Lecture 19: Zero-Knowledge Proofs II J

Instructor: Omkant Pandey

Spring 2017 (CSE 594)

Instructor: Omkant Pandey Lecture 19: Zero-Knowledge Proofs II Spring 2017 (CSE 594) 1/24



Recall: Zero Knowledge

Definition (Zero Knowledge)

An interactive proof (P, V) for a language L with witness relation R is
said to be zero knowledge if for every non-uniform PPT adversary V*,
there exists a PPT simulator S s.t. for every non-uniform PPT
distinguisher D, there exists a negligible function v(-) s.t. for every

x € L, w € R(z), z € {0,1}*, D distinguishes between the following
distributions with probability at most v(|z|):

° {View’{,[P(m,w) T V*(x,Z)]}
° {S(l”,x,z)}

o If the distributions are statistically close, then we call it statistical
zero knowledge

o If the distributions are identical, then we call it perfect zero
knowledge
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Recall: Interactive Proof for Graph Isomorphism

Common Input: z = (Go, G1)
P’s witness: 7 s.t. G1 = 7(Gp)

Protocol (P,V): Repeat the following procedure n times using fresh
randomness

P — V: Prover chooses a random permutation o € II,,, computes
H = 0(Gy) and sends H

V — P: V chooses a random bit b € {0, 1} and sends it to P
P — V: If b=0, P sends 0. Otherwise, it sends ¢ = o - 71
V(z,b,¢): V outputs 1 iff H = ¢(Gy)
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(P, V) is Perfect Zero Knowledge: Strategy

e Will prove that a single iteration of (P, V') is perfect zero
knowledge

e For the full protocol, use the following (read proof online):

Sequential repetition of any ZK protocol is also ZK

e To prove that a single iteration of (P, V) is perfect ZK, we need to
do the following;:
e Construct a Simulator S for every PPT V*
e Prove that expected runtime of S is polynomial
o Prove that the output distribution of S is correct (i.e.,
indistinguishable from real execution)
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(P, V) is Perfect Zero Knowledge: Simulator

Simulator S(z, 2):
o Choose random ¥ < {0,1}, o < II,,
Compute H = o(Gy)

e Emulate execution of V*(x, z) by feeding it H. Let b denote its
response
o If b=1, then feed o to V* and output its view. Otherwise, restart

the above procedure
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Correctness of Simulation

In the execution of S(x, z),
o H is identically distributed to o(Gy), and
o Prip="V] =1

Proof:

@ Since Gy is isomorphic to G1, for a random o & I1,, 0(Gp) and
o(G1) are identically distributed

e That is, distribution of H is independent of b/
@ Therefore, H has the same distribution as o(Gg)

e Now, since V* only takes H as input, its output &’ is also
independent of b’

N[ —=

e Since ¥ is chosen at random, Pr[b/ = b] =
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Correctness of Simulation (contd.)

Runtime of S:
e From Lemma 3: S has probability % of succeeding in each trial
o Therefore, in expectation, S stops after 2 trials

e Each trial takes polynomial time, so run time of S is expected
polynomial

Indistinguishability of Simulated View:

e From Lemma 3: H has the same distribution as o(Gy)

If we could always output o, then output distribution of .S would
be same as in real execution

S, however, only outputs H and o if ¥’ = b

But since H is independent of ¥, this does not change the output
distribution
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Reflections on Zero Knowledge Proofs

Paradox?

@ Protocol execution convinces V' of the validity of x

@ Yet, V could have generated the protocol transcript on its own
To understand why there is no paradox, consider the following story:

e Alice and Bob run (P, V') on input (Go, G1) where Alice acts as P
and Bob as V'

e Now, Bob goes to Eve: “Gg and G are isomorphic”
o Eve: “Oh really?”
e Bob: “Yes, you can see this accepting transcript”

e Eve: “Are you kidding me? Anyone can come up with this
transcript without knowing the isomorphism!”

e Bob: “But I computed this transcript by talking to Alice who
answered my challenge correctly every time!”
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Reflections on Zero Knowledge Proofs (contd.)

Moral of the story:

e Bob participated in a “live” conversation with Alice, and was
convinced by how the transcript was generated

e But to Eve, who did not see the live conversation, there is no way
to tell whether the transcript is from real execution or produced by
simulator
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Zero-Knowledge Proofs for NP

If one-way permutations exist, then every language in NP has a
zero-knowledge interactive proof.

@ The assumption can in fact be relaxed to just one-way functions

e Think: How to prove the theorem?

e Construct ZK proof for every NP language?
e Not efficient!
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Zero-Knowledge Proofs for NP (contd.)

Proof Strategy:

Step 1: Construct a ZK proof for an NP-complete language. We
will consider Graph 3-Coloring: language of all graphs
whose vertices can be colored using only three colors s.t.
no two connected vertices have the same color

Step 2: To construct ZK proof for any NP language L, do the
following:

e Given instance x and witness w, P and V reduce x
into an instance x’ of Graph 3-coloring using Cook’s
(deterministic) reduction

e P also applies the reduction to witness w to obtain
witness w’ for 2’

@ Now, P and V can run the ZK proof from Step 1 on
common input z’
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Physical ZK Proof for Graph 3-Coloring

e Consider graph G = (V, E). Let C be a 3-coloring of V' given to P

e P picks a random permutation 7 over colors {1, 2,3} and colors G
according to m(C'). It hides each vertex in V inside a locked box

e V picks a random edge (u,v) in E
@ P opens the boxes corresponding to u,v. V accepts if u and v have
different colors, and rejects otherwise

e The above process is repeated n|E| times

o Intuition for Soundness: In each iteration, cheating prover is
caught with probability ﬁ

o Intuition for ZK: In each iteration, V only sees something it
knew before — two random (but different) colors
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Towards ZK Proof for Graph 3-Coloring

e To “digitze” the above proof, we need to implement locked boxes

@ Need two properties from digital locked boxes:

o Hiding: V should not be able to see the content inside a locked box
e Binding: P should not be able to modify the content inside a box
once its locked
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Commitment Schemes

e Digital analogue of locked boxes

e Two phases:

Commit phase: Sender locks a value v inside a box
Open phase: Sender unlocks the box and reveals v

e Can be implemented using interactive protocols, but we will
consider non-interactive case. Both commit and reveal phases will
consist of single messages
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Commitment Schemes: Definition

Definition (Commitment)

A randomized polynomial-time algorithm Com is called a commitment
scheme for n-bit strings if it satisfies the following properties:
e Binding: For all vg,v; € {0,1}" and ro,7 € {0,1}", it holds that
Com(vg;19) # Com(vy;71)
e Hiding: For every non-uniform PPT distinguisher D, there exists
a negligible function v(-) s.t. for every vy, v; € {0,1}", D
distinguishes between the following distributions with probability
at most v(n)
o {r& {01} : Com(vo; )}
o {r & 0,11 Com(vy;r)}
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Commitment Schemes: Remarks

@ The previous definition only guarantees hiding for one commitment

Multi-value Hiding: Just like encryption, we can define
multi-value hiding property for commitment schemes

Using hybrid argument (as for public-key encryption), we can
prove that any commitment scheme satisfies multi-value hiding

Corollary: One-bit commitment implies string commitment
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Construction of Bit Commitments

Construction: Let f be a OWP, h be the hard core predicate for f

Commit phase: Sender computes Com(b;r) = f(r),b® h(r). Let C
denote the commitment.

Open phase: Sender reveals (b, r). Receiver accepts if
C = (f(r),b® h(r)), and rejects otherwise
Security:

e Binding follows from construction since f is a permutation

e Hiding follows in the same manner as IND-CPA security of

public-key encryption scheme constructed from trapdoor
permutations
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ZK Proof for Graph 3-Coloring

Common Input: G = (V, E), where |V| =n
P’s witness: Colors colory, ..., color, € {1,2,3}

Protocol (P,V): Repeat the following procedure n|E| times using
fresh randomness

P — V: P chooses a random permutation = over {1,2,3}. For
every i € [n], it computes C; = Com(color;) where
color; = m(color;). It sends (C1,...,Cp) to V

V — P: V chooses a random edge (i,j) € E and sends it to P

P — V: Prover opens C; and Cj; to reveal (color;, color;)

V. If the openings of C;, C; are valid and an/ri #* gagrj, then
V' accepts the proof. Otherwise, it rejects.
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Proof of Soundness

e If (G is not 3-colorable, then for any coloring color, ..., color,,
there exists at least one edge which has the same colors on both
endpoints

@ From the binding property of Com, it follows that C4, ..., C, have
unique openings colory, ..., color,

e Combining the above, let (i*,j*) € E be s.t. gc;To/ri* = a_)TC;’j*
@ Then, with probability ﬁ, V chooses i = i*,j = j* and catches P

e In n|FE| independent repetitions, P successfully cheats in all
repetitions with probability at most

1 \nlE|
L Ly
( |E|
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Proving Zero Knowledge

Intuition:
e In each iteration, V only sees two random colors

e Hiding property of Com guarantees that everything else remains
hidden from V'

@ As for Graph Isomorphism, we will only prove zero knowledge for
one iteration. For the full protocol, we can prove zero knowledge
using Theorem 2
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Proving Zero Knowledge: Simulator

Simulator S(z = G, 2):

Choose a random edge (', j') <& E and pick random colors

color,, color’; & {1,2,3} s.t. color), # color’,. For every other

k€ [n]\{7,j'}, set colorj, = 1

For every ¢ € [n], compute Cy = Com(color)

Emulate execution of V*(z, z) by feeding it (C1,...,Cy). Let (4,7)
denote its response

If (i,5) = (', '), then feed the openings of C;, C; to V* and output
its view. Otherwise, restart the above procedure, at most n|E]
times

If simulation has not succeeded after n|E| attempts, then output
fail
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Correctness of Simulation

Hybrid Experiments:

o Hj: Real execution

e Hj: Hybrid simulator S’ that acts like the real prover (using

witness colory, ..., color,), except that it also chooses (7', j') EE
at random and if (¢, j") # (4,7), then it outputs fail

@ Hs: Simulator S
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Correctness of Simulation (contd.)

e Hy~ Hy: If S’ does not output fail, then Hy and H; are
identical. Since (7,j) and (7, ;) are independently chosen, S’ fails
with probability at most:

1 \nE|
1o LY
( |E|

Therefore, Hy and H; are statistically indistinguishable

e Hi =~ Hjy: The only difference between H; and Hs is that for all
ke n)\{/,j'}, Ckis a commitment to m(colory) in Hy and a
commitment to 1 in Hy. Then, from the multi-value hiding
property of Com, it follows that H; ~ Ho
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Additional Reading

e Zero-knowledge Proofs for Nuclear Disarmament
|Glaser-Barak-Goldston’14]

e Non-black-box Simulation [Barak’01]

e Concurrent Composition of Zero-Knowledge Proofs
|Dwork-Naor-Sahai’98, Richardson-Kilian’99,
Kilian-Petrank’01,Prabhakaran-Rosen-Sahai’02]

@ Non-malleable Commitments and ZK Proofs
[Dolev-Dwork-Naor’91|

e Non-interactive Zero-knowledge Proofs
[Blum-Feldman-Micali’88, Feige-Lapidot-Shamir’90|
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