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Today

Some background
Some hardness assumptions

– Discrete logarithm
– RSA
– LWE

Scribe notes volunteers?
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Modular arithmetic

N and R set of natural and real numbers respectively.

Z = set of integers, Z+,Z− for +ve and -ve integers.

For n ∈ N, ZN denotes set of integers modulo N ; i.e.:

ZN := {0, 1, 2, . . . , N − 1}

We can perform “arithmetic in ZN ”:

* if we divide integer a by N , the remainder (say r) is in ZN ; we write
r = a mod N .

* Addition becomes (a+ b) mod N = (a mod N) + (b mod N) mod N

* Multiply becomes (a× b) mod N = (a mod N)× (b mod N) mod N

We say that “a is congruent to b modulo N ” if a, b have the same
remainder and write:

a ≡ b mod N

a ≡ 0 mod N if and only N |a (“N divides a”).
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Greatest Common Divisor (GCD)

If a, b are two integers, gcd(a, b) denotes their greatest common
divisor.
a, b are relatively prime if they are non-zero and have no
common factors, i.e., gcd(a, b) = 1

gcd is easy to compute for any two integers a, b.
Extended Euclidean: ∀a, b ∈ Z there exist integers x, y ∈ Z (which
are also easy to compute) s.t. ax+ by = gcd(a, b).
If a, b are relatively prime then ax+ by = 1. =⇒ ax ≡ 1 mod b .
Z∗N = set of integers mod N that are relatively prime to N :

Z∗N = {1 6 x 6 N − 1 : gcd(x,N) = 1}.

=⇒ ∀a ∈ Z∗N ∃x : ax = 1 mod N .
Such an x is called the inverse of a.
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Integers modulo a prime

Of special interest is the case when N is a prime number, say p.
This defines:

Zp = {0, 1, 2, . . . , p− 1}
Z∗p = {1 6 x 6 p− 1 : gcd(x, p) = 1}

= {1, 2, . . . , p− 1}
|Z∗p| = p− 1.
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Fermat’s Little Theorem

If p is a prime, then for any a ∈ Z∗p:

ap−1 mod p = 1.
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Euler’s generalization

Recall: Z∗
N = integers mod N that are relatively prime to N

Z∗
N = {1 6 x 6 N − 1 : gcd(x,N) = 1}.

Euler’s theorem: for any N ∈ N and a ∈ Z∗
N :

aφ(N) mod N = 1.

where φ(N) is Euler’s totient function: φ(N) = |Z∗
N |.

Fundamental Theorem of Arithmetic: every integer N can be written as

N =

k∏
i=1

peii

for primes p1 < p2 < . . . < pk (called factors) and positive integers
ei > 0. This factorization is unique (with empty product taken to be 1).

φ(N) = N ·
k∏
i=1

(
1− 1

pi

)
If N = pq for distinct primes p, q, then φ(N) = (p− 1) · (q − 1).
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Groups

Groups: a set G with a “group operation” :̇G×G→ G satisfying:
Closure: ∀a, b ∈ G, a� b ∈ G,
Identity: ∃e ∈ G (idenitity) s.t. ∀a ∈ G: a� e = e� a = a.
Associativity: ∀a, b, c ∈ G: (a� b)� c = a� (b� c).
Inverse: ∀a ∈ G ∃b ∈ G s.t. a� b = b� a = e (identity).

(Abelian group): a group with commutative property — ∀a, b ∈ G:
a� b = b� a.
Examples: (ZN ,+), (Z∗N ,×) are “additive” and “multiplicative”
groups for all N .

(Corollary of Lagrange’s Theorem): x|G| = e.

(Generator): g ∈ G is a generator of G if the set {g, g2, . . .} = G.
The set of of all generators of G will be denoted by GenG.
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Discrete Logarithm Problem

Roughly speaking: given (p, g, y) such that p is a large prime,
g, y ∈ Z∗p find x such that y = gx mod p.

Not hard for many cases, e.g., if g = 1, or p is a “special prime”,
e.g., if p− 1 has small factors.

However, if g is a generator the problem is believed to be hard.

Normally we want to work with a group such that |G| = number of
elements in G is prime. (|G| is also called the order of the group)

Z∗p has p− 1 elements which is not prime.

However, suppose that p = 2q + 1 and q is also a prime. Such
primes are called “safe primes”

Now consider a subset Gq = {x2 : x ∈ Z∗p}. It is easy to prove that
Gq is a group of prime order q.
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Discrete Logarithm Problem (continued)

This means that you can cycle through all q elements of G by
applying the group operation to the generator over and over again.

There are other ways to construct prime order groups, e.g., group
formed by points on an appropriate elliptic curve.

Hard to compute discrete log in prime order groups...

Assumption (Discrete Log Assumption)
If Gq is a group of prime order q then for every non-uniform PPT A
there exists a negligible function µ s.t.:

Pr
[
q ← Πn; g ← GenGq ;x← Zq : A(1n, gx) = x

]
6 µ(n).

Note: not true for all groups, but there are groups where it is
believed to be hard.
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Diffie-Hellman Problems

The adversary gets X = gx mod p, and Y = gy mod p and (p, g).

The Computational Diffie-Hellman (CDH) problem is as follows:

Given (g, q, gx, gy), compute gxy ∈ Gq where x, y are random and
all computations are in Gq.

When working with a safe p = 2q + 1, g can be generator for order
q subgroup, and computations can be modulo p.

CDH Assumption: ∀ non-uniform PPT A, ∃ negligible µ s.t. ∀n: A
solves the CDH problem with probability at most µ(n).
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Diffie-Hellman Problems

In fact, gxy “looks indistinguishable” from a random group element

Roughly, the Decisional Diffie-Hellman problem is:

Distinguish (g, p, gx, gy, gxy) from (g, p, gx, gy, gz) where (x, y, z)
are random and all computations are in Gq.

DDH Assumption: ∀ non-uniform PPT “distinguishers” D, ∃
negligible µ s.t. ∀n: D solves the DDH problem with probability at
most 1

2 + µ(n).

Instructor: Omkant Pandey Lecture 14: Hardness Assumptions Spring 2017 (CSE 594) 12 / 18



RSA Function and RSA Assumption

RSA = Rivest, Shamir, Adleman

Let p, q be large random primes of roughly the same size.

Let N = pq. N is called a RSA modulus.

Recall that φ(N) = (p− 1)(q − 1)

Recall that: φ(N) = |Z∗N | where:

Z∗N =
{
x ∈ ZN : gcd(x,N) = 1

}

Instructor: Omkant Pandey Lecture 14: Hardness Assumptions Spring 2017 (CSE 594) 13 / 18



RSA Function and RSA Assumption

Let e be an odd number between 1 and φ(N) such that

gcd(e, φ(N)) = 1

Therefore, e ∈ Z∗φ(N).

Let d be such that:

e · d = 1 mod φ(N).

If φ(N) is known, you can compute d.

If φ(N) is not known, d seems hard to compute!

Therefore, φ(N) must be kept secret.
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RSA Function and RSA Assumption

Let N, e, d be as before so that e · d = 1 mod φ(N).

d can be used to compute e-th root of numbers modulo N .

Suppose that y = xe mod N , then:

yd mod N = xed mod N

= xed mod φ(N) mod N
= x mod N.

Without d, it seems hard to compute e-th roots mod N .
(RSA Assumption)

We can publish (N, e), and it would be hard to compute e-th roots!

Furthermore, we can use d as a secret trapdoor!
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RSA Function and RSA Assumption

Definition (RSA Assumption)
For every non-uniform PPT A there exists a negligible function µ such
that for all n ∈ N:

Pr

 p, q ← Πn;N ← pq;
e← Z∗φ(N); y ← Z∗N ;

x← A(N, e, y)

: xe = y mod N

 6 µ(n)

RSA Function: for N, e as above, the following is called the RSA
function

fN,e(x) = xe mod N

The RSA Function actually yields a collection of trapdoor
one-way permutations. (Later class)
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Learning With Errors (LWE)

Let s = (s1, . . . , sn) ∈ Znq some modulus q and a parameter n.
Suppose you are given many equations for known “a” values:

a1 · s1 + a2 · s2 + . . .+ an · sn = b1( mod q)

a′1 · s1 + a′2 · s2 + . . .+ a′n · sn = b2( mod q)

etc.

You can solve this by Gaussian elimination.
However, if the equations contain errors, this may not work!
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Learning With Errors (LWE)

In particular, if you add independent error to each equation
distributed according to the Normal Distribution with standard
deviation αq >

√
n, the problem is believed to be hard.

a1 · s1 + a2 · s2 + . . .+ an · sn ≈ b1( mod q)

a′1 · s1 + a′2 · s2 + . . .+ a′n · sn ≈ b2( mod q)

etc
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