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Last Time

Proof via Reduction: fˆ is a weak OWF

Amplification: From weak to strong OWFs
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Today

What do OWFs Hide?

Hard Core Predicate

Concluding Remarks on OWFs

Scribe notes volunteers?
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What OWFs Hide

The concept of OWFs is simple and concise

But OWFs often not very useful by themselves
It only guarantees that fpxq hides x but nothing more!

E.g., it may not hide first bit of x,
Or even first half bits of x
Or ANY subset of bits

In fact: if apxq is some information about x, we don’t know if fpxq
will hide apxq for any non-trivial ap¨q

Is there any non-trivial function of x, even 1 bit, that OWFs hide?
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Hard Core Predicate

A hard core predicate for a OWF f

– is a function over its inputs txu
– its output is a single bit (called the “hard core bit”)
– it can be easily computed given x
– but “hard to compute” given only fpxq

Intuition: f may leak many bits of x but it does not leak the
hard-core bit.

In other words, learning the hardcore bit of x, even given fpxq, is
“as hard as” inverting f itself.

Think: What does “hard to compute” mean for a single bit?
– you can always guess the bit with probability 1{2.
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Hard Core Predicate: Definition

Hard-core bit cannot be efficiently “learned” or “predicted” or
“computed” with probability ą 1

2 ` µp|x|q even given fpxq

Definition (Hard Core Predicate)
A predicate h : t0, 1u˚ Ñ t0, 1u is a hard-core predicate for fp¨q if h is
efficiently computable given x and there exists a negligible function ν
s.t. for every non-uniform PPT adversary A and @n P N:

Pr
”

xÐ t0, 1un : Ap1n, fpxqq “ hpxq
ı

ď
1

2
` νpnq.
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Hard Core Predicate: Construction

Can we construct hard-core predicates for general OWFs f?
Define xx, ry to be the inner product function mod 2. I.e:,

xx, ry “

˜

ÿ

i

xiri

¸

mod 2

Same as taking ‘ of a random subset of bits of x.
Theorem (Goldreich-Levin)
Let f be a OWF (OWP). Define function

gpx, rq “ pfpxq, rq

where |x| “ |r|. Then g is a OWF (OWP) and

hpx, rq “ xx, ry

is a hard-core predicate for g.
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Some remarks

The theorem is not for f , but for a different function, g.
Is this useful at all?

– Indeed, consider the function g1:

g1p1xq “ g1p0xq “ fpxq.

– Clearly, the first bit of g’s input is hard core for g.
– It works even if f is not one-way!

The problem with the above is that it “looses” information about
its input. This is not good for applications.
It “explains” nothing about the inherent hardness of f
Function g in the GL theorem statistically does not loose any
information that f does not about its input.
...and the hard core bit for g is easy to guess if f is not one-way.
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Proof of the Goldreich-Levin theorem

Proof via reduction?
Main challenge: Adversary A for h only outputs 1 bit. Need to
build an inverter B for f that outputs n bits.
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Warmup Proof (1)

Assumption: Given gpx, rq “ pfpxq, rq, adversary A always (i.e.,
with probability 1) outputs hpx, rq correctly
Inverter B:

Compute x˚i Ð Apfpxq, eiq for every i P rns where:

ei “ p 0, . . . , 0
loomoon

pi´1q-times

, 1, . . . , 0q

Output x˚ “ x˚1 . . . x
˚
n
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Warmup Proof (2)

Assumption: Given gpx, rq “ pfpxq, rq, for every x, adversary A
outputs hpx, rq with probability 3{4` εpnq over the choices of r.

@x : Pr
r
rApfpxq, rq “ hpx, rqs ě

3

4
` εpnq.

Main Problem: Adversary may not work on “improper” inputs
(e.g., r “ ei as in previous case)
Main Idea: Split each query into two queries s.t. each query
individually looks random
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Warmup Proof (2)

Inverter B:
Let a :“ Apfpxq, ei ‘ rq and b :“ Apfpxq, rq, for r $

Ð t0, 1u
n

Compute c :“ a‘ b as a guess for x˚i
Repeat many times to get many such c and take majority to get x˚i
Output x˚ “ x˚1 . . . x

˚
n

Proof that B inverts fpxq:
If both a and b are correct, then c “ xi because:

c “ a‘b “ xx, ei‘riy‘xx, ry “ x ¨pr`eiq`x ¨r mod 2 “ x ¨ei “ xi.

Claim: c “ xi with probability 1{2` 2ε
Proof: by union bound A is wrong about either a or b with at most:

p1{4´ εpnqq ` p1{4´ εpnqq “ 1{2´ 2ε

probability. So a, b are correct w/ prob. ě 1{2` 2ε, so is c. ˝

If you repeat 2n
εpnq times, by Chernoff Bound, majority of c will be

correct x˚i w/ 1´ e´n prob.
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Full Proof of the GL Theorem

In the next class!

Goldreich-Levin theorem has been extremely influential even
outside cryptography
Has applications to learning, list-decoding codes, extractors,...
Great tool to add to your toolkit
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Further Remarks

One-way functions are necessary for most of cryptography

But often not sufficient for things like key-exchange or public-key
encryption.

Black-box separations known [Impagliazzo-Rudich’89];
Open problem: full separations not known

More examples of one-way functions?

More than 1 hard core bit?

Other ways to get hard core bit?
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On more examples of OWFs

We saw a OWF based on factoring. Are there more candidates?

Many examples based on:
Discrete Log: compute x P G from pg, y, pq where g generates a
group G, and p “ |G| is prime, and y “ gx in G.

RSA Problem: compute d from pe,Nq s.t. e ¨ d ” 1 mod φpNq
where φpNq “ |Z˚N | and N is product of two large primes.

Quadratic Residuosity: compute square roots of perfect squares
modulo N (Rabin’s function).

More: more examples from lattices and LWE problem; such
“hardness assumptions” are few and rare.

You actually get a collection of OWFs from the above, not a single
OWF. However, collections imply a single OWF as well. (discussed later)

Special hard-core predicates and more than 1 bit based on specific
structures of these functions. (For general OWFs, GL can be extended to
yield log n hard core bits).
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On more examples of OWFs

Universal One-way Functions (Levin)
– Suppose somebody tells you that OWFs exist! but they don’t know

what that function is.
– Can you use this fact to build an explicit OWF? Explicit = one

which you could implement (in principle, on Turing machines).
– Yes! Levin constructs an explicit function which is one-way if there

exists any OWF (even if not known explicitly).

OWFs from the famous “P vs NP” problem?
– OWFs whose hardness can be reduced to the validity of P ‰ NP.
– Unlikely to exist based on current evidence

[Goldreich-Goldwasser-Moshkovitz,...]
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Markov and Chernoff Bounds

Proof on the board?
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