/PL - Parallel Programming

!'_ Language

Barzan Mozafari
Amit Agarwal
Nikolay Laptev

Narendra Gayam

i Outline

= Introduction to the language
= Strengths and Salient features

= Demo Programs

= Criticism/Weaknesses

i Parallelism Approaches

= Parallelizing compilers
= Parallelizing languages
= Parallelizing libraries

i Parallelism Challenges

= Concurrency

= Data distribution

= Communication

= Load balancing

= Implementation and debugging

Parallel Programming
i Evaluation

= Performance

= Clarity

= Portability

= Generality

= Performance Model

i Syntax

= Based on Modula-2 (or Pascal)
= 10 enforce C and Fortran programmers
rethink
= Lack of features that conflict w/ paralellism
= Pointers
= Scalar indexing of parallel arrays
= Common blocks

= Both readable and intuitive

i Data types
= [ypes:

= Integers of varying size

= Floating point

= Homogeneous arrays types
= Heterogeneous record types

i Constants, variables

type
age = shortint;
coord = record
¥X: integer;
v: integer;

end;
congtant
pi: double = 3.14155265;
tabgize: integer = 1000;
maxage: adge = 128;

var done: boolean;
length: integer;
name: string;
origin: coord;
table: array [1..tabsize] of complex;

i Configuration variables

Definition:

= Constant whose values can be deferred to the beginning of the
execution but cannot change thereafter (loadtime constant).

= Compiler: treats them as a constant of unknown value during
optimization

= Example:

config var

n: integer = 100; -- a sample problem size
verbose: boolean = true; -- use to control output
logn: integer = 1g2(n); -- log of the problem size
neq: integer = n"2; -- the problem size squared

npi: double = pi*n; -- n timeg the constant pi

i Scalar operators

Arithmetic Operators

+

""-.‘_‘_‘;i.

» oP

&

addition
subtraction
multiplication
division
modulus
exponentiation

Logical Operators
and
or
not

Relational Operators

= equality
!'= mequality
< less than
> greater than
<= less than/equal
>= greater than/equal

Bitwise Operators
band and
bor or
bnot complement
bxor xor

Assignment Operators

standard
accumulative
subtractive
multiplicative
divisive
conjunctive
disjunctive

i Syntactic sugar

= Blank array references
=« Table[] =0

= 10 encourage array-based thinking (avoid
trivial loops)

i Procedures

= Exactly resembling Modula-2
counterparts

= Can be recursive

= Allows external code
= Using extern prototype
=« Opaque: Omitted or partially specified
types

= Cannot be modified or be operated on, only
pass them around

i Regions

= Definition: An index set in a coordinate
space of arbitrary dimension

= Naturally, regular (=rectangular)

= Similar to traditional array bounds
(reflected in syntax too!)

= Singleton dimension [1,1..n] instead of
[1..1,1..n]

[l‘ 0, 1. 'n:| — {(Ll]‘(l‘:}j“I”(_LH,]‘(:}‘”“..‘(”h”]}

Region example

A 11
region R = [1..m, 1..n]; " [TopRow| L
TopRow = [1, 1..n]; R R o S all
BigR = [0..m+1, 0..n+l]; L] |
" BigR al
C

var A, B, C: [BigR] integer;

— +

A B C

[R] A := B + C;

Directions

= Special vectors, e.g. cardinal directions
= @ operator

direction north
south
east

H ~H O O

| I | | |
o o K =

west

it '

A B C

[R] A := B@wesgst + C@east;

i Array operators

= @ operator
= Flood operator: >>

= Region operators:
= At
= Of
= In
= By

i Flood and Reduce operator
e

S — o
IR) ‘ CTTTTTT ‘
A B A B
[R] A := >>[TopRow] B; [TopRow] A := +<<[R] B;
f—

[R] biggest := max<< B

biggest B

Region operators (1

base region/
direction of in at

by

north

L4
L

eastl

b
]
—

EasternlIntericr

0ddCols

i Region operators (II)

("

{+6,l—1,5a 1fd6<0
0 of(l,h,s,a) = < (I,h,s,a) ifé =0
\ (h+1,h+ 6 sa) 1fd >0

("

(,I—(6+1),s,a) 1féd <O
om(l,h,s,a) = < (I,h,s, a) ifd =0
\ (h—(6—1),h,s,a) 1fé >0

i Region operators (III)

(I,h,s,a)até = (I+06,h+06,s,a+0)
‘
(Lh, 6 -s.(h—((h—a)mods))+ (6 -s)) ifé6 <0
(I,h,s,a)byé = (I,h,s,a) ifo =10
\ (Lh, 6 s,(l+({a—l)mods))+ (6 -s)) 1fé6>0

Outline

Introduction to the Language
Strengths and Salient Features
Demo Programs
Criticism/Weaknesses

Desirable traits of a parallel
language

Correctness — cannot be compromised for speed.

g ICorrect results irrespective of the no. of processors and their
ayout.

Speedup
= Ideally linear in number of processors.
Ease of Programming, Expressiveness
= Intuitive and easy to learn and understand

= High level constructs for expressing parallelism

= Easy to debug - Syntactically identifiable parallelism
constructs

Portability

/PL’s Parallel Programming
model

= ZPL is an array language.

= Array Generalization for most constructs

= [R] A =B + C@east ; Relieves the programmer from writing
tedious loops and error prone index calculations.

= Enables the processor to identify and implement parallelism.

Loaale Locl'ale Locale

Parallel Arrays

WVariables n/,-- -""\n/" "‘\n n/,-- ---H\n

gl B g iy g)
1 o e i
S gl e e
Indexed Arrays = N e iy e iy
- - - e

Figure 2.1: An Hlustration of ZPL's Parallel Programming Maodel

\\\\\\
/)]
e A
Yoy

/PL’s Parallel Programming
model

= Implicit Parallelism though parallel execution of
associative and commutative operators on arrays.

= Parallel arrays distributed evenly over processors.
= Same indices go to the same processor

= Variables and regular indexed arrays are replicated across
processors.

= Excellent sequential implementation too (caches,
multi-issue instruction execution).
= Comparable to hand written C code.

/PL’s Parallel Programming

i model

= Statements involving scalars executed on
all processors.

= Implicit consistency guarantee through an
array of static type checking rules.
= Cannot assign a parallel array value to a scalar

= Conditionals involving parallel arrays cannot
have scalars.

P-dependent vs. P-independent

= P-dependent - behavior dependent on the number or
arrangement of processors.

= Extremely difficult to locate problems specific to a
particular number and layout of processors

= NAS CG MPI benchmark failed only when run on more than
512 processors. 10 years before the bug was caught.

= Compromises programmer productivity by distracting them
from the main goal of improving performance.

i P-dependent vs. p-independent...

= /PL believes in machine independence

= Constructs are largely p-independent. Compiler
handles machine specific implementation details.

= Much easier to code and debug — Example race
conditions and deadlocks are absent.

i P-dependent vs. p-independent...

= But sometimes, a low level control may help
improve performance.

= Small set of p-dependent abstractions — provide
the programmer control on performance
= Free Scalars and Grid dimensions

= Conscious choice of performing low level
optimizations using these constructs.

= P-independent constructs for explicit data
distribution and layout.

Syntactically identifiable
i communication

= Inter-processor communication is the main
performance bottleneck
= High latency of “off chip” data accesses
= Often requires synchronization

= Code inducing communication should be
easily distinguishable.

= Allows users to focus on relevant portions of the
code only, for performance improvement

Syntactically identifiable

i communication...

= MPI, SHMEM

= It's only communication — Explicit communication
specified by the programmer using low level
library routines.

= Very little abstraction — originally meant for library
developers.

= Titanium, UPC
= Global address space makes programming easier.
= But makes communication invisible.

= Cannot tell between local and remote accesses
and hence the cost involved.

Syntactically identifiable
communication...

= ZPL makes communication syntactically identifiable —
Let the programmer know what are they getting into

=« Communication between processors induced only by a set of
operators

= Operators also indicate the kind of communication involved -
WYSIWYG.

= Though communication implemented by the compiler, easy
to tell where and what are the communications.

'R] A + B— No communication
R] A + B@east - @ induces communication
R] A + B#[c..d] - # (remap) induces communication

i WYSIWYG Parallel Execution

A unique feature of the language, and one of its most
important contributions.

= Sure, the concurrency is implicit and implemented by
the compiler. But the let the programmer know the
cost.

= Enables programmers to accurately evaluate the
quality of their programs in terms of performance.

i WYSIWYG Parallel Execution...

= Every parallel operator has a cost and the programmer knows
exactly how much the cost is.

Table 1. Sample WYSIWYG Model Information. Work 1s the amount of computation for the operator measured as im-
plemented 1n C: P 1s number of processors. The model 1s more refined than sugegested here.

Svantactic Cue Example Parallelism () | Communication Cost Remarks

[R] arrayv ops [R] ... A+B ... full: work/P

@ array transl. .. A@east ... 1 point-to-point xmut “surface” only

<< reduction . +<<A .. work/P + log P | 2log P point-to-point fan-in/out trees

<< partial red +<<[] A .. work/P + log P | log P point-to-point
| | scan N work/P + log P | 2log P point-to-point parallel prefix trees
>> flood >> [] AL multicast in dimension data not replicated
remap LAH[IL,IZ2] . 2 all-to-all. potentially general data reorg.

i Using the WYSIWYG model

= Programmers use the WYSIWYG model in making the
right choices during implementation.

Compute - A[a..b] + B[c..d]

= Naive implementation
= Remap - [a..b] A + B#[c..d] -- Very expensive

= Sayyouknowc=a+1,andd=b + 1,
= A better implementation would be:
= [a..b] A + B@east; -- Less expensive

Portability

For a parallel program, portability is not just about
being able to run the program on different
architectures.

We want the programs to perform well on all
architectures.

=« What good is a program, if it is specific to a particular
hardware and has to be rewritten to take advantage of
newer, better hardware.
Programs should minimize attempts to exploit the
characteristics of underlying architecture.

= Let the compiler do this job.

ZPL works well for both Shared Memory and
Distributed memory parallel computers.

Speedup

= Speedup comparable or better than carefully hand
crafted MPI code.

MG Class B -- Linux cluster (myrinet) MG Class C -- Linux cluster (myrinet)
128 .

L
(3
|

— — — linear speedup L7 — — — - linear speedup
a6 _ Fa0+MPI L 94 —a— FPL

—e— 7PL - Fo0+MPI

—&— HPF d —&— HPF

Speedup over best 1-processor time
(308.51 seconds in ZPL)
Speedup over best 4-processor time
(775.83 seconds in F90+MPI)
™
IIIIIII|IIIIIII|IIIIIII|IIIIIII

[
54 128
Processors Processors

(c) (d)

ro — | g
]
=
o ;
—
[sy]
[]
]

Expressiveness — Code size

= High level constructs and array generalizations lead
to compact and elegant programs.

MG Line Counts
1200

o 1000 O communication
B B declarations
(&} .
% 800 669 O computation
@ 587
=
S5 600
4]
=
©
S 400 -
=
[=]
a

200

rIIIITBQ Flliil
D T T T T

FOO+MPI CAF HPF SAC ZPL
Language

Outline

Introduction to the Language
Strengths and Salient Features
Demo Programs
Criticism/Weaknesses

i Demo

= HelloWorld

= Jacobi Iteration
= Solves Laplace’s equation

HelloWorld

program hello;

procedure hello();
begin

writeln("Hello, world!");
end;

1 Jacobi

| program jacobl;

2
3
4

integer = 100; - -

epsilon: double = 0.00001; --
boolean = false: __

1.

.nj ; - -

config wvar n:
verhose:
region R = [1..n,
BigR =
var L: [BigR] double;
New: [E] double:
delta: double:
direction north = [
gouth = |
east = |
west = [

[0..n+1, O..n+1]; - -

Variable Declaration

dition

-

the convergence <ol
verbose output?

the computation indices
the declaration indices

main data values
new iteration’s wvalues
change betwesen iterations

e
e

4

the four cardinal directions

£1):) Jacobi(continued)

19 procedure init(var X: [,] double); -- array 1nitialization routine
20 begin

21 X := 0;

2 [north of "] X := 0.0;

n [south of "] X := 1.0;

4 [east of "] ¥ := 0.0:

s [weest of "] X := 0.0;

» end;

27

Initialization

+ = 4
2 procedure jacobil(); -- the main entry point
2 [R] begin

10 init (&)

3]

32 repeat

1 INew := (R@north + A@szcuth + -- five-point stencil on
14 A@=ast + A@west) /4.0;

a5

16 delta := max<< fabs (A - lNew); -- find maximum change

37

38 LA := New; -- copy back

19 until (delta = epsilon); -- continue while change
40

41 if (verbose) then

42 writeln("A:\n", 4 ; -- write data 1f desired
43 end:;

44

45 writeln("delta: %le": delta); -- always write delta

46 end:

Main Computation

Outline

Introduction to the Language
Strengths and Salient Features
Demo Programs
Criticism/Weaknesses

Limited DS support

= ZPL could afford to provide support for arrays at the exclusion of other
data structures. As a consequence, ZPL is not ideally suited for solving
certain type of dynamic and irregular problems.

ZPL's region concept does not support distributed sets, graphs, and
hash tables.

i Insufficient expressiveness

= ZPL being a data parallel language cannot handle certain
expressions :

= Asynchronous producer-consumer relationships for enhanced load
balancing are still difficult to express

= The 2D FFT problem in which the series of iterations are executed
in multiple independent pipelines in a round-robin manner. If
suppose the time needed for the computation to proceed through
pipeline is dependent on the data. ZPL would result in a possibly
inefficient use of the resources.

Remap and Fluff size effect

= Exchanging of indexes between processors greatly affects the performance.

= Determining Fluff size or how much Fluff is required is not clear enough. And
when it can’t be determined statically then we have to dynamically resize the
array. This degrades the performance.

i Data vs. Task parallelism

= ZPL is data parallel but not task parallel.
= ZPL supports at most a single level of data parallelism.

= Limitations of ZPL led to the philosophical foundation of the Chapel language.

i Lacking Chapel’s extensions!

= Chapel supports multiple levels of parallelism for both task-parallel and
data-parallel algorithms.

= Chapel provides support for distributed sets, graphs, and hash tables.

