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Recall: Zero Knowledge

Definition (Zero Knowledge)
An interactive proof (P, V ) for a language L with witness relation R is
said to be zero knowledge if for every non-uniform PPT adversary V ∗,
there exists a PPT simulator S s.t. for every non-uniform PPT
distinguisher D, there exists a negligible function ν(·) s.t. for every
x ∈ L, w ∈ R(x), z ∈ {0, 1}∗, D distinguishes between the following
distributions with probability at most ν(|x|):{

View∗V [P (x,w)↔ V ∗(x, z)]
}

{
S(1n, x, z)

}
If the distributions are statistically close, then we call it statistical
zero knowledge
If the distributions are identical, then we call it perfect zero
knowledge

Instructor: Omkant Pandey Lecture 19: Zero-Knowledge Proofs II Spring 2017 (CSE 594) 2 / 24



Recall: Interactive Proof for Graph Isomorphism

Common Input: x = (G0, G1)

P ’s witness: π s.t. G1 = π(G0)

Protocol (P, V ): Repeat the following procedure n times using fresh
randomness

P → V : Prover chooses a random permutation σ ∈ Πn, computes
H = σ(G0) and sends H

V → P : V chooses a random bit b ∈ {0, 1} and sends it to P

P → V : If b = 0, P sends σ. Otherwise, it sends φ = σ · π−1

V (x, b, φ): V outputs 1 iff H = φ(Gb)
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(P, V ) is Perfect Zero Knowledge: Strategy

Will prove that a single iteration of (P, V ) is perfect zero
knowledge
For the full protocol, use the following (read proof online):

Theorem

Sequential repetition of any ZK protocol is also ZK

To prove that a single iteration of (P, V ) is perfect ZK, we need to
do the following:

Construct a Simulator S for every PPT V ∗

Prove that expected runtime of S is polynomial
Prove that the output distribution of S is correct (i.e.,
indistinguishable from real execution)
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(P, V ) is Perfect Zero Knowledge: Simulator

Simulator S(x, z):

Choose random b′
$←{0, 1}, σ $←Πn

Compute H = σ(Gb′)

Emulate execution of V ∗(x, z) by feeding it H. Let b denote its
response
If b = b′, then feed σ to V ∗ and output its view. Otherwise, restart
the above procedure
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Correctness of Simulation

Lemma

In the execution of S(x, z),
H is identically distributed to σ(G0), and
Pr[b = b′] = 1

2

Proof:
Since G0 is isomorphic to G1, for a random σ

$←Πn, σ(G0) and
σ(G1) are identically distributed
That is, distribution of H is independent of b′

Therefore, H has the same distribution as σ(G0)

Now, since V ∗ only takes H as input, its output b′ is also
independent of b′

Since b′ is chosen at random, Pr[b′ = b] = 1
2
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Correctness of Simulation (contd.)

Runtime of S:
From Lemma 3: S has probability 1

2 of succeeding in each trial
Therefore, in expectation, S stops after 2 trials
Each trial takes polynomial time, so run time of S is expected
polynomial

Indistinguishability of Simulated View:
From Lemma 3: H has the same distribution as σ(G0)

If we could always output σ, then output distribution of S would
be same as in real execution
S, however, only outputs H and σ if b′ = b

But since H is independent of b′, this does not change the output
distribution
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Reflections on Zero Knowledge Proofs

Paradox?
Protocol execution convinces V of the validity of x
Yet, V could have generated the protocol transcript on its own

To understand why there is no paradox, consider the following story:
Alice and Bob run (P, V ) on input (G0, G1) where Alice acts as P
and Bob as V
Now, Bob goes to Eve: “G0 and G1 are isomorphic”
Eve: “Oh really?”
Bob: “Yes, you can see this accepting transcript”
Eve: “Are you kidding me? Anyone can come up with this
transcript without knowing the isomorphism!”
Bob: “But I computed this transcript by talking to Alice who
answered my challenge correctly every time!”
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Reflections on Zero Knowledge Proofs (contd.)

Moral of the story:
Bob participated in a “live” conversation with Alice, and was
convinced by how the transcript was generated
But to Eve, who did not see the live conversation, there is no way
to tell whether the transcript is from real execution or produced by
simulator

Instructor: Omkant Pandey Lecture 19: Zero-Knowledge Proofs II Spring 2017 (CSE 594) 9 / 24



Zero-Knowledge Proofs for NP

Theorem
If one-way permutations exist, then every language in NP has a
zero-knowledge interactive proof.

The assumption can in fact be relaxed to just one-way functions
Think: How to prove the theorem?
Construct ZK proof for every NP language?
Not efficient!
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Zero-Knowledge Proofs for NP (contd.)

Proof Strategy:
Step 1: Construct a ZK proof for an NP-complete language. We

will consider Graph 3-Coloring: language of all graphs
whose vertices can be colored using only three colors s.t.
no two connected vertices have the same color

Step 2: To construct ZK proof for any NP language L, do the
following:

Given instance x and witness w, P and V reduce x
into an instance x′ of Graph 3-coloring using Cook’s
(deterministic) reduction
P also applies the reduction to witness w to obtain
witness w′ for x′

Now, P and V can run the ZK proof from Step 1 on
common input x′
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Physical ZK Proof for Graph 3-Coloring

Consider graph G = (V,E). Let C be a 3-coloring of V given to P
P picks a random permutation π over colors {1, 2, 3} and colors G
according to π(C). It hides each vertex in V inside a locked box
V picks a random edge (u, v) in E
P opens the boxes corresponding to u, v. V accepts if u and v have
different colors, and rejects otherwise
The above process is repeated n|E| times
Intuition for Soundness: In each iteration, cheating prover is
caught with probability 1

|E|
Intuition for ZK: In each iteration, V only sees something it
knew before – two random (but different) colors
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Towards ZK Proof for Graph 3-Coloring

To “digitze” the above proof, we need to implement locked boxes

Need two properties from digital locked boxes:
Hiding: V should not be able to see the content inside a locked box
Binding: P should not be able to modify the content inside a box
once its locked
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Commitment Schemes

Digital analogue of locked boxes

Two phases:
Commit phase: Sender locks a value v inside a box
Open phase: Sender unlocks the box and reveals v

Can be implemented using interactive protocols, but we will
consider non-interactive case. Both commit and reveal phases will
consist of single messages
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Commitment Schemes: Definition

Definition (Commitment)
A randomized polynomial-time algorithm Com is called a commitment
scheme for n-bit strings if it satisfies the following properties:

Binding: For all v0, v1 ∈ {0, 1}n and r0, r1 ∈ {0, 1}n, it holds that
Com(v0; r0) 6= Com(v1; r1)

Hiding: For every non-uniform PPT distinguisher D, there exists
a negligible function ν(·) s.t. for every v0, v1 ∈ {0, 1}n, D
distinguishes between the following distributions with probability
at most ν(n){

r
$←{0, 1}n : Com(v0; r)

}{
r

$←{0, 1}n : Com(v1; r)
}
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Commitment Schemes: Remarks

The previous definition only guarantees hiding for one commitment

Multi-value Hiding: Just like encryption, we can define
multi-value hiding property for commitment schemes

Using hybrid argument (as for public-key encryption), we can
prove that any commitment scheme satisfies multi-value hiding

Corollary: One-bit commitment implies string commitment
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Construction of Bit Commitments

Construction: Let f be a OWP, h be the hard core predicate for f

Commit phase: Sender computes Com(b; r) = f(r), b⊕ h(r). Let C
denote the commitment.

Open phase: Sender reveals (b, r). Receiver accepts if
C = (f(r), b⊕ h(r)), and rejects otherwise

Security:

Binding follows from construction since f is a permutation

Hiding follows in the same manner as IND-CPA security of
public-key encryption scheme constructed from trapdoor
permutations
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ZK Proof for Graph 3-Coloring

Common Input: G = (V,E), where |V | = n

P ’s witness: Colors color1, . . . , colorn ∈ {1, 2, 3}
Protocol (P, V ): Repeat the following procedure n|E| times using
fresh randomness

P → V : P chooses a random permutation π over {1, 2, 3}. For
every i ∈ [n], it computes Ci = Com(c̃olori) where
c̃olori = π(colori). It sends (C1, . . . , Cn) to V

V → P : V chooses a random edge (i, j) ∈ E and sends it to P

P → V : Prover opens Ci and Cj to reveal (c̃olori, c̃olorj)

V : If the openings of Ci, Cj are valid and c̃olori 6= c̃olorj , then
V accepts the proof. Otherwise, it rejects.
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Proof of Soundness

If G is not 3-colorable, then for any coloring color1, . . . , colorn,
there exists at least one edge which has the same colors on both
endpoints

From the binding property of Com, it follows that C1, . . . , Cn have
unique openings c̃olor1, . . . , c̃olorn

Combining the above, let (i∗, j∗) ∈ E be s.t. c̃olori∗ = c̃olorj∗

Then, with probability 1
|E| , V chooses i = i∗, j = j∗ and catches P

In n|E| independent repetitions, P successfully cheats in all
repetitions with probability at most(

1− 1

|E|

)n|E|
≈ e−n
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Proving Zero Knowledge

Intuition:
In each iteration, V only sees two random colors
Hiding property of Com guarantees that everything else remains
hidden from V

As for Graph Isomorphism, we will only prove zero knowledge for
one iteration. For the full protocol, we can prove zero knowledge
using Theorem 2
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Proving Zero Knowledge: Simulator

Simulator S(x = G, z):

Choose a random edge (i′, j′)
$← E and pick random colors

color′i′ , color
′
j′

$←{1, 2, 3} s.t. color′i′ 6= color′j′ . For every other
k ∈ [n] \ {i′, j′}, set color′k = 1

For every ` ∈ [n], compute C` = Com(color′`)

Emulate execution of V ∗(x, z) by feeding it (C1, . . . , Cn). Let (i, j)
denote its response
If (i, j) = (i′, j′), then feed the openings of Ci, Cj to V ∗ and output
its view. Otherwise, restart the above procedure, at most n|E|
times
If simulation has not succeeded after n|E| attempts, then output
fail
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Correctness of Simulation

Hybrid Experiments:

H0: Real execution

H1: Hybrid simulator S′ that acts like the real prover (using
witness color1, . . . , colorn), except that it also chooses (i′, j′)

$← E
at random and if (i′, j′) 6= (i, j), then it outputs fail

H2: Simulator S
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Correctness of Simulation (contd.)

H0 ≈ H1: If S′ does not output fail, then H0 and H1 are
identical. Since (i, j) and (i′, j′) are independently chosen, S′ fails
with probability at most:(

1− 1

|E|

)n|E|
≈ e−n

Therefore, H0 and H1 are statistically indistinguishable

H1 ≈ H2: The only difference between H1 and H2 is that for all
k ∈ [n] \ {i′, j′}, Ck is a commitment to π(colork) in H1 and a
commitment to 1 in H2. Then, from the multi-value hiding
property of Com, it follows that H1 ≈ H2
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Additional Reading

Zero-knowledge Proofs for Nuclear Disarmament
[Glaser-Barak-Goldston’14]

Non-black-box Simulation [Barak’01]

Concurrent Composition of Zero-Knowledge Proofs
[Dwork-Naor-Sahai’98, Richardson-Kilian’99,
Kilian-Petrank’01,Prabhakaran-Rosen-Sahai’02]

Non-malleable Commitments and ZK Proofs
[Dolev-Dwork-Naor’91]

Non-interactive Zero-knowledge Proofs
[Blum-Feldman-Micali’88,Feige-Lapidot-Shamir’90]
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