
Fortress

Kannan Goundan
Stephen Kou

Fernando Pereira

This Presentation

• The history of Fortress
• General language features
• Parallel processing features
• Demonstration

THE HISTORY OF FORTRESS
Part 1

Background and Status
• Developed by Sun Microsystems for the

DARPA high-performance computing
initiative.
– Didn’t make it to Phase III

• Spec is at version “1.0 beta”
• Still being developed as an open source

project. Mailing list is active.
• Implementation is weak.

– Still only an unoptimized interpreter.
– No static checking (undefined variables, type

checking)
– Many of the parallel features aren’t implemented.

Philosophy

• “Do for Fortran what Java did for C”
• Guy Steele is one of the designers

– Co-creator of Scheme, worked on Java spec
– “Growing a Language” (talk at OOPSLA ’98)

• Initially targeting scientific computing,
but meant to be usable for anything.

• Designed from scratch.

GENERAL LANGUAGE FEATURES
Part two

Readability

• You can use tons of Unicode symbols.
– Each has an ASCII equivalent.

• Mathematical syntax. What you write on
the blackboard works.

• Minimize clutter
– Don’t specify types that can be inferred.
– Get rid of noisy punctuation (semicolons).

• Two input modes (Unicode vs ASCII). An
additional typeset output mode.

Operators

• The “popular” operators:

• Abbreviated operators:

• Short names in all caps:

• Named:

+ - / = < > | { }

[\ \] =/= >= -> => |->
<| |> ≠ ≥ →

OPLUS DOT TIMES SQCAP AND OR IN
×

Identifiers
• Regular:

• Formatted:

• Greek Letters:

• Unicode Names: HEBREW_ALEF א
• Blackboard Font:

a zip trickOrTreat foobar
a zip trickOrTreat foobar

a3 _a a_ a_vec _a_hat a_max foo_bar
a3 a a a â amax foo

alpha beta GAMMA DELTA
α β Γ Δ

Mathematical Syntax
"What if we tried really hard to make the mathematical parts of

program look like mathematics?” - Guy L. Steele

• Multiplication and exponentiation.
– x2 + 3y2 = 0

• Operator chains: 0 ≤ i < j < 100

• Reduction syntax
– factorial(n) = ∏i←1…n i

factorial(n) = ∏[i←1:n] il

x^2 + 3 y^2 = 0

Aggregate Expressions

• Set, array, maps, lists:

• Set, array, maps, lists:

• Matricies:
[1 0
0 A]

1 0
0 A

{2, 3, 5, 7}
[“France” →“Paris”, “Italy”→“Rome”]
〈0, 1, 1, 2, 3, 5, 8, 13〉

{x2 | x ← primes}
[x2 → x3 | x ← fibs, x < 1000]
〈x(x+1)/2 | x ← 1#100 〉

Dimension and Units

• Numeric types can be annotated with units

• Common dimensions and units are provided
in fortress standard library, e.g: kg, m, s

• Static safety checks
• Ex.:

m_ kg_ s_ micro_s_ MW_ ns_
m kg s μs MW ns

kineticEnergy(m:R kg_, v:R m_/s_):R kg_ m_^2/s_2
= (m v^2) / 2

Some Whitespace Sensitivity

• Whitespace must agree with precedence
– Error: a+b / c+d

• Parentheses are sometimes required:
A+B∨C
– “+” and “∨” have no relative precedence.

• Fractions: 1/2 * 1/2
• Subscripting (a[m n]) vs vector

multiplication: (a [m n])

Example Code (Fortress)
ASCII:
do
cgit_max = 25
z: Vec = 0
r: Vec = x
p: Vec = r
rho: Elt = r^T r
for j <- seq(1:cgit_max) do

q = A p
alpha = rho / p^T q
z := z + alpha p
r := r - alpha q
rho0 = rho
rho := r^T r
beta = rho / rho0
p := r + beta p

end
(z, ||x – A z||)

end

Unicode
do
cgit_max = 25
z: Vec = 0
r: Vec = x
p: Vec = r
ρ: Elt = r^T r
for j ← seq(1:cgit_max) do

q = A p
α = ρ / p^T q
z := z + α p
r := r - α q
ρ₀ = ρ
ρ := r^T r
β = ρ / ρ₀
p := r + β p

end
(z, x - A z)

end

Example Code (Typeset Fortress)

end

doseqfor

prp

rr

qrr
zz

qp

pAq
cgitj

rrElt
rVecp
xVecr

Vecz

T

T

T

β
ρ
ρβ

ρ

ρρ
α

ρα

ρα

ρ

+=

=

=

=
−=
+=

=

=
←
=

=
=
=

:

:

:
:

):1(
:
:
:

0:

0

0

max

()

end

/

do

prp

rr
qrr

pzz
qp

pAq
i
rp

rr
xr

z

T

T

T

β
ρρβ

ρ

α
ρρ
α

ρα

ρ

+=
=
=

−=
=

+=
=

=
=

=
=

=
=

0

0

/

25,1

0

Object Oriented

• Classes (declared with object)
• Fields
• Virtual methods
• Multiple inheritance with “traits”. Like

Java interfaces.

Traits

• Similar to Java interfaces, but…
• May contain method declarations…
• In addition to method definitions, but…
• Do not contain fields.
• Can be multiply

inherited.

TCircle

=
hash
area
scaleBy
…

center
radius

provided
methods

Required methods

Examples

trait Loc
getter position() : (R, R)
displace(nx:R, ny:R) : ()

end

trait Geom
area() : R
density(unitWeight:R) = unitWeight area()

end

object Circle(x:R, y:R, r:R) extends {Loc,Geom}
position() = (x, y)
displace(nx:R, ny:R) = do x += nx; y += ny end
area() = r r 3.1416

end

Multiple Inheritance

• Multiple inheritance
is tricky… Ex.:

• Traits have the flattening property:
– the semantics of a method is the same if it is

implemented in a trait or in the class that extends
that trait.

– ambiguous calls are explicitly resolved.

Object

Person Company

FreeLancer

+ hash()

+ hash() + hash()

Functional Programming

• Everything is an
expression

• Immutable by default
– “:= ” for mutable

variables

• Closures
– Standard library uses

higher-order
functions pervasively

applyN(add1, 4, 3)
(composeN(add1, 4))(3)

add1(n: Z): Z = n + 1

applyN(f: Z→Z, n: N, x: Z): Z = do
v: Z = x
remaining: N = n
while remaining > 0 do

v := f(v)
remaining -= 1

end
v

end

composeN(f: Z→Z, n: N): Z→Z =
if (n = 0) then

fn(x: Z) ⇒ x
else

base = composeN(f, n-1)
fn(x: Z) ⇒ f(base(x))

end

Functional Programming

• Tagged unions
• Pattern matching
• List comprehensions

x = 〈 2, 4, 6, 8, 10 〉

x = 〈 x | x ← 1:10,
iseven(x) 〉

iseven(x: Z): Bool =
x MOD 2 = 0

trait List comprises { Cons, Nil }
end

object Cons(h: Z, t: List) extends
List
head: Z = h
tail: List = t

end

object Nil extends List
end

sum(l: List) = typecase l of
List ⇒ l.head + sum(l.tail)
Nil ⇒ 0

end

Operator Overloading

• Can be alphanumeric: a MAX b
• Juxtaposition is overloadable

(multiplication, string concatenation).
• Dangerous, but...

– Library writer can exercise restraint.
– Fortress has more operators to go around.

They don’t get over-overloaded.

Defining Operators
object Complex(r:R, i:R)

opr +(self, other:Complex):Complex =
Complex(r + other.r, i + other.i)

opr MULT(self, other:Complex):Complex =
Complex(r other.r - i other.i, i other.r + r other.i)

toString():String =
"Real part = " r ", Imaginary part = " i

end

run(args:String...):() = do
c1:Complex = Complex(1.5, 2.3)
c2:Complex = Complex(4.5, -2.7)
println(c1)
println(c2)
println(c1 + c2)
println(c1 MULT c2)

end

(Pre/in/post)-fix Operators

Parsing tests/fernando/oprN.fss: 979 milliseconds
Static checking: 92 milliseconds
Read FortressLibrary.tfs: 970 milliseconds
4
‐3
5040
finish runProgram
Program execution: 2807 milliseconds

opr MINUS(m:Z, n:Z) = m - n
opr NEG(m:Z) = -m
opr (n:Z)FAC = if n ≤ 1 then 1 else n (n-1)FAC end

run(args:String...):() = do
println(7 MINUS 3)
println(NEG 3)
println((7)FAC)

end

Output:

Static Parameters

• Type parameters.
• Can place

restrictions with
“where” clauses.

• Unlike Java, can
use the type
information at
runtime.

object Box[T](var e: T)
where {T extends Equality}

put(e’: T): () = e := e’
get(): T = e
opr =(self, Box[T] o) =

self.e = o.e
end

cast[T](x: Object): T =
typecase x in

T ⇒ x
else ⇒ throw CastException

end

Static Parameters

• Unlike C++, type checking is modular. All
type restrictions must be declared.

• Like C++, the compiler can generate multiple
specialized versions of the function.

object Box[T](var e: T)
where {T extends Equality}

put(e’: T): () = e := e’
get(): T = e
opr =(self, Box[T] o) =

self.e = o.e
end

Static Parameters

• Can parameterize
on values.
– int, nat, bool
– dimensions and units

reduce[T,nam op](List[T] l)
where
{T extends Assoc[T,op]}

object Number extends
Assoc[Number,opr +]

end

• Define mathematical
properties by
parameterizing on
functions.

run[bool debug]() = do
...
if (debug) then

sanityCheck()
end
...

end

Programming by Contract

• Function contracts consists of three
optional parts:
– requires, ensures and invariants

factorial(n:Z) requires n ≥ 0
if n = 0 then 1
else n factorial (n - 1)

end

Ensuring Invariants

mangle(input:List)
ensures sorted(result)
provided sorted(input)
invariant size(input) =

if input ≠ Empty then
mangle(first(input))
mangle(rest(input))

end

Properties and Tests

• Invariants that must hold for all parameters:

• Tests consist of data plus code:

property isMonotonic =
∀(x:Z, y:Z)(x < y) → (f(x) < f(y))

test s:Set[Z] = {-1, 2, 3, 4}
test isMonS[x←s, y←s] =

isMonotonic(x, y)
test isMon2[x←s, y←s] =

isMonotonic(x,x^2 + y)

APIs and Components

• API
– Interface of

components;
– only declarations, no

definitions;
– each API in the world

has a distinct name;

• Components
– Unit of compilation;
– similar to a Java

package;
– components can be

combined;
– import and export

APIs

APIs and Components

• Example:
component Hello

import print from IO
export Executable
run(args: String...) =

print “Hello world” end

api IO
print: String → ()

end

api Executable
run(args:String...) → ()

end

PARALLELISM FEATURES
Part Three

Reduction Variables
• For computing expressions as locally as

possible, avoiding the need to synchronize
when unnecessary.

• Definition: A variable l is considered a
reduction variable reduced using the
reduction operator for a particular thread
group if it satisfies the following conditions:
– Every assignment to l within the thread group is

of the form l = e, where exactly one operator
or its group inverse is used

– The value of l is not otherwise read within the
thread group.

– The variable l is not a free.

⊕

Threads

• Two types:
– Implicit and Spawned (explicit) threads

• Five states:
– Not started, executing, suspended, normal

completion, abrupt completion

• Each thread has two components:
– Body and execution environment

Implicit Threads

• Fortress has many constructs that lead
to implicit thread creation:
– Tuple expressions
– also do blocks
– Method invocations, function calls
– for loops, comprehensions, sums, generated

expressions, big operators
– Extremum expressions
– Tests

Implicit Threads
• Run as fork-join style: all threads created together,

and all must complete before the expression
completes.

• If any thread ends abruptly, the group as a whole
will also end abruptly
– Reduction variables should not be accessed after an

abort.
• Programmer can not interact with implicit threads in

any way. Generated by compiler.
• Fortress compiler may interleave the threads any

way it likes.
– The following code can run forever:

r:Z64:=0
(r:=1, while r=0 do end)

Explicit (spawned) Threads
• Created using the spawn expression.
• Programmer can interact with the thread

explicitly; spawn returns an instance of
Thread[T], where T is the type of
expression spawned
– Can control with: wait, ready, stop
– Accesses result with val.

T1 = spawn do e1 end
T2 = spawn do e2 end
A1 = T1.value()
A2 = T2.value()

Fortress’ Parallelism “Stack”

Libraries to allocate locality-aware arrays

Library of Distributions

at Expression

Generators

Regions
• All threads, objects, array

elements have an associated
region.

• Obtained by calling o.region
on object o

• An abstract description of the
machine
– Forms the Region Hierarchy (a

tree)
• Leaves of tree are mostly local

(e.g. core in CPU).
• Near the root is more spread

out (e.g. resources spread
across entire cluster).

Cluster

Node Node Node

CPU CPU

Core Core

Arrays, Vectors, Matrices

• Assumed to be spread out across a
machine

• Generally, Fortress will figure out where
things go
– For advanced users, they can manually combine,

pivot, and redistribute arrays via the libraries.

• Each element may be in a different region
• Hierarchy of regions.

– An element is local to its region, and all the
enclosing regions in the hierarchy.

atomic Expression

• All IO will appear to happen simultaneously in a
single step.

• Functions and methods can also be marked
atomic.

• If an atomic expression ends abruptly, all writes
are discarded.

• tryatomic throws an exception if it ends
abruptly.

• Implicit threads may be spawned inside an
atomic block, will complete before expression.

atomic expr
tryatomic expr

Abortable atomic

• Resembles a Transaction’s rollback
• Provides a user-level abort() that

abandons the execution inside an atomic
block

for i <- 1#100 do
count += 1

end

for i <- 1#100 do
atomic do

count += 1
end

end

Object Sharedness
• Regions described the location of an object on

the machine
• Sharedness refers to the visibility of the object

from other threads
• Basic rules of sharedness:

– Reference objects are initially local
– Sharedness can change with time
– If an object is transitively reachable from more than

one thread, it must be shared.
– When a local object is stored into a shared object, it

must be published (recursively).
– Values of variables local to a thread must be

published before they can be run in parallel with the
parent thread.

Publishing local objects

• Publishing can be expensive
– Publishing the root of a large nested object

(e.g. a tree) will recursively publish all the
children.

• Can cause short atomic expressions to
take very long.

Distributions

at Expression

• A low-level construct giving the programmer the
ability to explicitly place execution in a certain
region

(v,w)=(ai,
at a.region(j) do
aj

end)
• Spawns two threads implicitly:

• #1 calculated ai locally
• #2 calculated aj in aj’s region

Generators
• Fortress uses generator lists to express parallel

iteration.
• Represented as comma-separated lists.
• Each item in the generator list can either be a

boolean expression (filter) or a generator binding.
– Generator bindings are one or more comma-separated

identifiers followed by <-, then a subexpression that
evaluates to an object of type Generator.

– A boolean expression in a list is called a filter. A
generator iteration wil only be performed if the result of
the filter is true.

for i<-1:m, j<-1:n do
a[i,j] := b[i] c[j]

end

Generators

• Generators iterations should be assumed
parallel unless the special sequential
generator is used.

• Common generators:
– l:u

Range expressions
– a.indices

Index set of array
– {0,1,2,3}

Aggregate expression elements
– sequential(g)

Sequential version of another generator

Generated Expressions

• #1 is equivalent (shorthand) for #2.

do expr, gens end (* #1 *)
for gens do expr end (* #2 *)

The for loop

• Parallelism is specified by the generator
• In general, iterations should be assumed

parallel unless all generators in the list
are explicitly sequential

• Each iteration is evaluated in the scope
of values bound by generators

• Body can make use of reduction
variables

for generator do block end

DEMOS
Section Four

Task Parallelism

• An example of task parallelism: the three
calls of function f are executed in
parallel.

println("***************************************")
println("Example of Task parallelism")
(a:ZZ32, b:ZZ32, c:ZZ32) =

(f(1, 1, "T1"), f(2, 3, "T2"), f(5, 8, "T3"))
println("Tuple is " a " " b " " c);

Task Parallelism

• Here is another example, using the
construct do also.

do
f()

also do
g()

also do
h()

end

Data Parallelism

• Each summation is perfomed in parallel.
println("**")
println("Example of data parallelism")
m1:ZZ32[4, 4] = [1 2 3 4

5 6 7 8
9 10 11 12
13 14 15 16]

m2:ZZ32[4, 4] = [10 20 30 40
50 60 70 80
90 100 110 120
130 140 150 160]

for i <- 0#4 do
for j <- 0#4 do
println("Sum at [" i ", " j "] = " (m1[i,j] + m2[i,j]))

end
end

	Fortress
	This Presentation
	The History of Fortress
	Background and Status
	Philosophy
	General Language Features
	Readability
	Operators
	Identifiers
	Mathematical Syntax
	Aggregate Expressions
	Dimension and Units
	Some Whitespace Sensitivity
	Example Code (Fortress)
	Example Code (Typeset Fortress)
	Object Oriented
	Traits
	Examples
	Multiple Inheritance
	Functional Programming
	Functional Programming
	Operator Overloading
	Defining Operators
	(Pre/in/post)-fix Operators
	Static Parameters
	Static Parameters
	Static Parameters
	Programming by Contract
	Ensuring Invariants
	Properties and Tests
	APIs and Components
	APIs and Components
	Parallelism features
	Reduction Variables
	Threads
	Implicit Threads
	Implicit Threads
	Explicit (spawned) Threads
	Fortress’ Parallelism “Stack”
	Regions
	Arrays, Vectors, Matrices
	atomic Expression
	Abortable atomic
	Object Sharedness
	Publishing local objects
	Distributions
	at Expression
	Generators
	Generators
	Generated Expressions
	The for loop
	DEMOs
	Task Parallelism
	Task Parallelism
	Data Parallelism

