
Lecture 8: Pseudorandomness - II

Instructor: Omkant Pandey

Spring 2017 (CSE 594)

Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 1 / 20

Last Time

Computational Indistinguishability & Prediction Advantage
Pseudorandom Distributions & Next-bit Test
Definition of a PRG

Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 2 / 20

Today

Pseudorandom Generators (PRG)
– 1-bit stretch
– Polynomial stretch

Pseudorandom Functions (PRF)
– Definition
– PRF from any PRG

Volunteers for scribe notes?

Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 3 / 20

Recall

Definition (Pseudorandom Ensembles)

An ensemble {Xn}, where Xn is a distribution over {0, 1}`(n), is said to
be pseudorandom if:

{Xn} ≈ {U`(n)}

Definition (Next-bit Unpredictability)

An ensemble of distributions {Xn} over {0, 1}`(n) is next-bit
unpredictable if, for all 0 6 i < `(n) and n.u. PPT A, ∃ negligible
function ν(·) s.t.:

Pr[t = t1 . . . t`(n) ∼ Xn : A(t1 . . . ti) = ti+1] 6
1

2
+ ν(n)

Theorem (Completeness of Next-bit Test)
If {Xn} is next-bit unpredictable then {Xn} is pseudorandom.

Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 4 / 20

Pseudorandom Generators (PRG)

Definition (Pseudorandom Generator)
A deterministic algorithm G is called a pseudorandom generator (PRG)
if:

G can be computed in polynomial time
|G(x)| > |x|{
x← {0, 1}n : G(x)

}
≈c

{
U`(n)

}
where `(n) = |G(0n)|

The stretch of G is defined as: |G(x)| − |x|

Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 5 / 20

A PRG with 1-bit stretch

Remember the hardcore predicate?

It is hard to guess h(s) even given f(s)

Let G(s) = f(s)‖h(s) where f is a OWF
Some small issues:

– |f(s)| might be less than |s|
– f(s) may always start with prefix 101 (not random)

Solution: let f be a one-way permutation (OWP) over {0, 1}n
– Domain and Range are of same size, i.e., |f(s)| = |s| = n

– f(s) is uniformly random over {0, 1}n if s is

∀y : Pr[f(s) = y] = Pr[s = f−1(y)] = 2−n

⇒ f(s) is uniform and cannot start with a fix value!

Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 6 / 20

A PRG with 1-bit stretch

Let f : {0, 1}∗ → {0, 1}∗ be a OWP

Let h : {0, 1}∗ → {0, 1} be a hardcore predicate for f

Construction: G is defined as:

G(s) = f(s) ‖ h(s)

Theorem (PRG based on OWP)
G is a pseudorandom generator with 1-bit stretch.

If you did the exercise proof (from last class) that “next bit test” implies
pseudorandomness, then this proof is trivial: if G is not a PRG, an
attacker D must succeed in next bit test. But first n bits of G(s) are
uniform (since f is a permutation), so D must predict the (n+ 1)-th bit
– which is the hardcore bit – with 1/2+non-negligible. (contradiction)

For completeness, we do a proof from scratch that relies on hardcore bits.

Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 7 / 20

Proof that G is a 1-bit stretch PRG

Observe that G is deterministic and efficient because f, h are; also
stretch = |G(s)| = |s|+ 1 because f is a permutation which preserves
length.
Next, we show:

{
s← {0, 1}n : G(s)

}
≈c

{
Un+1

}
By contradiction, suppose that it is not true. Then,
∃ efficient distinguisher D, a polynomial q(·) s.t.:∣∣∣Prs←{0,1}n [D(G(s)) = 1

]
− Pru←Un+1

[
D(u) = 1

]∣∣∣ > 1
q(n)

for infinitely many values of n.

We show how to use D to break the OWP f . ⇒ contradiction

Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 8 / 20

Proof that G is a 1-bit stretch PRG (contd.)

Given:
∣∣∣Prs←{0,1}n [D(G(s)) = 1

]
− Pru←Un+1

[
D(u) = 1

]∣∣∣ > 1
q(n)

Write u = u1 . . . ‖un+1 = y‖un+1 where y ∈ {0, 1}n.
Since f is a permutation, ∃ a unique s s.t. f(s) = y

y is uniform over {0, 1}n, therefore so is s.

We have:

Pru←Un+1

[
D(u) = 1

]
= Pry←{0,1}n,un+1←{0,1}

[
D(y‖un+1) = 1

]
= Prs←{0,1}n,un+1←{0,1}

[
D(f(s)‖un+1) = 1

]
=
∑

r∈{0,1}

(
Prun+1←{0,1}[un+1 = r] ×

Prs←{0,1}n
[
D(f(s)‖un+1) = 1|un+1 = r

])
Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 9 / 20

Proof that G is a 1-bit stretch PRG (contd.)

Pru←Un+1

[
D(u) = 1

]
=
∑

r∈{0,1}
1
2 · Prs←{0,1}n

[
D(f(s)‖un+1) = 1|un+1 = r

]
= 1

2 ·
∑

r∈{0,1} Prs←{0,1}n
[
D(f(s)‖r) = 1

]
= 1

2

(
Prs←{0,1}n

[
D(f(s)‖0) = 1

]
+ Prs←{0,1}n

[
D(f(s)‖1) = 1

])
= 1

2

(
Prs←{0,1}n

[
D(f(s)‖h(s)) = 1

]
+ Prs←{0,1}n

[
D(f(s)‖h(s)) = 1

])
where h(s) = 1− h(s)

By definition of G(s):
Prs←{0,1}n

[
D(G(s)) = 1

]
= Prs←{0,1}n

[
D(f(s)‖h(s)) = 1

]
Subtract and take absolute value:

Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 10 / 20

Proof that G is a 1-bit stretch PRG (contd.)

∣∣∣Pru←Un+1

[
D(u) = 1

]
− Prs←{0,1}n

[
D(G(s)) = 1

]∣∣∣
= 1

2 ·
∣∣∣Prs←{0,1}n [D(f(s)‖h(s)) = 1

]
− Prs←{0,1}n

[
D(f(s)‖h(s)) = 1

]∣∣∣
By equivalence claim, this is:

=
∣∣∣Pr [b← {0, 1}; z ← Xb;D(z) = b

]
− 1

2

∣∣∣
where:

X0 :=
{
s← {0, 1}n : f(s)‖h(s)

}
X1 :=

{
s← {0, 1}n : f(s)‖h(s)

}
z = h(s)⊕ b

Substitute and rewrite:

Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 11 / 20

Proof that G is a 1-bit stretch PRG (contd.)∣∣∣Pru←Un+1

[
D(u) = 1

]
− Prs←{0,1}n

[
D(G(s)) = 1

]∣∣∣
=
∣∣∣Pr [b← {0, 1}; s← {0, 1}n;D(f(s)‖(h(s)⊕ b)) = b

]
− 1

2

∣∣∣
=
∣∣∣Prb,s [D(f(s)‖(h(s)⊕ b)) = b

]
− 1

2

∣∣∣
But we are given that: L.H.S. > 1

q(n)

Therefore:
∣∣∣Prb,s [D(f(s)‖(h(s)⊕ b)) = b

]
− 1

2

∣∣∣ > 1
q(n)

Write r = h(s)⊕ b so that r is uniform if b is and h(s) = r ⊕ b.

Substitute above and rewrite:

Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 12 / 20

Proof that G is a 1-bit stretch PRG (contd.)

We get:
∣∣∣Prr,s [D(f(s)‖r) = b

∧
h(s) = r ⊕ b

]
− 1

2

∣∣∣ > 1
q(n)

Without loss of generality, we can assume that probability is > 1/2.

Therefore: Prr,s
[
D(f(s)‖r) = b

∧
h(s) = r ⊕ b

]
> 1

2 + 1
q(n)

Use D to predict hardcore bit as follows:

Algorithm A(f(s)):
– sample bit r uniformly and compute b← D(f(s)‖r)
– output r ⊕ b.

Prs
[
A(f(s)) = h(s)

]
= Prr,s

[
D(f(s)‖r) = b

∧
h(s) = r ⊕ b

]
> 1

2 + 1
q(n) (contradiction) �

Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 13 / 20

One-bit stretch PRG =⇒ Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times

Construction of Gpoly : {0, 1}n → {0, 1}`(n):
Let G : {0, 1}n → {0, 1}n+1 be a one-bit stretch PRG

s = X0

G(X0) = X1‖b1
...

G(X`(n)−1) = X`(n)‖b`(n)

Gpoly(s) := b1 . . . b`(n)

Think: Proof?

Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 14 / 20

Proof that Gpoly is pseudorandom

Want:
{
s← {0, 1}n : Gpoly(s)

}
≈c

{
U`(n)

}
Let D be any non-uniform PPT algorithm.

Step 0:

Experiment H0

s = X0

G(X0) = X1‖b1
G(X1) = X2‖b2

...
G(X`−1) = X`‖b`

Output D(b1b2 . . . b`)

Claim:
∣∣∣Prs[D(Gpoly(s)) = 1]− Prs[H0 = 1]

∣∣∣ = 0.
Proof: Input of D is identically distributed in both cases. �

Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 15 / 20

Proof that Gpoly is pseudorandom

Step 1: modify H0 one line at a time.
Experiment H0

s = X0

G(X0) = X1‖b1
G(X1) = X2‖b2

...
G(X`−1) = X`‖b`

Output D(b1b2 . . . b`).
Experiment H1

s = X0

X1‖b1 = s1‖u1
G(s1) = X2‖b2

...
G(X`−1) = X`‖b`

Output D(u1b2 . . . b`).

Claim:
∣∣∣Prs[H0 = 1]− Prs,s1,u1 [H1 = 1]

∣∣∣ 6 µ(n)
Can similarly define H2, . . . ,H`−1 s.t. in H`−1, b1b2 . . . b` is
sampled from U`

To prove that Gpoly is PRG, it suffices to show that H0 ≈c H`

Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 16 / 20

Proof that Gpoly is pseudorandom (contd.)

Step 2: Hybrid Lemma

For contradiction, suppose that Gpoly is not a PRG, i.e., H0 and
H` are distinguishable with non-negligible probability 1

p(n)

By Hybrid Lemma, there exists i s.t. Hi and Hi+1 are
distinguishable with probability 1

p(n)`(n)

Idea: Contradict the security of G

Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 17 / 20

Proof that Gpoly is pseudorandom (contd.)

Step 3: Breaking security of G

For simplicity, suppose that i = 0 (proof works for any i)
Construct D to break the pseudorandomness of G as follows

– D gets as input Z‖r sampled either as X1‖b1 or as s1‖u1
– Compute X2‖b2 = G(Z) and continue as the rest of the

experiment(s)
– Output D(rb2 . . . b`)

If Z‖r is pseudorandom, i.e., sampled as X1‖b1 = G(s), then
output of D is distributed identically to the output of H0

Otherwise, i.e., Z‖r is (truly) random, and therefore output of D is
is distributed identically to the output of H1

Hence: D distinguishes the output of G with advantage 1
p(n)`(n)

and runs in polynomial time. This is a contradiction �

Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 18 / 20

Concluding Remarks on PRG

So far we relied on OW Permutations. What about OWF?
OWF =⇒ PRG: [Impagliazzo-Levin-Luby-89] and [Hastad-90]

Celebrated result! Good to read.

More Efficient Constructions: [Vadhan-Zheng-12]
Computational analogues of Entropy
Non-cryptographic PRGs and Derandomization:
[Nisan-Wigderson-88]

Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 19 / 20

Functions vs Generators

PRGs convert one short random string s into one long
pseudorandom string.

– s is called the seed of the PRG.

Can we instead get many pseudorandom strings from a single seed?
Think of a random function which maps inputs to outputs as usual.

Pseudorandom Functions (PRF): Next class!

Instructor: Omkant Pandey Lecture 8: Pseudorandomness - II Spring 2017 (CSE 594) 20 / 20

