Lecture 1: Introduction

Instructor: Omkant Pandey

Spring 2018 (CSE390)

Cryptography

- Most of us rely on cryptography everyday
- Online banking
- Ordering something on Amazon
- Sending emails
- Interacting on social media...

Cryptography

- Most of us rely on cryptography everyday
- Online banking
- Ordering something on Amazon
- Sending emails
- Interacting on social media...
- Your browser often tells you what it is using:

Cryptography

- Most of us rely on cryptography everyday
- Online banking
- Ordering something on Amazon
- Sending emails
- Interacting on social media...
- Your browser often tells you what it is using:

Secret Communication

- Historically, such mechanisms are called ciphers.

Ciphers

Ciphers

Ciphers

$$
\begin{aligned}
& k \xlongequal{m=101 . .} \\
& E(k, m)
\end{aligned}
$$

Ciphers

Ciphers

Ciphers

Ciphers

Ciphers

- E, D are called encryption and decryption algorithms, and k, the secret key.

Ciphers

- E, D are called encryption and decryption algorithms, and k, the secret key.
- E could be randomized, so that c changes every time!

Ciphers

- E, D are called encryption and decryption algorithms, and k, the secret key.
- E could be randomized, so that c changes every time!
- Symmetric Cipher: k is same for both E and D.

Historical Ciphers

Historical Ciphers

...all completely broken

Caesar Cipher

- Named after Julius Caesar who used it to communicate with his generals.
- You simply shift your alphabets by a fixed number...

Caesar Cipher

- Named after Julius Caesar who used it to communicate with his generals.
- You simply shift your alphabets by a fixed number...
- Shift by 1: letter A becomes B, B becomes C, ... Z becomes A.

Caesar Cipher

- Named after Julius Caesar who used it to communicate with his generals.
- You simply shift your alphabets by a fixed number...
- Shift by 1: letter A becomes B, B becomes C, ... Z becomes A.
- Shift by any amount $k=1,2, \ldots, 25$.
- Decrypt by shifting back...

Caesar Cipher

- Named after Julius Caesar who used it to communicate with his generals.
- You simply shift your alphabets by a fixed number...
- Shift by 1: letter A becomes B, B becomes C, ... Z becomes A.
- Shift by any amount $k=1,2, \ldots, 25$.
- Decrypt by shifting back...
- Example: encrypt ATTACK with Shift $1=$ BUUBDL.

Caesar Cipher

- Named after Julius Caesar who used it to communicate with his generals.
- You simply shift your alphabets by a fixed number...
- Shift by 1: letter A becomes B, B becomes C, ... Z becomes A.
- Shift by any amount $k=1,2, \ldots, 25$.
- Decrypt by shifting back...
- Example: encrypt ATTACK with Shift $1=$ BUUBDL.
- Breaking Caesar Cipher:

Caesar Cipher

- Named after Julius Caesar who used it to communicate with his generals.
- You simply shift your alphabets by a fixed number...
- Shift by 1: letter A becomes B, B becomes C, ... Z becomes A.
- Shift by any amount $k=1,2, \ldots, 25$.
- Decrypt by shifting back...
- Example: encrypt ATTACK with Shift $1=$ BUUBDL.
- Breaking Caesar Cipher:
- Brute force: try all 26 possible shifts.

Caesar Cipher

- Named after Julius Caesar who used it to communicate with his generals.
- You simply shift your alphabets by a fixed number...
- Shift by 1: letter A becomes B, B becomes C, ... Z becomes A.
- Shift by any amount $k=1,2, \ldots, 25$.
- Decrypt by shifting back...
- Example: encrypt ATTACK with Shift $1=$ BUUBDL.
- Breaking Caesar Cipher:
- Brute force: try all 26 possible shifts.
- Visible patterns and letter frequencies: ATTACK $=$ BUUBDL and DEFEND $=$ EFGFOE

Caesar Cipher

- Named after Julius Caesar who used it to communicate with his generals.
- You simply shift your alphabets by a fixed number...
- Shift by 1: letter A becomes B, B becomes C, ... Z becomes A.
- Shift by any amount $k=1,2, \ldots, 25$.
- Decrypt by shifting back...
- Example: encrypt ATTACK with Shift $1=$ BUUBDL.
- Breaking Caesar Cipher:
- Brute force: try all 26 possible shifts.
- Visible patterns and letter frequencies:

ATTACK $=$ BUUBDL and DEFEND $=$ EFGFOE

- Ciphertext only attack! (worst kind)

Substitution Cipher

- Choose a random permutation of English alphabets...

Substitution Cipher

- Choose a random permutation of English alphabets...
- $\{A \rightarrow T, B \rightarrow L, C \rightarrow K, \ldots, Z \rightarrow H\}$ (no repeating)

Substitution Cipher

- Choose a random permutation of English alphabets...
- $\{A \rightarrow T, B \rightarrow L, C \rightarrow K, \ldots, Z \rightarrow H\}$ (no repeating)
- Encrypt: just map plaintext letters according to the substitiution (key)
- Decrypt: revert back using the same key

Substitution Cipher

- Choose a random permutation of English alphabets...
- $\{A \rightarrow T, B \rightarrow L, C \rightarrow K, \ldots, Z \rightarrow H\}$ (no repeating)
- Encrypt: just map plaintext letters according to the substitiution (key)
- Decrypt: revert back using the same key
- Cannot break by brute forcing for the key:
\# possible keys =

Substitution Cipher

- Choose a random permutation of English alphabets...
- $\{A \rightarrow T, B \rightarrow L, C \rightarrow K, \ldots, Z \rightarrow H\}$ (no repeating)
- Encrypt: just map plaintext letters according to the substitiution (key)
- Decrypt: revert back using the same key
- Cannot break by brute forcing for the key:
\# possible keys $=26$!

Substitution Cipher

- Choose a random permutation of English alphabets...
- $\{A \rightarrow T, B \rightarrow L, C \rightarrow K, \ldots, Z \rightarrow H\}$ (no repeating)
- Encrypt: just map plaintext letters according to the substitiution (key)
- Decrypt: revert back using the same key
- Cannot break by brute forcing for the key:
$\#$ possible keys $=26!\approx 2^{88}$

Substitution Cipher

- Choose a random permutation of English alphabets...
- $\{A \rightarrow T, B \rightarrow L, C \rightarrow K, \ldots, Z \rightarrow H\}$ (no repeating)
- Encrypt: just map plaintext letters according to the substitiution (key)
- Decrypt: revert back using the same key
- Cannot break by brute forcing for the key:
$\#$ possible keys $=26!\approx 2^{88}$
- Break by frequency analysis

Frequency Analysis

- Frequency of letters, bigrams, double letters in English:

Letters								
e	\mathbf{t}	\mathbf{a}	\mathbf{o}	\mathbf{i}	\mathbf{n}	\mathbf{s}	\mathbf{r}	\mathbf{h}
12.49%	9.28%	8.04%	7.64%	7.57%	7.23%	6.51%	6.28%	5.05%

Bigrams											
th	he	in	er	an	re	on	at	en	nd	ti	es
3.66\%	3.08\%	2.43\%	2.05\%	1.99\%	1.85\%	1.76\%	1.49\%	1.45\%	1.35\%	1.34\%	1.34\%

Double Letters										
II	55	ee	oo	tt	ff	pp	rr	mm	cc	nn
0.58\%	0.41\%	0.38\%	0.21\%	0.17\%	0.15\%	0.14\%	0.12\%	0.10\%	0.08\%	0.07\%

- Breaking substitution cipher

Frequency Analysis

- Frequency of letters, bigrams, double letters in English:

Letters								
e	\mathbf{t}	\mathbf{a}	\mathbf{o}	\mathbf{i}	\mathbf{n}	\mathbf{s}	\mathbf{r}	\mathbf{h}
12.49%	9.28%	8.04%	7.64%	7.57%	7.23%	6.51%	6.28%	5.05%

Bigrams											
th	he	in	er	an	re	on	at	en	nd	ti	es
3.68\%	3.08\%	2.43\%	2.05\%	1.99\%	1.85\%	1.76\%	1.49\%	1.45\%	1.35\%	1.34\%	1.34\%

Double Letters																			
II	s5	ee	00	tt	ff	pp	rr	mm	cc	nn									
0.58%	0.41%	0.38%	0.21%	0.17%	0.15%	0.14%	0.12%	0.10%	0.08%	0.07%									

- Breaking substitution cipher (ciphertext only attack):

Frequency Analysis

- Frequency of letters, bigrams, double letters in English:

Letters									
\mathbf{e}	\mathbf{t}	\mathbf{a}	\mathbf{o}	\mathbf{i}	\mathbf{n}	\mathbf{s}	\mathbf{r}	\mathbf{h}	
12.49%	9.28%	8.04%	7.64%	7.57%	7.23%	6.51%	6.28%	5.05%	

Bigrams																
th	he	in	er	an	re	on	at	en	nd	ti	es					
3.56%	3.08%	2.43%	2.05%	1.89%	1.85%	1.76%	1.49%	1.45%	1.35%	1.34%	1.34%					

Double Letters																			
II	s5	ee	00	tt	ff	pp	rr	mm	cc	nn									
0.58%	0.41%	0.38%	0.21%	0.17%	0.15%	0.14%	0.12%	0.10%	0.08%	0.07%									

- Breaking substitution cipher (ciphertext only attack): - Collect a long ciphertext - frequency patterns will not change.

Frequency Analysis

- Frequency of letters, bigrams, double letters in English:

Letters									
e	\mathbf{t}	a	o	i	\mathbf{n}	\mathbf{s}	\mathbf{r}	h	
12.49%	9.28%	8.04%	7.64%	7.57%	7.23%	6.51%	6.28%	5.05%	

Bigrams																
th	he	in	er	an	re	on	at	en	nd	ti	es					
3.56%	3.08%	2.43%	2.05%	1.89%	1.85%	1.76%	1.49%	1.45%	1.35%	1.34%	1.34%					

Double Letters										
II	55	ee	00	tt	ff	pp	rr	mm	cc	nn
0.58\%	0.41\%	0.38\%	0.21\%	0.17\%	0.15\%	0.14\%	0.12\%	0.10\%	0.08\%	0.07\%

- Breaking substitution cipher (ciphertext only attack):
- Collect a long ciphertext - frequency patterns will not change.
- Compute frequencies of various letters

Frequency Analysis

- Frequency of letters, bigrams, double letters in English:

Letters									
e	\mathbf{t}	\mathbf{a}	\mathbf{o}	\mathbf{i}	\mathbf{n}	\mathbf{s}	\mathbf{r}	\mathbf{h}	
12.49%	9.28%	8.04%	7.64%	7.57%	7.23%	6.51%	6.28%	5.05%	

Bigrams																		
th	he	in	er	an	re	on	at	en	nd	ti	es							
3.56%	3.08%	2.43%	2.05%	1.99%	1.85%	1.76%	1.49%	1.45%	1.35%	1.34%	1.34%							

Double Letters										
II	55	ee	00	tt	ff	pp	rr	mm	cc	nn
0.58\%	0.41\%	0.38\%	0.21\%	0.17\%	0.15\%	0.14\%	0.12\%	0.10\%	0.08\%	0.07\%

- Breaking substitution cipher (ciphertext only attack):
- Collect a long ciphertext - frequency patterns will not change.
- Compute frequencies of various letters
- Reconstruct the key: most frequent letter represents "E", second most is "T", etc. Use bigrams, trigrams, etc. for more.

Frequency Analysis

- Frequency of letters, bigrams, double letters in English:

Letters									
e	\mathbf{t}	\mathbf{a}	\mathbf{o}	\mathbf{i}	\mathbf{n}	\mathbf{s}	\mathbf{r}	\mathbf{h}	
12.49%	9.28%	8.04%	7.64%	7.57%	7.23%	6.51%	6.28%	5.05%	

Bigrams																		
th	he	in	er	an	re	on	at	en	nd	ti	es							
3.56%	3.08%	2.43%	2.05%	1.99%	1.85%	1.76%	1.49%	1.45%	1.35%	1.34%	1.34%							

Double Letters										
II	55	ee	00	tt	ff	pp	IT	mm	cc	nn
0.58\%	0.41\%	0.38\%	0.21\%	0.17\%	0.15\%	0.14\%	0.12\%	0.10\%	0.08\%	0.07\%

- Breaking substitution cipher (ciphertext only attack):
- Collect a long ciphertext - frequency patterns will not change.
- Compute frequencies of various letters
- Reconstruct the key: most frequent letter represents "E", second most is "T", etc. Use bigrams, trigrams, etc. for more.
- Great blogpost about this: http://norvig.com/mayzner.html

Vigenère Cipher

- Use a random keyword to shift. Repeat to match length.

Vigenère Cipher

- Use a random keyword to shift. Repeat to match length.
- Keyword = CAB

Vigenère Cipher

- Use a random keyword to shift. Repeat to match length.
- Keyword $=$ CAB
- Alphabets in an array of length $26: \mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=2, \ldots, \mathrm{Z}=25$.

Vigenère Cipher

- Use a random keyword to shift. Repeat to match length.
- Keyword $=$ CAB
- Alphabets in an array of length 26: $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=2, \ldots, \mathrm{Z}=25$.
- Shift for the keyword $\mathrm{CAB}=201$.

Vigenère Cipher

- Use a random keyword to shift. Repeat to match length.
- Keyword $=$ CAB
- Alphabets in an array of length 26: $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=2, \ldots, \mathrm{Z}=25$.
- Shift for the keyword $\mathrm{CAB}=201$.
- HELLO (message)

Vigenère Cipher

- Use a random keyword to shift. Repeat to match length.
- Keyword $=$ CAB
- Alphabets in an array of length 26: $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=2, \ldots, \mathrm{Z}=25$.
- Shift for the keyword $\mathrm{CAB}=201$.
- HELLO (message)
- CABCA (repeated key to match the length)

Vigenère Cipher

- Use a random keyword to shift. Repeat to match length.
- Keyword $=$ CAB
- Alphabets in an array of length 26: $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=2, \ldots, \mathrm{Z}=25$.
- Shift for the keyword $\mathrm{CAB}=201$.
- HELLO (message)
- CABCA (repeated key to match the length)
- JEMNO (ciphertext)

Vigenère Cipher

- Use a random keyword to shift. Repeat to match length.
- Keyword = CAB
- Alphabets in an array of length 26: $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=2, \ldots, \mathrm{Z}=25$.
- Shift for the keyword $\mathrm{CAB}=201$.
- HELLO (message)
- CABCA (repeated key to match the length)
- JEMNO (ciphertext)
- $\mathrm{H} \rightarrow \mathrm{J}, \mathrm{E} \rightarrow \mathrm{E}, \mathrm{L} \rightarrow \mathrm{M}, \mathrm{L} \rightarrow \mathrm{N}, \mathrm{O} \rightarrow \mathrm{O}$

Vigenère Cipher

- Use a random keyword to shift. Repeat to match length.
- Keyword $=$ CAB
- Alphabets in an array of length 26: $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=2, \ldots, \mathrm{Z}=25$.
- Shift for the keyword $\mathrm{CAB}=201$.
- HELLO (message)
- CABCA (repeated key to match the length)
- JEMNO (ciphertext)
- $\mathrm{H} \rightarrow \mathrm{J}, \mathrm{E} \rightarrow \mathrm{E}, \mathrm{L} \rightarrow \mathrm{M}, \mathrm{L} \rightarrow \mathrm{N}, \mathrm{O} \rightarrow \mathrm{O}$
- Again, easily broken by frequency analysis: guess key length and analyze frequencies.

Vigenère Cipher

- Use a random keyword to shift. Repeat to match length.
- Keyword $=$ CAB
- Alphabets in an array of length $26: \mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=2, \ldots, \mathrm{Z}=25$.
- Shift for the keyword $\mathrm{CAB}=201$.
- HELLO (message)
- CABCA (repeated key to match the length)
- JEMNO (ciphertext)
- $\mathrm{H} \rightarrow \mathrm{J}, \mathrm{E} \rightarrow \mathrm{E}, \mathrm{L} \rightarrow \mathrm{M}, \mathrm{L} \rightarrow \mathrm{N}, \mathrm{O} \rightarrow \mathrm{O}$
- Again, easily broken by frequency analysis: guess key length and analyze frequencies.
- Ciphertext only attack!

Rotor Machines

- After the typewriter, encryption based on rotor machines.

The Hebern Machine (Wikipedia)

Rotor Machines

- After the typewriter, encryption based on rotor machines.

The Hebern Machine (Wikipedia)

- Rotor encodes the key
- Typed symbol encrypted with the next symbol on the rotor

Rotor Machines

- After the typewriter, encryption based on rotor machines.

The Hebern Machine (Wikipedia)

- Rotor encodes the key
- Typed symbol encrypted with the next symbol on the rotor
- Rotor moves as you type, changing the key each time.
- Measure the cycle after which the key starts repeating

Rotor Machines

- Machines with more rotors, more rotors = bigger key space.

Enigma with 3 rotors (Wikipedia)

Rotor Machines

- Machines with more rotors, more rotors = bigger key space.

Enigma with 3 rotors (Wikipedia)

- More rotors = more keys

Rotor Machines

- Machines with more rotors, more rotors = bigger key space.

Enigma with 3 rotors (Wikipedia)

- More rotors $=$ more keys $\approx 2^{36}$ in Enigma with 3-rotors.
- All susceptible to known cryptanalysis methods
- Friedman had several important cryptanalysis methods for Hebern.
- Further improved and highly optimized by others.
- Turing designed a machine to search for Enigma key from known ciphertexts/plaintext pairs.

Digital Age

- Data Encryption Standard (DES), designed by IBM in response to government's call for a good encryption standard, in 1974.

Digital Age

- Data Encryption Standard (DES), designed by IBM in response to government's call for a good encryption standard, in 1974.
- DES has roughly 2^{56} keys,

Digital Age

- Data Encryption Standard (DES), designed by IBM in response to government's call for a good encryption standard, in 1974.
- DES has roughly 2^{56} keys,

Digital Age

- Data Encryption Standard (DES), designed by IBM in response to government's call for a good encryption standard, in 1974.
- DES has roughly 2^{56} keys, not considered safe with today's computing powers.

Digital Age

- Data Encryption Standard (DES), designed by IBM in response to government's call for a good encryption standard, in 1974.
- DES has roughly 2^{56} keys, not considered safe with today's computing powers.
- Advanced Encryption Standard (AES):

Digital Age

- Data Encryption Standard (DES), designed by IBM in response to government's call for a good encryption standard, in 1974.
- DES has roughly 2^{56} keys, not considered safe with today's computing powers.
- Advanced Encryption Standard (AES):
- Designed by Vincent Rijmen and Joan Daemen (originally called Rijndael) in 1998.

Digital Age

- Data Encryption Standard (DES), designed by IBM in response to government's call for a good encryption standard, in 1974.
- DES has roughly 2^{56} keys, not considered safe with today's computing powers.
- Advanced Encryption Standard (AES):
- Designed by Vincent Rijmen and Joan Daemen (originally called Rijndael) in 1998.
- Selected and standardized by the US government through intense competition

Digital Age

- Data Encryption Standard (DES), designed by IBM in response to government's call for a good encryption standard, in 1974.
- DES has roughly 2^{56} keys, not considered safe with today's computing powers.
- Advanced Encryption Standard (AES):
- Designed by Vincent Rijmen and Joan Daemen (originally called Rijndael) in 1998.
- Selected and standardized by the US government through intense competition
- Comes with different key sizes and other parameters (typical for such ciphers)

Digital Age

- Data Encryption Standard (DES), designed by IBM in response to government's call for a good encryption standard, in 1974.
- DES has roughly 2^{56} keys, not considered safe with today's computing powers.
- Advanced Encryption Standard (AES):
- Designed by Vincent Rijmen and Joan Daemen (originally called Rijndael) in 1998.
- Selected and standardized by the US government through intense competition
- Comes with different key sizes and other parameters (typical for such ciphers)
- Many other ciphers known today, e.g., Salsa, Twofish, ...

Next class

- What does it mean for a cipher to be secure?
- Shannon's treatment of perfect secrecy.

