
CSE 594 : Modern Cryptography 2/21/2017

Pseudorandomness-II

Instructor: Omkant Pandey Scribes: Gustavo Poscidonio, Subathra Vijayakumar

1 Pseudorandom Generators

Before continuing, let us recall some definitions:

Definition 1 (Pseudorandom Ensembles) An ensemble {Xn}, where Xn is a distribution over
{0, 1}`(n), is said to be pseudorandom if:

{Xn} ≈ {Un}

That is, Xn is computationally indistinguishable from Un.

Definition 2 (Next-bit Unpredictability) An ensemble of distributions {Xn} over {0, 1}`(n) is
next-bit unpredictable if, for all 0 ≤ i ≤ `(n) and non-uniform PPT A, ∃ negligible function ν(·)
such that:

Pr[t = t1 . . . t`(n) ∼ Xn : A(t1 . . . ti) = ti+1] ≤
1

2
+ ν(n)

That is, next-bit unpredictability implies that given some prefix of a sample t from Xn it is impossible
to predict the next bit of t with probability better than 1

2 .

Theorem 1 (Completeness of Next-bit Test) If {Xn} is next-bit unpredictable then {Xn} is
pseudorandom.

Understanding the above recollections allows us to proceed and define a pseudorandom gen-
erator.

Definition 3 (Pseudorandom Generators) A deterministic algorithm G is called a pseudoran-
dom generator (PRG) if:

• G can be computed in polynomial time

• |G(x)| > |x|

• {x← {0, 1}n : G(x)} ≈c {Un} where `(n) = |G(0n)|

The stretch of G is defined as |G(x)| − |x|.

Elaborating on the above definition, we have that G should be efficient, that it should produce
some ‘extra bits’ (hence that it is a generator) and the output of G should produce an ensemble
which is computationally indistinguishable from the uniform ensemble.

Here, we impose a short term goal upon ourselves: construct a PRG with 1-bit stretch. Doing
so will allow us to then extrapolate on that construction and generate polynomially many bits. So
consider the hardcore predicate h for some function f . We know that h(s) is hard to guess even if
given f(x). So let G(s) = f(x)||h(s). Here we encounter some minor issues:

1-1

• |f(s)| might be smaller than s which would prevent G from generating more bits.

• f(s) may always start with some non-random prefix.

We solve both of these issues by letting f be a one-way permutation over {0, 1}n. This way
we have that:

• Domain and Range are of the same size. That is, |f(s)| = |s| = n.

• f(s) is uniformly random over {0, 1}n since f establishes a bijection over {0, 1}n → {0, 1}n.
This prevents f(s) from starting with any fixed value.

Theorem 2 (PRG based on OWP) Let f : {0, 1}∗ → {0, 1}∗ be a OWP. Let h : {0, 1}∗ →
{0, 1} be a hardcore predicate for f . Then we define G to be:

G(s) = f(s)||h(s)

G is a pseudorandom generator with 1-bit stretch.

If you did the proof from the previous lecture where the ‘next bit test’ implies pseudorandom-
ness, then the proof for this statement is trivial. By contradiction you would assume that G is not
a PRG. Then an attacker D should succeed in guessing the ith bit of G(s) given the first i− 1 for
some i. But of course the frist n bits of G(s) are uniformly random since f is a permutation, and
the (n+ 1)th bit is the hardcore bit, which is hard to guess. So D can’t possibly guess any of the
bits from any prefix, so D fails the next bit test which is a contradiction. For completeness, we will
provide a complete proof based on hardcore bits.

Proof. First, we know G is computable in polynomial time because f and h are both com-
putable in polynomial time. Additionally, we know that the stretch of G is 1 because |G(s)| =
|f(s)| + |h(s)| = |s| + 1. All we have to show know is that the output of G computationally
indistinguishable from randomly sampled values. That is:

{s← {0, 1}n : G(s)} ≈c {Un+1}

We begin by assuming to the contrary that this is not true. Then ∃ an efficient distinguisher D
and a polynomial q(·) such that:

|Pr[s← {0, 1}n;D(G(s)) = 1]− Pr[u← Un+1;D(u) = 1]| ≥ 1

q(n)

for large enough n. Our goal is to use D to break the OWP f . Let us define u = u1 . . . ||un+1 =
y||un+1 where y ∈ {0, 1}n. Observe that since f is a permutation, ∃ a unique s such that y = f(s).
And of course, by the bijective properties of f , since y is uniform over {0, 1}n, s is also uniform
over {0, 1}n. Note that in the subsequent equations, the domains of each variable in the probability
will be omitted to simplify the notation. So we have:

1-2

Pr[D(u) = 1] = Pr[D(y||un+1) = 1]

= Pr[D(f(s)||un+1) = 1]

splitting this up for un+1 = 0

and un+1 = 1 we have

=
∑

r∈{0,1}

Pr[D(f(s)||un+1) = 1|un+1 = r] · Pr[un+1 = r]

=
∑

r∈{0,1}

Pr[D(f(s)||un+1) = 1|un+1 = r] · 1

2

=
1

2
·
∑

r∈{0,1}

Pr[D(f(s)||un+1) = 1|un+1 = r]

=
1

2
·
∑

r∈{0,1}

Pr[D(f(s)||r) = 1]

=
1

2
· (Pr[D(f(s)||0) = 1] + Pr[D(f(s)||1) = 1])

At this point we are going to substitute f(s)||0 and f(s)||1 with f(s)||h(s) and f(s)||h(s) where
h(s) = 1 − h(s). We don’t know which one is which, but we know that if h(s) = 0 then h(s) = 1
and vice versa. So we have:

Pr[D(u) = 1] =
1

2
· (Pr[D(f(s)||h(s) = 1] + Pr[D(f(s)||h(s)) = 1])

We also have that by definition of G(s):

Pr[D(G(s))] = Pr[f(s)||h(s)]

Subtracting the two equations above and taking their absolute value, we have that:

|Pr[D(u) = 1]− Pr[D(G(s)) = 1]| = 1

2
· |Pr[D(f(s)||h(s)) = 1]− Pr[D(f(s)||h(s)) = 1]|

Playing with the notation, we can rewrite the right-hand side as:∣∣∣∣Pr[b← {0, 1}; z ← Xb;D(z) = b]− 1

2

∣∣∣∣
where:

X0 : = {s← {0, 1}n : f(s)||h(s)}
X1 : = {s← {0, 1}n : f(s)||h(s)}

z = f(s)||(h(s)⊕ b)

1-3

So we have that:

|Pr[D(u) = 1]− Pr[D(G(s)) = 1]| =
∣∣∣∣Pr[b← {0, 1}; s← {0, 1}n;D(f(s)||(h(s)⊕ b)) = b]− 1

2

∣∣∣∣
or, with less verbose notation:

|Pr[D(u) = 1]− Pr[D(G(s)) = 1]| =
∣∣∣∣Pr
b,s

[D(f(s)||(h(s)⊕ b)) = b]− 1

2

∣∣∣∣
Now we know that the left-hand side ≥ 1

q(n) . Therefore, we have:∣∣∣∣Pr
b,s

[D(f(s)||(h(s)⊕ b)) = b]− 1

2

∣∣∣∣ ≥ 1

q(n)

Here, we write r = h(s)⊕b so that r is uniform if b is and h(s) = r⊕b. Making this substitution
allows use to manipulate the inequality as follows:∣∣∣∣Pr

r,s
[D(f(s)||r) = b ∧ h(s) = r ⊕ b]− 1

2

∣∣∣∣ ≥ 1

q(n)

An observation we should make here is that we can assume the probability in the inequality
is ≥ 1

2 without loss of generality. The reason being that if D’s advantage is less than 1
2 , we may

always construct D′ from D such that the advantage of D′ ≥ 1
2 . Therefore:

Pr
r,s

[D(f(s)||r) = b ∧ h(s) = r ⊕ b] ≥ 1

2
+

1

q(n)

Finally, we will use D to break the hardcore bit. Consider the following algorithm:

Algorithm A(f(s)):

1. Sample bit r uniformly and compute b← D(f(s)||r)

2. Output r ⊕ b.

Analyzing the probability of success of A, we find:

Pr
s

[A(f(s)) = h(s)] = Pr
r,s

[D(f(s)||r) = b ∧ h(s) = r ⊕ b] ≥ 1

2
+

1

q(n)

=⇒⇐= Contradiction! You shouldn’t be able to predict the hardcore bit with probability better
than half. Therefore, G(s) must be a pseudorandom generator, as required.

2 One-bit stretch PRG ⇒ Poly-stretch PRG

We can do G(G(G(s))) recursively or G(s1)G(s2)...G(sn). Here we present a slightly different
version which gives out bits one at a time (without having to wait for the entire output to generate).

Construction of Gpoly : {0, 1}(n) → {0, 1}l(n) using a 1-bit stretch PRG G proceeds as follows:
output b1b2 . . . bl where G(si) = si+1‖bi+1 yields the bit bi+1 for i = 0 to l − 1 and we set s0 = s.

Proof: We prove that Gpoly is a poly-stretch pseudorandom generator.

1-4

(i.e)s← {0, 1}(n) : Gpoly(s) ≈c Ul(n)

Suppose not. Then, let D be a non-uniform PPT algorithm which can tell the two distributions
above apart with noticeable probability. We use hybrid arguments to show that this cannot be the
case.

s is a n-bit seed selected uniform randomly from {0, 1}(n); let us write X0 = s. Then our first
hybrid experiment is really just the output of the distinguisher on the actual PRG value:

ExperimentH0

s = X0

G(X0) = X1||b1
G(X1) = X2||b2

.

.

.

G(Xl−1) = Xl||bl
Output D(b1b2b3..bl(n))

Our next hybrid changes the first bit b1 (of the output of the PRG) to a uniformly random bit
u1 (and the corresponding value X1 to a random value s1)

ExperimentH1

s = X0

X1||b1 = s1||u1
G(X1) = X2||b2

.

.

.

G(Xl−1) = Xl||bl
Output D(u1b2b3..bl(n)).

We prove using security of PRG G that H0 and H1 can be distinguished with advantage no more
than µ(n) for negligible function µ. For any distinguisher who distinguishes H0 and H1 consider
the following attacker A for G:

Attacker A:

• A gets a challenge Z||r sampled either as X1||b1 or s1||u1 (i.e. either pseudorandom output
of G or a uniform string)

1-5

• A computes the remaining values as in the construction, i.e., X2||b2 = G(Z) and so on for
bits b2, . . . , bl.

• A outputs the output of D(r1b2b3..bl)

Note that if Z||r is pseudorandom then output of D produced from previous step is directly
identical to the output of H0. On the other hand, if Z||r is truly random then output of D is
distributed identically to the output of H1. Thus, advantage of A in breaking G is the same as
that of D in distinguishing H0 and H1. Continuing in this way for each of the next l hybrids, we
conclude that the advantage between H0 and Hl (which will have all uniform bits as output) can
be at most lµ. Since the advantage is ε, we have that ε ≤ lµ. This is a contradiction since lµ is
negligible but ε is not.

3 Function vs Generators

PRGs convert one short random string s into one long pseudorandom string. s is a seed and can
be used only once. Pseudorandom Fuctions(PRF) can be used instead which will be discussed in
the next class.

1-6

