Lecture 14: Hardness Assumptions

Instructor: Omkant Pandey

Spring 2017 (CSE 594)

Today

- Some background
- Some hardness assumptions
- Discrete logarithm
- RSA
- LWE
- Scribe notes volunteers?

Modular arithmetic

- \mathbb{N} and \mathbb{R} set of natural and real numbers respectively.
- $\mathbb{Z}=$ set of integers, $\mathbb{Z}^{+}, \mathbb{Z}^{-}$for + ve and -ve integers.
- For $n \in \mathbb{N}, \mathbb{Z}_{N}$ denotes set of integers modulo N; i.e.:

$$
\mathbb{Z}_{N}:=\{0,1,2, \ldots, N-1\}
$$

- We can perform "arithmetic in \mathbb{Z}_{N} ":
* if we divide integer a by N, the remainder (say r) is in \mathbb{Z}_{N}; we write $r=a \bmod N$.
* Addition becomes $(a+b) \bmod N=(a \bmod N)+(b \bmod N) \bmod N$
* Multiply becomes $(a \times b) \bmod N=(a \bmod N) \times(b \bmod N) \bmod N$
- We say that " a is congruent to b modulo N " if a, b have the same remainder and write:

$$
a \equiv b \quad \bmod N
$$

- $a \equiv 0 \bmod N$ if and only $N \mid a$ (" N divides a ").

Greatest Common Divisor (GCD)

- If a, b are two integers, $\operatorname{gcd}(a, b)$ denotes their greatest common divisor.
- a, b are relatively prime if they are non-zero and have no common factors, i.e., $\operatorname{gcd}(a, b)=1$
- gcd is easy to compute for any two integers a, b.
- Extended Euclidean: $\forall a, b \in \mathbb{Z}$ there exist integers $x, y \in \mathbb{Z}$ (which are also easy to compute) s.t. $a x+b y=\operatorname{gcd}(a, b)$.
- If a, b are relatively prime then $a x+b y=1 . \Longrightarrow a x \equiv 1 \bmod b$.
- $\mathbb{Z}_{N}^{*}=$ set of integers $\bmod N$ that are relatively prime to N :

$$
\mathbb{Z}_{N}^{*}=\{1 \leqslant x \leqslant N-1: \operatorname{gcd}(x, N)=1\}
$$

$\Longrightarrow \forall a \in \mathbb{Z}_{N}^{*} \exists x: a x=1 \bmod N$.

- Such an x is called the inverse of a.

Integers modulo a prime

- Of special interest is the case when N is a prime number, say p.
- This defines:

$$
\begin{aligned}
\mathbb{Z}_{p} & =\{0,1,2, \ldots, p-1\} \\
\mathbb{Z}_{p}^{*} & =\{1 \leqslant x \leqslant p-1: \operatorname{gcd}(x, p)=1\} \\
& =\{1,2, \ldots, p-1\} \\
\left|\mathbb{Z}_{p}^{*}\right| & =p-1
\end{aligned}
$$

Fermat's Little Theorem

If p is a prime, then for any $a \in \mathbb{Z}_{p}^{*}$:

$$
a^{p-1} \quad \bmod p=1
$$

Euler's generalization

- Recall: $\mathbb{Z}_{N}^{*}=$ integers $\bmod N$ that are relatively prime to N

$$
\mathbb{Z}_{N}^{*}=\{1 \leqslant x \leqslant N-1: \operatorname{gcd}(x, N)=1\} .
$$

- Euler's theorem: for any $N \in \mathbb{N}$ and $a \in \mathbb{Z}_{N}^{*}$:

$$
a^{\phi(N)} \quad \bmod N=1 .
$$

where $\phi(N)$ is Euler's totient function: $\phi(N)=\left|\mathbb{Z}_{N}^{*}\right|$.

- Fundamental Theorem of Arithmetic: every integer N can be written as

$$
N=\prod_{i=1}^{k} p_{i}^{e_{i}}
$$

for primes $p_{1}<p_{2}<\ldots<p_{k}$ (called factors) and positive integers $e_{i}>0$. This factorization is unique (with empty product taken to be 1).

$$
\phi(N)=N \cdot \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right)
$$

- If $N=p q$ for distinct primes p, q, then $\phi(N)=(p-1) \cdot(q-1)$.

Groups

- Groups: a set G with a "group operation" $\vdots G \times G \rightarrow G$ satisfying:
- Closure: $\forall a, b \in G, a \odot b \in G$,
- Identity: $\exists e \in G$ (idenitity) s.t. $\forall a \in G: a \odot e=e \odot a=a$.
- Associativity: $\forall a, b, c \in G:(a \odot b) \odot c=a \odot(b \odot c)$.
- Inverse: $\forall a \in G \exists b \in G$ s.t. $a \odot b=b \odot a=e$ (identity).
- (Abelian group): a group with commutative property $-\forall a, b \in G$: $a \odot b=b \odot a$.
- Examples: $\left(\mathbb{Z}_{N},+\right),\left(\mathbb{Z}_{N}^{*}, \times\right)$ are "additive" and "multiplicative" groups for all N.
- (Corollary of Lagrange's Theorem): $\quad \mathbf{x}^{|\mathbf{G}|}=\mathbf{e}$.
- (Generator): $g \in G$ is a generator of G if the set $\left\{g, g^{2}, \ldots\right\}=G$. The set of of all generators of G will be denoted by Gen_{G}.

Discrete Logarithm Problem

- Roughly speaking: given (p, g, y) such that p is a large prime, $g, y \in \mathbb{Z}_{p}^{*}$ find x such that $y=g^{x} \bmod p$.
- Not hard for many cases, e.g., if $g=1$, or p is a "special prime", e.g., if $p-1$ has small factors.
- However, if g is a generator the problem is believed to be hard.
- Normally we want to work with a group such that $|G|=$ number of elements in G is prime. ($|G|$ is also called the order of the group)
- \mathbb{Z}_{p}^{*} has $p-1$ elements which is not prime.
- However, suppose that $p=2 q+1$ and q is also a prime. Such primes are called "safe primes"
- Now consider a subset $G_{q}=\left\{x^{2}: x \in \mathbb{Z}_{p}^{*}\right\}$. It is easy to prove that G_{q} is a group of prime order q.

Discrete Logarithm Problem (continued)

- This means that you can cycle through all q elements of G by applying the group operation to the generator over and over again.
- There are other ways to construct prime order groups, e.g., group formed by points on an appropriate elliptic curve.
- Hard to compute discrete log in prime order groups...

Assumption (Discrete Log Assumption)

If G_{q} is a group of prime order q then for every non-uniform PPT \mathcal{A} there exists a negligible function μ s.t.:

$$
\operatorname{Pr}\left[q \leftarrow \Pi_{n} ; g \leftarrow \operatorname{Gen}_{G_{q}} ; x \leftarrow \mathbb{Z}_{q}: \mathcal{A}\left(1^{n}, g^{x}\right)=x\right] \leqslant \mu(n)
$$

- Note: not true for all groups, but there are groups where it is believed to be hard.

Diffie-Hellman Problems

- The adversary gets $X=g^{x} \bmod p$, and $Y=g^{y} \bmod p$ and (p, g).
- The Computational Diffie-Hellman (CDH) problem is as follows:

Given $\left(g, q, g^{x}, g^{y}\right)$, compute $g^{x y} \in G_{q}$ where x, y are random and all computations are in G_{q}.

- When working with a safe $p=2 q+1, g$ can be generator for order q subgroup, and computations can be modulo p.
- CDH Assumption: \forall non-uniform PPT A, \exists negligible μ s.t. $\forall n$: A solves the CDH problem with probability at most $\mu(n)$.

Diffie-Hellman Problems

- In fact, $g^{x y}$ "looks indistinguishable" from a random group element
- Roughly, the Decisional Diffie-Hellman problem is:

Distinguish $\left(g, p, g^{x}, g^{y}, g^{x y}\right)$ from $\left(g, p, g^{x}, g^{y}, g^{z}\right)$ where (x, y, z) are random and all computations are in G_{q}.

- DDH Assumption: \forall non-uniform PPT "distinguishers" D, \exists negligible μ s.t. $\forall n$: D solves the DDH problem with probability at $\operatorname{most} \frac{1}{2}+\mu(n)$.

RSA Function and RSA Assumption

- $\mathrm{RSA}=$ Rivest, Shamir, Adleman
- Let p, q be large random primes of roughly the same size.
- Let $N=p q . N$ is called a RSA modulus.
- Recall that $\phi(N)=(p-1)(q-1)$
- Recall that: $\phi(N)=\left|\mathbb{Z}_{N}^{*}\right|$ where:

$$
\mathbb{Z}_{N}^{*}=\left\{x \in \mathbb{Z}_{N}: \operatorname{gcd}(x, N)=1\right\}
$$

RSA Function and RSA Assumption

- Let e be an odd number between 1 and $\phi(N)$ such that

$$
\operatorname{gcd}(e, \phi(N))=1
$$

Therefore, $e \in \mathbb{Z}_{\phi(N)}^{*}$.

- Let d be such that:

$$
e \cdot d=1 \quad \bmod \phi(N)
$$

- If $\phi(N)$ is known, you can compute d.
- If $\phi(N)$ is not known, d seems hard to compute!
- Therefore, $\phi(N)$ must be kept secret.

RSA Function and RSA Assumption

- Let N, e, d be as before so that $e \cdot d=1 \bmod \phi(N)$.
- d can be used to compute e-th root of numbers modulo N.

Suppose that $y=x^{e} \bmod N$, then:

$$
\begin{aligned}
y^{d} \bmod N & =x^{e d} \bmod N \\
& =x^{e d} \bmod \phi(N) \bmod N \\
& =x \bmod N
\end{aligned}
$$

- Without d, it seems hard to compute e-th roots $\bmod N$. (RSA Assumption)
- We can publish (N, e), and it would be hard to compute e-th roots!
- Furthermore, we can use d as a secret trapdoor!

RSA Function and RSA Assumption

Definition (RSA Assumption)

For every non-uniform PPT A there exists a negligible function μ such that for all $n \in \mathbb{N}$:

$$
\operatorname{Pr}\left[\begin{array}{l}
p, q \leftarrow \Pi_{n} ; N \leftarrow p q ; \\
e \leftarrow \mathbb{Z}_{\phi(N ;}^{*} ; y \leftarrow \mathbb{Z}_{N}^{*} ; \quad: \quad x^{e}=y \quad \bmod N \\
x \leftarrow A(N, e, y)
\end{array}\right] \leqslant \mu(n)
$$

- RSA Function: for N, e as above, the following is called the RSA function

$$
f_{N, e}(x)=x^{e} \quad \bmod N
$$

- The RSA Function actually yields a collection of trapdoor one-way permutations. (Later class)

Learning With Errors (LWE)

- Let $s=\left(s_{1}, \ldots, s_{n}\right) \in Z_{q}^{n}$ some modulus q and a parameter n.
- Suppose you are given many equations for known " a " values:

$$
\begin{aligned}
& a_{1} \cdot s_{1}+a_{2} \cdot s_{2}+\ldots+a_{n} \cdot s_{n}=b_{1}(\bmod q) \\
& a_{1}^{\prime} \cdot s_{1}+a_{2}^{\prime} \cdot s_{2}+\ldots+a_{n}^{\prime} \cdot s_{n}=b_{2}(\bmod q) \\
& \text { etc. }
\end{aligned}
$$

- You can solve this by Gaussian elimination.
- However, if the equations contain errors, this may not work!

Learning With Errors (LWE)

- In particular, if you add independent error to each equation distributed according to the Normal Distribution with standard deviation $\alpha q>\sqrt{n}$, the problem is believed to be hard.

$$
\begin{aligned}
& a_{1} \cdot s_{1}+a_{2} \cdot s_{2}+\ldots+a_{n} \cdot s_{n} \approx b_{1}(\bmod q) \\
& a_{1}^{\prime} \cdot s_{1}+a_{2}^{\prime} \cdot s_{2}+\ldots+a_{n}^{\prime} \cdot s_{n} \approx b_{2}(\bmod q) \\
& \text { etc }
\end{aligned}
$$

