Lecture 3: One Way Functions - I J

Instructor: Omkant Pandey

Spring 2017 (CSE 594)

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 1/ 28

Last class

@ Shannon’s notion of perfect secrecy

o Its limitations due to large key-length

Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 2 /28

Today’s Class

o Learning the crypto language

e Modeling “real-world” adversaries
o Defining security against such adversaries

@ Definition of One-way functions

e Candidate One-way function

e “Computational” or “Complexity-theoretic” approach to crypto.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 3/ 28

Modeling the adversary

e In practice, everyone, including the adversary has some bounded
computational resources.

@ Adversary can use these computational resources however
intelligently he likes, but it is still bounded by these resources.

o Turing machines — capture all types of computations that are
possible.

@ So our adversary will be a computer program or an algorithm,
modeled as a Turing machine.

@ Remark: we do not deal with quantum computers in this course;
our computational models are classical.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 4 /28

Algorithms and Running Time

Definition (Algorithm)

An algorithm is a deterministic Turing machine whose input and output
are strings over the binary alphabet ¥ = {0, 1}.

Definition (Running Time)

An algorithm A is said to run in time T'(n) if for all z € {0,1}", A(x)
halts within 7'(|z|) steps. A runs in polynomial time if there exists a
constant ¢ such that A runs in time 7'(n) = n°.

An algorithm is efficient if it runs in polynomial time.

Note: ¢ is a constant — it does not depend on input length n = |z|.
Examples of non-polynomial functions: 27, nlo8” ploglogn

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 5/ 28

Randomized Algorithms

Definition (Randomized Algorithm)

A randomized algorithm, also called a probabilistic polynomial time
Turing machine (PPT) is a Turing machine equipped with an extra
randomness tape. Each bit of the randomness tape is uniformly and
independently chosen.

e Output of a randomized algorithm is a distribution.

e This notion captures what we can do efficiently ourselves. (uniform

TMs)

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 6 /28

The Adversary

@ The adversary could be more tricky...

For example, the adversary might posses a different algorithm for
each input size, each of which might be efficient.

@ This still counts efficient since the adversary is only using
polynomial time resources!

We call this a non-uniform adversary since the algorithm is not
uniform across all input sizes.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 7/ 28

Non-Uniform PPT

Definition (Non-Uniform PPT)

A non-uniform probabilistic polynomial time Turing machine is a Turing
machine A is a sequence of probabilistic machines A = {A;, A,, ...} for
which there exists a polynomial p(-) such that for every A; € A, the
description size |A;| and the running time of A; are at most p(i). We
write A(z) to denote the distribution obtained by running A, ().

@ Our adversary will usually be a non-uniform PPT Turing machine.
(most general)

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 8 /28

One Way Functions: Attempt 1

Attempt 1: A function f : {0,1}* — {0,1}* is a one-way function
(OWF) if it satisfies the following two conditions:
o Easy to compute: there is a PPT algorithm C s.t. Yz € {0, 1},

Pr[C(z) = f(z)] = 1.

e Hard to invert: for every non-uniform PPT adversary A, for any
input length n e N

Probability of Inversion is small

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 9/ 28

One Way Functions: Attempt 1

Attempt 1: A function f : {0,1}* — {0,1}* is a one-way function
(OWF) if it satisfies the following two conditions:
o Easy to compute: there is a PPT algorithm C s.t. Yz € {0, 1},

Pr[C(z) = f(z)] = 1.

e Hard to invert: for every non-uniform PPT adversary A, for any
input length n e N

Pr[A inverts f(z) for random x| < small.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 10 / 28

One Way Functions: Attempt 1

Attempt 1: A function f : {0,1}* — {0,1}* is a one-way function
(OWF) if it satisfies the following two conditions:
o Easy to compute: there is a PPT algorithm C s.t. Yz € {0, 1},

Pr[C(z) = f(z)] = 1.

e Hard to invert: for every non-uniform PPT adversary A, for any
input length n e N

Pr [z E{0,1}™; A inverts f(@)] < small.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 11 / 28

One Way Functions: Attempt 1

Attempt 1: A function f : {0,1}* — {0,1}* is a one-way function
(OWF) if it satisfies the following two conditions:
o Easy to compute: there is a PPT algorithm C s.t. Yz € {0, 1},

Pr[C(z) = f(z)] = 1.

e Hard to invert: for every non-uniform PPT adversary A, there
exists a fast decaying function v(-) s.t. for any input length n € N

Pr|xz £40,1}"; A inverts f(@)] <v(n).

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 12 / 28

How fast should it decay?

@ Is 10% good? (1 in 10 cases can be easy!)
Is 0.0000001% good? (1 in 10° cases easy: ~ 1MB data)
© What about ﬁ

— any polynomial in the denominator is not good!
— polynomial = efficient = easy cases occur “soon enough”

©

@ v must decay faster than every polynomial!

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594)

13 / 28

Negligible Function

Definition (Negligible Function)

A function v(n) is negligible if for every ¢, there exists some ng such

1
that for all n > ng, v(n) < .

@ Negligible function decays faster than all “inverse-polynomial”
functions

@ Often denoted by: n~«®)

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 14 / 28

One Way Functions: Attempt 1

Attempt 1: A function f : {0,1}* — {0,1}* is a one-way function
(OWF) if it satisfies the following two conditions:

o Easy to compute: there is a PPT algorithm C s.t. Yz € {0, 1},
Pr[C(z) = f(z)] = 1.

e Hard to invert: for every non-uniform PPT adversary A, there
exists a negligible function p(-) s.t. for any input length Vn € N:

Pr|xz £40,1}"; A inverts f(@)] < v(|z]).
Technical Problem: What is A’s input?

Instructor: Omkant Pandey

Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 15 / 28

A’s Input

o Let’s write y = f(z).
e Condition 1: A on input y must run in time poly(|y|).
e Condition 2: A cannot output z’ s.t. f(2') =y.
e What if |y| is much smaller than n = |z|?
= A cannot write the inverse even if it can find it!

e Example: f(z) = first log |z| bits of x.

. .. . L o—1 _ _ olyl
o It is trivial to invert: f~'(y) = y|/00...0 where n = 2¥.

n—lgn

e But it satisfies our Attempt 1 defintion!

o f is easy to compute.
o A cannot invert in time poly(|y|).
It needs 2/¥! steps just to write the answer!

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 16 / 28

Fixing the definition

e Give A a long enough input.

If y is too short, pad it with 1s in the beginning.

We adopt the convention to always pad it and write: A(1",y).

e Now A has enough time to write the answer.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 17 / 28

One Way Functions: Definition

Definition (One Way Function)

A function f:{0,1}* — {0,1}* is a one-way function (OWF) if it
satisfies the following two conditions:

e Easy to compute: there is a PPT algorithm C s.t. Yz € {0, 1}*,

Pr[C(z) = f(z)] = 1.

e Hard to invert: there exists a negligible function p: N — R s.t.
for every non-uniform PPT adversary A and Vn € N:

Prlo « {0,1}",2 — A", f(2)) : £(z') = f(@)] < ().

This definition is also called strong one-way functions.

Instructor: Omkant Pandey

Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 18 / 28

Injective OWFs and One Way Permutations (OWP)

@ Injective or 1-1 OWPFs: each image has a unique pre-image:

f(z1) = f(z2) = 1 =12

e One Way Permutations (OWP): 1-1 OWF with the additional
conditional that “each image has a pre-image”

(Equivalently: domain and range are of same size.)

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 19 / 28

Existence of OWFs

@ Do OWFs exist? NOT Unconditionally — proving that f is
one-way requires proving (at least) P # NP.

e However, we can construct them ASSUMING that certain
problems are hard.

@ Such constructions are sometimes called “candidates” because they
are based on an assumption or a conjecture.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 20 / 28

Factoring Problem

e Consider the multiplication function fx : N x N — N:

1 ifr=1vy=1
z -y otherwise

Ix(z,y) Z{

The first condition helps exclude the trivial factor 1.
Is fx a OWEF?

Clearly not! With prob. 1/2, a random number (of any fixed
size) is even. Le., zy is even w/ prob. 2 for random (z,y).

e Inversion: given number z, output (2, z/2) if z is even and (0, 0)
otherwise! (succeeds 75% time)

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 21 / 28

Factoring Problem (continued)

o Eliminate such trivial small factors.
o Let II,, be the set of all prime numbers < 2™.
@ Choose numbers p and ¢ randomly from II,, and multiply.

@ This is unlikely to have small trivial factors.

Assumption (Factoring Assumption)

For every (non-uniform PPT) adversary A, there exists a negligible
function v such that

Pr [piﬂn;qﬁﬂn;N =pg: AN) e {p7q}] < v(n).

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 22 / 28

Factoring Problem (continued)

e Factoring assumption is a well established conjecture.

Studied for a long time, with no “good” attack.

@ Best known algorithms for breaking Factoring Assumption:

20 (vogn) (provable)
20(Vilog?n) (heuristic)

e Can we construct OWFs from the Factoring Assumption?

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594)

23 / 28

Back to Multiplication Function

o Let’s reconsider the function f. : N> — N.

Clearly, if a random z and a random y happen to be prime, no A
could invert. Call it the GOOD case.

If GOOD case occurs with probability > e,

= every A must fail to invert f, with probability at least €.

Now suppose that ¢ is a noticeable function

= every A must fail to invert fyx with noticeable probability.

This is already useful!

Usually called a weak OWF.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 24 / 28

Weak One Way Functions

Definition (Weak One Way Function)

A function f:{0,1}* — {0,1}* is a weak one-way function if it satisfies
the following two conditions:

e Easy to compute: there is a PPT algorithm C s.t. Yz € {0, 1}*,
Pr[C(z) = f(z)] = 1.

e Somewhat hard to invert: there is a noticeable function
€: N — R s.t. for every non-uniform PPT A and Vn € N:

Pr [m —{0,1}", 2" — A", f(x)) : f(2') # f(x)] > e(n).

Noticeable means 3¢ and integer N, s.t. ¥n > N.: g(n) > .

n

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 25 / 28

Back to Multiplication

e Can we prove that f is a weak OWF?
o Remember the GOOD case? Both x and y are prime.

o If we can show that GOOD case occurs with noticeable probability,
we can prove that fy is a weak OWF.

Theorem

Assuming the factoring assumption, function fx is a weak OWF.

@ Proof Idea: The fraction of prime numbers between 1 and 2™ is

noticeable!

e Chebyshev’s theorem: An n bit number is prime with prob. > %

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 26 / 28

What about normal OWFs?

e Can we construct normal (a.k.a, strong) OWFs from the Factoring
Assumption?

e Even better:
Can we construction strong OWFs from ANY weak OWE?

@ Yes! Yao’s theorem.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 27 / 28

Weak to Strong OWFs

Strong OWFs exist if and only weak OWFs exist. \

e This is called hardness amplification: convert a somewhat hard
problem into a really hard problem.

e Hint: use many samples of the weak OWF as the output of the
strong OWF.

@ Proof by reduction: if A can break your strong OWF, you can
come up with an algorithm B for breaking weak OWFs.

Instructor: Omkant Pandey Lecture 3: One Way Functions - I Spring 2017 (CSE 594) 28 / 28

