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Lecture 14: Hardness Assumptions

Instructor: Omkant Pandey Scribe: Hyungjoon Koo, Parkavi Sundaresan

1 Modular Arithmetic

Let N and R be set of natural and real numbers respectively. Let Z be set of integers. Z+ and
Z− represent positive and negative integers. For n ∈ N, ZN denotes set of integers modulo N as
following:

ZN := {0, 1, 2, ..., N − 1}

In this setting, we can perform “arithmetic in ZN” - addition, mulplication and division:

(a+ b) mod N = (a mod N) + (b mod N) mod N

(a× b) mod N = (a mod N)× (b mod N) mod N

r = a mod N when integer a is divided by N and r is the remainder in ZN

We say that “a is congruent to b modulo N” if a, b have the same remainder and write:

a ≡ b mod N

Thus a ≡ 0 mod N if and only if N |a, where N divides a.

2 Greatest Common Divisor (GCD)

If a, b are two integers, gcd(a, b) denotes their GCD, greatest common divisor. If two integers a, b
are non-zero and have no common factors (i.e., gcd(a, b) = 1), a, b are relatively prime. It is easy
to compute gcd for any two integers a, b using Extended Euclidean:

∃a, b ∈ Z⇒ ∃x, y ∈ Z such that ax+ by = gcd(a, b)

If a, b are relatively prime, we can write it as following:

ax+ by = 1⇒ ax ≡ 1 mod b

Now let Z∗N be set of integers mod N that are relatively prime to N :

Z∗N = {1 ≤ x ≤ N − 1 : gcd(x,N) = 1} ⇒ ∃a ∈ Z∗N ∃x : ax = 1 mod N

Such an x is called the inverse of a.
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3 Integers modulo a prime

We are of special interest when N is a prime number, say p, which defines:

Zp = {0, 1, 2, ..., p− 1}

Z∗p = {1 ≤ x ≤ N − 1 : gcd(x, p) = 1} = {1, 2, ..., p− 1}

|Z∗p| = p− 1

3.1 Fermat’s Little Theorem

If p is a prime, then for any a ∈ Z∗p:

Theorem 1 Fermat’s Little Theorem

ap−1 mod p = 1

3.2 Euler’s Generalization

Fermat’s Little Theorem can be generalized by Euler’s theorem.

Theorem 2 Euler’s Theorem
For any N ∈ N and a ∈ Z∗p :

aφ(N) mod N = 1 where φ(N) = |Z∗N |

φ(N) is Euler’s totient function, which denotes the number of n ∈ Z∗N that is relative to N . Every
interger N can be written as the multiplication of its factors as the following theorem.

Theorem 3 Fundamental Theorem of Arithmetic

N =
k∏
i=1

peii

for prime factors p1 < p2 < ... < pk and positive integers ei > 0

This factorization is unique with empty product taken to be 1

φ(N) = N ·
k∏
i=1

(1− 1

pi
)

If N = pq for distict primes p and q, then φ(N) = (p − 1)· (q − 1) because there are q and p
multiples for p and q respectively in N = pq.
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4 Groups

A set G denotes a group with a “group operation”: G×G→ G, satisfying the following properties:

• Closure: ∀a, b ∈ G, a
⊙
b ∈ G

• Identity: ∃e ∈ G (identity) s.t. ∀a ∈ G : a
⊙
e = e

⊙
a = a

• Associativity: ∀a, b, c ∈ G : (a
⊙
b)
⊙
c = a

⊙
(b
⊙
c)

• Inverse: ∀a ∈ G, ∃b ∈ G s.t a
⊙
b = b

⊙
a = e (identity)

In particular, a group with commitative property is called “Abelian group” where ∀a, b ∈ G :
a
⊙
b = b

⊙
a. For example, (ZN ,+), (Z∗N ,×) are “additive” and “multiplicative” groups for all

N .

Theorem 4 Corollary of Lagrange’s Theorem

x|G| = e

If the set {g, g2, ...} = G, g ∈ G is a generator of G. The set of all generators of G is denoted by
GenG.

5 Discrete Logarithm Problem

An instance (p, g, y) of the discrete logarithm problem consists of a large prime p and two elements
g, y ∈ Z∗p. Since p is prime, difference between Zp and Z∗p is that Zp includes 0.

The task is to find an x such that gx = y mod p. This task is believed to be hard - No known
algorithm that can break the problem - except for few special cases. This include:

g = 1
p has some special structure like p = 2k + 1
p− 1 has many small factors

However, if g is a generator, the problem is believed to be hard. Normally we want to work
with a group such that order of the group, |G| ,the number of elements in G, is prime. However,
Z∗p has order (p − 1), which is not prime. If p = 2q + 1 and q is also a prime, p is called Sophie
Germain prime or a safe prime. This subgroup has order q which is prime. The practical method
for sampling safe primes is simple: first pick a prime q as usual, and then check whether 2q + 1 is
also prime.

Number of elements in Z∗p ,
|Z∗p| = p− 1 = 2q

Consider a subset Gq = {x2 : x ∈ Z∗p}. This set Gq is a set of quadratic residues mod p. Gq has
an order of q = (p− 1)/2. It is easy to prove that Gq is a group of prime order q, by proving that
all properties of a group are satisfied by Gq.

For example, we can compute inverse ∀a in Gq by:
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∀a ∈ Gq, if at Gq ∃x : x2 = a mod p,

aq mod p = a(p−1)/2 mod p

= x2
(p−1)/2

= x(p−1) mod p

= 1 (By Fermat′s Little Theorem)

a.a(q−1) mod p = 1

So, Inverse of a = a(q−1) mod p

Since G is a prime order group, cycle through all q elements of G by applying the group operation
to the generator over and over again. Other ways to construct prime order groups include group
formed by points on an appropriate elliptic curve. It is hard to compute discrete log in prime order
groups.

Assumption 1 Discrete Log Assumption
If Gq is a group of prime order q, then, for every non-uniform PPT A, there exists a negligible

function µ such that:

Pr
[
q ← Πn; g ← GenGq ;x← Zq : A(1n, gx) = x

]
6 µ(n).

Adversary A
′
s advantage in solving the discrete logarithm problem is negligible. Πn is the

set of n-bit prime numbers. It is important that G is a group of prime-order. So, the normal
multiplicative group Zp has order (p− 1) and therefore does not satisfy the assumption.

6 Diffie-Hellman Problems

6.1 Computational Diffie-Hellman

The adversary gets X = gx mod p and Y = gy mod p and (p, g). Let Gq be a cyclic group of prime
order q. The CDH problem is :

Given (g, q, gx, gy), compute gxy ∈ Gq,
where, x and y are random and all computations are in Gq

Assumption 2 CDH Assumption is that Adversary A
′
s probability of solving the computational

Diffie-Hellman problem is negligible.

∀ non− uniform PPT A, ∃ negligible µ such that,
∀ n : A solves CDH problem with probablility atmost µ(n)

Note : When working with a safe p = 2q + 1, g can be generator for order q subgroup, and
computations can be modulo p.
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6.2 Decisional Diffie-Hellman

gxy looks indistinguishable from a random group element.

Assumption 3 Decisional Diffie-Hellman Assumption is the following ensembles are computa-
tionally indistinguishable:

{p← Π̃n, y ← Genq, a, b← Zq : g, p, ga, gb, gab}n ≈

{p← Π̃n, y ← Genq, a, b, z ← Zq : g, p, ga, gb, gz}n
where x,y,z are all random and all computations are in Gq. Adverasary is unable to say if its

gxy or random gz.
∀ non-uniform PPT distinguishers, D, ∃ negligible µ such that ∀n : D solves the DDH problem

with probability at most 1/2 + µ(n)

It is crucial for the DDH assumption that the group within which we work is a prime-order
group. In a prime order group, all elements except the identity have the same order.

7 RSA

RSA = Rivest, Shamir, Adleman Let p,q be large random primes of roughly the same size and
N = pq. N is called a RSA modulus.

φ(N) is the order of Z∗N , which is (p− 1)(q − 1), where,

Z∗N = {x ∈ ZN : gcd(x,N) = 1}

Let e be an odd number between 1 and φ(N) such that

gcd(e , φ(N)) = 1

. Therefore, e ∈ Z∗φ(N).
By using Extended Euclidean Algorithm, we can find a d such that:

e.d = 1 mod φ(N).

If φ(N) is known, you can compute d.But if φ(N) is not known, d seems hard to compute.
Therefore, φ(N) must be kept secret.

Let N ,e,d be as before so that e.d = 1 mod φ(N). d can be used to compute e-th root of
numbers modulo N .
Suppose that y = xe mod N , then:

yd mod N = xed mod N

= xed mod φ(N) mod N

= x mod N

RSA Assumption is that, without d, it seems hard to compute e-th root of numbers modulo N .
So even if (N, e) are given it would be hard to find e− th roots; can be used as public key. d and
factors of N should be kept secret; d can be used as secret trapdoor.
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Assumption 4 RSA Assumption : For every non-uniform PPT A there exists a negligible function
µ such that for all n ∈ N:

Pr
[ p, q ← Πn;N ← pq;
e← Z∗φ(N); y ← Z∗N ; : xe = y mod N

x← A(N, e, y)

]
6 µ(n).

For N, e as above, the following is called the RSA function:

fN,e(x) = xe mod N

The RSA Function actually yields a collection of trapdoor one-way permutations.

8 Learning With Errors (LWE)

Let S be a vector of length n, where each element belongs to Znq , some modulus q, greater than 2,
and parameter n.

s = (s1, ..., sn) ∈ Znq
Suppose you are given many equations for known a values.

a1.s1 + a2.s2 + ....+ an.s1 = b1(mod q)

a
′
1.s1 + a

′
2.s2 + ....+ a

′
n.s1 = b2(mod q)

etc
This can be solved by using Gaussian elimination. But, it may not work if the equation contain

some errors. In particular, solving a system of equations, each with some noise becomes hard when
all equations have independent error,according to the Normal Distribution, with standard deviation
αq >

√
n.

a1.s1 + a2.s2 + ....+ an.s1 ≈ b1(mod q)

a
′
1.s1 + a

′
2.s2 + ....+ a

′
n.s1 ≈ b2(mod q)

etc
Errors should be picked, from Gaussian or Normal distribution, such that error is small enough

for problem to be unique but large enough for problem to be hard to solve.
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