Titanium: A High-Performance
Java Dialect

Jason Ryder
Matt Beaumont-Gay
Aravind Bappanadu

Titanium Goals

* Design a language that could be used for high
performance on some of the most challenging
applications

— Eg. adaptivity in time and space, unpredictable
dependencies, data structures that are sparse,
hierarchical or pointer-based

* Design a high-level language offering object-
orientation with strong typing and safe memory
management in the context of high-performance,
scalable parallelism

What 1s Titanium?

* Titanium 1s an explicitly parallel extension of the
Java programming language
— chosen over the more portable library-based approach

because compiler changes would be necessary 1n either
case

* Parallelism achieved through Single-Program
Multiple Data (SPMD) and Partitioned Global
Address Space (PGAS) models.

Why Titanium Designers Made These
Choices for Parallelism

» Decisions to consider when designing a language
for parallelism

1. Will parallelism be expressed explicitly or implicitly?

2. Is the degree of parallelism static or dynamic?

3. How do the individual processes interact; data
communication and synchronization

« Answers to the first two questions categorize
languages 1into 3 principle categories:
1. Data-parallel
2. Task-parallel

3. Single-program multiple data (SPMD)
* Answers to last question categorize as:
1. Message passing

2. Shared memory
3. Partitioned global address space (PGAS)

Data-Parallel

* Desirable for the semantic simplicity

— Parallelism determined by the data structures in the program
(programmer need not explicitly define parallelism)

— Parallel operations include element-wise array arithmetic,
reduction and scan operations

* Drawbacks

— Not expressive enough for the most irregular parallel algorithms
(e.g. divide-and-conquer parallelism and adaptivity)

— Relies on a sophisticated compiler and runtime support (less
power in the hands of the programmer)

Task-Parallel

* Allows programmer to dynamically create
parallelism for arbitrary computations

— Thereby accommodating expressive parallelization of
the most complex of parallel dependencies

* Lacks direct user control over parallel resources

— Parallelism unfolds at runtime

Single Program Multiple Data

Static parallelism model

— A single program executes in each of a fixed number of
processes

* All processes created at program startup and remain until program
termination

Parallelism 1s explicit in the parallel system semantics

Model offers more flexibility than an implicit model based
on data parallelism

Offers more user-control over performance than either
data-parallel or general task-parallel approaches

SPMD cont...

* Processes synchronize with each other at
programmer-specified points, otherwise proceed
independently

* Most common synchronizing construct 1s the
barrier.

* Also provides locking primitives and synchronous
messages

Titanium and SPMD

* Titanium chose SPMD model to place the burden
of parallel decomposition explicitly on the
programmer

* Provide programmer a transparent model of how
the computations would perform on a parallel
machine

* Goal 1s to allow for the expression of the most
highly optimized parallel algorithms

Message Passing

Data movement 1s explicit

Allows for coupling communication with
synchronization

Requires a two-sided protocol

Packing/Unpacking must be done for non-trivial
data structures

Shared Memory

* Process can access shared data structure at any time
without interrupting other processes

* Shared data structures can be directly represented
In memory

* Requires synchronization constructs to control
access to shared data (e.g. locks)

Partitioned Global Address Space (PGAS)

* Variation of shared memory model
— Offers the same semantic model

— Different performance model

* The shared memory space is logically partitioned between processes
* Processes have fast access to memory within their own partition

* Potentially slower access to memory residing in a remote partition

* Typically requires programmer to explicitly state locality
properties of all shared data structures

Titanium and PGAS

* The PGAS model can run well on distributed-
memory systems, shared-memory multiprocessors
and uniprocessors

* The partitioned model provides the ability to start
with functional, shared-memory-style code and
incrementally tune performance for distributed-
memory hardware

Titanium and PGAS cont...

* In Titanium, all objects allocated by a given
process will always reside entirely 1n 1ts own
partition of the memory space

* There 1s an explicit distinction between

— Shared and private memory

* Private 1s typically the processes stack and shared 1s on the
heap

— local and global pointers

* performance and static typing benefits

[.ocal vs. Global Pointers

Shared space
vl v: 3 v ¥ contains most
nxt: +—» nxt: » Xt | g | heap objects

* Global pointers may be used to

Private space
contains program
stacks

access memory from both the local

partition and shared partitions

belonging to other processes

Figure 1: Titanium’s Memory Model.

* Local pointers may only be used to

access the process’s local partition In Figure 1:
g denotes a global pointer
[denotes a local pointer

nxt 1s a global pointer

LLanguage Features

* General HPC/scientific computing

* Explicit parallelism

Immutable Classes

* immutable keyword 1n class declaration
* Non-static fields all implicitly final

* Cannot be subclass or superclass

* Non-null

* Allows compiler to allocate on stack, pass by value,
inline constructor, etc.

Points and Domains

New built-1n types for bounding and indexing N-
dimensional arrays

Point<N> 1s an N-tuple of integers

Domain<N> 1s an arbitrary finite set of Point <N>

— RectDomain<N> is a rectangular domain

Can union, intersect, extend, shrink, slice, etc.

foreach loops over the points in a domain in
arbitrary order

Grid Types

Type constructor: T [Nd]
Constructor called with RectDomain<N>
Indexed with Point <N>

overlap keyword in method declaration allows
specified grid-typed formals to alias each other

Memory-Related Type Qualitiers

* Variables are global unless declared 1ocal (to
statically eliminate communication check)

* Variables of reference types are shared unless
declared nonshared

— May also be polyshared

I/0O and Data Copying

* Efficient bulk I/0 on arrays
* Explicit gather/scatter for copying sparse arrays

* Non-blocking array copying

Maintaining Global Synchronization

* Some expressions are single-valued, e.g.:

— Constants
— Variables or parameters declared as single

— el + e2ifel and e2 are single-valued

* Some classes of statements have global effects, e.g:

— Assignment to single variables

— broadcast

Maintaining Global Synchronization

* "An i f statement whose condition 1s not single-
valued cannot have statements with global effects as

1ts branches."

*Ine.m(...),1fmmay be mO with global effects,

e must be single-valued

* Etc., etc.

Barriers

* Ti.barrier () causes a process to wait until all
other processes have reached the same textual

instance of the barrier

* "Barrier inference” technique used to detect possible
deadlocks at compile time

broadcast

broadcast e from p

p must be single-valued

All processes but p wait at the expression
e 1s evaluated on p

The value 1s returned 1n all processes

exchange

* A.exchange (e)

* Domain of A must be superset of the domain of
process 1Ds

* Provides an implicit barrier

* In all processes, A[i] gets process i's value of e

Demo!

References

* Alexander Aiken and David Gay. "Barrier Inference." Proc. POPL, 2005.
* P. N. Hilfinger (ed.), Dan Bonachea, et al. "Titanium Language Reference
Manual." UC Berkeley EECS Technical Report UCB/EECS-2005-135.1,

August 2006.
* Katherine Yelick, Paul Hilfinger, et al. "Parallel Languages and Compilers:

Perspective from the Titanium Experience." International Journal of High
Performance Computing Applications, Vol. 21, No. 3, 266-290, 2007.

