
ZPL - Parallel Programming
Language

Barzan Mozafari
Amit Agarwal
Nikolay Laptev

Narendra Gayam

Outline

 Introduction to the language
 Strengths and Salient features
 Demo Programs
 Criticism/Weaknesses

Parallelism Approaches

 Parallelizing compilers
 Parallelizing languages
 Parallelizing libraries

Parallelism Challenges

 Concurrency
 Data distribution
 Communication
 Load balancing
 Implementation and debugging

Parallel Programming
Evaluation

 Performance
 Clarity
 Portability
 Generality
 Performance Model

Syntax

 Based on Modula-2 (or Pascal)
 Why?

 To enforce C and Fortran programmers
rethink

 Lack of features that conflict w/ paralellism
 Pointers
 Scalar indexing of parallel arrays
 Common blocks

 Both readable and intuitive

Data types

 Types:
 Integers of varying size
 Floating point
 Homogeneous arrays types
 Heterogeneous record types

Constants, variables

Configuration variables
 Definition:

 Constant whose values can be deferred to the beginning of the
execution but cannot change thereafter (loadtime constant).

 Compiler: treats them as a constant of unknown value during
optimization

 Example:

Scalar operators

Syntactic sugar

 Blank array references
 Table[] = 0
 To encourage array-based thinking (avoid

trivial loops)

Procedures

 Exactly resembling Modula-2
counterparts

 Can be recursive
 Allows external code

 Using extern prototype
 Opaque: Omitted or partially specified

types
 Cannot be modified or be operated on, only

pass them around

Regions

 Definition: An index set in a coordinate
space of arbitrary dimension

 Naturally, regular (=rectangular)
 Similar to traditional array bounds

(reflected in syntax too!)
 Singleton dimension [1,1..n] instead of

[1..1,1..n]

Region example

Directions

 Special vectors, e.g. cardinal directions
 @ operator

Array operators

 @ operator
 Flood operator: >>
 Region operators:

 At
 Of
 In
 By

Flood and Reduce operator

Region operators (I)

Region operators (II)

Region operators (III)

Outline

 Introduction to the Language
 Strengths and Salient Features
 Demo Programs
 Criticism/Weaknesses

Desirable traits of a parallel
language

 Correctness – cannot be compromised for speed.
 Correct results irrespective of the no. of processors and their

layout.
 Speedup

 Ideally linear in number of processors.
 Ease of Programming, Expressiveness

 Intuitive and easy to learn and understand
 High level constructs for expressing parallelism
 Easy to debug - Syntactically identifiable parallelism

constructs
 Portability

ZPL’s Parallel Programming
model

 ZPL is an array language.
 Array Generalization for most constructs
 [R] A = B + C@east ; Relieves the programmer from writing

tedious loops and error prone index calculations.
 Enables the processor to identify and implement parallelism.

ZPL’s Parallel Programming
model

 Implicit Parallelism though parallel execution of
associative and commutative operators on arrays.
 Parallel arrays distributed evenly over processors.

 Same indices go to the same processor
 Variables and regular indexed arrays are replicated across

processors.

 Excellent sequential implementation too (caches,
multi-issue instruction execution).
 Comparable to hand written C code.

ZPL’s Parallel Programming
model

 Statements involving scalars executed on
all processors.

 Implicit consistency guarantee through an
array of static type checking rules.
 Cannot assign a parallel array value to a scalar
 Conditionals involving parallel arrays cannot

have scalars.

P-dependent vs. P-independent

 P-dependent - behavior dependent on the number or
arrangement of processors.

 Extremely difficult to locate problems specific to a
particular number and layout of processors
 NAS CG MPI benchmark failed only when run on more than

512 processors. 10 years before the bug was caught.
 Compromises programmer productivity by distracting them

from the main goal of improving performance.

P-dependent vs. p-independent…

 ZPL believes in machine independence

 Constructs are largely p-independent. Compiler
handles machine specific implementation details.

 Much easier to code and debug – Example race
conditions and deadlocks are absent.

P-dependent vs. p-independent…

 But sometimes, a low level control may help
improve performance.
 Small set of p-dependent abstractions – provide

the programmer control on performance
 Free Scalars and Grid dimensions

 Conscious choice of performing low level
optimizations using these constructs.

 P-independent constructs for explicit data
distribution and layout.

Syntactically identifiable
communication

 Inter-processor communication is the main
performance bottleneck
 High latency of “off chip” data accesses
 Often requires synchronization

 Code inducing communication should be
easily distinguishable.
 Allows users to focus on relevant portions of the

code only, for performance improvement

Syntactically identifiable
communication…

 MPI, SHMEM
 It’s only communication – Explicit communication

specified by the programmer using low level
library routines.

 Very little abstraction – originally meant for library
developers.

 Titanium, UPC
 Global address space makes programming easier.
 But makes communication invisible.
 Cannot tell between local and remote accesses

and hence the cost involved.

Syntactically identifiable
communication…

 ZPL makes communication syntactically identifiable –
Let the programmer know what are they getting into
 Communication between processors induced only by a set of

operators
 Operators also indicate the kind of communication involved -

WYSIWYG.
 Though communication implemented by the compiler, easy

to tell where and what are the communications.

[R] A + B – No communication
[R] A + B@east - @ induces communication
[R] A + B#[c..d] - # (remap) induces communication

WYSIWYG Parallel Execution
A unique feature of the language, and one of its most

important contributions.

 Sure, the concurrency is implicit and implemented by
the compiler. But the let the programmer know the
cost.

 Enables programmers to accurately evaluate the
quality of their programs in terms of performance.

WYSIWYG Parallel Execution…
 Every parallel operator has a cost and the programmer knows

exactly how much the cost is.

Using the WYSIWYG model

 Programmers use the WYSIWYG model in making the
right choices during implementation.

Compute - A[a..b] + B[c..d]

 Naïve implementation
 Remap – [a..b] A + B#[c..d] -- Very expensive

 Say you know c = a + 1, and d = b + 1,
 A better implementation would be:
 [a..b] A + B@east; -- Less expensive

Portability

 For a parallel program, portability is not just about
being able to run the program on different
architectures.

 We want the programs to perform well on all
architectures.
 What good is a program, if it is specific to a particular

hardware and has to be rewritten to take advantage of
newer, better hardware.

 Programs should minimize attempts to exploit the
characteristics of underlying architecture.
 Let the compiler do this job.

 ZPL works well for both Shared Memory and
Distributed memory parallel computers.

Speedup

 Speedup comparable or better than carefully hand
crafted MPI code.

Expressiveness – Code size

 High level constructs and array generalizations lead

to compact and elegant programs.

Outline

 Introduction to the Language
 Strengths and Salient Features
 Demo Programs
 Criticism/Weaknesses

Demo

 HelloWorld
 Jacobi Iteration

 Solves Laplace’s equation

HelloWorld

program hello;

procedure hello();
begin
 writeln("Hello, world!");
end;

Jacobi

Variable Declaration

Jacobi(continued)

Initialization

Jacobi(continued)

Main Computation

Outline

 Introduction to the Language
 Strengths and Salient Features
 Demo Programs
 Criticism/Weaknesses

Limited DS support

 ZPL could afford to provide support for arrays at the exclusion of other
data structures. As a consequence, ZPL is not ideally suited for solving
certain type of dynamic and irregular problems.

 ZPL’s region concept does not support distributed sets, graphs, and
hash tables.

Insufficient expressiveness
 ZPL being a data parallel language cannot handle certain

expressions :

 Asynchronous producer-consumer relationships for enhanced load
balancing are still difficult to express

 The 2D FFT problem in which the series of iterations are executed
in multiple independent pipelines in a round-robin manner. If
suppose the time needed for the computation to proceed through
pipeline is dependent on the data. ZPL would result in a possibly
inefficient use of the resources.

Remap and Fluff size effect

 Exchanging of indexes between processors greatly affects the performance.

 Determining Fluff size or how much Fluff is required is not clear enough. And
when it can’t be determined statically then we have to dynamically resize the
array. This degrades the performance.

Data vs. Task parallelism

 ZPL is data parallel but not task parallel.

 ZPL supports at most a single level of data parallelism.

 Limitations of ZPL led to the philosophical foundation of the Chapel language.

Lacking Chapel’s extensions!

 Chapel supports multiple levels of parallelism for both task-parallel and
data-parallel algorithms.

 Chapel provides support for distributed sets, graphs, and hash tables.

