X10

Jonathan Lee
Daniel Lee

What is X10?

® Programming language designed for high-
performance, high-productivity
computing on high-end computers

m Development at IBM Research

= Object oriented (OO) Language

s Intended to have simple and clear
semantics

Key Design Decisions

m Introduce a new programming language
m Use the Java programming language as a
starting point
= Added a few new things, took away some old
things
m Uses partitioned global address space
(PGAS) model

Programming Model: Places

m Collection of data objects and activities (think of
as threads) that operate on the data

m Can think of as a “virtual shared-memory multi-
processor”

m Every X10 activity runs in a place

m Can get reference to the current place with the
constant here

m Places are ordered and the methods next() and
prev() can be used to cycle through them

Programming Model: PGAS

m X10 uses PGAS (Partitioned Global
Address Space)

m Each place has “partition” of address
space

m Scalar objects are allocated completely at a
single place

m Flements of an array may be distributed
across multiple places

X10 Activities, Places, PGAS
Diagram

Immutable Data:
final varlablas value type instances

| Local array section . DISTRIBUTED ARRAY Remote array section Partitioned Global
3 Address Space

1 L Local object] Remote Uhle":t_l (PGAS)

Inbound

: activities activities
Activities ;
Globally
Asynchronous

I ll Activity Activity
Local Data Local Data
= (—

Place {MA}(PLACES -1)

Locally
Synchronous

inbound Outbound
P |ECE 0 activity activity
replies replies

X10 activities, places, and PGAS

Programming Construct: async

= Can create asynchronous activities using
async statement
m async (P) S
m Spawns an activity at the place designated by
P to execute S
m Creates parallelism!

= Can be thought of as extremely
lightweight threads

Async Example

System.out.printin(1);
async (place.next()) {
System.out.printin(2);

;
System.out.printin(3);

Data Structures: Region

m Regions: Just a collection of points

= Simple contiguous ranges: [0:IN]
= Multidimensional blocks: [0:IN,0:M]
= Can create arbitrary regions of any dimension

Data Structures: Region

= Region Operations:
m Union: R1 Il R2
m Intersection: R1 && R2
= Set Difference: R1 - R2

Data Structures: Distributions

m Distributions: Maps each point in a region
to a specific place

= Built in Distributions:
m Constant: all points map to a single place

m Block: contiguous sets of points equally divided
among places

m Cyclic: Every Nth point assigned to a place

Data Structures: Distributions

s Distribution Operations:

m Also include:

= Range Restriction: D | R
= Place Restriction: D | P

= Indexing for places: D[p]
= Example: Block Star Distribution

Distribution d = dist.factory.block([0,N],places);
Distribution blockstar = [0:-1,0:-1]->here;
for (point p : d) {
blockstar = blockstar Il [0:M]->d][i];
}

Data Structures: Arrays

s X10 Arrays:

m Takes a distribution as a parameter to assign data to
places

] Example: doublel.] data = new double[[0:N]->here];
® Built in and user defined functions support

m Scans

m Overlays

m Reductions
m Lifting

m Initialization

Programming Construct: for

m for (pointp:R)S
= Pointwise for for sequential iteration by a single
activity
= Equivalent to Java foreach loops

v Example:
Region r = [0:N];
int[.] x = new int[r->here];
for (point p(i) : r) {
X[p] =17~ 2;
y

Programming Construct:
foreach

m foreach (pointp : R) S
m For parallel iteration in a single place
v = for (point p : R) async (here) { S }

v Example:

Region r = [0:N];

int[.] X = new int[r->here];

foreach (point p(i) : r) {
X[p] =17 2;

}

Programming Construct: ateach

m ateach (pointp : D) S
m For parallel iteration across multiple places
v = for (point p : D) async (D[p]) { S }

v Example:
Distribution d = [0:4]->place(0) Il
[5:9]->place(1);
int[.] x = new int[d];
ateach (point p(i) : r) {
x[p] =17 2;
y

Programming Construct: future

m f=future(P) E
= Spawns an activity at place P to execute expression E
= When parent activity wants the result of E, it executes
a f.force()
m Parent activity blocks until the future activity completes
v Example:
Distribution d = [0:4]->place(0) Il
[5:9]->place(1);
int[.] x = new int[d] (point (i)) { return i; };
Future<int> x5 = future (place(1)) { x[5] };

int x5 = fx5.force();

Synchronization: Clocks

m X10’s synchronization mechanism
m Acts much like a barrier
m Activities register with a clock

m An activity can perform a next operation to
indicate that it is ready to advance all the clocks
it is registered with

= When all activities registered with clock perform
next command, activities on clock can continue

Synchronization: finish

m finish S

= Essentially a join

= Must block until all child activities recursively
complete

m Also acts as aggregation point for exceptions

= Example:

System.out.printin(“start”);
finish foreach(point (i,j) : [0:N,0:M]) {
System.out.printin(N * i + j);

}

System.out.printin(“end”);

Synchronization: atomic

m atomic S

m Such a statement is executed by the activity as
if in a single step during which all other
activities are frozen

= Type system ensures that statement S will
dynamically access only local data
s Conditional atomic blocks

= when(e) {s }
= await(e)

Current Implementation

m Uses polyglot to generate Java code

m Leverages java threads to achieve concurrence,
but not much place partitioning

= Runtime big and fat; lots of checks and
indirection

= Compiler is fairly simplistic

Advantages of X10

m Java syntax and libraries easy to transition
for programmers

m Constructs realatively easy to learn and
use

m Easy to use some constructs to gain some
parallelism

Limitations of X10

m Hard to load balance places

= Implementation is slow and compiler is
simplistic

m Since implementation uses inner classes, final
modifiers need to be added in some places

m At current state, using parallelism constructs
aggressively is slower

m Questions?

