Lecture 16: Public Key Encryption:II

Instructor: Omkant Pandey

Spring 2017 (CSE 594)

Instructor: Omkant Pandey Lecture 16: Public Key Encryption:II Spring 2017 (CSE 594) 1 / 17

イロト イボト イヨト イヨト 三日

- PKE from ANY trapdoor permutation
- RSA-based trapdoor permutation

- ElGamal Public-Key Encryption
- Some Comments about Textbook RSA
- Some attacks on RSA
- LWE based Public-Key Encryption
- Scribe notes volunteeer?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- 32

Definition (Secure Public-Key Encryption)

A public-key encryption scheme {Gen, Enc, Dec} is said to be secure if for all non-uniform PPT D there exists a negligible function μ such that for all $n \in \mathbb{N}$, for all pair of messages $m_0, m_1 \in \mathcal{M}$ such that $|m_0| = |m_1|, D$ distinguishes between the following distributions with at most $\nu(n)$ advantage:

- $\{(pk, sk) \leftarrow \mathsf{Gen}(1^n) : (pk, \mathsf{Enc}(pk, \mathbf{m_0}))\}$
- $\{(pk, sk) \leftarrow \mathsf{Gen}(1^n) : (pk, \mathsf{Enc}(pk, m_1))\}$

I.e., the distributions above are computationally indistinguishable.

Recall: DDH Problem

 Recall the DDH Problem: for a large prime p, and a generator g for the group Z^{*}_p:

$$\begin{cases} x \leftarrow \mathbb{Z}_p^*, y \leftarrow \mathbb{Z}_p^* : (g^x, g^y, g^{xy}) \\ \approx_c \left\{ x \leftarrow \mathbb{Z}_p^*, y \leftarrow \mathbb{Z}_p^*, z \leftarrow \mathbb{Z}_p^* : (g^x, g^y, g^z) \right\} \end{cases}$$

- Recall: |Z^{*}_p| = p − 1 is not prime! (This makes the problem easier in some special cases)
- Recall: we work with a prime order subgroup of \mathbb{Z}_p^* by picking a safe prime p = 2q + 1 and $g = x^2$ for a random $x \in \mathbb{Z}_p^*$.
- G_q = group generated by $g = \{g^0, g^1, \dots, g^{q-1}\}$. $|G_q| = q$.
- There are other ways as well to obtain prime order groups G where DDH is conjectured to be hard.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

• DDH Assumption: Let G be a group of prime order q and $g \in G$ be a generator of G

$$\begin{cases} x \leftarrow \mathbb{Z}_q, y \leftarrow \mathbb{Z}_q : (g^x, g^y, g^{xy}) \\ \approx_c \left\{ x \leftarrow \mathbb{Z}_q, y \leftarrow \mathbb{Z}_q, z \leftarrow \mathbb{Z}_q : (g^x, g^y, g^z) \right\} \end{cases}$$

Instructor: Omkant Pandey Lecture 16: Public Key Encryption:II Spring 2017 (CSE 594) 6 / 17

ElGamal Public-Key Encryption

- ElGamal Scheme: Let G be a prime order group where DDH Assumption holds. The description of G and its order q are publicly known.
- Messages are group elements and the message space is $\mathcal{M} = G$.
 - Gen (1^n) : sample $g \leftarrow G$, $x \leftarrow \mathbb{Z}_q$ and set $h = g^x \in G$. Output (pk, sk) where:

$$pk = (g, h)$$
 $sk = x$

– $\mathsf{Enc}(pk, m)$ for $m \in G$: choose a random $r \leftarrow \mathbb{Z}_q$ and output:

$$(g^r, m \cdot h^r)$$

- $\mathsf{Dec}(sk, c)$ where $c = (c_1, c_2)$: output

• Correctness:
$$m = \frac{c_2}{c_1^x} = c_2 \times (\text{Inverse of } c_1^x)$$

• $\prod_{r=1}^{\infty} \frac{c_2}{c_1^x} = \frac{m \cdot h^r}{g^{rx}} = \frac{m \cdot (g^x)^r}{g^{rx}} = m.$

Instructor: Omkant Pandey Lecture 16: Public Key Encryption:II Spring 2017 (CSE 594)

7 / 17

- Proof based on DDH Assumption: We now prove that ElGamal scheme is secure assuming that the DDH assumption holds.
- We have to show that for all $m_0, m_1 \in G$ these two distributions are indistinguishable:
 - $\{(pk, sk) \leftarrow \mathsf{Gen}(1^n) : (pk, \mathsf{Enc}(pk, \mathbf{m_0}))\}$
 - $\{(pk, sk) \leftarrow \mathsf{Gen}(1^n) : (pk, \mathsf{Enc}(pk, \boldsymbol{m_1}))\}$
- Let D be a PPT algorithm.
- Start with the first distribution, and slowly go to the second distribution.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

Security of ElGamal Scheme

- Game-0: $\{(pk, sk) \leftarrow \text{Gen}(1^n) : (pk, \text{Enc}(pk, m_0))\}$ = $\{g, h, g^r, m_0 \cdot h^r\} = \{g, g^x, g^r, m_0 \cdot g^{xr}\}$
- Game-1: Use g^z for a random z instead of g^{xr} . We get: = $\{g, g^x, g^r, m_0 \cdot g^z\}$
- Claim: Game-0 and Game-1 are indistinguishable.
- **Proof:** Suppose that *D* can distinguish Game-0 and Game-1.
 - We construct D^\prime which can break DDH Assumption
 - -D' gets as input (g, g^x, g^y, g^α) where $\alpha = xy$ or $\alpha = z$.
 - -D' sends $(g, g^x, g^y, m_0 \cdot g^{\alpha})$ to D,
 - -D' outputs whatever D outputs.
- If $\alpha = xy$, D is in Game-0. If $\alpha = z$, D is in Game-1.
- If D tells Game-0, Game-1 apart, D' tells DDH tuples apart! \square

Textbook RSA-Encryption

• Public-Key Encryption:

- Gen (1^n) : Sample $p, q \leftarrow \Pi_n$ and set $N \leftarrow pq$.

Sample $e \leftarrow \mathbb{Z}_{\phi(N)}^*$ and compute d s.t. $ed = 1 \mod \phi(N)$. Output pk = (N, e) and sk = (N, d).

- Message space $\mathcal{M} = \mathbb{Z}_N^*$

- $\mathsf{Enc}(pk,m)$ for pk = (N,e) outputs $f_{N,e}(m) = m^e \mod N$.

- $\mathsf{Dec}(sk, c)$ for sk = (N, d) outputs $c^d \mod N$.

- The correct way to encrypt: construction from previous class.
- More efficient way to encrypt: RSA-OAEP+

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

Textbook RSA-Signature

- RSA can be used as a signature as well! Simply use *e* to verify and *d* to sign instead of decrypt!
- Signature scheme:

- Gen(1ⁿ): Sample $p, q \leftarrow \Pi_n$ and set $N \leftarrow pq$. Sample $e \leftarrow \mathbb{Z}^*_{\phi(N)}$ and compute d s.t. $ed = 1 \mod \phi(N)$. Output vk = (N, e) and sk = (N, d).

- Message space $\mathcal{M} = \mathbb{Z}_N^*$
- $\operatorname{Sign}(sk,m)$ for sk = (N,d) outputs $\sigma = m^d \mod N$.

- Verify (vk, m, σ) for vk = (N, e) outputs 1 iff $\sigma^e = m \mod N$.

Remarks on Textbook RSA-Signature

• Signature function Sign(sk, m) for sk = (N, d):

$$f_{N,d}(m) = m^d \mod N.$$

Verification checks $m = \sigma^e \mod N$.

- Signature is deterministic but that is not a problem !
- Can you **forge** a signature?
- Not if someone gives you a random challenge (RSA Assumption).
- However: what if you select your own messages?
- Forgery: Choose a random $\alpha \leftarrow \mathbb{Z}_N^*$. Adversary knows the verification key vk = (N, e). It can compute:

• Notice that
$$(\beta, \alpha)$$
 is a valid (message, signature) pair!

• <u>Read</u>: how to sign from any trapdoor permutation.

Attacks on the RSA Function

- To speed up encryption, choose a short e: e.g., e = 3.
- This is often a big problem!
- A Simple Example (Coppersmith, Hastad, and Boneh):
 - Suppose Alice broadcasts m to 3 people with keys $(N_1, 3), (N_2, 3), (N_3, 3).$
 - $-c_1 = m^3 \mod N_1, c_2 = m^3 \mod N_2$ and $c_3 = m^3 \mod N_3$
 - Suppose that N_1, N_2, N_3 are co-primes (no common factors, otherwise easy to get m).
 - You can compute (by Chinese Remainder Theorem):

$$C' = m^3 \mod N_1 N_2 N_3.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少々で

- m is less than $N_1, N_2, N_3 \Rightarrow m^3 < N_1 N_2 N_3$.
- Therefore, $m = \sqrt[3]{C'}$ on integers (modulus plays no role)!

Attacks on the RSA Function

- How often can you apply this attack?
- When same e is used by at least $k \ge e$ parties
- This takes modulus out of the equation and you can solve over integers (easy)
- If e is large enough, attack is not practical.
- Current wisdom: low exponent RSA when used carefully with appropriate padding is still secure.
- You can use e of special form, e.g., $e = 2^{16} + 1$ to speed up exponentiation and use appropriate padding.
- (M. Weiner): If $d < \frac{1}{3}N^{0.25}$, easy to get d from (N, e).
- (Boneh-Durfee): If $d < N^{0.292}$, east to get d from (N, e).

・ロ・・ (日・・ 日・・ 日・・ つくの)

LWE-based Public Key Encryption

- Let $q \ge 2$ be a modulus, n the security parameter (a.k.a dimension), and $\alpha \ll 1$ an error parameter such that $\alpha q > \sqrt{n}$.
- <u>LWE Instance</u>:
 - choose a random (column) vector $\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n$ (secret)
 - choose a random matrix of coefficients $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{m \times n}$
 - choose a Gaussian error vector $\mathbf{e} \stackrel{\chi}{\leftarrow} \mathbb{Z}^m$ (column) where χ is a Gaussian distribution over \mathbb{Z} with parameter αq
 - Let

$$\mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e}$$

- The LWE instance is: (\mathbf{A}, \mathbf{b})
- Decisional LWE Assumption: hard to distinguish an LWE pair from a random instance.

$$(\mathbf{A}, \mathbf{b}) \approx_c (\mathbf{A}, \mathbf{u})$$

・ロト ・同ト ・ヨト ・ヨト ・ヨー つへの

where $\mathbf{u} \in \mathbb{Z}_q^m$ is a random column vector.

LWE-based Public Key Encryption

- Regev's scheme based on LWE.
- Key Generation:
 - choose $\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n, \mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{m \times n}, \mathbf{e} \stackrel{\chi}{\leftarrow} \mathbb{Z}^m, \mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e}$ (as before). - the keys are:

$$pk = (\mathbf{A}, \mathbf{b}), \quad sk = \mathbf{s}$$

• Encryption (for a bit): pick a row-vector of bits $\mathbf{x} \stackrel{\$}{\leftarrow} \{0,1\}^m$, output:

$$(\mathbf{c} = \mathbf{x}\mathbf{A}, c' = \mathbf{x}\mathbf{b} + \mathsf{bit} \cdot \frac{q}{2})$$

• Decryption:

۲

$$c' - \mathbf{c} \cdot \mathbf{s} = (\mathbf{xb} + \mathsf{bit} \cdot \frac{q}{2}) - \mathbf{xAs} = (\mathbf{xb} + \mathsf{bit} \cdot \frac{q}{2}) - \mathbf{xb} + \mathbf{xe} \approx \mathsf{bit} \cdot \frac{q}{2}.$$

Parameters: $n^2 \leq q \leq 2n^2, m = 1.1n \log q, \alpha = 1/(\sqrt{n} \log^2 n).$

・ロト ・同ト ・ヨト ・ヨト ・ヨー つくの

LWE-based Public Key Encryption

- Correctness: if not for the error term, the value would be either 0 or q/2.
- The error is adding at most m independent normally distributed variables whose standard deviation is $\sqrt{m}\alpha q < q/\log n$.
- The probability that it goes over q/4 is negligible.
- Security: (LWE + LHL)
- Game 0: Real pk = LWE instance = (\mathbf{A}, \mathbf{b})
- Game 1: change pk to a random instance = (\mathbf{A}, \mathbf{u})
- Game 2: change bit from 0 to 1 (one-time pad, due to LHL)
- Game 3: change pk back to LWE instance

・ロト ・回ト ・ヨト ・ヨー うへの