
Lecture 3: One Way Functions - I

Instructor: Omkant Pandey

Spring 2017 (CSE 594)

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 1 / 28

Last class

Shannon’s notion of perfect secrecy

Its limitations due to large key-length

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 2 / 28

Today’s Class

Learning the crypto language
Modeling “real-world” adversaries
Defining security against such adversaries

Definition of One-way functions
Candidate One-way function

“Computational” or “Complexity-theoretic” approach to crypto.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 3 / 28

Modeling the adversary

In practice, everyone, including the adversary has some bounded
computational resources.
Adversary can use these computational resources however
intelligently he likes, but it is still bounded by these resources.
Turing machines — capture all types of computations that are
possible.
So our adversary will be a computer program or an algorithm,
modeled as a Turing machine.
Remark: we do not deal with quantum computers in this course;
our computational models are classical.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 4 / 28

Algorithms and Running Time

Definition (Algorithm)
An algorithm is a deterministic Turing machine whose input and output
are strings over the binary alphabet Σ “ t0, 1u.

Definition (Running Time)
An algorithm A is said to run in time T pnq if for all x P t0, 1un, Apxq
halts within T p|x|q steps. A runs in polynomial time if there exists a
constant c such that A runs in time T pnq “ nc.

An algorithm is efficient if it runs in polynomial time.

Note: c is a constant – it does not depend on input length n “ |x|.
Examples of non-polynomial functions: 2n, nlogn, nlog logn,

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 5 / 28

Randomized Algorithms

Definition (Randomized Algorithm)
A randomized algorithm, also called a probabilistic polynomial time
Turing machine (PPT) is a Turing machine equipped with an extra
randomness tape. Each bit of the randomness tape is uniformly and
independently chosen.

Output of a randomized algorithm is a distribution.
This notion captures what we can do efficiently ourselves. (uniform
TMs)

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 6 / 28

The Adversary

The adversary could be more tricky...

For example, the adversary might posses a different algorithm for
each input size, each of which might be efficient.

This still counts efficient since the adversary is only using
polynomial time resources!

We call this a non-uniform adversary since the algorithm is not
uniform across all input sizes.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 7 / 28

Non-Uniform PPT

Definition (Non-Uniform PPT)
A non-uniform probabilistic polynomial time Turing machine is a Turing
machine A is a sequence of probabilistic machines A “ tA1, A2, . . .u for
which there exists a polynomial pp¨q such that for every Ai P A, the
description size |Ai| and the running time of Ai are at most ppiq. We
write Apxq to denote the distribution obtained by running A|x|pxq.

Our adversary will usually be a non-uniform PPT Turing machine.
(most general)

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 8 / 28

One Way Functions: Attempt 1

Attempt 1: A function f : t0, 1u˚ Ñ t0, 1u˚ is a one-way function
(OWF) if it satisfies the following two conditions:

Easy to compute: there is a PPT algorithm C s.t. @x P t0, 1u˚,

Pr
“

Cpxq “ fpxq
‰

“ 1.

Hard to invert: for every non-uniform PPT adversary A, for any
input length n P N

Probability of Inversion is small

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 9 / 28

One Way Functions: Attempt 1

Attempt 1: A function f : t0, 1u˚ Ñ t0, 1u˚ is a one-way function
(OWF) if it satisfies the following two conditions:

Easy to compute: there is a PPT algorithm C s.t. @x P t0, 1u˚,

Pr
“

Cpxq “ fpxq
‰

“ 1.

Hard to invert: for every non-uniform PPT adversary A, for any
input length n P N

Pr
“

A inverts fpxq for random x
‰

ď small.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 10 / 28

One Way Functions: Attempt 1

Attempt 1: A function f : t0, 1u˚ Ñ t0, 1u˚ is a one-way function
(OWF) if it satisfies the following two conditions:

Easy to compute: there is a PPT algorithm C s.t. @x P t0, 1u˚,

Pr
“

Cpxq “ fpxq
‰

“ 1.

Hard to invert: for every non-uniform PPT adversary A, for any
input length n P N

Pr
“

x
$
Ð t0, 1un; A inverts fpxq

‰

ď small.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 11 / 28

One Way Functions: Attempt 1

Attempt 1: A function f : t0, 1u˚ Ñ t0, 1u˚ is a one-way function
(OWF) if it satisfies the following two conditions:

Easy to compute: there is a PPT algorithm C s.t. @x P t0, 1u˚,

Pr
“

Cpxq “ fpxq
‰

“ 1.

Hard to invert: for every non-uniform PPT adversary A, there
exists a fast decaying function νp¨q s.t. for any input length n P N

Pr
“

x
$
Ð t0, 1un; A inverts fpxq

‰

ď νpnq.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 12 / 28

How fast should it decay?

1 Is 10% good? (1 in 10 cases can be easy!)
2 Is 0.0000001% good? (1 in 106 cases easy: « 1MB data)
3 What about 1

n100

– any polynomial in the denominator is not good!
– polynomial = efficient ñ easy cases occur “soon enough”

4 ν must decay faster than every polynomial!

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 13 / 28

Negligible Function

Definition (Negligible Function)
A function νpnq is negligible if for every c, there exists some n0 such
that for all n ą n0, νpnq ď 1

nc .

1 Negligible function decays faster than all “inverse-polynomial”
functions

2 Often denoted by: n´ωp1q

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 14 / 28

One Way Functions: Attempt 1

Attempt 1: A function f : t0, 1u˚ Ñ t0, 1u˚ is a one-way function
(OWF) if it satisfies the following two conditions:

Easy to compute: there is a PPT algorithm C s.t. @x P t0, 1u˚,

Pr
“

Cpxq “ fpxq
‰

“ 1.

Hard to invert: for every non-uniform PPT adversary A, there
exists a negligible function µp¨q s.t. for any input length @n P N:

Pr
“

x
$
Ð t0, 1un; A inverts fpxq

‰

ď νp|x|q.

Technical Problem: What is A’s input?

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 15 / 28

A’s Input

Let’s write y “ fpxq.

Condition 1: A on input y must run in time polyp|y|q.

Condition 2: A cannot output x1 s.t. fpx1q “ y.

What if |y| is much smaller than n “ |x|?
ùñ A cannot write the inverse even if it can find it!

Example: fpxq = first log |x| bits of x.

It is trivial to invert: f´1pyq “ y} 00 . . . 0
loomoon

n´lgn

where n “ 2|y|.

But it satisfies our Attempt 1 defintion!
f is easy to compute.
A cannot invert in time polyp|y|q.
It needs 2|y| steps just to write the answer!

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 16 / 28

Fixing the definition

Give A a long enough input.

If y is too short, pad it with 1s in the beginning.

We adopt the convention to always pad it and write: Ap1n, yq.
Now A has enough time to write the answer.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 17 / 28

One Way Functions: Definition

Definition (One Way Function)
A function f : t0, 1u˚ Ñ t0, 1u˚ is a one-way function (OWF) if it
satisfies the following two conditions:

Easy to compute: there is a PPT algorithm C s.t. @x P t0, 1u˚,

Pr
“

Cpxq “ fpxq
‰

“ 1.

Hard to invert: there exists a negligible function µ : NÑ R s.t.
for every non-uniform PPT adversary A and @n P N:

Pr
”

xÐ t0, 1un, x1 Ð Ap1n, fpxqq : fpx1q “ fpxq
ı

ď µpnq.

This definition is also called strong one-way functions.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 18 / 28

Injective OWFs and One Way Permutations (OWP)

Injective or 1-1 OWFs: each image has a unique pre-image:

fpx1q “ fpx2q ùñ x1 “ x2

One Way Permutations (OWP): 1-1 OWF with the additional
conditional that “each image has a pre-image”

(Equivalently: domain and range are of same size.)

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 19 / 28

Existence of OWFs

Do OWFs exist? NOT Unconditionally — proving that f is
one-way requires proving (at least) P ‰ NP.

However, we can construct them ASSUMING that certain
problems are hard.

Such constructions are sometimes called “candidates” because they
are based on an assumption or a conjecture.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 20 / 28

Factoring Problem

Consider the multiplication function fˆ : Nˆ NÑ N:

fˆpx, yq “

"

K if x “ 1_ y “ 1
x ¨ y otherwise

The first condition helps exclude the trivial factor 1.

Is fˆ a OWF?

Clearly not! With prob. 1{2, a random number (of any fixed
size) is even. I.e., xy is even w/ prob. 3

4 for random px, yq.

Inversion: given number z, output p2, z{2q if z is even and p0, 0q
otherwise! (succeeds 75% time)

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 21 / 28

Factoring Problem (continued)

Eliminate such trivial small factors.

Let Πn be the set of all prime numbers ă 2n.

Choose numbers p and q randomly from Πn and multiply.

This is unlikely to have small trivial factors.

Assumption (Factoring Assumption)
For every (non-uniform PPT) adversary A, there exists a negligible
function ν such that

Pr
”

p
$
ÐΠn; q

$
ÐΠn;N “ pq : ApNq P tp, qu

ı

ď νpnq.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 22 / 28

Factoring Problem (continued)

Factoring assumption is a well established conjecture.

Studied for a long time, with no “good” attack.

Best known algorithms for breaking Factoring Assumption:

2O
`?

n logn
˘

(provable)

2O
`

3
?

n log2 n
˘

(heuristic)

Can we construct OWFs from the Factoring Assumption?

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 23 / 28

Back to Multiplication Function

Let’s reconsider the function fˆ : N2 Ñ N.

Clearly, if a random x and a random y happen to be prime, no A
could invert. Call it the GOOD case.

If GOOD case occurs with probability ą ε,

ñ every A must fail to invert fˆ with probability at least ε.

Now suppose that ε is a noticeable function

ñ every A must fail to invert fˆ with noticeable probability.

This is already useful!

Usually called a weak OWF.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 24 / 28

Weak One Way Functions

Definition (Weak One Way Function)
A function f : t0, 1u˚ Ñ t0, 1u˚ is a weak one-way function if it satisfies
the following two conditions:

Easy to compute: there is a PPT algorithm C s.t. @x P t0, 1u˚,

Pr
“

Cpxq “ fpxq
‰

“ 1.

Somewhat hard to invert: there is a noticeable function
ε : NÑ R s.t. for every non-uniform PPT A and @n P N:

Pr
”

xÐ t0, 1un, x1 Ð Ap1n, fpxqq : fpx1q ‰ fpxq
ı

ě εpnq.

Noticeable means Dc and integer Nc s.t. @n ą Nc: εpnq ě 1
nc .

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 25 / 28

Back to Multiplication

Can we prove that fˆ is a weak OWF?

Remember the GOOD case? Both x and y are prime.

If we can show that GOOD case occurs with noticeable probability,
we can prove that fˆ is a weak OWF.

Theorem
Assuming the factoring assumption, function fˆ is a weak OWF.

Proof Idea: The fraction of prime numbers between 1 and 2n is
noticeable!

Chebyshev’s theorem: An n bit number is prime with prob. ě 1
2n

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 26 / 28

What about normal OWFs?

Can we construct normal (a.k.a, strong) OWFs from the Factoring
Assumption?

Even better:
Can we construction strong OWFs from ANY weak OWF?

Yes! Yao’s theorem.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 27 / 28

Weak to Strong OWFs

Theorem (Yao)
Strong OWFs exist if and only weak OWFs exist.

This is called hardness amplification: convert a somewhat hard
problem into a really hard problem.
Hint: use many samples of the weak OWF as the output of the
strong OWF.
Proof by reduction: if A can break your strong OWF, you can
come up with an algorithm B for breaking weak OWFs.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 28 / 28

