Lecture 2: Shannon and Perfect Secrecy

Instructor: Omkant Pandey

Spring 2017 (CSE 594)

Last Class

- We discussed some historical ciphers
- ...and how to break them

- This class: a more formal treatment of ciphers.
- Specifically Shannon's treatment of secure ciphers

Symmetric Ciphers

- A symmetric cipher consists of:
 - $\overline{}$ A method for generating random keys k, denoted by KG
 - Encryption algorithm: Enc
 - Decryption algorithm: Dec
- Enc encrypts messages using a secret key:
 - $\operatorname{Enc}(k,m) \to c$
 - Enc may use randomness
 - c is called the ciphertext
- Dec should decrypt correctly:

$$\forall k, \forall m : \mathsf{Dec}(k, \mathsf{Enc}(k, m)) = m.$$

- The set of all messages m is called message space \mathcal{M} ;
- c is called the *ciphertext* and set of all ciphertexts *ciphertext space* C;
- The set of all keys k is called the key space K.

Security of a Cipher

What about security?

What should it mean **intuitively**?

First attempt: hide the key

- All ciphers in the frequency analysis recover the key...

 What if we just guarantee that key remains completely hidden?
- No reason why plaintext should be hidden!
- Example from Caesar Cipher:
 ATTACK = BUUBDL and DEFEND = EFGFOE

Broken by checking patterns! don't need the key!

Second approach: hide the message

- What does it mean?
- Hide the full message only?
- Hide every letter of the message?
- What if the ciphertext reveals the frequency of the alphabets in the plaintext?
- Dangerous: May be enough to find out if the army will attack or defend?
- Hide *everything* about the message: all possible functions of the message.
 - Good starting point but impossible! Something about the message may already be known!
 - (E.g., it is in English, starts with "Hello" and today's date, etc.)

Third approach: hide everything that is not already known!

- We cannot hide what may be a priori known about the message.
- The ciphertext must hide everything else!
- Adversary should not learn any NEW information about the message after seeing the ciphertext.
- How to capture it mathematically?

Shannon's Treatment

- Messages come from some distribution; let D be a random variable for sampling the messages from the message space \mathcal{M} .
- ullet Distribution D is known to the adversary. This captures $a\ priori$ information about the messages.
- The ciphertext $c = \mathsf{Enc}(m, k)$ depends on:
 - \bullet m chosen according to D
 - k is chosen randomly (according to KG)
 - Enc may also use some randomness
 - These induce a distribution C over the ciphertexts c.
- The adversary only observes c (for some $m \stackrel{D}{\leftarrow} \mathcal{M}$ and $k \stackrel{\mathsf{KG}}{\leftarrow} \mathcal{K}$, but m, k themselves)

Shannon's Treatment (continued)

- Knowledge about m before observing the output of C is captured by: D
- Knowledge about m after observing the output of C is captured by: D|C
- Shannon secrecy: distribution D and D|C must be identical.
- Intuitively, this means that:

C contains **no NEW information** about m

...in the standard sense of information theory.

Shannon Secrecy

Definition (Shannon Secrecy)

A cipher $(\mathcal{M}, \mathcal{K}, \mathsf{KG}, \mathsf{Enc}, \mathsf{Dec})$ is **Shannon secure w.r.t** a **distribution** D over \mathcal{M} if for all $m' \in \mathcal{M}$ and for all c,

$$\Pr\left[m \leftarrow D : m = m'\right] = \\ \Pr\left[k \leftarrow \mathsf{KG}, m \leftarrow D : m = m' | \mathsf{Enc}(m, k) = c\right]$$

It is Shannon secure if it is Shannon secure w.r.t. all distributions D over \mathcal{M} .

Questions?

Perfect Secrecy

- Suppose you have two messages: $m_1 \in \mathcal{M}$ and $m_2 \in \mathcal{M}$.
- What is the distribution of ciphertexts for m_1 ?

$$C_1 := \{k \leftarrow \mathsf{KG}, \text{ output } \mathsf{Enc}(m_1, k)\}$$

• Likewise, for m_2 , the ciphertext distribution is:

$$C_2 := \{k \leftarrow \mathsf{KG}, \text{ output } \mathsf{Enc}(m_2, k)\}$$

- Perfect secrecy:
 - C_1 and C_2 must be identical for every pair of m_1, m_2 .
 - \Rightarrow Ciphertexts are independent of the plaintext(s)!

Perfect Secrecy (conitinued)

Definition (Perfect Secrecy)

Scheme $(\mathcal{M}, \mathcal{K}, \mathsf{KG}, \mathsf{Enc}, \mathsf{Dec})$ is **perfectly secure** for every pair of messages m_1, m_2 in \mathcal{M} and for all c,

$$\Pr\left[k \leftarrow \mathsf{KG} : \mathsf{Enc}(m_1, k) = c\right] = \Pr\left[k \leftarrow \mathsf{KG} : \mathsf{Enc}(m_2, k) = c\right]$$

- So much simpler than Shannon Secrecy!
- No mention of distributions, a priori or posteriori.
- Much easier to work with...

Which notion is better?

- OK, so we have two definitions: perfect secrecy and Shannon secrecy.
- Both of them intuitively seem to guarantee great security!
- Is one better than the other?
- If our intuition is right, shouldn't they offer "same level" of security?

Equivalence Theorem

Theorem (Equivalence Theorem)

A private-key encryption scheme is perfectly secure if and only if it is Shannon secure.

Proof: Simplifying Notation

- We drop KG and D when clear from context.
- $\operatorname{Enc}_k(m)$ will be shorthand for $\operatorname{Enc}(m,k)$
- For example:
 - $\Pr_m[\ldots]$ means $\Pr[m \leftarrow D : \ldots]$
 - $\Pr_k[\ldots]$ means $\Pr[k \leftarrow \mathsf{KG}:\ldots]$
 - $\Pr_{k,m}[\ldots]$ means $\Pr[k \leftarrow \mathsf{KG}, m \leftarrow D : \ldots]$

Proof: Perfect Secrecy \Rightarrow Shannon Secrecy

Given: $\forall (m_1, m_2) \in \mathcal{M} \times \mathcal{M}$ and every $c \in \mathcal{C}$:

$$\Pr_k[\mathsf{Enc}_k(m_1) = c] = \Pr_k[\mathsf{Enc}_k(m_2) = c]$$

Show: for every D over \mathcal{M} , $m' \in \mathcal{M}$, and $c \in \mathcal{C}$:

$$\Pr_{k,m}[m=m'|\mathsf{Enc}_k(m)=c]=\Pr_m[m=m']$$

Proof: Perfect Secrecy \Rightarrow Shannon Secrecy (continued)

$$\begin{aligned} \text{L.H.S.} &= & \Pr_{k,m}[m = m' | \mathsf{Enc}_k(m) = c] \\ &= & \frac{\Pr_{k,m}[m = m' \ \cap \ \mathsf{Enc}_k(m) = c]}{\Pr_{k,m}[\mathsf{Enc}_k(m) = c]} \\ &= & \frac{\Pr_{k,m}[m = m' \ \cap \ \mathsf{Enc}_k(m') = c]}{\Pr_{k,m}[\mathsf{Enc}_k(m) = c]} \\ &= & \frac{\Pr_{m}[m = m'] \cdot \Pr_{k}[\mathsf{Enc}_k(m') = c]}{\Pr_{k,m}[\mathsf{Enc}_k(m) = c]} \\ &= & \text{R.H.S.} \ \times \ \frac{\Pr_{k}[\mathsf{Enc}_k(m') = c]}{\Pr_{k,m}[\mathsf{Enc}_k(m') = c]} \end{aligned}$$

Proof: Perfect Secrecy ⇒ Shannon Secrecy (continued)

Show:

$$\frac{\Pr_k[\mathsf{Enc}_k(m') = c]}{\Pr_{k,m}[\mathsf{Enc}_k(m) = c]} = 1$$

Proof:

$$\begin{split} \Pr_{k,m}[\mathsf{Enc}_k(m) = c] &= \sum_{m'' \in \mathcal{M}} \Pr_m[m = m''] \Pr_k[\mathsf{Enc}_k(m'') = c] \\ &= \sum_{m'' \in \mathcal{M}} \Pr_m[m = m''] \Pr_k[\mathsf{Enc}_k(\underline{m'}) = c] \\ &= \Pr_k[\mathsf{Enc}_k(m') = c] \cdot \sum_{\underline{m'' \in \mathcal{M}}} \Pr_m[m = m''] \\ &= \Pr_k[\mathsf{Enc}_k(m') = c] \times 1. \quad \text{(QED)} \end{split}$$

Proof: Perfect Secrecy \Leftarrow Shannon Secrecy

We have to show: $\forall (m_1, m_2) \in \mathcal{M} \times \mathcal{M}$ and $\forall c$:

$$\Pr_k[\mathsf{Enc}_k(m_1) = c] = \Pr_k[\mathsf{Enc}_k(m_2) = c]$$

Fix any m_1, m_2, c as above.

Let D be the uniform distribution over $\{m_1, m_2\}$ so that:

$$\Pr_{m}[m = m_1] = \Pr_{m}[m = m_2] = 1/2.$$

By definition, the scheme is Shannon secure w.r.t. this D. Therefore,

$$\begin{array}{lcl} \Pr_{k,m}[m=m_1|\mathsf{Enc}_k(m)=c] & = & \Pr_{m}[m=m_1], \ \ \mathrm{and} \\ \Pr_{k,m}[m=m_2|\mathsf{Enc}_k(m)=c] & = & \Pr_{m}[m=m_2] \end{array}$$

Proof: Perfect Secrecy ← Shannon Secrecy (continued)

Therefore:
$$\Pr_{k,m}[m=m_1|\mathsf{Enc}_k(m)=c]=\Pr_{k,m}[m=m_2|\mathsf{Enc}_k(m)=c]$$

Consider the LHS:

$$\begin{split} \Pr_{k,m}[m = m_1 | \mathsf{Enc}_k(m) = c] &= \frac{\Pr_{k,m}[m = m_1 \ \cap \ \mathsf{Enc}_k(m) = c]}{\Pr_{k,m}[\mathsf{Enc}_k(m) = c]} \\ &= \frac{\Pr_m[m = m_1] \cdot \Pr_k \mathsf{Enc}_k(m_1) = c]}{\Pr_{k,m}[\mathsf{Enc}_k(m) = c]} \\ &= \frac{\frac{1}{2} \cdot \Pr_k \mathsf{Enc}_k(m_1) = c]}{\Pr_{k,m}[\mathsf{Enc}_k(m) = c]} \end{split}$$

Likewise, the RHS is:

$$\Pr_{k,m}[m = m_2 | \operatorname{Enc}_k(m) = c] = \frac{\frac{1}{2} \cdot \Pr_k \operatorname{Enc}_k(m_2) = c]}{\Pr_{k,m}[\operatorname{Enc}_k(m) = c]}$$

Cancel and rearrange. (QED)

Should we go over this proof again?

The One Time Pad: A perfect secure scheme

- Let n be an integer = length of the plaintext messages.
- Message space $\mathcal{M} := \{0,1\}^n$ (bit-strings of length n)
- Key space $\mathcal{K} := \{0,1\}^n$ (keys too are length n bit-strings)
- The key is as long as the message
- The algorithms are:
 - KG: samples a key uniformly at random $k \leftarrow \{0,1\}^n$
 - Enc(m, k): XOR bit-by-bit, Let $m = m_1 m_2 \dots m_n$ and $k = k_1 k_2 \dots k_n$; Output $c = c_1 c_2 \dots c_n$ where $c_i = m_i \oplus k_i$ for every $i \in [n]$.
 - Dec(c, k): XOR bit-by-bit. Return m where $m_i = c_i \oplus k_i$ for every i.

Perfect Security of OTP

Theorem (Perfect security of OTP)

One Time Pad is a perfectly secure private-key encryption scheme.

- Let $a \oplus b$ for n-bit strings a, b mean bit-wise XOR.
- Then: $\operatorname{Enc}(m,k) = m \oplus k$ and $\operatorname{Dec}(c,k) = c \oplus k$.
- Ciphertext space is $\mathcal{C} := \{0,1\}^n$. Correctness: straightforward.
- Perfect secrecy: fix any $m \in \{0,1\}^n$ and $c \in \{0,1\}^n$.

$$\begin{split} \Pr_k[\mathsf{Enc}_k(m) = c] &= & \Pr[m \oplus k = c] \\ &= & \Pr[k = m \oplus c] = 2^{-n}. \\ \Pr_k[\mathsf{Enc}_k(m) = c] &= & 0 \quad (\forall c \notin \{0,1\}^n) \end{split}$$

$$\Rightarrow \forall (m_1, m_2) \in \{0, 1\}^{n \times n} \text{ and } \forall c :$$

$$\Pr_k[\mathsf{Enc}_k(m_1) = c] = \Pr_k[\mathsf{Enc}_k(m_2) = c]. \quad (QED)$$

Some Remarks

- The One Time Pad (OTP) scheme is also known as the **Vernam** Cipher.
- The Caesar Cipher is just OTP for 1-alphabet messages!
- Mathematically:
 - XOR is the same as addition modulo 2:
 - $a+b \mod 2$.
 - Caesar Cipher for 1-alphabet is addition modulo 26.
 - You can work modulo any number n
- As the name suggests, one key can be used only once.
- The key must be:
 - sampled uniformly every time, and
 - be as long as the message.

Key Length in Perfectly Secure Encryption

- If the key has to be as long as the message, it is a serious problem!
- Imagine encrypting your machine's hard drive with a OTP...
 - 80 GB long key to encrypt 80 GB data
 - 80 GB space to store this key in a safe place (other than your hard drive)
 - Key for OTP is uniform, so it cannot be compressed either!
 - This is never done in practice...
- OTP looks naïve, quite elementary: can't we design a more sophisticated scheme with shorter keys?

Shannon's Theorem

Theorem (Shannon's Theorem)

For every perfectly secure cipher (Enc, Dec) with message space \mathcal{M} and key space \mathcal{K} , it holds that $|\mathcal{K}| \ge |\mathcal{M}|$.

Some Remarks:

- Message length is $n = \lg |\mathcal{M}|$ and key length is $\ell = \lg |\mathcal{K}|$.
- It follows that $\ell \ge n$, i.e., keys must be as long as the messages.

Shannon's Theorem

Theorem (Shannon's Theorem)

For every perfectly secure cipher (Enc, Dec) with message space \mathcal{M} and key space \mathcal{K} , it holds that $|\mathcal{K}| \ge |\mathcal{M}|$.

Proof:

- Assume the contrary: i.e., $|\mathcal{K}| < |\mathcal{M}|$
- Fix any message m_0 , and any key k_0 . Let

$$c_0 = \operatorname{Enc}(m_0, k_0).$$

$$\implies Pr_k[\operatorname{Enc}(m_0, k) = c_0] > 0. \tag{1}$$

• What happens if we decrypt c_0 with each key one by one? We get a set of messages, which we denote by:

$$S = \{ \mathsf{Dec}(c_0, k) : k \in \mathcal{K} \}.$$

• Note that $|S| \leq |\mathcal{K}|$ and $|\mathcal{K}| < |\mathcal{M}|$.

$$\implies |S| < |\mathcal{M}|.$$

Proof continued..

- This means, there exists a message $m_1 \in \mathcal{M}$ such that $m_1 \notin S$.
- What happens if we encrypt m_1 with a key $k \in \mathcal{K}$?
- Since $m_1 \notin S$, by definition:

$$\forall k \in \mathcal{K} : \operatorname{Enc}(m_1, k) \neq c_0.$$

$$\Longrightarrow \Pr_k[\operatorname{Enc}(m_1, k) = c_0] = 0. \tag{2}$$

• Therefore, there exist m_0, m_1, c_0 such that:

$$\Pr_k[\mathsf{Enc}(m_0,k)=c_0] \neq \Pr_k[\mathsf{Enc}(m_1,k)=c_0].$$

• This contradicts perfect secrecy. (QED)

Exercise: Reusing OTP

- What could go wrong if you re-use a OTP anyway?
- If we could re-use then we could encrypt longer messages with shorter keys.
- Simply break the message in shorter parts.
- Therefore, by Shannon's Theorem, the resulting scheme will not be perfectly secure.
- Even worse it will be open to the frequency attack! (just like Vigènere Cipher)
- In fact, lots of neat examples where reusing OTP leaks clear patterns.
- Can you construct such examples?

Back to Key Length in Perfect Secrecy

- Shannon's Theorem on key length is pretty bad news for perfect ciphers.
- It means we really have to give up on perfect secrecy for practical applications, unless we absolutely need it.
- This is really the dawn of modern cryptography: we want to construct something that is "just as good for practical purposes."

- The modern approach focuses on what computers can do efficiently.
- For example, if we have a short, efficient computer program, which generates large "random looking" strings, we can use this program to generate strings that look like a OTP key.
- This is really what we will try to do we will build some theory in the next few lectures and return to this issue again.
- In the next class, we will review notions of "efficient computation" and define what is called a "one way function."