Lecture 11: Message Authentication

Instructor: Omkant Pandey

Spring 2017 (CSE 594)

Instructor: Omkant Pandey Lecture 11: Message Authentication Spring 2017 (CSE 594) 1 / 10

(김 글 대) 김 글 대 그 글

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- PRG, PRF, and Symmetric Encryption all from OWFs.
- These are primitives about "hiding" some information.
- What about "authenticating" a message or a source?
- Ideas?
- Can we use Symmetric Encryption?
- Scribe notes volunteers?

・ロト ・回ト ・ヨト ・ヨト 三日

Brainstorming

- What should a message authentication code (MAC) do?
- Should guarantee that only the messages from the intended source are accepted.
 - If MAC comes from the authorized source, it should verify.
 (correctness)
 - Only authorized source can generate the MAC. (unforgeability)
- What is the adversary allowed to do?
 - Can ask to see many MACs on messages of his choice, i.e., $(m_1, \sigma_1), (m_2, \sigma_2), \ldots$
 - Want: cannot generate the MAC for **any new** message

Definition (Message Authentication Code)

A message authentication code (MAC) consists of $\{\mathcal{M}, \mathcal{K}, \mathsf{KG}, \mathsf{Tag}, \mathsf{Verify}\}$ where \mathcal{M}, \mathcal{K} are message-space and key-space respectively, and:

- $\mathsf{KG}(1^n)$ is a PPT key-generation algorithm; it returns a $k \in \mathcal{K}$.
- $\mathsf{Tag}(k, m)$ is a PPT algorithm which takes as input a key $k \in \mathcal{K}$ and a message $m \in \mathcal{M}$ and outputs a code σ .
- Verify (k, m, σ) is a PPT algorithm which on input a key k, a message m, and a code σ , outputs 1 (accept) or 0 (reject).

The scheme must satisfy:

(correctness): $\forall k \in \mathcal{K}, m \in \mathcal{M}$, $\operatorname{Verify}(k, m, \operatorname{Tag}(k, m)) = 1$.

(unforgeability): \forall non-uniform PPT A, \exists negligible μ s.t. $\forall n$: Pr[A wins ForgingGame] $\leq \mu(n)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

ъ

The **ForgingGame** (1^n) proceeds between a challenger Ch and adversary A in three steps:

- **Init:** The challenger generates a key: $k \leftarrow \mathsf{KG}(1^n)$.
- **2** Learn: A learns many codes on messages of his choice.

- A sends a message $m_i \in \mathcal{M}$ to Ch

- Ch sends back a code $\sigma_i \leftarrow \mathsf{Tag}(k, m_i)$

Let $L = \{m_i\}$ be the set of all messages A sends to Ch.

③ Guess: A outputs a message-code pair (m, σ)

A wins if and only if $m \notin L \bigwedge \mathsf{Verify}(k, m, \sigma) = 1$.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

- MACs require the two parties to share a secret key
- Digital Signatures public-key variant where the secret-key is not shared. (Later classes)

・ロト ・回ト ・ヨト ・ヨト 三日

A MAC based on PRF

Theorem

 $PRF \implies MAC$

- Let F be a PRF with input-space $\mathcal{M} = \{0, 1\}^n$, key-space $\mathcal{K} = \{0, 1\}^n$, and KG as key-generation algorithm.
- $\bullet\,$ Our MAC scheme has the same message space, key space, and key-generation $\mathsf{KG}.$
- The other two algorithms work as follows:
 - $\operatorname{\mathsf{Tag}}(k,m) = F_k(m).$
 - Verify (k, m, σ) outputs 1 if and only if $\sigma = F_k(m)$.
- Correctness: by definition $Tag(k,m) = F_k(m)$ for all k,m.
- What about unforgeability?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Proof of Unforgeability

- Suppose that our MAC is not unforgeable. This means, there is a PPT A who wins the ForgingGame with some noticeable probability ε .
- Therefore, by definition, A outputs (m, σ) such that $\sigma = F_k(m)$ with ε probability such that for $m \notin L$ where L is the list of all messages asked by A.
- What happens if we replace F with a truly random function RF?
- In the ForgingGame, the challenger does not use F to answer A's queries; instead:
 - It builds a table T (to represent the truly random function RF)
 - For each new m_i , sends a random σ_i , and stores (m_i, σ_i) in T.
 - For each existing m_i , simply returns the entry in $T[m_i]$.

- Suppose that A wins the new ForgingGame (which now uses RF) with probability ε' .
- By security of PRF, $|\varepsilon \varepsilon'| \leq \mu(n)$ where μ is negligible; $\Rightarrow \varepsilon' \geq \varepsilon - \mu(n)$
- But RF is truly random \Rightarrow no-one can guess $RF(m) = \sigma$ with more than $\frac{1}{2^n}$ probability.
- Therefore $\varepsilon' \leq 2^{-n} \Rightarrow \varepsilon \mu \leq 2^{-n} \Rightarrow \varepsilon \leq 2^{-n} + \mu$.
- I.e., ε cannot be noticeable. (Contradiction) \Box

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うらつ

- Weaker Security: Adversary is allowed only one query
- Advantage: Unconditional security!
- Analogue of OTP for authentication
- Related reading: Section 7.6 [Boneh-Shoup]

・ロト ・回ト ・ヨト ・ヨト