Region Linearization

Region linearization is a DAG transformation which orders
the set of nodes contained in a region of the DAG. A region
R is de�ned by a pair of nodes, the entry node A and the
exit node B. R is the subDAG induced by node A, node
B, and all nodes that are successors of A and predecessors
of B, nodes which are called the region's interior nodes. R
must contain two disjoint paths from A to B and each path
must include a node other than A or B. Figure 5 shows
three example regions inside the rectangles. For region EI
in Figure 5b, node E is the entry node, node I is the exit
node, nodes F , G, and H are the interior nodes, and node
X is external to the region.

In region linearization, list scheduling is used to produce
a schedule for the instructions in each DAG region. Under
certain conditions (described below), the original region sub-
DAG can be replaced by a linear chain of the region's nodes
in the order determined by list scheduling, while preserving
the optimality of the �nal overall schedule. This can signif-
icantly simplify the DAG, and hence the integer program.
This paper considers region linearization for a single-issue
processor. Region linearization for multiple-issue processors
is also possible and will be considered in a future paper.
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Figure 5: Example regions in a DAG.

3.4.1 Single-Entry Single-Exit Regions

An order O of the nodes in a region can be enforced while
preserving optimality if for every optimal schedule of the
DAG, the region's nodes can be reordered to the order O,
producing a valid schedule with the same length. An order
O that satis�es this condition is a dominant order for the
region. The simplest type of region for which a dominant or-
der can be found is a single-entry, single-exit (SESE) region.
An SESE region is a region where the entry node dominates
the interior nodes, and the exit node post-dominates the in-
terior nodes. Figure 5a illustrates an SESE region. SESE
regions can be found in O(n) time [18].

Theorem 1: If the schedule of an SESE region meets the
following conditions, then the schedule's node order O is a
dominant order of the region's nodes:

� The schedule of the interior nodes is dense. A schedule
is dense if the schedule contains no empty cycles.

� The �rst interior node in order O has an incoming edge
in the DAG that is one of the minimum-latency edges
outgoing from the entry node to the region's interior.

� The last interior node in order O has an outgoing edge
in the DAG that is one of the minimum-latency edges
incoming to the exit node from the region's interior.

Proof: Assume an optimal schedule where the SESE re-
gion's nodes are in order O0. Remove the region's nodes
from the schedule. The nodes in order O can always be
placed in the vacancies left by the removed nodes. The en-
try node in order O will remain the �rst region node in the
schedule and the exit node will remain the last region node
in the schedule. Thus, order O satis�es the latencies be-
tween the region's nodes and the external nodes. A vacancy
cannot occur within the minimum latency from the entry
node to the interior nodes, nor within the minimum latency
to the exit node from the interior nodes. Therefore, the la-
tencies to the �rst interior node and from the last interior
node in order O are satis�ed. If the schedule of the vacan-
cies left by the interior nodes in order O0 is dense, then the
interior node schedule for order O can be placed directly in
the vacancies. Or, if the schedule of the vacancies left by
the interior nodes of order O0 is not dense, the dense sched-
ule of order O's interior nodes can be stretched to match
the schedule of the vacancies. The latencies in the stretched
schedule between the interior nodes are satis�ed, because
the latencies are greater than or equal to the latencies in
the dense schedule of the interior nodes of order O. 2

A dominant order for an SESE region can be enforced
in a DAG by replacing the region subDAG by a subDAG
with the region's nodes in the dominant order. The interior
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Figure 6: Examples of region linearization transformation.

nodes in the transformed region are separated by latency one
edges. The entry node is separated from the �rst interior
node and the last interior node is separated from the exit
node by the same edges that occur between these nodes in
the original DAG. For the DAG in Figure 6a, the node order
A, B, C, D, E, F is a dominant order. Figure 6b shows the
region after the linearization transformation.

3.4.2 Non-SESE regions

Regions which are not SESE regions contain side-exit nodes
and side-entry nodes. A side-exit node is an interior node
with an immediate successor that is not a region node. A
side-entry node is an interior node with an immediate pre-
decessor that is not a region node. Figures 5b and 5c are
examples of non-SESE regions. In Figure 5b, node G is a
side-entry node. In Figure 5c, node K is a side-exit node.
The conditions for linearizing non-SESE regions are more
restrictive than those for SESE regions because of the addi-
tional dependencies to and from nodes outside the region.

Theorem 2: If the schedule of a non-SESE region meets
the following conditions then the schedule's node order O is
a dominant order of the region's nodes:

� The order O satis�es the conditions for a dominant
order of an SESE region.

� All nodes that precede a side-exit node in order O are
predecessors of the side-exit node in the DAG.

� All nodes that follow a side-entry node in order O are
successors of the side-entry node in the DAG.

Proof: Assume an optimal schedule with the region's nodes
in order O0. Remove the region's nodes from the schedule.
The region's nodes in order O can always be placed in the
vacancies left by the removed nodes. The order O satis�es
the conditions for a dominant schedule for an SESE region.
Therefore, following the proof of Theorem 1, the dependen-
cies between interior nodes are satis�ed. Similarly, the de-
pendencies between nodes outside the region and the region
entry and exit nodes are satis�ed. Only the predecessors
of a side-exit node in the DAG precede the side-exit node
in order O. Therefore, the minimum number of nodes pre-
cede each side-exit node in order O. If the region nodes are
removed from the schedule and reordered in order O, a side-
exit node cannot be placed in a vacancy later than the origi-
nal location of the side-exit node in the schedule. Therefore,
the dependencies from the side-exit node to nodes outside
the region are satis�ed. A symmetric argument proves that

A B C D E F G
2

1

2

1 1

1

1

1

Figure 7: Example DAG with nodes in a linear sequence.

the dependencies to side-entry nodes from nodes outside the
region are also satis�ed.2

An algorithm for �nding all of the regions in a DAG par-
tition is described in Section 3.5.3. The algorithm's worst-
case execution time is O(nP eP ) where nP is the number of
nodes and eP is the number of edges in the DAG partition.
In Section 3.5.4, an algorithm for linearizing a region is de-
scribed which has a worst-case execution time of O(eP+n

2

R),
where nR is the number of nodes in the region.

Figure 6c shows a non-SESE region with a side-entry
node K and a side exit node I. The node order G, H, I,
J , K, L, M is a dominant order for the region. Figure 6d
shows the region after the linearization transformation.

3.5 E�cient Algorithms for DAG Transformations

This section describes a set of e�cient algorithms for per-
forming the DAG transformations described in Section 3.2
through Section 3.4.

3.5.1 DAG Partitioning Algorithm

An algorithm is proposed for �nding the partition nodes of
a DAG. If a DAG is drawn as a sequence of nodes in a
topological sort [7], then all edges from nodes preceding a
partition node terminate at or before the partition node.
Figure 7 shows the DAG from Figure 3a redrawn as a linear
sequence in the topological sort A, B, C, D, E, F , G. No
edge extends across the dashed lines at the partition nodes1.

An e�cient algorithm for �nding partition nodes iterates
through the nodes of the DAG in a topological sort O =
(N1; :::; Nn), where n is the number of nodes in the DAG.
A variable latest is maintained across the iterations of the
algorithm. latest equals the latest immediate successor of
any node before the node of the current iteration. Initially,
latest is set equal to the root node. Partition nodes are
determined and latest is updated as follows:

for i 1 to n
if Ni = latest

Ni is a partition node
for each Nk 2 S(Ni)

if Nk is later in O than latest

latest  Nk

where S(Ni) is the set of immediate successors of Ni.
The original instruction order of the DAG nodes before

instruction scheduling can be used as the topological sort
for the algorithm. Each DAG edge and node is considered
only once in the execution of the algorithm. Therefore, the
algorithm runs in O(n + e) time, where n is the number of
nodes and e is the number of edges.

Table 2 illustrates the execution of the algorithm on the
example DAG in Figure 7. The column `current latest'
indicates the value of latest at the start of the iteration.
The column `new latest' indicates the value of latest at
the end of the iteration.

1The root and leaf nodes of a DAG are, by de�nition, partition
nodes.
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current new partition
iteration i Ni latest latest node?

1 A A C yes
2 B C D no
3 C D D no
4 D D F yes
5 E F G no
6 F G G no
7 G G G yes

Table 2: Execution of the partitioning algorithm on the
DAG in Figure 7.

3.5.2 An Algorithm for Finding Redundant Edges

An e�cient algorithm is proposed for �nding the redundant
edges of a partition. The algorithm iterates through all
nodes in the partition except the last node. At each itera-
tion, each edge extending from the current node is compared
with parallel paths in the DAG. Let O = (N1; :::; NnP ) be
a topological sort of the partition nodes, where nP is the
number of nodes in the partition. Redundant edges are de-
termined as follows:

for i 1 to nP � 1
for each Nj 2 S(Ni)

for each Nk 2 S(Ni), where Nk 6= Nj

if l(edgeNiNk
) +D(Nk; Nj) � l(edgeNiNj

)
edgeNiNj

is redundant

where S(Ni) is the set of immediate successors of node Ni

in the DAG, and l(edgeNiNk
) is the latency of edgeNiNk

.
D(Nk; Nj) is the critical-path distance in the DAG from
node Nk to node Nj . D(Nk; Nj) = �1 if no path exists
from Nk to Ni.

The elimination of redundant edges requires the critical-
path distance between all nodes in the partition. An algo-
rithm described in [7] calculates the critical-path distance
from one node of a DAG to every other node in the DAG.
The worst-case execution time of this algorithm is O(eP ),
where eP is the number of edges in the DAG partition.
Therefore, the worst-case execution time for calculating the
critical-path distances between all nodes of the partition is
O(nP eP ), where nP is the number of nodes in the parti-
tion. Once critical-path distances are calculated, the algo-
rithm for �nding redundant edges iterates through each edge
edgeNiNj

of the partition once. At each iteration, edgeNiNj

is compared with all other edges extending from the same
node Ni. The number of edges which may extend from a
single node is O(nP ). Therefore, the worst-case execution
time of the redundant-edge �nding algorithm is O(nP eP ).
Although the number of edges in a partition can be O(n2P ),
the DAGs from the experiments described in 2.2 generally
have O(nP ) edges.

3.5.3 An Algorithm for Finding Regions

An e�cient algorithm is proposed for �nding the regions in
a partition. Section 3.4 de�nes a region by conditions on
the paths from the region's entry node to its exit node. A
region may be equivalently de�ned by relative dominance.
Node C dominates node B relative to node A if every path
in the DAG from A to B includes C, and C 6= A. Under
this de�nition, node B dominates itself relative to A. Let
R(A;B) be de�ned as the dominator of B relative to A which

is earliest in a topological sort. If A is a predecessor of B,
R(A;B) is uniquely de�ned because each dominator of B
relative to A is necessarily a predecessor or successor of any
other dominator of B relative to A. If A is not a predecessor
of B or A = B, R(A;B) is unde�ned.

Theorem 3: Nodes A and B de�ne a region if and only
if there exist two immediate predecessors of B, nodes I1
and I2, for which R(A; I1) and R(A; I2) are de�ned and
R(A; I1) 6= R(A; I2).

Proof: Let I1 and I2 be immediate predecessors of B, and
R(A; I1) and R(A; I2) are de�ned and R(A; I1) 6= R(A; I2).
Because R(A; I1) 6= R(A; I2), a common dominator of I1 and
I2 relative to A does not exist (excluding A). Accordingly,
there must exist disjoint paths PAI1 from A to I1 and PAI2
from A to I2. PAI1 concatonated with edgeI1B and PAI2
concatonated with edgeI2B de�ne two disjoint paths from A
to B. Therefore, A and B de�ne a region.

Let nodes A0 and B0 de�ne a region. By de�nition, there
exist two disjoint paths PA0B0 and P 0

A0B0 from A0 and B0.
PA0B0 and P 0

A0B0 must each include a di�erent immediate
predecessor of B0, nodes I 0

1 and I 0

2 respectively. A is a pre-
decessor of I 0

1 and I 0

2 so R(A; I 0

1) and R(A; I 0

2) are de�ned,
and R(A; I 0

1) 6= R(A; I 0

2) because there exist disjoint paths
from A to I 0

1 and from A to I 0

2. 2
Let O = (N1; ::; Nn) be a topological sort of the nodes

in a partition. The value R(A;B) for each pair of nodes A
and B in the partition can be determined as follows:

for i 2 to n
for j  1 to i

if R(Nj ; Nk) is unde�ned 8 Nk 2 P (Ni)
if Nj 2 P (Ni)

R(Nj ; Ni) Ni

else
R(Nj ; Ni) unde�ned

else if R(Nj ; Nk1) 6= R(Nj ; Nk2 ),
for some Nk1 2 P (Ni); Nk2 2 P (Ni) where
R(Nj ; Nk1) and R(Nj ; Nk2 ) are de�ned

R(Nj ; Ni) Ni

Nj and Ni de�ne a region
else

for some Nk 2 P (Ni) where R(Nj ; Nk) is de�ned
R(Nj ; Ni) R(Nj ; Nk)

where P (Ni) is the set of immediate predecessors of node
Ni in the DAG.

For each iteration i of the outer loop, every edge ter-
minating at a node preceding Ni in order O is considered
O(1) times. Therefore, the worst case execution time of the
algorithm is O(nP eP ).

3.5.4 An Algorithm for Region Linearization

An algorithm for region linearization is proposed which uses
critical-path list scheduling to �nd a schedule S for a region
R. If node order O of S is a dominant order for the region
R as de�ned in Section 3.4 then O is enforced by linearizing
the region nodes in the DAG.

The region �nding algorithm described in Section 3.5.3
�nds the entry node and exit node for each region of a parti-
tion. The interior nodes of the region can be determined by
performing a forward depth-�rst search from the entry node
and a reverse depth-�rst search from the exit node. Nodes
which are touched in both searches are interior nodes of the
region. The searches can also identify side-entry nodes and
side-exit nodes.
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By Theorem 2, in scheduling a non-SESE region R, no in-
terior node may be scheduled before a side-exit node which is
not a predecessor of the side-exit node in the DAG. Symmet-
rically, no interior node may be scheduled after a side-entry
node which is not a successor of the side-entry node in the
DAG. To enforce these constraints during region scheduling,
temporary edges are added to the region subDAG. Latency
one edges are added from each side-exit node to each interior
node which is not a predecessor of the side-exit node. Sim-
ilarly, latency one edges are added to each side-entry node
from every interior node which is not a successor of the side-
entry node. If there exists a cycle in the dependency graph
after this transformation, no dominant order for the region
is found. The temporary dependencies are removed after
scheduling the region.

After adding the temporary dependencies, the region
nodes are scheduled using critical-path list scheduling. If
the node order O of the resulting region schedule is a dom-
inant order of the region, then the region is linearized as
described in Section 3.4.

Finding the interior nodes of a region requires two depth-
�rst searches of the partition. The worst-case execution
time of the searches is O(eP ). A non-SESE region may
have O(nR) side-exit and side-entry nodes, where nR is the
number of nodes in the region. Each side-exit and side-
entry node may require the addition of O(nR) temporary
dependences to and from other region nodes. Therefore,
adding and removing temporary dependencies to a region
has a worst-case execution time of O(n2R). Critical-path list
scheduling of the region has a worst-case execution time of
O(n2R) [15]. If a dominant order is produced by list schedul-
ing, replacing the region subDAG with a linearized subDAG
requires the deletion of O(nR) edges and the insertion of
O(nR) edges. Collectively, therefore, the worst-case execu-
tion time of the region linearization algorithm is O(eP+n2R).

3.6 DAG Transformations, Experimental Results

The experiment described in Section 2.2 was repeated with
GCC's instruction scheduler replaced by an optimal instruc-
tion scheduler that includes the DAG transformations and
the basic integer-program formulation. As before, each ba-
sic block is �rst scheduled using list scheduling and the ba-
sic blocks with schedules that are shown to be optimal are
removed from further consideration. For this experiment,
the DAG transformations are then applied to the remaining
basic blocks, and the basic blocks are scheduled again using
list scheduling. The resulting schedules are checked for opti-
mality and those basic blocks without optimal schedules are
then solved using integer programming. The results from
this experiment are shown in Table 1.

Various observations can be made by comparing the data
in Table 3 with the data obtained using only the basic for-
mulation in Table 1. The DAG transformations reduce the
total number of integer programs by 28%, to 374 from 517.
The DAG transformations reduce the number of integer pro-
grams that time out by 83%, to 6 from 35. Total optimal
scheduling time using the DAG transformations is reduced
by about �ve-fold, to 7743 seconds from 35,879 seconds. The
number of basic blocks that have an improved schedule us-
ing the DAG transformations increases by 60%, to 24 from
15. There is a 1 cycle average schedule improvement for
the 15 blocks which improved using the basic formulation
alone. The additional 9 basic blocks which improved using
the DAG transformations have an average improvement of
1.8 cycles. This suggests that the DAG transformations help

Total Basic Blocks (BB) 7,402
BB Optimal from List Scheduling 6885
BB Optimal from DAG Transformations 143
BB Passed to IP Formulation 374
BB IP Solved Optimally 368
BB IP Timed Out 6
BB IP Improved and Optimal 23
BB IP Improved but Not Optimal 1
Total Cycles IP Improved 31
Total Scheduling Time (sec.) 7,743

Table 3: Experimental results using DAG transformations
and the basic integer-programming formulation.

solve the more valuable problems with larger cycle improve-
ments. Overall these data show that graph transformation
is an important technology for producing optimal instruc-
tion schedules in reasonable time. However additional new
technology is clearly needed.

4 Advanced Integer-Programming Formulation

This section describes an advanced formulation for optimal
instruction scheduling which dramatically decreases integer-
program solution time compared with the basic formulation.

4.1 Advanced Scheduling-Range Reduction

As described in Section 2.1, the basic formulation uses a
technique that can reduce an instruction's scheduling range,
and hence the number of scheduling variables. Signi�cant
additional scheduling-range reductions are possible.

The basic formulation uses static range reduction based
on critical-path distance or the number of successors and
predecessors. This technique is termed static range reduc-
tion because it is based on static DAG properties. An addi-
tional criterion for static range reduction is proposed which
uses the number of predecessors (or successors) and the min-
imum latency from (or to) any immediate predecessor (or
successor). For the r-issue processor de�ned earlier, if in-
struction i has pi predecessors, the predecessors will occupy
at least bpi=rc cycles. If the minimum latency from a prede-
cessor of i to i is pred minli, i can be scheduled no sooner
than cycle 1 + bpi=rc + pred minli. Given this additional
criterion, Equation 1 can be extended to create a tighter
lower bound Li on i's scheduling range:

Li = 1 +maxfcri; d(1 + pi)=re � 1; bpi=rc+ pred minlig

Symmetrically, Equation 2 can be extended to create a
tighter upper bound Ui on i's scheduling range:

Ui = m�maxfcli; d(1 + si)=re � 1; bsi=rc+ succ minlig

where succ minli is the minimum latency from i to a suc-
cessor of i.

A new range reduction technique, iterative range reduc-
tion, is proposed. Iterative range reduction uses initial logi-
cal implications (described below) to reduce the scheduling
range of one or more instructions. This range reduction may
in turn allow the ranges of predecessors or successors to be
tightened. An instruction i's lower bound can be tightened
by selecting the maximum of:

� The static lower bound Li, or
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� For each immediate predecessor j, j's lower bound plus
the latency of edgeji.

The second criterion allows i's lower bound to be tight-
ened iteratively as the lower bounds of i's immediate pre-
decessors are tightened iteratively. Similarly, instruction i's
upper bound can be tightened by selecting the minimum of:

� The static upper bound Ui, or

� For each immediate successor j, j's upper bound minus
the latency of edgeij.

Following an initial logical implication, the predecessor
and successor range reductions may iteratively propagate
through the DAG and may lead to additional logical impli-
cations that can reduce scheduling ranges. These new logical
implications may in turn allow additional predecessor and
successor range reductions. This process can iterate until
no further reductions are possible.

For the r-issue processor de�ned earlier, a logical im-
plication can be made for instructions that have a one-cycle
scheduling range. If an instruction i has a one-cycle schedul-
ing range that spans cycle Ck, i must be scheduled at cycle
Ck. If r instructions with one-cycle ranges must be sched-
uled at cycle Ck, no other instruction can be scheduled at
cycle Ck. Thus, cycle Ck can be removed from the schedul-
ing range of any other instruction j which includes cycle Ck.
Based on j's range reduction, the ranges of j's predecessors
and successors may be reduced. This may lead to additional
instructions with one-cycle ranges, and the process may it-
erate for further range reductions.

Iterative range reduction can lead to scheduling ranges
that are infeasible, which implies that no length m schedule
exists. Two infeasibility tests are:

� The scheduling range of any node is empty because its
upper bound is less than its lower bound.

� For any k-cycle range, more than rk instructions have
scheduling ranges that are completely contained within
the k cycles, i.e., the scheduling ranges violate the pi-
geon hole principle [10].

Figure 8 illustrates iterative range reduction using the
one-cycle logical implication for a single-issue processor. Fig-
ure 8a shows each node labeled with the lower and upper
bounds that are computed using static range reduction for
a schedule of length six2. Nodes A, C, E and F have one-
cycle ranges, so the corresponding cycles (1,2,5 and 6) are
removed from the scheduling ranges of all other nodes, re-
sulting in the scheduling ranges shown in Figure 8b. Prede-
cessor and successor ranges can then be tightened using the
iterative range reduction criterion, producing the schedul-
ing ranges shown in 8c. The resulting scheduling ranges are
infeasible because node B's scheduling range is empty.

A second logical implication based on probing is used
to reduce scheduling range. Probing is a general approach
that can be used for preprocessing any 0-1 integer program
to improve its solution time [20]. Probing selects a 0-1 inte-
ger program variable and attempts to show that the variable
cannot be 1 by assuming the variable's value is 1 and then
showing that the resulting problem is infeasible. If the prob-
lem is infeasible, by contradiction, the variable's value must

2List scheduling produces a length 7 schedule for this DAG, so
an integer program is produced to �nd the next shorter schedule, as
described in Section 2.1.
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Figure 8: Example scheduling range reduction based on one-
cycle scheduling range.

be 0 and the variable can be eliminated from the problem.
General-purpose probing is used in commercial solvers, but
has a very high computation cost [12].

A speci�c probing technique called instruction probing
is proposed for reducing instruction scheduling ranges. In-
struction probing is computationally e�cient because it ex-
ploits knowledge of the instruction scheduling problem and
exploits the DAG's structure. Instruction probing is done
for each instruction i, starting with i's lower bound. A lower-
bound probe consists of temporarily setting i's upper bound
equal to the current lower bound. This has the e�ect of
temporarily scheduling i at the current lower bound. Based
on i's reduced scheduling range, the ranges of i's predeces-
sors are temporarily tightened throughout the DAG. If the
resulting scheduling ranges are infeasible, the probe is suc-
cessful and i's lower bound is permanently increased by 1.
Based on i's new lower bound, the ranges of i's successors
are permanently tightened throughout the DAG. If the re-
sulting scheduling ranges are infeasible, the overall schedul-
ing problem is feasible. Otherwise, the new lower bound is
probed and the process repeats. If a lower-bound probe is
unsuccessful, i's lower-bound probing is complete. i's upper
bound is then probed in a symmetric manner.

Figure 9 illustrates the use of instruction probing for
a single-issue processor. Figure 9a shows the scheduling
ranges that are produced using static range reduction for
a schedule of length 8. Figure 9b shows the temporary
scheduling ranges that result from probing node B's lower
bound. Based on the one-cycle logical implication, cycle 2
is removed from node C's range. Node C's increased lower
bound in turn causes the lower bounds for nodes E, G andH
to be temporarily tightened. Because node E has a one-cycle
range (cycle 5), cycle 5 is removed from node D's range,
which in turn causes node F 's lower bound to be tightened.
Nodes F and G must be scheduled at the same cycle, which
is infeasible. Thus, node B cannot be scheduled at cycle
2 and cycle 2 is permanently removed from B's scheduling
range. The consequence of B's permanent range reduction
is shown in Figure 9c. Based on B's tightened lower bound,
the lower bounds of nodes D, F and H are permanently
tightened. Based on node B's one-cycle range, cycle 3 is
removed from node C's range. Due to node D's one-cycle
range, cycle 6 is removed from node G's range. The result-
ing ranges are infeasible because nodes F and G must be
scheduled at the same cycle, thus no 8-cycle schedule exists
for the DAG.

4.2 Optimal Region Scheduling

For a region as de�ned in Section 3, the critical-path distance
between the region's entry and exit nodes may not be su�-
ciently tight. This can lead to excessive integer-program so-
lution time because the integer program produced from the
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Figure 9: Example scheduling range reduction using instruc-
tion probing.
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Figure 10: Example pseudo edge insertion.

DAG is under-constrained. A region is loose if the critical-
path distance from the region's entry node to its exit node
is less than the distance from the entry node to the exit
node in an optimal schedule of the region. Clearly in any
valid overall schedule, a region's entry and exit nodes can
be no closer than the distance between these nodes in an
optimal schedule of the region. A loose region can be tight-
ened by computing an optimal schedule for the region to
determine the minimum distance between the region's entry
and exit nodes. A pseudo edge can then be added to the
DAG from the entry node to the exit node, with a latency
that equals the distance between these nodes in the optimal
region schedule. Pseudo edges may allow the scheduling
ranges of the entry and exits nodes to be reduced. These
range reductions may then iteratively propagate through the
DAG as described in the previous subsection and may result
in scheduling ranges that are infeasible for scheduling the ba-
sic block in m cycles. Even if the overall scheduling problem
is not shown to be infeasible, the problem will solve faster
because of the reduced number of scheduling variables.

The application of region scheduling is illustrated in Fig-
ure 10. Figure 10a shows the scheduling ranges for a sched-
ule of length 12. The region AF is an instance of the region
in Figure 8, which has an optimal schedule of length 7. Thus,
after region scheduling is applied to region AF a latency 6
pseudo edge is added from node A to node F , as shown in
Figure 10b. The pseudo edge causes the lower bounds for
nodes F , G, H, I, J and K to be tightened to the ranges
shown in Figure 10b. Based on nodeH's one-cycle range, cy-
cle 8 is removed from node G's range. The increase in node
G's lower bound causes node I's lower bound to increase.
The resulting ranges are shown in Figure 10c. These ranges
are infeasible because nodes I and J must be scheduled at
the same cycle. Thus, the overall schedule is shown to be
infeasible based on the optimal schedule of only one inner
region.

Optimal region schedules are computed starting with the
smallest inner regions, progressing outward to the largest
outer region, the entire DAG partition. Optimal schedules
for the inner regions can usually be found quickly using the
infeasibility tests. If an optimal region schedule requires an
integer program and the inner regions have pseudo edges, a
dependency constraint is produced for each pseudo edge, in
the manner described in Section 2.1. As the optimal region
scheduling process moves outward, the additional pseudo
edges progressively constrain the scheduling of the large
outer regions, allowing the optimal scheduling of the outer
regions to be solved quickly, usually using only the infeasi-
bility tests.

4.3 Branch-and-Cut

Typically 0-1 integer programs are initially solved as a lin-
ear program (LP) in which the solution values can be non-
integers [24]. If a variable in the initial solution is a non-
integer, branch-and-bound can be used to �nd an all integer
solution [24]. Branch-and-bound selects a branch variable,
which is one of the variables that was not an integer in the
LP solution. Two subproblems are created in which the
branch variable is �xed to 0 and to 1, and the subprob-
lems are solved as LPs. The collection of subproblems form
a branch-and-bound tree [24]. The root of the tree is the
initial LP of the integer program and each node is an LP
subproblem with some variables �xed to integer values. By
solving the LP subproblems, the branch-and-bound tree is
traversed until an all integer solution is found, or the prob-
lem is determined to be infeasible [24].

For some integer programming applications, the num-
ber of nodes in the branch-and-bound tree that must be
solved to produce an optimal integer solution can be dra-
matically reduced by adaptively adding application-speci�c
constraints, or cuts, to the LP subproblem at each node
in the branch-and-bound tree. The cuts are designed to
eliminate areas of the solution space in the LP subprob-
lem which contain no integer solutions. This enhancement
to the branch-and-bound method is called branch-and-cut
[24]. Two types of cuts are proposed for solving instruction
scheduling integer programs: dependency cuts and spreading
cuts.

4.3.1 Dependency Cuts

In an LP solution, an instruction may be fractionally sched-
uled over multiple cycles. For an instruction k that is data
dependent on instruction j, fractions of j can be scheduled
after all cycles in which k is scheduled, without violating the
corresponding dependency constraint. This is illustrated in
Table 4, which shows a partial LP solution for a schedul-
ing problem that includes instructions j and k, where k is
dependent on j with latency 1. The solution satis�es the de-
pendency constraint between j and k because j is scheduled
at cycle 1 � 0:5 + 5 � 0:5 = 3, while k is scheduled at cycle
4. However a fraction of j is scheduled after all fractions of
k. This invalid solution can be eliminated in the subsequent
LP subproblems by adding the following dependency cut for
cycle c, the last cycle in which j can be scheduled given the
position of the last fraction of k in the current LP solution:

cX

i=LB(j)

x
i
j �

c+ljkX

i=LB(k)

x
i
k
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where LB(j) and LB(k) are the scheduling range lower
bounds for j and k, respectively, and ljk is the latency of
the dependency between j and k.

For example, the following dependency cut can be added
for cycle 3 for the solution in Table 4 to prevent j from
being fractionally scheduled after a fraction k in cycle 4 in
subsequent LP subproblems:

x
1
j + x

2
j + x

3
j � x

2
k + x

3
k + x

4
k

clock cycle variables

C1 x1j = 0:5
C2

C3

C4 x4k = 1:0
C5 x5j = 0:5

Table 4: Example LP solution to illustrate a dependency
cut.

4.3.2 Spreading Cuts

In an LP solution, an instruction k may be fractionally
scheduled closer to k's immediate predecessors than the la-
tencies allow in an integer solution, but still satisfy the cor-
responding dependency constraints. This is illustrated in
Table 5, which shows a partial LP solution for a scheduling
problem which includes instructions i, j, and k. Instruction
k is dependent on both i and j with latency 2. The solution
satis�es the dependency constraints of the LP because k is
scheduled at cycle 3 � 0:5 + 4 � 0:5 = 3:5, and i and j are
scheduled at cycle 1�0:5+2�0:5 = 1:5. However, in cycle 3,
a fraction of k is scheduled closer to i and j than the latency
allows in an all integer solution. This invalid solution can
be eliminated in the subsequent LP subproblems by adding
the following spreading cut for cycle c, the lowest cycle in
which a fraction of k is scheduled in the current solution:

cX

i=c�l+1

x
i
k +
X

I2P (k)

x
c�l+1
I � 1

where P (k) is the set of immediate predecessors of instruc-
tion k.

For example, the following spreading cut can be added
for cycle 3 for the solution in Table 5 to force the fractions
of i and j to be spread further apart from a fraction of k in
cycle 3 in subsequent LP subproblems:

x
2
k + x

3
k + x

2
i + x

2
j � 1

clock cycle variables

C1 x1i = 0:5 x1j = 0:5
C2 x2i = 0:5 x2j = 0:5
C3 x3k = 0:5
C4 x4k = 0:5

Table 5: Example LP solution to illustrate a spreading cut.

Symmetric spreading cuts can be used to prevent in-
structions from being fractionally scheduled closer to their
immediate successors than the latencies allow in an integer
solution.

A

B

F

D

C

E

2

1 1

1 1

21

[1,1]

[2,3]

[5,6]

[7,7]

[5,6]

[2,3]

Figure 11: Example DAG with redundant dependency
edgeCD.

4.4 Redundant Constraints

Some constraints in the integer program may be redundant
and can be removed. This simpli�es the integer program
and reduces its solution time.

If an instruction i has a one cycle scheduling range at
cycle C, the must-schedule constraint for instruction i can
be eliminated, and the issue constraint for cycle C can be
eliminated for a single-issue processor.

The integer program includes a dependency constraint
for each DAG edge. The dependency constraint ensures that
each instruction is scheduled su�ciently earlier than any of
its dependent successors. However, if the scheduling ranges
of dependent instructions are spaced far enough apart, the
data dependency between the two instructions will neces-
sarily be satis�ed in the schedule produced by the integer
program. In this case, the dependency constraint for the
corresponding edge can be removed from the integer pro-
gram. More precisely, if an instruction k is dependent on
instruction j with latency L, then the j to k dependency
constraint is redundant if:

L + Upper bound of j � Lower bound of k

For the example DAG in Figure 11, the dependency con-
straint for edgeCD is redundant because the upper bound
for node C is cycle 3, the lower bound for node D is cycle 5
and the latency of edgeCD is 1.

4.5 Algebraic Simpli�cation

An algebraic simpli�cation reduces the number of depen-
dency constraint terms and reduces the size of the coe�-
cients of the remaining terms. The basic dependency con-
straint for edgejk has one term for each cycle in j's range
and one term for each cycle in k's range. The dependency
constraint is simpli�ed to include terms only for cycles in
which j's and k's scheduling ranges overlap. The simpli�ed
constraints allow the integer program to solve faster.

Suppose instruction i is dependent on k with latency L.
The scheduling ranges for k and i are [a,b] and [c,d], re-
spectively, and the dependency constraint is not redundant.
That is, c+ 1 � b+ L. The basic dependency constraint is:

bX

j=a

j � x
j
k + L �

dX

j=c

j � x
j
i (3)

Subtracting c from both sides of (3) yields:

bX

j=a

j � x
j
k + L� c �

dX

j=c

j � x
j
i � c
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Because the xk and xi variables are nonzero for only one
cycle j:

bX

j=a

(j + L� c) � xjk �

dX

j=c

(j � c) � xji (4)

After schedule range tightening, a � c � L, and because
the dependency constraint is not redundant, c� L+ 1 � b.
Accordingly, (4) may be expanded to:

c�LX

j=a

(j+L�c)�xjk+

bX

j=c�L+1

(j+L�c)�xjk �

dX

j=c

(j�c)�xji (5)

The right side of (5) is nonnegative. If xjk is nonzero for a
cycle j � c�L, the left side of (5) is nonpositive. Then, the
inequality is necessarily satis�ed independent of the values
of the xi variables. Therefore, the left summation on the
left hand side of (5) may be eliminated, and the dependency
constraint becomes:

bX

j=c�L+1

(j + L� c) � xjk �

dX

j=c

(j � c) � xji (6)

Let M = b + L � c. The right hand side of (6) can be
transformed as follows:

dX

j=c

(j � c) � xji = M �

dX

j=c

(M � j + c) � xji

Because the left hand side of (6) is at most M , all right
hand side cycles after b + L � 1 don't a�ect the constraint
because they have negative coe�cients and will produce a
right hand side result that is greater thanM . Thus the right
hand side of (6) can be simpli�ed to:

M �

b+L�1X

j=c

(M � j + c) � xji (7)

Substituting (7) for the right hand side in (6), yields the
simpli�ed constraint:

bX

j=c�L+1

(j + L� c) � xjk �M �

b+L�1X

j=c

(M � j + c) � xji

To illustrate the simpli�cation, assume k has scheduling
range [8,15], i has scheduling range [14,78], and i is depen-
dent on k with latency 1. The original data dependency
constraint:

15X

j=8

j � x
j

k + 1 �

78X

j=14

j � x
j
i

is simpli�ed to:

15X

j=14�1+1

(j+1�14)�xjk � (15+1�14)�

15+1�1X

j=14

(15+1�j)�xji

which is:

x
14
k + 2 � x15k � 2� 2 � x14i � x

15
i

Before simpli�cation the dependency constraint has 74
terms. After simpli�cation there are only 4 variable terms.
The maximum sized coe�cient has been reduced to 2 from
74.

4.6 Advanced IP Formulation, Experimental Results

The experiment described in 2.2 is repeated with GCC's in-
struction scheduler replaced by an optimal instruction sched-
uler that includes the DAG transformations and the ad-
vanced integer-program formulation. The experimental re-
sults in Table 6 show the dramatic improvement provided
by the new optimal scheduler. All basic blocks are sched-
uled optimally and the scheduling time is very reasonable.
The graph transformations, advanced range reduction and
region scheduling techniques reduce to 22 the number of
basic blocks that require an integer program, down from
517 using the basic formulation. These 22 most di�cult
problems require a total solver time of only 45 seconds, an
average of only 2 seconds each. The total increase in com-
pilation time is only 98 seconds, a 14% increase in total
compilation time, which includes the time for DAG trans-
formations, advanced range reduction and region scheduling.
Total scheduling time is reduced by more than 300 fold com-
pared with the basic formulation. The improvement in code
quality is more than 4 times that of the basic formulation,
66 static cycles compared with 15 cycles. The additional 6
basic blocks that are solved optimally using the advanced
formulation all have improved schedules, with the average
improvement of 5.8 cycles. This suggests that the hardest
problems to solve are those which provide the most perfor-
mance improvement.

Total Basic Blocks (BB) 7,402
BB Optimal from List Scheduling 6,885
BB Optimal from Graphs Transformation 143
BB Optimal from Advanced Range Reduction

and from Region Scheduling 353
BB Passed to IP Formulation 22
BB IP Solved Optimally 22
BB IP Timed Out 0
BB Improved and Optimal 29
BB Improved but Not Optimal 0
Total Cycles Improved 66
Total Scheduling Time (sec.) 98

Table 6: Experimental results using DAG transformations
and the advanced integer programming formulation.

The new approach can optimally schedule very large ba-
sic blocks. The scattergram in Figure 12 shows a dot for
each of the 517 basic blocks that are processed by the graph
transformations and the advanced integer programming for-
mulation. The axes indicate the block's size and the time
to optimally schedule that block. This �gure shows that
many very large blocks, as large as 1000 instructions, are
optimally scheduled in a short time.

5 Summary

This paper presents a new approach to optimal instruction
scheduling which is fast. The approach quickly identi�es
most basic blocks for which list scheduling produces an op-
timal schedule, without using integer programming. For
the remaining blocks, a simpli�ed DAG and an advanced
integer-programming formulation lead to optimal schedul-
ing times which average a few seconds per block, even for a
benchmark set with some very large basic blocks. These re-
sults show that the easiest of the hard instruction scheduling
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Figure 12: Scatter-gram of basic-block size versus optimal
scheduling time.

problems can be solved in reasonable time. This is an impor-
tant �rst step toward solving harder instruction scheduling
problems in reasonable time, including scheduling very large
basic blocks for long-latency multiple-issue processors. The
proposed approach will also serve as a solid base for future
work on optimal formulations of combined local instruction
scheduling and local register allocation that can be solved
in reasonable time for large basic blocks.
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