
X10X10

Jonathan LeeJonathan Lee
Daniel LeeDaniel Lee

What is X10?What is X10?

 Programming language designed for high-Programming language designed for high-
performance, high-productivityperformance, high-productivity
computing on high-end computerscomputing on high-end computers

 Development at IBM ResearchDevelopment at IBM Research
 Object oriented (OO) LanguageObject oriented (OO) Language
 Intended to have simple and clearIntended to have simple and clear

semanticssemantics

Key Design DecisionsKey Design Decisions

 Introduce a new programming languageIntroduce a new programming language
 Use the Java programming language as aUse the Java programming language as a

starting pointstarting point
 Added aAdded a few new things, took away some oldfew new things, took away some old

thingsthings
 Uses partitioned global address spaceUses partitioned global address space

(PGAS) model(PGAS) model

Programming Model: PlacesProgramming Model: Places

 Collection of data objects and activities (think ofCollection of data objects and activities (think of
as threads) that operate on the dataas threads) that operate on the data

 Can think of as a Can think of as a ““virtual shared-memory multi-virtual shared-memory multi-
processorprocessor””

 Every X10 activity runs in a placeEvery X10 activity runs in a place
 Can get reference to the current place with theCan get reference to the current place with the

constant constant herehere
 Places are ordered and the methods Places are ordered and the methods next()next() and and

prevprev()() can be used to cycle through them can be used to cycle through them

Programming Model: PGASProgramming Model: PGAS

 X10 uses PGAS (Partitioned GlobalX10 uses PGAS (Partitioned Global
Address Space)Address Space)

 Each place has Each place has ““partitionpartition”” of address of address
spacespace

 Scalar objects are allocated completely at aScalar objects are allocated completely at a
single placesingle place

 Elements of an array may be distributedElements of an array may be distributed
across multiple placesacross multiple places

X10 Activities, Places, PGASX10 Activities, Places, PGAS
DiagramDiagram

X10 activities, places, and PGAS

Programming Construct: Programming Construct: asyncasync

 Can create asynchronous activities usingCan create asynchronous activities using
asyncasync statementstatement

 async async (P) S(P) S
 Spawns an activity at the place designated bySpawns an activity at the place designated by

P to execute SP to execute S
 Creates parallelism!Creates parallelism!
 Can be thought of as extremelyCan be thought of as extremely

lightweight threadslightweight threads

Async Async ExampleExample
System.out.System.out.printlnprintln(1);(1);
async async (place.next()) {(place.next()) {

System.out.System.out.printlnprintln(2);(2);
}}
System.out.System.out.printlnprintln(3);(3);

Data Structures: RegionData Structures: Region

 Regions:Regions: Just a collection of pointsJust a collection of points
 Simple contiguous ranges: [0:N]Simple contiguous ranges: [0:N]
 Multidimensional blocks: [0:N,0:M]Multidimensional blocks: [0:N,0:M]
 Can create arbitrary regions of any dimensionCan create arbitrary regions of any dimension

Data Structures: RegionData Structures: Region

 Region Operations:Region Operations:
 Union: Union: R1 || R2R1 || R2
 Intersection: Intersection: R1 && R2R1 && R2
 Set Difference: Set Difference: R1 - R2R1 - R2

Data Structures: DistributionsData Structures: Distributions

 Distributions: MapsDistributions: Maps each point in a regioneach point in a region
to a specific placeto a specific place
 Built inBuilt in Distributions:Distributions:

 Constant:Constant: all points map to a single placeall points map to a single place
 Block: contiguous sets ofBlock: contiguous sets of points equally dividedpoints equally divided

among placesamong places
 Cyclic: Every Nth pointCyclic: Every Nth point assigned to a placeassigned to a place

Data Structures: DistributionsData Structures: Distributions

 Distribution Operations:Distribution Operations:
 Also include:Also include:

 Range Restriction: Range Restriction: D | RD | R
 Place Restriction: Place Restriction: D |D | PP
 Indexing for places: Indexing for places: D[p]D[p]

 Example: Block Star DistributionExample: Block Star Distribution
Distribution d = dist.factory.block([0,N],places);Distribution d = dist.factory.block([0,N],places);
Distribution Distribution blockstar blockstar = [0:-1,0:-1]->here;= [0:-1,0:-1]->here;
for (point p : d) {for (point p : d) {

blockstar blockstar = = blockstar blockstar || [0:M]->d[i];|| [0:M]->d[i];
}}

Data Structures: ArraysData Structures: Arrays

 X10 Arrays:X10 Arrays:
 Takes a distribution as a parameterTakes a distribution as a parameter to assign data toto assign data to

placesplaces
 Example: Example: double[.]double[.] data = new double[[0:N]->here];data = new double[[0:N]->here];

 Built in and user defined functionsBuilt in and user defined functions supportsupport
 ScansScans
 OverlaysOverlays
 ReductionsReductions
 LiftingLifting
 InitializationInitialization

Programming Construct: forProgramming Construct: for
 for (point p : R) Sfor (point p : R) S

 Pointwise Pointwise for for sequential iteration by a singlefor for sequential iteration by a single
activityactivity

 Equivalent toEquivalent to Java Java foreach foreach loopsloops
νν Example:Example:

Region r =Region r = [0:N];[0:N];
intint[.] x = new [.] x = new intint[[r-r->here];>here];
for (pointfor (point p(i) : r) {p(i) : r) {

x[p] =x[p] = i * 2;i * 2;
}}

Programming Construct:Programming Construct:
foreachforeach

 foreach foreach (point p : R) S(point p : R) S
 For parallel iteration in a single placeFor parallel iteration in a single place
νν ≡≡ for (point p : R) for (point p : R) async async (here) { S }(here) { S }
νν Example:Example:

Region r =Region r = [0:N];[0:N];
intint[.] x = new [.] x = new intint[[r-r->here];>here];
foreach foreach (point(point p(i) : r) {p(i) : r) {

x[p] =x[p] = i * 2;i * 2;
}}

Programming Construct:Programming Construct: ateachateach

 ateach ateach (point p : D) S(point p : D) S
 For parallel iteration across multiple placesFor parallel iteration across multiple places
νν ≡≡ for (point p : D) for (point p : D) async async (D[p]) { S }(D[p]) { S }
νν Example:Example:

Distribution d =Distribution d = [0:4]->place(0) ||[0:4]->place(0) ||
 [5:9]->place(1);[5:9]->place(1);
intint[.] x = new [.] x = new intint[d];[d];
ateach ateach (point(point p(i) : r) {p(i) : r) {

x[p] =x[p] = i * 2;i * 2;
}}

Programming Construct: futureProgramming Construct: future
 f = future(P) Ef = future(P) E

 Spawns an activity at place P to execute expression ESpawns an activity at place P to execute expression E
 WhenWhen parent activity wants the result of E, it executesparent activity wants the result of E, it executes

a a f.force()f.force()
 Parent activity blocks until theParent activity blocks until the future activity completesfuture activity completes

νν Example:Example:
Distribution d = [0:4]->place(0) ||Distribution d = [0:4]->place(0) ||
 [5:9]->place(1);[5:9]->place(1);
intint[.] x = new [.] x = new intint[d] (point (i)) { return[d] (point (i)) { return i; };i; };
Future<Future<intint> fx5 = future (place(1)) {> fx5 = future (place(1)) { x[5] };x[5] };
……
int int x5 = fx5.force();x5 = fx5.force();

Synchronization: ClocksSynchronization: Clocks
 X10X10’’s synchronization mechanisms synchronization mechanism
 Acts much like a barrierActs much like a barrier
 Activities register with a clockActivities register with a clock
 An activity can perform a An activity can perform a nextnext operation to operation to

indicate that it is ready to advance all the clocksindicate that it is ready to advance all the clocks
it is registered withit is registered with

 When all activities registered with clock performWhen all activities registered with clock perform
next command, activities on clock cannext command, activities on clock can continuecontinue

Synchronization: finishSynchronization: finish

 finish Sfinish S
 Essentially a joinEssentially a join
 Must block untilMust block until all childall child activities recursivelyactivities recursively

completecomplete
 Also acts as Also acts as aggregation point foraggregation point for exceptionsexceptions

 Example:Example:
System.out.System.out.printlnprintln((““startstart””););
finish finish foreachforeach(point (i,j) : [0:N,0:M]) {(point (i,j) : [0:N,0:M]) {

System.out.System.out.printlnprintln(N *(N * i + j);i + j);
}}
System.out.System.out.printlnprintln((““endend””););

Synchronization: atomicSynchronization: atomic

 atomic Satomic S
 Such a statement is executed by the activity asSuch a statement is executed by the activity as

if in a single step during which all otherif in a single step during which all other
activities are frozenactivities are frozen

 Type system ensures that statement S willType system ensures that statement S will
dynamically access only local datadynamically access only local data

 Conditional atomicConditional atomic blocksblocks
 when(e) { s }when(e) { s }
 await(e)await(e)

Current ImplementationCurrent Implementation

 Uses polyglot to generate Java codeUses polyglot to generate Java code
 LeveragesLeverages java threads to achieve concurrence,java threads to achieve concurrence,

but not much place partitioningbut not much place partitioning
 Runtime big and fat; lots of checks andRuntime big and fat; lots of checks and

indirectionindirection
 Compiler isCompiler is fairly simplisticfairly simplistic

Advantages of X10Advantages of X10

 Java syntax and librariesJava syntax and libraries easy to transitioneasy to transition
for programmersfor programmers

 Constructs Constructs realatively realatively easy to learn andeasy to learn and
useuse

 Easy to use some constructs to gain someEasy to use some constructs to gain some
parallelismparallelism

Limitations of X10Limitations of X10

 Hard to load balance placesHard to load balance places
 Implementation is slow and compiler isImplementation is slow and compiler is

simplisticsimplistic
 Since implementation uses inner classes, finalSince implementation uses inner classes, final

modifiers need to be added in some placesmodifiers need to be added in some places
 At current state,At current state, using parallelism constructsusing parallelism constructs

aggressivelyaggressively is sloweris slower

DemoDemo

 CryptoCrypto
 JacobiJacobi

The EndThe End

 Questions?Questions?

