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This Presentation

• The history of Fortress
• General language features
• Parallel processing features
• Demonstration



THE HISTORY OF FORTRESS
Part 1



Background and Status
• Developed by Sun Microsystems for the 

DARPA high-performance computing 
initiative.  
– Didn’t make it to Phase III

• Spec is at version “1.0 beta”
• Still being developed as an open source 

project.  Mailing list is active.
• Implementation is weak.

– Still only an unoptimized interpreter.
– No static checking (undefined variables, type 

checking) 
– Many of the parallel features aren’t implemented.



Philosophy

• “Do for Fortran what Java did for C”
• Guy Steele is one of the designers

– Co-creator of Scheme, worked on Java spec
– “Growing a Language” (talk at OOPSLA ’98)

• Initially targeting scientific computing, 
but  meant to be usable for anything.

• Designed from scratch. 



GENERAL LANGUAGE FEATURES
Part two



Readability

• You can use tons of Unicode symbols.  
– Each has an ASCII equivalent.

• Mathematical syntax.  What you write on 
the blackboard works.

• Minimize clutter
– Don’t specify types that can be inferred.
– Get rid of noisy punctuation (semicolons).

• Two input modes (Unicode vs ASCII).  An 
additional typeset output mode.



Operators

• The “popular” operators:

• Abbreviated operators:

• Short names in all caps:

• Named:

+  - /  =  <  >  |  {  }

[\ \]  =/=  >=  ->  =>  |->  
<|  |>  ≠  ≥  →  

OPLUS  DOT  TIMES  SQCAP  AND  OR  IN
×



Identifiers
• Regular:

• Formatted:

• Greek Letters:

• Unicode Names:  HEBREW_ALEF א
• Blackboard Font:

a     zip     trickOrTreat foobar
a             zip                   trickOrTreat foobar

a3 _a  a_  a_vec _a_hat a_max foo_bar
a3 a a a â amax foo

alpha   beta   GAMMA   DELTA
α β Γ Δ



Mathematical Syntax
"What if we tried really hard to make the mathematical parts of 

program look like mathematics?”     - Guy L. Steele

• Multiplication and exponentiation.
– x2 + 3y2 = 0

• Operator chains: 0 ≤ i < j < 100

• Reduction syntax
– factorial(n) = ∏i←1…n i

factorial(n) = ∏[i←1:n] il

x^2 + 3 y^2 = 0



Aggregate Expressions

• Set, array, maps, lists:

• Set, array, maps, lists:

• Matricies:
[1 0
0 A]

1  0
0  A

{2, 3, 5, 7}
[“France” →“Paris”, “Italy”→“Rome”]
〈0, 1, 1, 2, 3, 5, 8, 13〉

{x2 | x ← primes}
[x2 → x3 | x ← fibs, x < 1000]
〈x(x+1)/2 | x ← 1#100 〉



Dimension and Units

• Numeric types can be annotated with units

• Common dimensions and units are provided 
in fortress standard library, e.g: kg, m, s

• Static safety checks
• Ex.:

m_  kg_  s_  micro_s_     MW_  ns_
m       kg      s            μs              MW      ns

kineticEnergy(m:R kg_, v:R m_/s_):R kg_ m_^2/s_2
= (m v^2) / 2



Some Whitespace Sensitivity

• Whitespace must agree with precedence
– Error: a+b / c+d

• Parentheses are sometimes required: 
A+B∨C
– “+” and “∨” have no relative precedence.

• Fractions: 1/2 * 1/2
• Subscripting (a[m n]) vs vector 

multiplication: (a [m n])



Example Code (Fortress)
ASCII:
do
cgit_max = 25
z: Vec = 0
r: Vec = x
p: Vec = r
rho: Elt = r^T r
for j <- seq(1:cgit_max) do

q = A p
alpha = rho / p^T q
z := z + alpha p
r := r - alpha q
rho0 = rho
rho := r^T r
beta = rho / rho0
p := r + beta p

end
(z, ||x – A z||)

end

Unicode
do
cgit_max = 25
z: Vec = 0
r: Vec = x
p: Vec = r
ρ: Elt = r^T r
for j ← seq(1:cgit_max) do

q = A p
α = ρ / p^T q
z := z + α p
r := r - α q
ρ₀ = ρ
ρ := r^T r
β = ρ / ρ₀
p := r + β p

end
(z, x - A z )

end



Example Code (Typeset Fortress)
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Object Oriented

• Classes (declared with object)
• Fields
• Virtual methods
• Multiple inheritance with “traits”.  Like 

Java interfaces.



Traits

• Similar to Java interfaces, but…
• May contain method declarations…
• In addition to method definitions, but…
• Do not contain fields.
• Can be multiply

inherited.

TCircle

=
hash
area
scaleBy
…

center
radius

provided
methods

Required methods



Examples

trait Loc
getter position() : (R, R)
displace(nx:R, ny:R) : ()

end

trait Geom
area() : R
density(unitWeight:R) = unitWeight area()

end

object Circle(x:R, y:R, r:R) extends {Loc,Geom}
position() = (x, y)
displace(nx:R, ny:R) = do x += nx; y += ny end
area() = r r 3.1416

end



Multiple Inheritance

• Multiple inheritance
is tricky… Ex.:

• Traits have the flattening property:
– the semantics of a method is the same if it is 

implemented in a trait or in the class that extends 
that trait.

– ambiguous calls are explicitly resolved.

Object

Person Company

FreeLancer

+ hash()

+ hash() + hash()



Functional Programming

• Everything is an 
expression

• Immutable by default
– “:= ” for mutable 

variables

• Closures
– Standard library uses 

higher-order 
functions pervasively

applyN(add1, 4, 3)
(composeN(add1, 4))(3)

add1(n: Z): Z = n + 1

applyN(f: Z→Z, n: N, x: Z): Z = do
v: Z = x
remaining: N = n
while remaining > 0 do

v := f(v)
remaining -= 1

end
v

end

composeN(f: Z→Z, n: N): Z→Z =
if (n = 0) then

fn(x: Z) ⇒ x
else

base = composeN(f, n-1)
fn(x: Z) ⇒ f(base(x))

end



Functional Programming

• Tagged unions
• Pattern matching 
• List comprehensions

x = 〈 2, 4, 6, 8, 10 〉

x = 〈 x | x ← 1:10, 
iseven(x) 〉

iseven(x: Z): Bool =
x MOD 2 = 0

trait List comprises { Cons, Nil }
end

object Cons(h: Z, t: List) extends
List
head: Z = h
tail: List = t

end

object Nil extends List
end

sum(l: List) = typecase l of
List ⇒ l.head + sum(l.tail)
Nil  ⇒ 0

end



Operator Overloading

• Can be alphanumeric:  a MAX b
• Juxtaposition is overloadable

(multiplication, string concatenation).
• Dangerous, but...

– Library writer can exercise restraint.
– Fortress has more operators to go around.  

They don’t get over-overloaded.



Defining Operators
object Complex(r:R, i:R)

opr +(self, other:Complex):Complex =
Complex(r + other.r, i + other.i)

opr MULT(self, other:Complex):Complex =
Complex(r other.r - i other.i, i other.r + r other.i)

toString():String =
"Real part = " r ", Imaginary part = " i

end

run(args:String...):() = do
c1:Complex = Complex(1.5, 2.3)
c2:Complex = Complex(4.5, -2.7)
println(c1)
println(c2)
println(c1 + c2) 
println(c1 MULT c2)

end



(Pre/in/post)-fix Operators

Parsing tests/fernando/oprN.fss: 979 milliseconds
Static checking: 92 milliseconds
Read FortressLibrary.tfs: 970 milliseconds
4
‐3
5040
finish runProgram
Program execution: 2807 milliseconds

opr MINUS(m:Z, n:Z) = m - n
opr NEG(m:Z) = -m
opr (n:Z)FAC = if n ≤ 1 then 1 else n (n-1)FAC end

run(args:String...):() = do
println(7 MINUS 3)
println(NEG 3)
println((7)FAC)

end

Output:



Static Parameters

• Type parameters.
• Can place 

restrictions with 
“where” clauses.

• Unlike Java, can 
use the type 
information at 
runtime.

object Box[T](var e: T)
where {T extends Equality}

put(e’: T): () =  e := e’
get(): T = e
opr =(self, Box[T] o) =

self.e = o.e
end

cast[T](x: Object): T =
typecase x in

T ⇒ x
else ⇒ throw CastException

end



Static Parameters

• Unlike C++, type checking is modular.  All 
type restrictions must be declared.

• Like C++, the compiler can generate multiple 
specialized versions of the function.

object Box[T](var e: T)
where {T extends Equality}

put(e’: T): () =  e := e’
get(): T = e
opr =(self, Box[T] o) =

self.e = o.e
end



Static Parameters

• Can parameterize 
on values.
– int, nat, bool
– dimensions and units

reduce[T,nam op](List[T] l)
where
{T extends Assoc[T,op]}

object Number extends
Assoc[Number,opr +]

end

• Define mathematical 
properties by 
parameterizing on 
functions.

run[bool debug]() = do
...
if (debug) then

sanityCheck()
end
...

end



Programming by Contract

• Function contracts consists of three 
optional parts:
– requires, ensures and invariants

factorial(n:Z) requires n ≥ 0
if n = 0 then 1 
else n factorial (n - 1)

end



Ensuring Invariants

mangle(input:List)
ensures sorted(result)
provided sorted(input)
invariant size(input) =

if input ≠ Empty then 
mangle(first(input))
mangle(rest(input))

end



Properties and Tests

• Invariants that must hold for all parameters:

• Tests consist of data plus code:

property isMonotonic =
∀(x:Z, y:Z)(x < y) → (f(x) < f(y))

test s:Set[Z] = {-1, 2, 3, 4}
test isMonS[x←s, y←s] = 

isMonotonic(x, y)
test isMon2[x←s, y←s] = 

isMonotonic(x,x^2 + y)



APIs and Components

• API
– Interface of 

components;
– only declarations, no 

definitions;
– each API in the world 

has a distinct name;

• Components
– Unit of compilation;
– similar to a Java 

package;
– components can be 

combined;
– import and export 

APIs



APIs and Components

• Example:
component Hello

import print from IO
export Executable
run(args: String...) =

print “Hello world” end

api IO
print: String → ()

end

api Executable
run(args:String...) → ()

end



PARALLELISM FEATURES
Part Three



Reduction Variables
• For computing expressions as locally as 

possible, avoiding the need to synchronize 
when unnecessary.

• Definition: A variable l is considered a 
reduction variable reduced using the 
reduction operator     for a particular thread 
group if it satisfies the following conditions:
– Every assignment to l within the thread group is 

of the form l = e, where exactly one operator 
or its group inverse is used

– The value of l is not otherwise read within the 
thread group.

– The variable l is not a free.

⊕



Threads

• Two types:
– Implicit and Spawned (explicit) threads

• Five states:
– Not started, executing, suspended, normal 

completion, abrupt completion

• Each thread has two components:
– Body and execution environment



Implicit Threads

• Fortress has many constructs that lead 
to implicit thread creation:
– Tuple expressions
– also do blocks
– Method invocations, function calls
– for loops, comprehensions, sums, generated 

expressions,  big operators
– Extremum expressions
– Tests



Implicit Threads
• Run as fork-join style: all threads created together, 

and all must complete before the expression 
completes.

• If any thread ends abruptly, the group as a whole 
will also end abruptly
– Reduction variables should not be accessed after an 

abort.
• Programmer can not interact with implicit threads in 

any way.  Generated by compiler.
• Fortress compiler may interleave the threads any 

way it likes.
– The following code can run forever:

r:Z64:=0
(r:=1, while r=0 do end)



Explicit (spawned) Threads
• Created using the spawn expression.
• Programmer can interact with the thread 

explicitly; spawn returns an instance of 
Thread[T], where T is the type of 
expression spawned
– Can control with: wait, ready, stop
– Accesses result with val.

T1 = spawn do e1 end
T2 = spawn do e2 end
A1 = T1.value()
A2 = T2.value()



Fortress’ Parallelism “Stack”

Libraries to allocate locality-aware arrays

Library of Distributions

at Expression

Generators



Regions
• All threads, objects, array 

elements have an associated 
region.

• Obtained by calling o.region
on object o

• An abstract description of the 
machine
– Forms the Region Hierarchy (a 

tree)
• Leaves of tree are mostly local 

(e.g. core in CPU).
• Near the root is more spread 

out (e.g. resources spread 
across entire cluster).

Cluster

Node Node Node

CPU CPU

Core Core



Arrays, Vectors, Matrices

• Assumed to be spread out across a 
machine

• Generally, Fortress will figure out where 
things go
– For advanced users, they can manually combine, 

pivot, and redistribute arrays via the libraries.

• Each element may be in a different region
• Hierarchy of regions.

– An element is local to its region, and all the 
enclosing regions in the hierarchy.



atomic Expression

• All IO will appear to happen simultaneously in a 
single step.

• Functions and methods can also be marked 
atomic.

• If an atomic expression ends abruptly, all writes 
are discarded.

• tryatomic throws an exception if it ends 
abruptly.

• Implicit threads may be spawned inside an 
atomic block, will complete before expression.

atomic expr
tryatomic expr



Abortable atomic

• Resembles a Transaction’s rollback
• Provides a user-level abort() that 

abandons the execution inside an atomic 
block

for i <- 1#100 do
count += 1 

end

for i <- 1#100 do
atomic do

count += 1 
end 

end 



Object Sharedness
• Regions described the location of an object on 

the machine
• Sharedness refers to the visibility of the object 

from other threads
• Basic rules of sharedness:

– Reference objects are initially local
– Sharedness can change with time
– If an object is transitively reachable from more than 

one thread, it must be shared.
– When a local object is stored into a shared object, it 

must be published (recursively).
– Values of variables local to a thread must be 

published before they can be run in parallel with the 
parent thread. 



Publishing local objects

• Publishing can be expensive
– Publishing the root of a large nested object 

(e.g. a tree) will recursively publish all the 
children.

• Can cause short atomic expressions to 
take very long.



Distributions



at Expression

• A low-level construct giving the programmer the 
ability to explicitly place execution in a certain 
region

(v,w)=(ai,
at a.region(j) do
aj

end)
• Spawns two threads implicitly:

• #1 calculated ai locally
• #2 calculated aj in aj’s region



Generators
• Fortress uses generator lists to express parallel 

iteration.
• Represented as comma-separated lists.
• Each item in the generator list can either be a 

boolean expression (filter) or a generator binding.
– Generator bindings are one or more comma-separated 

identifiers followed by <-, then a subexpression that 
evaluates to an object of type Generator.

– A boolean expression in a list is called a filter.  A 
generator iteration wil only be performed if the result of 
the filter is true.

for i<-1:m, j<-1:n do
a[i,j] := b[i] c[j]

end



Generators

• Generators iterations should be assumed 
parallel unless the special sequential 
generator is used.

• Common generators:
– l:u 

Range expressions
– a.indices

Index set of array
– {0,1,2,3} 

Aggregate expression elements
– sequential(g) 

Sequential version of another generator



Generated Expressions

• #1 is equivalent (shorthand) for #2.

do expr, gens end (* #1 *)
for gens do expr end (* #2 *)



The for loop

• Parallelism is specified by the generator
• In general, iterations should be assumed 

parallel unless all generators in the list 
are explicitly sequential

• Each iteration is evaluated in the scope 
of values bound by generators

• Body can make use of reduction 
variables

for generator do block end



DEMOS
Section Four



Task Parallelism

• An example of task parallelism: the three 
calls of function f are executed in 
parallel.

println("***************************************") 
println("Example of Task parallelism") 
(a:ZZ32, b:ZZ32, c:ZZ32) = 

(f(1, 1, "T1"), f(2, 3, "T2"), f(5, 8, "T3")) 
println("Tuple is " a " " b " " c); 



Task Parallelism

• Here is another example, using the 
construct do also.

do
f() 

also do
g() 

also do
h() 

end 



Data Parallelism

• Each summation is perfomed in parallel.
println("****************************************") 
println("Example of data parallelism") 
m1:ZZ32[4, 4] = [1 2 3 4 

5 6 7 8 
9 10 11 12 
13 14 15 16] 

m2:ZZ32[4, 4] = [10 20 30 40 
50 60 70 80 
90 100 110 120 
130 140 150 160] 

for i <- 0#4 do
for j <- 0#4 do
println("Sum at [" i ", " j "] = " (m1[i,j] + m2[i,j])) 

end
end
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