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Last Time

@ Proof via Reduction: fy is a weak OWF

e Amplification: From weak to strong OWFs
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Today

e What do OWFs Hide?
o Hard Core Predicate
e Concluding Remarks on OWFs

@ Scribe notes volunteers?
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What OWFs Hide

The concept of OWFs is simple and concise

But OWFs often not very useful by themselves

It only guarantees that f(z) hides z but nothing more!
e E.g., it may not hide first bit of x,
e Or even first half bits of =
o Or ANY subset of bits

In fact: if a(x) is some information about x, we don’t know if f(z)
will hide a(z) for any non-trivial a(-)

Is there any non-trivial function of z, even 1 bit, that OWFs hide?
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Hard Core Predicate

e A hard core predicate for a OWF f
— is a function over its inputs {x}
— its output is a single bit (called the “hard core bit”)
— it can be easily computed given x

but “hard to compute” given only f(z)

o Intuition: f may leak many bits of x but it does not leak the
hard-core bit.

e In other words, learning the hardcore bit of x, even given f(z), is
“as hard as” inverting f itself.

@ Think: What does “hard to compute” mean for a single bit?
— you can always guess the bit with probability 1/2.
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Hard Core Predicate: Definition

e Hard-core bit cannot be efficiently “learned” or “predicted” or
“computed” with probability > 3 + u(|z|) even given f(z)

Definition (Hard Core Predicate)

A predicate h : {0,1}* — {0,1} is a hard-core predicate for f(-) if h is
efficiently computable given x and there exists a negligible function v
s.t. for every non-uniform PPT adversary A and Vn € N:

Pr [x < {0,1}" : A(1™, f(2)) = h(:c)] < % + v(n).
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Hard Core Predicate: Construction

e Can we construct hard-core predicates for general OWFs f7

e Define (x,r) to be the inner product function mod 2. Le:,

{x,r) = (Z xin) mod 2

e Same as taking @ of a random subset of bits of x.

Theorem (Goldreich-Levin)

Let f be a OWF (OWP). Define function
g9(z,r) = (f(z),7)
where |z| = |r|. Then g is a OWF (OWP) and
h(z,r) = {x,r)

1 a hard-core predicate for g.
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Some remarks

@ The theorem is not for f, but for a different function, g.
o Is this useful at all?
— Indeed, consider the function ¢’:

g'(1z) = ¢'(0z) = f(x).
— Clearly, the first bit of ¢’s input is hard core for g.
— It works even if f is not one-way!

@ The problem with the above is that it “looses” information about
its input. This is not good for applications.

o It “explains” nothing about the inherent hardness of f

e Function ¢ in the GL theorem statistically does not loose any
information that f does not about its input.

...and the hard core bit for ¢ is easy to guess if f is not one-way.
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Proof of the Goldreich-Levin theorem

@ Proof via reduction?

e Main challenge: Adversary A for h only outputs 1 bit. Need to
build an inverter B for f that outputs n bits.
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Warmup Proof (1)

e Assumption: Given g(z,r) = (f(z),r), adversary A always (i.e.,

with probability 1) outputs h(z,r) correctly
e Inverter B:
o Compute zf — A(f(z),e;) for every i € [n] where:

ei=(0,...,0,1,...,0)
————
(i—1)-times

o Output a* = z¥ ... z¥

Ly
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Warmup Proof (2)

e Assumption: Given g(z,7) = (f(z),r), for every x, adversary A
outputs h(z,r) with probability 3/4 + (n) over the choices of .

Vo : Pr[A(f(z),r) = h(x,r)] = = + &(n).
s
@ Main Problem: Adversary may not work on “improper” inputs
(e.g., r = e; as in previous case)

e Main Idea: Split each query into two queries s.t. each query
individually looks random
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Warmup Proof (2)

o Inverter B:

Let a:= A(f(2),e; ®r) and b := A(f(x),r), for r < {0,1}"
Compute ¢ := a @b as a guess for z
Repeat many times to get many such ¢ and take majority to get =}

Output z* = ¥ ... z¥

@ Proof that B inverts f(z):
e If both a and b are correct, then ¢ = x; because:
c=a®b={z,e,®r;y®{x,r)y =2-(r+e;)+z-r mod?2=2x-e =z,
o Claim: ¢ = z; with probability 1/2 + 2¢
e Proof: by union bound A is wrong about either a or b with at most:
(1/4—e(n)) + (1/4—e(n)) = 1/2 — 2¢
probability. So a,b are correct w/ prob. > 1/2 + 2¢, so is ¢. ©

@ If you repeat % times, by Chernoff Bound, majority of ¢ will be
correct ¥ w/ 1 — e~ ™ prob.
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Full Proof of the GL. Theorem

In the next class!

e Goldreich-Levin theorem has been extremely influential even
outside cryptography

e Has applications to learning, list-decoding codes, extractors,...

@ Great tool to add to your toolkit
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Further Remarks

@ One-way functions are necessary for most of cryptography

e But often not sufficient for things like key-exchange or public-key
encryption.

o Black-box separations known |[Impagliazzo-Rudich’89];
Open problem: full separations not known

@ More examples of one-way functions?
@ More than 1 hard core bit?
@ Other ways to get hard core bit?
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On more examples of OWFs

o We saw a OWF based on factoring. Are there more candidates?

@ Many examples based on:
Discrete Log: compute x € G from (g,y,p) where g generates a
group G, and p = |G| is prime, and y = ¢* in G.
RSA Problem: compute d from (e, N) s.t. e-d=1 mod ¢(N)
where ¢(N) = |Z%| and N is product of two large primes.

Quadratic Residuosity: compute square roots of perfect squares
modulo N (Rabin’s function).

More: more examples from lattices and LWE problem; such
“hardness assumptions” are few and rare.

@ You actually get a collection of OWFs from the above, not a single
OWF. However, collections imply a single OWF as well. (discussed later)

@ Special hard-core predicates and more than 1 bit based on specific
structures of these functions. (For general OWFs, GL can be extended to
yield logn hard core bits).
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On more examples of OWFs

e Universal One-way Functions (Levin)
Suppose somebody tells you that OWFs exist! but they don’t know
what that function is.

Can you use this fact to build an explicit OWF? Explicit = one
which you could implement (in principle, on Turing machines).

Yes! Levin constructs an explicit function which is one-way if there
exists any OWF (even if not known explicitly).

e OWFs from the famous “P vs NP” problem?
— OWFs whose hardness can be reduced to the validity of P # NP.

— Unlikely to exist based on current evidence
|Goldreich-Goldwasser-Moshkovitz,...|
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Markov and Chernoff Bounds

@ Proof on the board?
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