
SAME
 SHIFT

INCONSISTENT

CHANGE

ADD

CONSISTENT

CHANGE

SUBTRACT

Figure 1: The relationship among evolution patterns

1. MODEL OF CLONE GENEALOGY
To study clone evolution structurally and semantically rather
than quantitatively, we defined a model of clone genealogy.
The genealogy of code clones describes how groups of code
clones change over multiple versions of a program. In a
clone’s genealogy, the origin of a group to which the clone
belongs is traced to the previous version. The model as-
sociates related clone groups that have originated from the
same ancestor clone group. In addition, the genealogy con-
tains information about how each element in a group of
clones has changed with respect to other elements in the
same group.

We wrote our model in the Alloy modeling language [?] to
check whether several evolution patterns can describe all
possible changes to a clone group and to clarify the rela-
tionship among evolution patterns. (Our entire model is
available on the web [?].)

The basic unit in our model is a Code Snippet, which has
two attributes, Text and Location. Text is an internal repre-
sentation of code that a clone detector uses to compare code
snippets. For example, when using CCFinder [?], text is a
parametrized token sequence, whereas when using CloneDr

[?], text is an isomorphic AST. A Location is used to trace
code snippets across multiple versions of a program; thus,
every code snippet in a particular version of a program has a
unique location. To determine how much the text of a code
snippet has changed across versions, we define a TextSimi-
larity function that measures the text similarity between two
texts t1 and t2 (0 ≤ TextSimilarity(t1, t2) ≤ 1). To trace a
code snippet across versions, we define a LocationOverlap-
ping function that measures how much two locations l1 and
l2 overlap each other (0 ≤ LocationOverlapping(l1, l2) ≤ 1).
A Clone Group is a set of code snippets with identical text.
CG.text is a syntactic sugar for the text of any code snippet
in a clone group CG. A Cloning Relationship is defined be-
tween two clone groups CG1 and CG2 if and only if TextSim-
ilarity(CG1.text,CG2.text) ≥ simth, where simth is a con-
stant between 0 and 1. An Evolution Pattern is defined be-
tween an old clone group OG in the k − 1th version and a
new clone group NG in the kth version such that there exists
a cloning relationship between NG and OG.

We defined several evolution patterns that describe all pos-
sible changes to a clone group. The relationship among evo-
lution patterns is shown in the Venn diagram in Figure 1.

• Same: all code snippets in NG did not change from
OG.

A

B

A

B

D

C

A

B

D

C

C

V
i
 V
i+1
 V
i+2
 V
i+3

A

B

D

Clone Group

Code Snippet

Location Overlapping

Relationship

Consistent Change
Add
 Inconsistent Change

Subtract

Evolution Patterns

A

D

V
i+4

Subtract

Figure 2: An example clone lineage

TextSimilarity(NG.text,OG.text) = 1
all cn:CodeSnippet | some co:CodeSnippet | cn in NG ⇒
co in OG && LocationOverlapping(cn,co) = 1
all co:CodeSnippet | some cn:CodeSnippet | co in OG ⇒
cn in NG && LocationOverlapping(cn,co) = 1

• Add: at least one code snippet in NG is a newly added
one. For example, programmers added a new code
snippet to NG by copying an old code snippet in OG.
TextSimilarity(NG.text,OG.text) ≥ simth

some cn:CodeSnippet | all co:CodeSnippet | co in OG ⇒
cn in NG && LocationOverlapping(cn,co) = 0

• Subtract: at least one code snippet in OG does not
appear in NG. For example, programmers refactored
or removed a code clone.
TextSimilarity(NG.text,OG.text) ≥ simth

some co:CodeSnippet | all cn:CodeSnippet | cn in NG ⇒
co in OG && LocationOverlapping(cn,co) = 0

• Consistent Change: all code snippets in OG have changed
consistently; thus they belong to NG together. For
example, programmers applied the same change con-
sistently to all code clones in OG.
simth ≤TextSimilarity(NG.text,OG.text)< 1
all co:CodeSnippet | some cn:CodeSnippet | co in OG ⇒
cn in NG && LocationOverlapping(cn,co) > 0

• Inconsistent Change: at least one code snippet in OG

changed inconsistently; thus it does not belong to NG

anymore. For example, a programmer forgot to change
one code snippet in OG.
simth ≤TextSimilarity(NG.text,OG.text)< 1
some co:CodeSnippet | all cn:CodeSnippet | cn in NG ⇒
co in OG && LocationOverlapping(cn,co) = 0

• Shift: at least one code snippet in NG partially over-
laps with at least one code snippet in OG.1

TextSimilarity(NG.text,OG.text) = 1
some cn:CodeSnippet | some co:CodeSnippet | cn in NG
&& co in OG && (1 >LocationOverlapping(cn,co) > 0)

1This unintuitive pattern was found when we used Alloy to
check whether the combination of patterns can describe all
possible changes to a clone group.

Consistent Change
Add
 Inconsistent Change

& Subtract

Subtract

A

B

A

B

D

C

A

B

D

C

A

B

D

A

D

F

G

E

F

G

F

G

H

A

B

A

B

D

C

A

B

D

C

A

B

D

A

D

F

G

E

F

G

F

G

H

V
i
 V
i+1
 V
i+2
 V
i+3

V
i+4

Subtract & Add

Inconsistent Change

& Subtract

Add &

Consistent Change

Figure 3: An example clone genealogy

A Clone Lineage is a directed acyclic graph that describes the
evolution history of a sink node (clone group). In a clone
lineage, a clone group in the kth version is connected by an
evolution pattern from a clone group in the k − 1th version.
For example, Figure 2 shows a clone lineage including Add,
Subtract, Consistent Change, and Inconsistent Change. In
the figure, code snippets with the same text are filled with
the same color.

A Clone Genealogy is a set of clone lineages that have orig-
inated from the same clone group. A clone genealogy is a
connected component where every clone group is connected
by at least one evolution pattern.2 A clone genealogy ap-
proximates how programmers create, propagate, and evolve
code clones. For example, Figure 3 shows a clone genealogy
that comprises two clone lineages.

2. ALLOY CODE
module clonelineage

open std/ord

sig Text{}

fun similarhigh (t1:Text,t2:Text) {

t1=t2 // exactly the same

}

fun similar (t1:Text,t2:Text) {

#OrdPrevs(t1) = # OrdPrevs(t2) +1 ||

#OrdPrevs(t2) = #OrdPrevs(t1)+1 // similar

}

fun notsimilar (t1:Text, t2:Text) {

! similarhigh(t1,t2) &&

!similar(t1,t2) // not similar

}

//test functions

run similarhigh for 3

run similar for 3

run notsimilar for 3

sig Location{}

fun overlaphigh (o1:Location,o2:Location) {

2A clone genealogy is a connected component in the sense
that there exists an undirected path for every pair of clone
groups. Although a clone genealogy is often an inverted tree
in practice, it is a connected component in theory because
the in-degree of a new clone group can be greater than one
when it is ambiguous to determine the most likely origin of
a new clone group.

o1=o2 // exactly the same location

}

fun overlap (o1:Location,o2:Location) {

#OrdPrevs(o1) = # OrdPrevs(o2) +1

|| #OrdPrevs(o2) = #OrdPrevs(o1)+1

// partially overlap

}

fun notoverlap (o1:Location, o2:Location) {

! overlaphigh(o1,o2) &&

!overlap(o1,o2) // does not overlap at all

}

// test functions

run overlaphigh for 3

run overlap for 3

run notoverlap for 3

// code is identified with its text and its location

sig Code{

text: Text,

location: Location

}

// clone group is a set of code with the same text.

// within a clone group,

// every code has a unique location.

sig Group{

group: set Code

}{

all c1,c2:Code |

c1 in group && c2 in group

=> c1.text = c2.text

group > 1

all disj c1,c2:Code |

c1 in group && c2 in group

=> c1.location!=c2.location

}

// clone relationship is defined between

// one clone group in a old version and

// one clone groiup in a new version.

sig Relationship {

new : Group,

old : Group

}{

new!=old

}

// clone genealogy is a graph which describes

// evolution of a code snippet. this graph

// is a direct graph where all nodes are

// connected by at least one edge if edges

// are present.

sig Genealogy {

nodes : set Group,

edges : set Relationship

}{

#nodes >0

#nodes>1 => (nodes = edges.new+edges.old)

}

fun testlineage () {

Genealogy= univ[Genealogy]

}

// evolution patterns

fun SAME (r:Relationship){

similarhigh(r.new.group.text,r.old.group.text)

all csn:Code | some cso:Code |

csn in r.new.group => cso in r.old.group &&

overlaphigh(csn.location,cso.location)

all cso:Code | some csn:Code |

cso in r.old.group => csn in r.new.group &&

overlaphigh(csn.location,cso.location)

}

//run SAME for 5

fun SHIFT (r:Relationship) {

similarhigh(r.new.group.text,r.old.group.text)

some csn:Code | some cso:Code |

csn in r.new.group && cso in r.old.group &&

overlap(csn.location,cso.location)

}

//run SHIFT for 5

fun ADD (r:Relationship) {

(similarhigh(r.new.group.text, r.old.group.text) ||

similar(r.new.group.text,r.old.group.text))

some csn:Code | all cso:Code |

cso in r.old.group => csn in r.new.group &&

notoverlap(csn.location,cso.location)

}

//run ADD for 5

fun SUBTRACT(r:Relationship) {

(similarhigh(r.new.group.text, r.old.group.text) ||

similar(r.new.group.text,r.old.group.text))

some cso:Code | all csn:Code |

csn in r.new.group => cso in r.old.group &&

notoverlap(csn.location,cso.location)

}

//run SUBTRACT for 5

fun CONSISTENT(r:Relationship) {

similar(r.new.group.text,r.old.group.text)

all cso:Code | some csn:Code |

cso in r.old.group => csn in r.new.group && (

overlap(csn.location,cso.location) ||

overlaphigh(csn.location,cso.location))

}

//run CONSISTENT for 5

fun INCONSISTENT(r:Relationship) {

similar(r.new.group.text,r.old.group.text)

some cso:Code | all csn:Code |

csn in r.new.group => cso in r.old.group &&

notoverlap(csn.location,cso.location)

}

//run INCONSISTENT for 5

assert ALL_EXHAUSTIVE {

all r:Relationship |

!notsimilar(r.new.group.text,r.old.group.text) =>

ADD(r)|| SHIFT(r) || SAME(r) ||

SUBTRACT(r) || CONSISTENT(r) || INCONSISTENT(r)

}

//check ALL_EXHAUSTIVE for 5

//proved true

assert SAME_IN_SHIFT {

all r:Relationship | SAME(r) => SHIFT(r)

}

//check SAME_IN_SHIFT for 5

assert SHIFT_IN_SAME {

all r:Relationship | SHIFT(r) => SAME(r)

}

//check SHIFT_IN_SAME for 5

fun SHIFT_AND_SAME (r:Relationship) {

SHIFT(r) && SAME(r)

}

//run SHIFT_AND_SAME for 5

assert INCONSISTENT_IN_SUBTRACT {

all r:Relationship | INCONSISTENT(r)

=> SUBTRACT(r)

}

//check INCONSISTENT_IN_SUBTRACT for 5

