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Software evolution plays an ever-increasing 
role in software development 
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Motivating Scenarios 

• “This program worked a month ago but is not 
working now.  What changed since then? Which 
change led to a bug?”

• “Did Bob implement the intended changes correctly?” 

• “There’s a merge conflict. What did Alice change?”
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Diff Output

- public class CmiRegistry implements 
NameService {
+ public class CmiRegistry extends 
AbsRegistry implements NameService {
-    private int port = ... 
-    private String host = null 
-    public void setPort (int p) {
-       if (TraceCarol. isDebug()) { ...
-       }
-     }
-     public int getPort() {
-       return port;
-      }
-     public void setHost(String host) 
{ ....
   ...

Changed Code 
File Name Status Lines

DummyRegistry New 20 lines

AbsRegistry New 133 lines

JRMPRegistry Modified 123 lines

JeremieRegistry Modified 52 lines

JacORBCosNaming Modified 133 lines

IIOPCosNaming Modified 50 lines

CmiRegistry Modified 39 lines

NameService Modified 197 lines

NameServiceManager Modified 15 lines

Total Change:  9 files, 723 lines
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Check-In Comment

“Common methods go in an abstract class. Easier to 
extend/maintain/fix”

Changed Code 
File Name Status Lines

DummyRegistry New 20 lines

AbsRegistry New 133 lines

JRMPRegistry Modified 123 lines

JeremieRegistry Modified 52 lines

JacORBCosNaming Modified 133 lines

IIOPCosNaming Modified 50 lines

CmiRegistry Modified 39 lines

NameService Modified 197 lines

NameServiceManager Modified 15 lines

Total Change:  9 files, 723 lines

Why did all these files change together?
Is anything missing in this change?
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Diff

•Low-level

Natural Language 
Description 

(Check-In Comment)

•Often incomplete
•Difficult to trace back to 
code changes

Limitations
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Research Question

How do we automatically extract the 
differences between two versions into a 
concise and meaningful program change 
representation?
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Research Question

•Help programmers reason about code changes at a high level
• Enable researchers to study software evolution better 

How do we automatically extract the 
differences between two versions into a 
concise and meaningful program change 
representation?
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Example Output

All draw methods take an additional int input argument.

All setHost methods in Service’s subclasses deleted 
calls to SQL library except NameService class.
...

Concise
Easy to note inconsistent changes
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Systematic Changes

“Move related classes from one package to another package”

• Refactoring [Opdyke 92, Griswold 92, Fowler 99...]
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“Update an API and all call sites of the API”

Systematic Changes

• Refactoring [Opdyke 92, Griswold 92, Fowler 99...]

• API update [Chow&Notkin 96, Henkel&Diwan 05, 
Dig&Johnson 05...]
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“Adding logging feature throughout code”

Systematic Changes

• Refactoring [Opdyke 92, Griswold 92, Fowler 99...]

• API update [Chow&Notkin 96, Henkel&Diwan 05, 
Dig&Johnson 05...]

• Crosscutting concerns [Kiczales et. al. 97, Tarr et. al. 99, 
Griswold 01...]
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“Apply similar changes to syntactically similar code fragments”

Systematic Changes

• Refactoring [Opdyke 92, Griswold 92, Fowler 99...]

• API update [Chow&Notkin 96, Henkel&Diwan 05, 
Dig&Johnson 05...]

• Crosscutting concerns [Kiczales et. al. 97, Tarr et. al. 99, 
Griswold 01...]

• Consistent updates on code clones [Miller&Myers 02, 
Toomim et. al. 04, Kim et. al. 05] 
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Analyses of Software Evolution
- Evolution of Code Clones

Automatic Inference of 
High-Level Change Descriptions

- Rule-based Change Representations 
- Rule Learning Algorithms

V1 V2

∆

Thesis Overview

High-level changes are often systematic at 
a code level 
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Outline

• Empirical Analyses of Code Clone Evolution [ISESE 
04, ESEC/FSE 05]

• Automatic Inference of High-Level Change 
Descriptions 

• Changes to API Names and Signatures [ICSE 07]

• Changes to Code Elements and Structural 
Dependencies

• Future Directions
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Code Clones

public void updateFrom (Class c) {
String cType = Util.makeType(c.Name
());
if (seenClasses.contain(cType)) {

return;
}
seenClasses.add(cType);
if (hierarchy!=null) {

....
}
...

public void updateFrom (ClassReader c) {
String cType = CTD.convertType
(c.Name());
if (seenClasses.contain(cType)) {

return;
}
seenClasses.add(cType);
if (hierarchy!=null) {

....
}
...

Code clones are syntactically similar code fragments 

Found by a clone detector, CCFinder [Kamiya et al. 2002]
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Conventional Wisdom about 
Code Clones

public void updateFrom (Class c) {
String cType = Util.makeType(c.Name
());
if (seenClasses.contain(cType)) {

return;
}
seenClasses.add(cType);
if (hierarchy!=null) {

....
}
...

public void updateFrom (ClassReader c) {
String cType = CTD.convertType
(c.Name());
if (seenClasses.contain(cType)) {

return;
}
seenClasses.add(cType);
if (hierarchy!=null) {

....
}
...

 “Code clones must be aggressively refactored because they 
indicate poor software quality.” 

[Fowler 00, Beck 00, Nickell & Smith 03 ... ]  

Found by a clone detector, CCFinder [Kamiya et al. 2002]
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A Study of Copy and Paste 
Programming Practices at IBM

• To understand programmers’ copy and paste coding 
behavior,  I built an Eclipse plug-in that 
records edits and replays the captured edits   

• Programmers often create and manage code 
clones with clear intent

[Kim et al. ISESE 2004]

*
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An Empirical Study of Code 
Clone Genealogies

• I developed an approach that automatically 
reconstructs the history of code clones from a 
source code repository

• I studied clone evolution in two Java open source 
projects, carol and dnsjava 

[Kim et al. ESEC/FSE 2005]

*
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Clone Genealogy

Clone genealogy is a representation that captures clone change 
patterns over a sequence of program versions

A

B

A

B

C

D

A

B

C

D

A

B

D

ADD CONSISTENT_
CHANGE

INCONSISTENT_
CHANGE

Version i Version i+1 Version i+2 Version i+3

20



21



Contradicting Evidence to 
Conventional Wisdom

example

• Many clones are short-lived, diverging clones   

• 48-72% of clone genealogies lasted less than 8 check-ins 
out of over 160 check-ins

• 26-34% of these clones disappeared due to divergent 
changes

• Refactoring cannot remove many long-lived clones

• 65-73% of long-lived, consistently changing clones are not 
easy to refactor using standard refactoring techniques 
[Folwer 00] 
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Summary of 
Studies on Code Clones

By focusing on the evolutionary aspects of 
clones, I found 

• Clones are inevitable parts of software evolution
• Refactoring may not be applicable to or beneficial 

for many code clones

My studies shifted research efforts from automatic clone detection 
to code clone management support (e.g., [Duala-Ekoko & Robillard 
07, Krinke 07, Aversano et al. 07, Lozano et al. 07, etc.])

23



Outline

• Empirical Analyses of Code Clone Evolution 

• Automatic Inference of High-Level Change 
Descriptions 

• Changes to API Names and Signatures 

• Changes to Code Elements and Structural 
Dependencies 

• Future Directions
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Time

P P’

Code Element

Motivation: 
Code Evolution Analyses
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Time

P P’

Code Element

Research Question

 “How do we automatically match corresponding code elements 
between two program versions?”
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Existing Approaches

diff, Syntactic Diff (CDiff), Semantic Diff, JDiff, 
BMAT, origin analysis, refactoring 
reconstruction tools, clone detectors, etc.

Individually compare code elements
 at particular granularities
 using similarity measures

[Kim et al. MSR 2006]
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P P’

Limitations of Existing 
Approaches
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Bar.Bar()

Bar.mC(int)

Foo.mA()

Foo.mB()

Foo.mC()
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Boo.mB(long)

Bar.Bar()

Bar.mC(int)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(long)

Boo.mA(int)

Boo.mB(int)

P P’

Limitations of Existing 
Approaches
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Bar.Bar()

Bar.mC(int)

Foo.mA()

Foo.mB()

Foo.mC()

Boo.mA(long)

Boo.mB(long)

Bar.Bar()

Bar.mC(int)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(long)

Boo.mA(int)

Boo.mB(int)

P P’

Limitations of Existing 
Approaches
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P P’

Limitation 1. 
Poor Conciseness

Output is an unstructured, usually lengthy list of matches 
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Bar.Bar()

Bar.mC(int)

Foo.mA()

Foo.mB()

Foo.mC()

Boo.mA(long)

Boo.mB(long)

Bar.Bar()

Bar.mC(int)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(long)

Boo.mA(int)

Boo.mB(int)

P P’

Difficult to spot inconsistent changes

Limitation 2. 
Hard to Identify Exception
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Bar.Bar()

Bar.mC(int)

Foo.mA()

Foo.mB()

Foo.mC()

Boo.mA(long)

Boo.mB(long)

Bar.Bar()

Bar.mC(int)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(long)

Boo.mA(int)

Boo.mB(int)

P P’

Difficult to disambiguate among many potential matches

Limitation 3. 
Low Recall
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What is the Core Question?

Given two program versions (P, P’), 
with respect to a particular vocabulary of changes, 

find changes from P to P’
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Example Change

Factory.createChart()
Factory.createBarChart()
...
Factory.createPieChart()
Factory.createLineChart()

Factory.createChart(int)
Factory.createBarChart(int)
...
Factory.createPieChart()
Factory.createLineChart(int)

P P’

“Add int input argument to all chart creation APIs”
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• Our change-rules can concisely describe a set 
of related API-level changes. 

• Our tool automatically infers a set of change 
rules between two versions of a program.  

[Kim et al. ICSE 2007]

Our Rule-based Matching 
Approach
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Change-Rule Syntax

.

P P’

FOR ALL x:method-header IN 
scope 

transformation(x)
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Scope

• We use a regular expression to denote a set of 
methods 

e.g. chart.Factory.create*Chart(*) 
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API-Level Transformations

• Replace the name of package, class, and method

• Replace the return type

• Modify the input signature, etc.   
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Example Change-Rule

Factory.createChart()
Factory.createBarChart()
...
Factory.createPieChart()
Factory.createLineChart()

Factory.createChart(int)
Factory.createBarChart(int)
...
Factory.createPieChart()
Factory.createLineChart(int)

P P’

FOR ALL x:method-header IN 
Factory.create*Chart(*)

argAppend(x, [int])
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Example Change-Rule

.

Factory.createChart()
Factory.createBarChart()
...
Factory.createPieChart()
Factory.createLineChart()

Factory.createChart(int)
Factory.createBarChart(int)
...
Factory.createPieChart()
Factory.createLineChart(int)

P P’

FOR ALL x:method-header IN 
Factory.create*Chart(*)

argAppend(x, [int])
except {Factory.createPieChart()}
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Algorithm Overview

Input: two versions of a program

Output: a set of change-rules 

1. Generate seed matches

2. Generate candidate rules by generalizing seed 
matches

3. Evaluate and select candidate rules 
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Step 1: Generate Seed Matches

• Seed matches provide hints about likely changes.

• We generate seeds based on textual similarity 
between two method headers. 

• Seed matches need not be all correct matches.

Textual 
similarity: 0.75 ..

Foo.getBar(int)
Foo.getBar(bool)
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Step 2: Generate Candidate Rules
Given a seed match, 
[Foo.getBar(int), Boo.getBar(long)]

Transformations = {
replaceArg(x, int, long)
replaceClass(x, Foo, Boo)}

Scopes = {*.*(*), Foo.*(*), ..., 
 *.get*(*), *.*Bar(*), ... ,
 Foo.get*(int),... }

Candidate Rules = { 
 FOR ALL x IN *.*(*)
replaceArg(x, int, long),

 FOR ALL x IN Foo.*(*)
replaceClass(x, Foo, Boo), ...,

 FOR ALL x IN *.*(*)
replaceArg(x, int, long) AND
replaceClass(x, Foo, Boo)

... }

• Compare x and y and 
reverse engineer a set of 
transformations, T. 

• Based on x, guess a set of 
scopes, S.

• Generate candidate rules 
for each pair in S × 
PowerSet(T). 

For each seed [x, y]
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Step 3: Evaluate and Select Rules 

• Greedily select a small subset of candidate rules that 
explain a large number of matches. 

• In each iteration

• evaluate all candidate rules 

• select a valid rule with the most number of 
matches   

• exclude the matched methods from the set of 
remaining unmatched methods

• Repeat until no rule can find any additional matches.
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Optimizations

• We create and evaluate rules on demand 

1. Candidate rules have subsumption structure   
e.g.,     *.*.*(*Axis)    ⊂    *.*.*(*)

2. The nature of greedy algorithm

• Running time:  a few seconds (usual check-ins),  
average 7 minutes (releases)

*
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Comparative Evaluation

• 3 other tools [Xing and Stroulia 05] 
[Weißgerber and Diehl 06] [S. Kim, Pan, and 
Whitehead 05]

• Evaluation data set (E)

• Precision
(|M ∩ E| / |M|)

• Recall 
(|M ∩ E| / |E|) 

• Conciseness 
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Comparison: Recall & Precision

programs
Other’s 
Recall 

Our 
Recall

Other’s 
Prec. 

Our
Prec.

[Xing & 
Stroulia 05]

jfreechart
18 releases 92% 98% 99% 97%

[Weissgerber 
& Diehl 06]

jEdit
2715 check-ins 72% 96% 93% 98%

Tomcat
5096 check-ins 82% 89% 89% 93%

 [Kim, Pan & 
Whitehead 05]

jEdit
1189 check-ins 70% 96% 98% 96%

ArgoUML
4683 check-ins 82% 95% 98% 94%

*
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Comparison: Recall & Precision

programs
Other’s 
Recall 

Our 
Recall

Other’s 
Prec. 

Our
Prec.

[Xing & 
Stroulia 05]

jfreechart
18 releases 92% 98% 99% 97%

[Weissgerber 
& Diehl 06]

jEdit
2715 check-ins 72% 96% 93% 98%

Tomcat
5096 check-ins 82% 89% 89% 93%

 [Kim, Pan & 
Whitehead 05]

jEdit
1189 check-ins 70% 96% 98% 96%

ArgoUML
4683 check-ins 82% 95% 98% 94%

Precision: 93-98%
Recall: 89-98%

6-26% higher recall with roughly the 
same precision 
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Comparison: Conciseness

programs Other’s Results 
Our 

Results
Our Improvement

[Xing & 
Stroulia 05]

jfreechart
18 releases

4004 
refactorings

939
rules

77% decrease in 
size

[Weissgerber 
& Diehl 06]

jEdit
2715 check-ins

1218 
refactorings

906
rules

26% decrease in 
size

Tomcat
5096 check-ins

2700
refactorings

1033 
rules

62% decrease in 
size

 [Kim, Pan & 
Whitehead 05]

jEdit
1189 check-ins

1430 
matches

1119
rules

22% decrease in 
size

ArgoUML
4683 check-ins

3819
matches

2127
rules

44% decrease in 
size

*
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Comparison: Conciseness

programs Other’s Results 
Our 

Results
Our Improvement

[Xing & 
Stroulia 05]

jfreechart
18 releases

4004 
refactorings

939
rules

77% decrease in 
size

[Weissgerber 
& Diehl 06]

jEdit
2715 check-ins

1218 
refactorings

906
rules

26% decrease in 
size

Tomcat
5096 check-ins

2700
refactorings

1033 
rules

62% decrease in 
size

 [Kim, Pan & 
Whitehead 05]

jEdit
1189 check-ins

1430 
matches

1119
rules

22% decrease in 
size

ArgoUML
4683 check-ins

3819
matches

2127
rules

44% decrease in 
size

22-77% reduction in the size of 
matching results
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Summary of 
Code Matching

• Our change-rules concisely capture API-level 
changes and identify anomalies to systematic 
changes

• By inferring such rules, we find method-header level 
matches with high recall and precision 
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Outline

• Empirical Analyses of Code Clone Evolution 

• Automatic Inference of High-Level Change 
Descriptions 

• Changes to API name and signature 

• Changes to Code Elements and Structural 
Dependencies (Logical Structural Diff)

• Future Directions
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Research Question

 “What is a concise change representation beyond API-level 
refactorings?”

public class CmiRegistry implements 
NameService {

    public void setPort (int p) {
     ...
-    SQL.exec(query) 
+    SafeSQL.exec(query) 

     }

    }
   ...

public class JacORB implements NameService 
{
    public void setPort (int p) {
-       if (TraceCarol. isDebug()) {
     ...
-    SQL.exec(query) 
+    SafeSQL.exec(query) 

     }

    ...

public class LmiRegistry extends 
AbsRegistry implements NameService {
-    private int port = ... 
-    private String host = null 
     public void setPort (int p) {
     ...
-    SQL.exec(query) 
+    SafeSQL.exec(query) 
     }
     public int getPort() {
       return port;
     }
     public void setHost(String host)
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Logical Structural Diff

Abstraction
Level 

Code elements and structural dependencies
(package, type, method, field, 

overriding, subtyping, method call, field access, and containment)

Scope Conjunctive logic literal

Transformation 
Structural differences

Account for changes in method-bodies as well as at a field level

Example Rule

past_method(m,t)^
past_subtype(“Factory”,t)^
past_calls(m,“render()”) 
=> added_calls(m, “Util.log()”)
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Logical Structural Diff 
Algorithm

1. Extract a set of facts from a program using JQuery 
[ Jensen & DeVolder 03] 

2. Compute fact-level differences 

3. Learn Datalog rules using an inductive logic 
programming algorithm 

Output: logic rules and facts that describe changes to 
code elements and structural dependencies

Detail Steps
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Logical Structural Diff Output

• “All setHost methods in Service’s subclasses in the old 
version deleted calls to SQL.exec except the setHost 
method in the NameSvc class. 

past_subtype(“Service”, t) ∧ 
past_method(m, “setHost”, t)
⇒ deleted calls(m, “SQL.exec”) 
except t=“NameSvc”
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Quantitative Assessment of 
LSDiff

• 75% of fact-level differences are explained by 
rules.

• vs. fact-level delta: 9.3 times more concise

• vs. fact-level delta: 9.7 additional contextual facts

• vs. Diff: on average 7 rules and 27 facts for 997 
lines of changes across 16 files

*
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Focus Group Study

• Pre-screener survey

• Participants: five professional software engineers 

• industry experience ranging from 6 to over 30 years 

• use diff and diff-based version control system daily

• review code changes daily except one who did weekly 

• One hour structured discussion 

• I worked as a moderator. We also had a note-taker 
transcribe the discussion. Discussion was audio-taped 
and transcribed.
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http://www.cs.washington.edu/homes/miryung/LSDiff/carol429-430.htm

Focus Group Hands-On Trial

Overview

61
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http://www.cs.washington.edu/homes/miryung/LSDiff/carol429-430.htm

Focus Group Hands-On Trial

Show related changes 

62
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“You can’t infer the intent of a programmer, 
but this is pretty close.”

“This ‘except’ thing is great!”

Focus-Group Participants’ 
Comments

*

“This is cool. I’d use it if we had one.”

“This is a definitely winner tool.”
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“This looks great for big architectural changes, but I 
wonder what it would give you if you had lots of random 

changes.”

“This will look for relationships that do not exist.”

Focus-Group Participants’ 
Comments

*

“This wouldn’t be used if you were just working with one 
file.”
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Summary of 
Logical Structural Diff

• We extended our rule-based approach to infer 
systematic changes within method bodies

• LSDiff produces 9.3 times more concise results by 
identifying 75% of structural differences as systematic 
changes 

• LSDiff complements diff

• by grouping systematic structural differences

• by detecting potential missed updates. 
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Outline

• Empirical Analyses of Code Clone Evolution 

• Automatic Inference of High-Level Change 
Descriptions 

• Changes to API name and signature 

• Changes to Structural Dependencies 

• Future Directions

66



Next Steps

• Present change-rules as English sentences

• Develop higher-order representations

• Use change-rules to improve regression testing

• Search program changes of interests in a source 
code repository by evaluating  programmer-
provided rules
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• Changes in models, requirements, and run-time behavior 

• Use change history to help programmers make decisions 

• “When and how should I refactor my program?”

My long-term vision is to help programmers  
by making software change a first class entity
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Analyses of Software Evolution

Contributions

Automatic Inference of 
High-Level Change Descriptions

V1 V2

∆
• Rule-based change representations 
• Rule learning algorithms 

• Disproving conventional wisdom about clones
• Insights into systematicness of high-level 
changes
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Questions?
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Details of Study at IBM

direct 
observation

observation using 
logger and replayer

Subjects researchers and summer students at IBM T.J. Watson

No. of 
subjects 4 5

Hours about 10 hours about 50 hours 
(about 300+ hours of edit logs)

Interviews questions asked during 
observation

twice after analysis
(30 mins - 1 hour / each)

Programming
Languages Java, C++, and Jython Java
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1. Capture Edit 
Operations from IDE

2. Replay and 
Reconstruct Editing 

Context

3. Semi-Structured 
Interviews

4. Create a Taxonomy of  
Copy&Paste Patterns
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*

• 460 copy and paste instances

Copy and Paste Study Details

2.2. Logger and Replayer 
 

The logger efficiently records the minimal 

information required to reconstruct document changes 

performed by a programmer. We developed the logger 

by extending the text editor of the Eclipse IDE ![5] and 

instrumenting text editing operations. It records the 

initial contents of all documents opened in the 

workbench and logs changes in the documents. It 

records the type of editing operations, the file names of 

edited documents, the range of selected text, and the 

length and offset of text entries, as well as editing 

operations such as copy, cut, paste, delete, undo, and 

redo. It also captures document changes triggered by 

other automated operations such as refactoring and 

organizing import statements.  

The replayer plays back the changes made to the 

document using the low level editing events captured 

by the logger. It displays documents and highlights 

document changes and selected text. It has a few 

controls such as play, stop, and jump. Whereas 

videotape analysis of coding behavior normally takes 

10 times as long as the actual coding,
1
 we only spent 

0.5 to 1 times as long as the actual coding to analyze 

the data by using the instrumented text editor and the 

replayer.  

 

2.3. Analysis  
 

By replaying the editing logs, we documented 

individual instances of C&P operations. An instance 

consists of one copy (or cut) operation followed by one 

or more paste operations of the copied (or cut) text. It 

also includes modifications performed on the original 

text or the cloned text. We categorized each instance 

with a focus on the procedural steps and the syntactic 

units of copied (or cut) content, such as types, 

identifiers, blocks, and methods.  

Since we observed multiple C&P instances that 

share similar editing steps, we generalized the editing 

procedures to identify C&P usage patterns. For 

example, one frequent C&P pattern was to change the 

name of a variable repeatedly. The renaming procedure 

consists of selecting a variable, copying the variable, 

optionally searching for the variable n times, and 

pasting the variable n times (where n is the number of 

appearances of the variable within its scope).  

For each generalized C&P procedure, we inferred 

the associated programmer’s intention. Inferring a 

programmer’s intention was often straightforward. For 

example, “changing the name of a variable 

                                                           
1
 Personal communication with J. Karat, a user study expert. 

consistently” is the intention associated with the 

renaming pattern described earlier.  

For each C&P instance, we also noted the 

relationship between a copied code snippet and code 

elsewhere in the code base. In addition, we analyzed 

the evolutionary aspect of C&P instances by observing 

how duplicated code fragments were maintained and 

changed during our study.  

After producing detailed notes for each C&P 

instance, we met with subjects to confirm our 

interpretation of their C&P tasks.  Then we built a 

taxonomy of C&P operations by grouping related C&P 

instances together and hypothesizing C&P usage 

patterns from the grouped notes using an affinity 

process ![4]. In total, 460 C&P instances were analyzed.  

 

2.4. Statistics  
 

In this section, we present simple statistics about 

C&P usage patterns that we observed. With the 

instrumented editor, we observed 460 C&P instances. 

We measured the frequency of C&P instances for each 

observation session (i.e. the number of C&P instances 

per hour). The average number of C&P instances per 

hour is 16 instances per hour and the median is 12 

instances per hour. 

In order to understand how often C&P operations of 

different size occurred, we grouped C&P instances into 

four different syntactical units and counted them 

(Figure 1). About 74% of C&P instances fall into the 

category of copying text less than a single line such as 

a variable name, a type name or a method name. In 

these cases, we believe that copying was performed to 

save typing. However, about 25% of C&P instances 

involved copying and pasting a block or a method. We 

believe that copying in this category often creates 

structural clones and reflects design decisions in a 

program. When we multiply this percentage (25%) by 

the average 16 instances per hour, it means that a 

programmer produces four non-trivial C&P 

dependencies per hour on average.  
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Figure 1. Distribution of C&P instances by different 
syntactic units  
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Two Java Open Source Projects

Program Carol Dnsjava

LOC 7878 ~ 23731 5756 ~ 21188

Duration 2 years 2 months 5 years 8 months

Check-Ins 164 905

*
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Short-Lived Clones
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Figure 4: The average lifetime of k-volatile clone
genealogies

6.2 Volatile Clones

To understand how long clones survive in the systems,
we measured the age of a clone genealogy—how many ver-
sions (generations) a genealogy spans. In our analysis, we
classified genealogies in two groups, dead genealogies that
do not include clone groups of the final version and alive
genealogies that include clone groups of the final version.
We differentiate a dead genealogy from an alive genealogy
because the age of a dead genealogy provides information
about how long clones stayed in the system before they dis-
appeared. On the other hand, for an alive genealogy, we
cannot tell how long its clones will survive because they are
still evolving. At the end point of our analysis, in carol, out
of 109 clone genealogies, 53 of them are dead and 56 of them
are alive. In dnsjava, out of 125 clone genealogies, 107 of
them are dead and 18 of them are alive.

To reason about how long genealogies survived in terms
of absolute time as well as in the number of versions used
in our analysis, we define k-volatile genealogies and measure
the average lifetime of k-volatile genealogies. k-volatile ge-
nealogies are clone genealogies that have disappeared within
k versions, i.e., k-volatile genealogies = {g|g is a dead ge-
nealogy and 0 ≤ g.age ≤ k}. Figure 4 shows the average
lifetime of k-volatile genealogies in the number of check-ins
(left axis) and the number of days (right axis). Let f(k) be
the number of genealogies with the age k and fdead(k) be the
number of dead genealogies with the age k. CDFdead(k) is
a cumulative distribution function of fdead(k) and it means
the ratio of k-volatile genealogies among all dead genealo-
gies. Let Rvolatile(k) be the ratio of k-volatile genealogies
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Figure 5: CDFdead(k) and Rvolatile(k) of carol and dns-
java

among all genealogies in the system.

CDFdead(k) =

Pk
i=0 fdead(i)

Pn
i=0 fdead(i)

(1)

Rvolatile(k) =

Pk
i=0 fdead(i)

Pn
i=0 f(i)

(2)

Figure 5 presents CDFdead(k) and Rvolatile(k) for carol and
dnsjava. In carol, 37% of all genealogies (75% of dead ge-
nealogies) have disappeared within 5 versions, and 39% of
all genealogies (79% of dead genealogies) have disappeared
within 10 versions. When we interpret these data in the
number of check-ins or in the number of days by referring
to Figure 4, they mean that 37% of all genealogies lasted
an average of 9.6 check-ins and 41.7 days and 39% lasted an
average of 10.8 checkins and 45.6 days during the evolution
period of 164 check-ins and 800 days in carol.

In dnsjava, 31% of all genealogies (36% of dead genealo-
gies) have disappeared within 5 versions, and 41% of all ge-
nealogies (48% of dead genealogies) have disappeared within
10 versions. These data mean that 31% of all genealogies
lasted an average of 1.48 check-ins and 1.48 days and 41%
lasted an average of 7.35 check-ins and 11.05 days during the
evolution period of 905 check-ins and 2051 days in dnsjava.

So in both systems, a large number of clones were volatile.
The large extent of volatile clones suggests that a substan-
tial amount of the work done by a developer applying a
strategy of aggressive, immediate refactoring may not be
cost-effective. When we manually inspected all dead lin-
eages, we found that 26% (carol) to 34% (dnsjava) of them
were discontinued because of divergent changes in the clone
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Figure 4: The average lifetime of k-volatile clone
genealogies

6.2 Volatile Clones

To understand how long clones survive in the systems,
we measured the age of a clone genealogy—how many ver-
sions (generations) a genealogy spans. In our analysis, we
classified genealogies in two groups, dead genealogies that
do not include clone groups of the final version and alive
genealogies that include clone groups of the final version.
We differentiate a dead genealogy from an alive genealogy
because the age of a dead genealogy provides information
about how long clones stayed in the system before they dis-
appeared. On the other hand, for an alive genealogy, we
cannot tell how long its clones will survive because they are
still evolving. At the end point of our analysis, in carol, out
of 109 clone genealogies, 53 of them are dead and 56 of them
are alive. In dnsjava, out of 125 clone genealogies, 107 of
them are dead and 18 of them are alive.

To reason about how long genealogies survived in terms
of absolute time as well as in the number of versions used
in our analysis, we define k-volatile genealogies and measure
the average lifetime of k-volatile genealogies. k-volatile ge-
nealogies are clone genealogies that have disappeared within
k versions, i.e., k-volatile genealogies = {g|g is a dead ge-
nealogy and 0 ≤ g.age ≤ k}. Figure 4 shows the average
lifetime of k-volatile genealogies in the number of check-ins
(left axis) and the number of days (right axis). Let f(k) be
the number of genealogies with the age k and fdead(k) be the
number of dead genealogies with the age k. CDFdead(k) is
a cumulative distribution function of fdead(k) and it means
the ratio of k-volatile genealogies among all dead genealo-
gies. Let Rvolatile(k) be the ratio of k-volatile genealogies
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Figure 5: CDFdead(k) and Rvolatile(k) of carol and dns-
java

among all genealogies in the system.

CDFdead(k) =

Pk
i=0 fdead(i)

Pn
i=0 fdead(i)

(1)

Rvolatile(k) =

Pk
i=0 fdead(i)

Pn
i=0 f(i)

(2)

Figure 5 presents CDFdead(k) and Rvolatile(k) for carol and
dnsjava. In carol, 37% of all genealogies (75% of dead ge-
nealogies) have disappeared within 5 versions, and 39% of
all genealogies (79% of dead genealogies) have disappeared
within 10 versions. When we interpret these data in the
number of check-ins or in the number of days by referring
to Figure 4, they mean that 37% of all genealogies lasted
an average of 9.6 check-ins and 41.7 days and 39% lasted an
average of 10.8 checkins and 45.6 days during the evolution
period of 164 check-ins and 800 days in carol.

In dnsjava, 31% of all genealogies (36% of dead genealo-
gies) have disappeared within 5 versions, and 41% of all ge-
nealogies (48% of dead genealogies) have disappeared within
10 versions. These data mean that 31% of all genealogies
lasted an average of 1.48 check-ins and 1.48 days and 41%
lasted an average of 7.35 check-ins and 11.05 days during the
evolution period of 905 check-ins and 2051 days in dnsjava.

So in both systems, a large number of clones were volatile.
The large extent of volatile clones suggests that a substan-
tial amount of the work done by a developer applying a
strategy of aggressive, immediate refactoring may not be
cost-effective. When we manually inspected all dead lin-
eages, we found that 26% (carol) to 34% (dnsjava) of them
were discontinued because of divergent changes in the clone
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Why Do Clones Disappear?

Reasons carol dnsjava

Divergent changes 26% 34%

Refactoring or 
removal 67% 45%

Cut off by the 
threshold 7% 21%

Contrary to conventional wisdom, immediate refactoring 
may be unnecessary or counterproductive in some cases.
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Locally Unfactorable Clones
public void exportObject(Remote obj) throws 
RemoteException{ 

if (TraceCarol.isDebugRmiCarol()) {
TraceCarol.debugRmiCarol(
“MultiPRODelegate.exportObject(”... .

}
try {

if (init) {
for (Enumeration e = activePtcls.element(); .. 
((ObjDlgt)e.nextElement()).exportObject
(obj); 
}

}
catch (Exception e) {

String msg =”exportObject(Remote obj) fail”;
TraceCarol.error(msg.e);
throw new RemoteException(msg); 

}

public void unexportObject(Remote obj) throws 
NoSuchObjectException{ 

if (TraceCarol.isDebugRmiCarol()) {
TraceCarol.debugRmiCarol(
“MultiPRODelegate.unexportObject(”... .

}
try {

if (init) {
for (Enumeration e = activePtcls.element(); .. 
((ObjDlgt)e.nextElement()).unexportObject
(obj); 
}

}
catch (Exception e) {

String msg =”unexportObject(Remote obj) 
fail”;
TraceCarol.error(msg.e);
throw new NoSuchObjectException(msg); 

}

Back
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Complexity 

• Candidate rules (CR)

• D* 2^k * T, where k is the max number of 
tokens in a seed, T is the number of 
transformations, and D is the number of 
Java methods in the old version 

• Greedy Algorithm Complexity = D*CR^2
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Rule-based Matching Results 
for Three Release Archives

JFreeChart jHotDraw jEdit

(17 release pairs) (4 release pairs) (4 release pairs)

Precision
Median

(Min ~ Max)

94%
(78~100%)

99%
(82~100%)

93%
(87~95%)

Recall
Median

(Min ~ Max)

93%
(70~100%)

99%
(92~100%)

98%
(95~100%)

M/R ratio
Median

(Min ~ Max)

3.50
(1.20~135.23)

2.54
(1.00~244.26)

1.73
(1.23~2.39)
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Rule-based Matching Results 
for Three Release Archives

Top 20% of the rules find over 55% of the matches.
Top 40% of the rules find over 70% of the matches.  
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Seed Threshold
by 62% in Tomcat. This result shows our approach achieves

better matching coverage while retaining concise results.

We also compared our matches and the matches generated

by WD’s tool. We manually inspected 50 sample check-

ins to estimate precision for the matches missed by one

tool but not the other as well as the matches found by both

tools. For jEdit, our approach found 462 matches not iden-

tified by WD’s RCbest, and RCbest found just over 146

matches that we failed to report. When combined with

the precision, this means our approach found about 430

(=462×0.93) additional useful matches, and their approach
found about 61 (=146×0.42) additional useful matches.
Tomcat shows roughly similar results. WD’s tool missed

many matches when compound transformations were ap-

plied. Our tool missed some matches because γ=0.65 did
not generate enough seeds to find them.

Comparison with S. Kim et al.’s Origin Analysis. For

comparison, both our tool and KPW’s tool were applied

to jEdit and ArgoUML’s check-in snapshots. Table 4 and

5 shows the comparison result (γ=0.65 and ε=0.34). For
jEdit, our approach finds 40% more matches yet reduces

the result size by 22%, and for ArgoUML, it finds 21%more

matches yet reduces the result size by 44%.

We also compared our matches to KPW’s matches and

inspected the matches from 50 sample check-ins to measure

precision. For jEdit, we found over 678 matches not identi-

fied by KPW’s approach, and KPW’s approach found about

99 matches that we did not. When combined with the pre-

cision of sampled matches, this means our approach found

over 600 (=678×0.89) useful matches and that KPW’s ap-
proach found about 75 (=99×0.75) useful matches. Ar-

goUML shows roughly similar results. This result is note-

worthy because KPW’s approach considers more informa-

tion such as calling relationships as well as clone detection

results in addition to name similarity. We suspect that it

is because KPW’s approach cannot accept correct matches

when their overall similarity score is lower than a certain

threshold and cannot easily prune incorrect matches once

their overall similarity score is over a certain threshold and

is higher than other matches. On the other hand, our al-

gorithm tends to reject matches whose transformation is an

isolated incident even if the similarity score is high. Our

tool’s incorrect matches usually come from bad seeds that

coincidentally have similar names. Overall, our approach

findsmorematches without sacrificing its precision and rep-

resents results more concisely than KPW’s approach.

5.3. Impact of Threshold

Seed Threshold. Our results in part depend on the quan-

tity and quality of seeds. Figure 2 shows how our algorithm

behaves when we change the seed generation threshold γ
for JFreechart (0.9.4→0.9.5). We varied γ from 0.9 to 0.5
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Figure 2. Impact of Seed Threshold γ

and measured recall of seeds, precision, recall, and the ratio

of rejected seeds to the total number of seeds. When γ is
set high in the range of 0.9 to 0.8, the name matching tech-

nique finds a relatively small number of seeds, but the seeds

tend to be all good seeds. So our algorithm rejects very few

seeds and leverages the good seeds to quickly reach the re-

call of 0.65 to 0.85. However, the recall is still below 0.85

as the seeds do not contain enough transformations. As γ
decreases, more seeds are produced and a higher percent-

age of them are bad seeds that our algorithm later rejects.

Using a low threshold (< 0.6) generally leads to higher re-

call (above 0.9) but lowers precision and increases the run-

ning time since there are more candidate rules based on bad

seeds. For the results in Figure 2, we observed a roughly lin-

ear increase from 6 minutes (γ=0.9) to 26 minutes (γ=0.5).
In general, when the precision and recall of seed matches

are low, our algorithm improves both measures signifi-

cantly. When the seed matches already have precision and

recall over 0.9, the algorithm still improves both measures,

although less so because the seeds are already very good.

However, even in this case, our algorithm significantly im-

proves the conciseness measure. Effective seed generation

and its interaction with our candidate rule selection algo-

rithm needs additional research.

Exception Threshold. We experimented with different

exception thresholds: 0.25, 0.34, 0.5. Using a low threshold

increases running time and slightly decreases the M/R ratio.

Surprisingly we found that changing exception thresholds

does not affect precision and recall much. We suspect that

it is because most exceptions come from deleted entities.

5.4. Threats to Validity

To measure precision, the first authormanually inspected

the matches generated by our tool and by other tools. Man-

back
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Table 3. Rule-based Matching Results
JFreeChart (www.jfree.org/jfreechart)

The actual release numbers are prefixed with 0.9.

O N O ∩ N Rule Match Prec. Recall M/R Time

4→5 2925 3549 1486 178 1198 0.92 0.92 6.73 21.01

5→6 3549 3580 3540 5 6 1.00 1.00 1.20 <0.01

6→7 3580 4078 3058 23 465 1.00 0.99 20.22 1.04

7→8 4078 4141 0 30 4057 1.00 0.99 135.23 43.06

8→9 4141 4478 3347 187 659 0.91 0.90 3.52 22.84

9→10 4478 4495 4133 88 207 0.99 0.93 2.35 0.96

10→11 4495 4744 4481 5 14 0.79 0.79 2.80 <0.01

11→12 4744 5191 4559 61 113 0.78 0.79 1.85 0.40

12→13 5191 5355 5044 10 145 1.00 0.99 14.50 0.11

13→14 5355 5688 5164 41 134 0.94 0.86 3.27 0.43

14→15 5688 5828 5662 9 21 0.90 0.70 2.33 0.01

15→16 5828 5890 5667 17 77 0.97 0.86 4.53 0.32

16→17 5890 6675 5503 102 285 0.91 0.86 2.79 1.30

17→18 6675 6878 6590 10 61 0.90 1.00 6.10 0.08

18→19 6878 7140 6530 98 324 0.93 0.95 3.31 1.67

19→20 7140 7222 7124 4 14 1.00 1.00 3.50 <0.01

20→21 7222 6596 4454 71 1853 0.99 0.98 26.10 62.99

MED 0.94 0.93 3.50 0.43

MIN 0.78 0.70 1.20 0.00

MAX 1.00 1.00 135.23 62.99

JHotDraw (www.jhotdraw.org)

5.2→5.3 1478 2241 1374 34 82 0.99 0.92 2.41 0.11

5.3→5.41 2241 5250 2063 39 104 0.99 0.98 2.67 0.71

5.41→5.42 5250 5205 5040 17 17 0.82 1.00 1.00 0.07

5.42→6.01 5205 5205 0 19 4641 1.00 1.00 244.26 27.07

MED 0.99 0.99 2.54 0.41

MIN 0.82 0.92 1.00 0.07

MAX 1.00 1.00 244.26 27.07

jEdit (www.jedit.org)

3.0→3.1 3033 3134 2873 41 63 0.87 1.00 1.54 0.13

3.1→3.2 3134 3523 2398 97 232 0.93 0.98 2.39 1.51

3.2→4.0 3523 4064 3214 102 125 0.95 1.00 1.23 0.61

4.0→4.1 4064 4533 3798 89 154 0.88 0.95 1.73 0.90

4.1→4.2 4533 5418 3799 188 334 0.93 0.97 1.78 4.46

MED 0.93 0.98 1.73 1.21

MIN 0.87 0.95 1.23 0.61

MAX 0.95 1.00 2.39 4.46

JHotDraw is a GUI framework for technical and structured

graphics, and jEdit is a cross platform text editor. On aver-

age, release versions were separated by a two-month gap in

JFreeChart and a nine-month gap in JHotDraw and jEdit.

Results. Table 3 summarizes results for the projects

(γ=0.7 and ε=0.34). O andN are the number of methods in

an old version and a new version respectively, and O∩N is

the number of methods whose name and signature did not

change. Running time is described in minutes.

The precision of our tool is generally high in the range of

0.78 to 1.00, and recall is in the range 0.70 to 1.00. The me-

dian precision and the median recall for each set of subjects

is above, often well above, 0.90.

The M/R ratio shows significant variance not only across

the three subjects but also for different release pairs in the

same subject. The low end of the range is at or just over 1

for each subject, representing cases where each rule repre-

sents roughly a single match. The high end of the range

varies from 2.39 (for JEdit) to nearly 244.26 (for JHot-

Draw). We observed, however, that most matches are actu-

ally found by a small portion of rules (recall our algorithm

finds rules in descending order of the number of matches).
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Figure 1. Recall and Precision vs. Percentage

of Found Matches

Figure 1 plots the cumulative distribution of matches for

the version pairs with the median M/R ratio from each of

the three projects. The x axis represents the percentage of

rules found after each iteration, and the y axis represents the

recall and precision of matches found up to each iteration.

In all three cases, the top 20% of the rules find over 55%

of the matches, and the top 40% of the rules find over 70%

of the matches. In addition, as the precision plots show, the

matches found in early iterations tend to be correct matches

evidenced by a general change pattern. The fact that many

matches are explained by a few rules is consistent with the

view that a single conceptual change often involvesmultiple

low level transformations, and it confirms that leveraging an

emergent change structure is a good matching approach.

Our tool handled the major refactorings in the subject

programs quite well. For example, consider the change

from release 4 to 5 of JFreeChart. Although nearly half

of the methods cannot be matched by name, our tool finds

178 rules and 1198matches. The inferred rules indicate that

there were many package-level splits as well as low-level

API changes. As presented below, these kind of changes

are not detected by other tools we analyzed. Examples of

the inferred rules in JFreeChart include:

for all x in chart.*Plot.*(CategoryDataSet)

or chart.*.*(Graph, Rect, Rect2D)

or chart.*.*(Graph, Plot, Rect2D)

argAppend(x, [int])

for all x in int renderer.*.draw*(*, Graph, Rect)

returnReplace(int, AxisState)

5.2. Comparison with Other Approaches

Refactoring reconstruction tools [2, 8, 9, 33, 34] com-

pare two versions of a program and look for code changes

that match a predefined set of refactoring patterns [12].

back
83



Comparison with Textual Delta

diff output LSDiff output

Median Changed 
LOC

Touched 
Files

Rules Facts

Carol
10 check-ins 626 11 5 16

Dnsjava
29 releases 354 9 3 23

Lsdiff
10 versions 227 6 1 8

Total 
(Median) 344 9 2 17

*
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Comparison with ∆FBIn several cases, TD shows some changes but LSD is
empty because LSD does not model differences in comments,
control logic, and temporal logic. For example, the LSD
for dnsjava 0.9.2-0.9.3 is empty because the code change
includes only one added if statement and does not incur
changes in structural dependencies.

Overall, our comparison shows that the more systematic
code changes are, the smaller number of rules and facts
LSDs include. On the other hand, TDs may be scattered
across many files and hunks even if the change is structurally
homogeneous and systematic. We conjecture that LSDs
and TDs can complement each other since LSDs provide
an overview of systematic changes and TDs provide change
details at a line level.
Comparison with Change Description. Programmers
often write check-in comments or update a change log file
to convey their change intentions. To understand how
LSDs and change descriptions complement each other, we
compared LSDs with check-in comments (carol and LSD
tool) and change logs (dnsjava). For this comparison,
we examined and interpreted all LSD rules and facts and
then traced them to corresponding sentences in the change
description. Table 5 shows the comparison results. (It
includes only several versions due to limited space.)

In many cases, although change descriptions hint at
systematic changes, they do not provide much detail. For
example, the check-in comment for carol 62-63—“a new sim-
plified configuration mechanism”—does not indicate which
classes implement the new configuration mechanism. LSD
rules show that CarolConfiguration added many fields to
be used by loadCarolConfiguration, and CarolDefault-

Values deleted all Properties type fields.
In some cases, change comments and LSDs agree on the

same information with a similar level of detail. For example,
in dnsjava 1.0.2-1.1, both the LSD and the change log
describe that sendAsync methods return Object instead of
int. In some other cases, LSDs and change descriptions
discuss different aspects of change; for instance, the change
comments for carol 480-481 refer to email discussions on the
design of new APIs and include code examples while LSD
provides implementation details such as the use of Iterator
instead of Enumeration.

Because change descriptions are free-form, they can con-
tain any kind of information at any level of detail; however,
it is often incomplete or too verbose. More importantly,
it is generally hard to trace back to a program. We believe
that LSDs can complement change descriptions by providing
concrete information that can be traced to code.
Comparison with a Fact-Level Difference (∆FB).
As we discussed in Section 3, although ∆FB represents a
structural difference between two versions, it is verbose and
it does not contain contextual information. Based on the
following three metrics, we measure the benefits of inferring
rules on all three fact-bases instead of using ∆FB.

• Coverage: the percentage of facts in ∆FB explained
by rules, represented as (# of facts matched by rules
/ ∆FB). For example, when 10 rules explain 90 facts
out of 100 facts in ∆FB, the coverage of rules is 90%.

• Conciseness: the measure of how concisely LSD ex-
plains ∆FB, represented as (∆FB / # rules + # facts).
For example, when 4 rules and 16 remaining facts
explain all 100 facts in ∆FB, LSD improves conciseness

Table 6: Comparison with ∆FB
FBo FBn ∆FB Rule Fact Cvrg. Csc. Ad’l.

Carol
Min 3080 3452 15 1 3 59% 2.3 0.0
Max 10746 10610 1812 36 71 98% 27.5 19.0
Med 9615 9635 97 5 16 87% 5.8 4.0
Avg 8913 8959 426 10 20 85% 9.9 5.5

dnsjava
Min 3109 3159 4 0 2 0% 1.0 0.0
Max 7200 7204 1500 36 201 98% 36.1 91.0
Med 4817 5096 168 3 24 88% 4.8 0.0
Avg 5144 5287 340 8 37 73% 8.4 14.9

LSD tool
Min 8315 8500 2 0 2 0% 1.0 0.0
Max 9042 9042 396 6 54 97% 28.9 12.0
Med 8732 8756 142 1 11 91% 9.8 0.0
Avg 8712 8783 172 2 17 68% 11.2 2.3

Med 6650 6712 132 2 17 89% 7.3 0.0
Avg 6632 6732 302 7 27 75% 9.3 9.7

by a factor of 5.

• Additional Information: the measure of how much
additional structural information was extracted from
outside of changed code fragments, represented as (#
facts in FBo and FBn that are mentioned by the
rules but are not contained in ∆FB). For example,
the second rule in Table 2 refers to two additional
facts that are not in ∆FB, subtype(“Car”,“BMW”) and
subtype(“Car”, “GM”).

Table 6 shows the results for the three data sets (m=3,
a=0.75, k=2). On average, the inferred rules cover 75%
of facts in ∆FB and also improve the conciseness measure
by a factor of 9.3. They contain an average of 9.7 additional
facts that are in FBo or FBn but not in ∆FB.
Impact of Input Parameters. The input parameters, m
(the minimum number of facts a rule must match), a (the
minimum accuracy), and k (the maximum number of literals
a rule can have in its antecedent) define which rules should
be considered in the output. To understand how varying
these parameters affect our results, we varied m from 1 to
5, a from 0.5 to 1 with an increment of 0.125, and k from 1
to 2. Table 7 shows the results in terms of average for the
carol data set.

When m is 1, all facts in ∆FB are covered by rules by
definition. As m increases, fewer rules are found and they
cover fewer facts in ∆FB.

As a increases, a smaller proportion of exceptions is
allowed per rule; thus, our algorithm finds more rules each
of which covers a smaller proportion of the facts, decreasing
the conciseness and coverage measures.

Changing k from 1 to 2 allows our algorithm to find more
rules and improves the additional information measure from
0.4 to 5.5 by considering code fragments that are further
away from changed code. With our current tool, we were
not able to experiment with k greater than 2 because the
large rule search space led to a very long running time. In
the future, we plan to explore using Alchemy—a state-of-the-
art first order logic rule learner developed at the University
of Washington [21]—to find rules more efficiently.
Threats to Validity. Although our evaluation provides a
valuable illustration of how LSD can complement existing
uses of textual deltas and change descriptions, our findings
may not generalize to other data sets. We need further
investigations into how LSD results are affected by other
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Impact of Varying Parameters
Table 7: Impact of Varying Input Parameters

Rule Fact Cvrg. Csc. Ad’l. Time(Min)
1 39.6 0 100% 7.4 10.1 2.0
2 14.6 13.1 92% 10.6 7.4 11.2

m 3 9.9 20.4 85% 9.9 5.5 9.1
4 7.7 25.7 82% 9.1 5.4 8.7
5 5.7 30 80% 8.5 3.5 7.8
0.5 11.1 15.6 89% 10.6 2.1 6.8
0.625 9.7 17.2 88% 11.0 4.0 7.3

a 0.75 9.9 20.4 85% 9.9 5.5 9.0
0.875 10.8 24.2 78% 8.6 9.1 12.7
1 13.3 26.2 78% 7.9 12.5 16.5

k 1 7.5 33.8 78% 7.2 0.4 0.7
2 9.9 20.4 85% 9.9 5.5 9.1

factors such as the size of a program and the gap between
program versions. In terms of internal validity, when com-
paring LSDs with textual deltas and change descriptions,
the investigator’s familiarity with LSD rules may have
influenced qualitative assessments. In addition, the rules
found by our algorithm depend on both input parameter
settings and the rule styles supported by our algorithm. We
plan to carry out further investigations to understand what
kinds of systematic changes are frequent yet not captured
by our current algorithm.

6. APPLICATIONS OF LOGICAL STRUC-

TURAL DELTA

Based on example LSDs found in our study, we believe
that LSD can serve as a basis for many tools that can benefit
from explicit logical structure in code change.
Dependency Creation or Removal Checker. When
team leads review a patch, they often wonder whether a new
dependency is unexpectedly introduced or whether existing
dependencies are completely removed as intended. In our
study, we have found many LSD rules that clearly show such
dependency creation and removal; for example, the following
two rules show that all call dependencies to NamingHelper

are newly introduced and that all accesses to JNI.URL in the
old version are completely removed.
current calls(m1,“NamingHelper()”) ⇒ added calls(m1,“Nam-
ingHelper()”)
past accesses(“JNI.URL”, m)⇒deleted accesses(“JNI.URL”, m)
In addition to examining inferred rules, team leads can
manually write and check rules using our tool, as it provides
a rule vocabulary to state a high-level systematic change and
a checker to evaluate a rule.
Identifying Related Changes. Programmers often need
to sort out mixed logical changes because some programmers
commit unrelated changes together. LSDs can help identify
related changes by showing structural dependencies and
further identifying their common characteristics. Consider
dnsjava release 0.6-0.7; there are two added classes, Cache
and CacheResponse, and three added methods in RRSet.
Despite its change comment,“DNS.dns uses Cache,” it is not
clear whether all added code fragments implement the cache
feature. The following rule shows that the three methods are
indeed a part of cache feature because Cache.addRRSet calls
them.
current calls(“Cache.addRRSet”, m)⇒added method(m,“RRset”)
Incomplete Change Detection. We believe that LSD
rules can help programmers identify incomplete change by
noting exceptions to systematic changes. For example, the
following rule found in dnsjava 0.4-0.5 can help programmers

raise a suspicion about why the three rrToWire methods did
not change similarly.
past method(m, “rrToWire”, t)⇒deleted calls(m, “toArray”)
(12 matches, 3 exceptions)

In addition to these tools, many rules found in our evaluation
suggest promises of using LSD to locate crosscutting con-
cerns and to identify high-level refactorings such as pull-up
method, collapse hierarchy, extract superclass, etc. Further-
more, LSD can be also used for mining software repository
research that focuses on code change by complementing
textual deltas and change descriptions.

7. RELATED WORK

Canonical Systematic Change. Several kinds of canon-
ical systematic changes are well understood and studied in
software engineering community, and many have built tools
that automatically identify such systematic changes.

Refactorings are systematic changes that are intended to
preserve program semantics [7]. There are several tools
that automatically infer refactorings by comparing two
program versions. Many of these tools are summarized
elsewhere [17, 18]. While most tools as well as our
previous work [18] focused on simple refactorings such as
renaming, moving, and API signature change, LSD can help
identify high-level refactorings such as extract superclass
by considering structural dependencies. Using LSD for
inferring refactorings has two strengths: (1) Our approach
does not require pre-defined refactoring patterns, which
makes refactoring inference both more flexible and easier,
and (2) it is robust to the situations when refactoring is
incomplete or when it is mixed with other changes.

Crosscutting concerns represent secondary design deci-
sions—for example, performance, error handling, and syn-
chronization—that are generally scattered throughout a
program [16, 27]. Aspect-oriented programming languages
provide language constructs that allow concerns to be
updated in a modular fashion [15]. A number of other
approaches instead leave the crosscutting concerns in a
program while providing mechanisms to manage related
but dispersed code fragments. Griswold’s information
transparency techniques use naming conventions, formatting
styles, and ordering of code in a file to provide indications
about code that should change together [10]. Dagenais et
al. [6] automatically infer structural patterns among the
participants of the same concern and represent such concern
using a rule syntax. The inferred rules were used to trace
concerns over program versions. Breu et al. [3] mine aspects
from version history by grouping method calls that are
added together.

Code clones—code snippets that are syntactically or se-
mantically similar—often change similarly; consistent main-
tenance of code clones is another kind of systematic change.
Simultaneous editing [24] and linked editing [28] provide a
programmer with mechanisms to characterize similar code
fragments and to edit them with a single stream of editing
commands. In our clone genealogy analysis [19], we built a
tool that automatically identifies several types of systematic
changes on clones (e.g., consistent update, inconsistent
update) and studied clone evolution.
Code Change Analysis. Several approaches represent the
difference between two versions as a set of atomic changes
to allow for more semantic analysis on code change. Change
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LSDiff Rule Styles

Rule Styles
High-level Change 

Patterns
Example

past_* => deleted_*
dependency removal, feature 

deletion, etc. 
past_calls(m, “DB.exec”) ⇒
deleted_calls(m, “DB.exec”)

past_* => added_*
consistent updates to clones, 

etc. 
past_accesses( “Log.on”, m)⇒
added_calls(m, “Log.trace”)

current_* => added_*
dependency addition, feature 

addition, etc.

current_method(m, “getHost”, t)∧ 
current_subtype(“Svc”, t) ⇒   
added_calls(m, “Log.trace”)

deleted_* => added_*
added_* => deleted_*

related code change, API 
replacement, etc. 

deleted_method(m, “getHost”, t) ⇒
added_inheritedfield(“getHost”, 
“Svc”,t)

Horn Clause:  A(x) ∧ B(x,y) ∧ C(y) ⇒ D(x,y)
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Step 1. Extract Facts

class GM extends Car

   void run(int c) {

      if (Util.flag)...

      bob();}

}

type(“GM”)

subtype(“Car”,”GM”)

method(“GM.run”,“run”,“GM”)

accesses(”Util.flag”,”GM.run”)

calls(“GM.run”,”GM.bob”)

GM Car

run bob

flag

subtype

contains
calls

accesses

Program Fact-base

A fact-base program representation approach has been used by many tools such as 
JQuery [Jensen&DeVolder 03], CodeQuest [Hajiev et. al. 06 ], Grok [Holt et. al.] , etc.
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Step 2. Compute 
Fact-Level Differences 

=

Old Program (FBo) New Program (FBn) Differences (∆FB)

-

set difference

added_method
(“exec”,”X”)
added_method
(“exec”,”Y”)
added_method
(“exec”,”Z”)

method
(“exec”,”X”)
method
(“exec”,”Y”)
...

subtype
(“Svc”,”X”)
...

subtype
(“Svc”,”X”)
subtype
(“Svc”,”Y”)
subtype
(“Svc”,”Z”)
subtype
(“Svc”,”NameSvc
”)

past_* current_* added_* / deleted_*
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Step 3. Learn Rules

• Our rule learner uses a bounded depth search 
algorithm that finds Datalog rules in a domain 
specific form.   

• We have input parameters that determine the 
validity of a rule. 

• a: accuracy 

• m: min support 

Example. 
past_calls (x, “foo”) 
  => deleted_calls(x, “foo”)  
(8/10) a = 0.80, m=8, k=1.  
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R := {} // a set of ungrounded rules. 

D := reduced ΔFB using default winnowing rules 
L := {} // a set of valid learned rules. 

for each antecedent size, i = 0...k : 
    R := extend all rules in R by adding all 

    possible literals.  

    for each ungrounded rule, r: 
         for each possible grounded rule g of r: 

             if (g is valid) L:= L ∪ g. 

    R := select the best β rules in R.   
     D := D - { facts covered by L}
         

Step 3. Learn Rules

Back
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 Change Rule Selection 
Problem

Setting: Suppose that there exist a domain M = {m1, m2, ...mp},
a codomain N = {n1, n2, ...nq}, and
a set S of sets= {s1, s2, s3, ...sn}, where each set si is a set of tuples that

form a functional binary relation from a domain M ′ to a codomain N where
M ′ ⊂ M .

Definition: A set si has a conflict (a, b) with a set sj if (a, b) ∈ si and
(a, b′) ∈ sj where b #= b′.

Problem: Given S and e (0 < e < 1), find a solution c, where c ⊂ S and
each set si in c has at most e × |si| conflicts with other sets in c.

A solution o is an optimal solution if o covers the maximum number of
elements in M among all solutions and if o has the minimum cardinality
among the solutions that cover the same maximum number of elements in
M .

Question: Suppose that the greedy algorithm outputs g, while the opti-
mal solution is o. What is the size of M ’s elements covered by g in relation
to M ’s elements covered by o? What is |g| in relation to |o|?

1
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Limitation of Commutable 
Change Rules  

Foo.mA()

Foo.mB()

Foo.mC()

Bar.mA()

Bar.mB()

Bar.mCCC()

P P’

Rename class Foo to Bar. 
Rename Bar.mC to Bar.mCCC. 

for all x in Foo.*(*), classReplace(x, Foo, Bar): 2/3 ✘
for all x in Foo.mc(), classReplace(x, Foo, Bar) ^ procReplace(x, mC, mCCC) : 1/1 ✔
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Pros and Cons of Focus-Group 
Study Method

+ A relative short time period to 
coordinate, conduct, analyze a study.  

+ Probing and clarification are easy 

- Recruiting is difficult

- Responses are not independent as it is 
done in a group setting 
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Divergent Change vs. 
Inconsistent Change Pattern

A

B

C

D

A

B

D

INCONSISTENT_
CHANGE

A

B

D

DIVERGENT 
CHANGE

Divergent change means that a clone group does not exist in the next group.  
Inconsistent Change is the same as Divergent Change when a clone group has two 

members. 
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