Lecture 16: Public Key Encryption:II

Instructor: Omkant Pandey

Spring 2017 (CSE 594)

Last time

- PKE from ANY trapdoor permutation
- RSA-based trapdoor permutation

Today

- ElGamal Public-Key Encryption
- Some Comments about Textbook RSA
- Some attacks on RSA
- LWE based Public-Key Encryption
- Scribe notes volunteeer?

(Weak) Indistinguishability Security for PKE

Definition (Secure Public-Key Encryption)

A public-key encryption scheme $\{$ Gen, Enc, Dec $\}$ is said to be secure if for all non-uniform PPT D there exists a negligible function μ such that for all $n \in \mathbb{N}$, for all pair of messages $m_{0}, m_{1} \in \mathcal{M}$ such that $\left|m_{0}\right|=\left|m_{1}\right|, D$ distinguishes between the following distributions with at most $\nu(n)$ advantage:

- $\left\{(p k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right):\left(p k, \operatorname{Enc}\left(p k, m_{0}\right)\right)\right\}$
- $\left\{(p k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right):\left(p k, \operatorname{Enc}\left(p k, m_{1}\right)\right)\right\}$
I.e., the distributions above are computationally indistinguishable.

Recall: DDH Problem

- Recall the DDH Problem: for a large prime p, and a generator g for the group \mathbb{Z}_{p}^{*} :

$$
\begin{aligned}
&\left\{x \leftarrow \mathbb{Z}_{p}^{*}, y \leftarrow \mathbb{Z}_{p}^{*}:\left(g^{x}, g^{y}, g^{x y}\right)\right\} \\
& \approx_{c}\left\{x \leftarrow \mathbb{Z}_{p}^{*}, y \leftarrow \mathbb{Z}_{p}^{*}, z \leftarrow \mathbb{Z}_{p}^{*}:\left(g^{x}, g^{y}, g^{z}\right)\right\}
\end{aligned}
$$

- Recall: $\left|\mathbb{Z}_{p}^{*}\right|=p-1$ is not prime! (This makes the problem easier in some special cases)
- Recall: we work with a prime order subgroup of \mathbb{Z}_{p}^{*} by picking a safe prime $p=2 q+1$ and $g=x^{2}$ for a random $x \in \mathbb{Z}_{p}^{*}$.
- $G_{q}=$ group generated by $g=\left\{g^{0}, g^{1}, \ldots, g^{q-1}\right\} .\left|G_{q}\right|=q$.
- There are other ways as well to obtain prime order groups G where DDH is conjectured to be hard.

Recall: DDH Problem

- DDH Assumption: Let G be a group of prime order q and $g \in G$ be a generator of G

$$
\begin{aligned}
\left\{x \leftarrow \mathbb{Z}_{q}, y\right. & \left.\leftarrow \mathbb{Z}_{q}:\left(g^{x}, g^{y}, g^{x y}\right)\right\} \\
& \approx_{c}\left\{x \leftarrow \mathbb{Z}_{q}, y \leftarrow \mathbb{Z}_{q}, z \leftarrow \mathbb{Z}_{q}:\left(g^{x}, g^{y}, g^{z}\right)\right\}
\end{aligned}
$$

ElGamal Public-Key Encryption

- ElGamal Scheme: Let G be a prime order group where DDH Assumption holds. The description of G and its order q are publicly known.
- Messages are group elements and the message space is $\mathcal{M}=G$.
- Gen $\left(1^{n}\right)$: sample $g \leftarrow G, x \leftarrow \mathbb{Z}_{q}$ and set $h=g^{x} \in G$. Output ($p k, s k$) where:

$$
p k=(g, h) \quad s k=x
$$

- $\operatorname{Enc}(p k, m)$ for $m \in G$: choose a random $r \leftarrow \mathbb{Z}_{q}$ and output:

$$
\left(g^{r}, m \cdot h^{r}\right)
$$

- $\operatorname{Dec}(s k, c)$ where $c=\left(c_{1}, c_{2}\right)$: output

$$
m=\frac{c_{2}}{c_{1, r}^{x}}=c_{2} \times\left(\text { Inverse of } c_{1}^{x}\right)
$$

- Correctness: $m=\frac{c_{2}}{c_{1}^{x}}=\frac{m^{c} \cdot h^{r}}{g^{r x}}=\frac{m \cdot\left(g^{x}\right)^{r}}{g^{r x}}=m$.

Security of ElGamal Scheme

- Proof based on DDH Assumption: We now prove that ElGamal scheme is secure assuming that the DDH assumption holds.
- We have to show that for all $m_{0}, m_{1} \in G$ these two distributions are indistinguishable:
$-\left\{(p k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right):\left(p k, \operatorname{Enc}\left(p k, m_{0}\right)\right)\right\}$
$-\left\{(p k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right):\left(p k, \operatorname{Enc}\left(p k, m_{1}\right)\right)\right\}$
- Let D be a PPT algorithm.
- Start with the first distribution, and slowly go to the second distribution.

Security of ElGamal Scheme

- Game-0: $\left\{(p k, s k) \leftarrow \operatorname{Gen}\left(1^{n}\right):\left(p k, \operatorname{Enc}\left(p k, m_{0}\right)\right)\right\}$

$$
=\left\{g, h, g^{r}, m_{0} \cdot h^{r}\right\}=\left\{g, g^{x}, g^{r}, m_{0} \cdot g^{x r}\right\}
$$

- Game-1: Use g^{z} for a random z instead of $g^{x r}$. We get:

$$
=\left\{g, g^{x}, g^{r}, m_{0} \cdot g^{z}\right\}
$$

- Claim: Game-0 and Game-1 are indistinguishable.
- Proof: Suppose that D can distinguish Game-0 and Game-1.
- We construct D^{\prime} which can break DDH Assumption
- D^{\prime} gets as input $\left(g, g^{x}, g^{y}, g^{\alpha}\right)$ where $\alpha=x y$ or $\alpha=z$.
- D^{\prime} sends $\left(g, g^{x}, g^{y}, m_{0} \cdot g^{\alpha}\right)$ to D,
- D^{\prime} outputs whatever D outputs.
- If $\alpha=x y, D$ is in Game-0. If $\alpha=z, D$ is in Game-1.
- If D tells Game-0, Game-1 apart, D^{\prime} tells DDH tuples apart!

Textbook RSA-Encryption

- Public-Key Encryption:
$-\operatorname{Gen}\left(1^{n}\right):$ Sample $p, q \leftarrow \Pi_{n}$ and set $N \leftarrow p q$.
Sample $e \leftarrow \mathbb{Z}_{\phi(N)}^{*}$ and compute d s.t. $e d=1 \bmod \phi(N)$.
Output $p k=(N, e)$ and $s k=(N, d)$.
- Message space $\mathcal{M}=\mathbb{Z}_{N}^{*}$
- $\operatorname{Enc}(p k, m)$ for $p k=(N, e)$ outputs $f_{N, e}(m)=m^{e} \bmod N$.
- $\operatorname{Dec}(s k, c)$ for $s k=(N, d)$ outputs $c^{d} \bmod N$.
- The correct way to encrypt: construction from previous class.
- More efficient way to encrypt: RSA-OAEP+

Textbook RSA-Signature

- RSA can be used as a signature as well! Simply use e to verify and d to sign instead of decrypt!
- Signature scheme:
$-\operatorname{Gen}\left(1^{n}\right):$ Sample $p, q \leftarrow \Pi_{n}$ and set $N \leftarrow p q$.
Sample $e \leftarrow \mathbb{Z}_{\phi(N)}^{*}$ and compute d s.t. $e d=1 \bmod \phi(N)$.
Output $v k=(N, e)$ and $s k=(N, d)$.
- Message space $\mathcal{M}=\mathbb{Z}_{N}^{*}$
$-\operatorname{Sign}(s k, m)$ for $s k=(N, d)$ outputs $\sigma=m^{d} \bmod N$.
- Verify $(v k, m, \sigma)$ for $v k=(N, e)$ outputs 1 iff $\sigma^{e}=m \bmod N$.

Remarks on Textbook RSA-Signature

- Signature function $\operatorname{Sign}(s k, m)$ for $s k=(N, d)$:

$$
f_{N, d}(m)=m^{d} \quad \bmod N .
$$

Verification checks $m=\sigma^{e} \bmod N$.

- Signature is deterministic but that is not a problem!
- Can you forge a signature?
- Not if someone gives you a random challenge (RSA Assumption).
- However: what if you select your own messages?
- Forgery: Choose a random $\alpha \leftarrow \mathbb{Z}_{N}^{*}$.

Adversary knows the verification key $v k=(N, e)$. It can compute:

- Notice that (β, α) is a valid (message, signature) pair!
- Read: how to sign from any trapdoor permutation.

Attacks on the RSA Function

- To speed up encryption, choose a short e : e.g., $e=3$.
- This is often a big problem!
- A Simple Example (Coppersmith, Hastad, and Boneh):
- Suppose Alice broadcasts m to 3 people with keys $\left(N_{1}, 3\right),\left(N_{2}, 3\right),\left(N_{3}, 3\right)$.
$-c_{1}=m^{3} \bmod N_{1}, c_{2}=m^{3} \bmod N_{2}$ and $c_{3}=m^{3} \bmod N_{3}$
- Suppose that N_{1}, N_{2}, N_{3} are co-primes (no common factors, otherwise easy to get m).
- You can compute (by Chinese Remainder Theorem):

$$
C^{\prime}=m^{3} \quad \bmod N_{1} N_{2} N_{3} .
$$

- m is less than $N_{1}, N_{2}, N_{3} \Rightarrow m^{3}<N_{1} N_{2} N_{3}$.
- Therefore, $m=\sqrt[3]{C^{\prime}}$ on integers (modulus plays no role)!

Attacks on the RSA Function

- How often can you apply this attack?
- When same e is used by at least $k \geqslant e$ parties
- This takes modulus out of the equation and you can solve over integers (easy)
- If e is large enough, attack is not practical.
- Current wisdom: low exponent RSA when used carefully with appropriate padding is still secure.
- You can use e of special form, e.g., $e=2^{16}+1$ to speed up exponentiation and use appropriate padding.
- (M. Weiner): If $d<\frac{1}{3} N^{0.25}$, easy to get d from (N, e).
- (Boneh-Durfee): If $d<N^{0.292}$, east to get d from (N, e).

LWE-based Public Key Encryption

- Let $q \geqslant 2$ be a modulus, n the security parameter (a.k.a dimension), and $\alpha \ll 1$ an erroer parameter such that $\alpha q>\sqrt{n}$.
- LWE Instance:
- choose a random (column) vector $\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{n}$ (secret)
- choose a random matrix of coefficients $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{m \times n}$
- choose a Gaussian error vector $\mathbf{e} \stackrel{\chi}{\leftarrow} \mathbb{Z}^{m}$ (column) where χ is a Gaussian distribution over \mathbb{Z} with parameter αq
- Let

$$
\mathbf{b}=\mathbf{A} \cdot \mathbf{s}+\mathbf{e}
$$

- The LWE instance is: (A, b)
- Decisional LWE Assumption: hard to distinguish an LWE pair from a random instance.

$$
(\mathbf{A}, \mathbf{b}) \approx_{c}(\mathbf{A}, \mathbf{u})
$$

where $\mathbf{u} \in \mathbb{Z}_{q}^{m}$ is a random column vector.

LWE-based Public Key Encryption

- Regev's scheme based on LWE.
- Key Generation:
- choose $\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{n}, \mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{m \times n}, \mathbf{e} \stackrel{\chi}{\leftarrow} \mathbb{Z}^{m}, \mathbf{b}=\mathbf{A} \cdot \mathbf{s}+\mathbf{e}$ (as before).
- the keys are:

$$
p k=(\mathbf{A}, \mathbf{b}), \quad s k=\mathbf{s}
$$

- Encryption (for a bit): pick a row-vector of bits $\mathbf{x} \stackrel{\$}{\leftarrow}\{0,1\}^{m}$, output:

$$
\left(\mathbf{c}=\mathrm{x} \mathbf{A}, c^{\prime}=\mathrm{xb}+\mathrm{bit} \cdot \frac{q}{2}\right)
$$

- Decryption:

$$
c^{\prime}-\mathbf{c} \cdot \mathbf{s}=\left(\mathbf{x b}+\mathrm{bit} \cdot \frac{q}{2}\right)-\mathbf{x A} \mathbf{s}=\left(\mathrm{xb}+\mathrm{bit} \cdot \frac{q}{2}\right)-\mathrm{xb}+\mathrm{xe} \approx \mathrm{bit} \cdot \frac{q}{2} .
$$

- Parameters: $n^{2} \leqslant q \leqslant 2 n^{2}, m=1.1 n \log q, \alpha=1 /\left(\sqrt{n} \log ^{2} n\right)$.

LWE-based Public Key Encryption

- Correctness: if not for the error term, the value would be either 0 or $q / 2$.
- The error is adding at most m independent normally distributed variables whose standard deviation is $\sqrt{m} \alpha q<q / \log n$.
- The probability that it goes over $q / 4$ is negligible.
- Security: (LWE + LHL)
- Game 0: Real $p k=$ LWE instance $=(\mathbf{A}, \mathbf{b})$
- Game 1: change $p k$ to a random instance $=(\mathbf{A}, \mathbf{u})$
- Game 2: change bit from 0 to 1 (one-time pad, due to LHL)
- Game 3: change $p k$ back to LWE instance

