
Chapter 16
Recommending Program Transformations

Automating Repetitive Software Changes

Miryung Kim and Na Meng

Abstract Adding features and fixing bugs in software often require systematic edits
which are similar but not identical changes to multiple code locations. Finding all
relevant locations and making the correct edits is a tedious and error-prone process.
This chapter presents several state-of-the art approaches to recommending program
transformation in order to automate repetitive software changes. First, it discusses
programming-by-demonstration (PBD) approaches that automate repetitive tasks
by inferring a generalized action script from a user’s recorded actions. Second, it
presents edit location suggestion approaches that only recommend candidate edit
locations but do not apply necessary code transformations. Finally, it describes
program transformation approaches that take code examples or version histories as
input, automatically identify candidate edit locations, and apply context awareness,
customization program transformations to generate a new program version. In par-
ticular, this chapter describes two concrete example-based program transformation
approaches in detail, Sydit and Lase. These two approaches are selected for an
in-depth discussion, because they handle the issue of both recommending change
locations and applying transformations, and they are specifically designed to update
programs as opposed to regular text documents. The chapter is then concluded with
open issues and challenges of recommending program transformations.

16.1 Introduction

Recent work observes that software evolution often requires systematic and repet-
itive changes. Developers apply similar but not identical changes to different
contexts [23, 24, 34, 45]. Nguyen et al. [45] find that 17 to 45 % of bug fixes are
recurring fixes that involve similar changes to numerous methods. Another class of
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systematic changes occur when application programming interface (API) evolution
requires all the clients to update their code [17] or when developers refactor code
to improve its internal structure. Cross-system bug fixes happen frequently among
forked software products such as FreeBSD, NetBSD, and OpenBSD, despite the
limited overlap of contributors [6, 54]. Manual application of systematic changes is
tedious and error-prone. Developers must find all required change locations, rewrite
those locations manually, and test the modifications. A failure to systematically
extend software may lead to costly errors of omissions and logical inconsistencies.

For example, Fig. 16.1 shows a systematic change example drawn from revisions
to org.eclipse.debug.core on 2006-10-05 and 2006-11-06, respectively. The
unchanged code is shown in black, additions in blue with a blue“C,” and deletions
in red with a red“�.” Consider methods mA and mB: getLaunchConfigurations
(ILaunchConfigurationType) and getLaunchConfigurations(IProject).
These methods iterate over elements received by calling getAllLaunchConfig

urations(), process the elements one by one, and add it to a predefined list when
an element meets a certain condition.

Suppose that Pat intends to apply similar changes to mA and mB. In mA, Pat wants
to move the declaration of variable config out of the while loop and to add code
to process config, as shown in lines 5 and 7–11 in mA. Pat wants to perform a
similar edit to mB, but on the cfg variable instead of config. This example typifies
systematic edits. Such similar yet not identical edits to multiple methods cannot be
applied using existing refactoring engines in integrated development environment,
because they change the semantics of a program. Even though these two program
changes are similar, without assistance, Pat must manually edit both methods, which
is tedious and error-prone.

Existing source transformation tools automate repetitive changes by requiring
developers to prescribe the changes in a formal syntax. For example, TXL [8] is a
programming language designed for software analysis and source transformation. It
requires users to specify a programming language’s structure (i.e., syntax tree) and a
set of transformation rules. TXL then automatically transforms any program written
in the target language according to the rules. These tools can handle nontrivial
semantics-modifying changes, such as inserting a null-check before dereferencing
an object. However, it requires developers to have a good command of language
syntax and script programming [3, 4, 19].

Refactoring engines in IDEs automate many predefined semantics-preserving
transformations. When performing a refactoring task (e.g., rename method), devel-
opers only need to decide the refactoring type and provide all necessary information
(e.g., the old and new name of the method) as input to enable the transformation.
Then the refactoring engines automatically check predefined constraints to ensure
that the transformation preserves semantics before actually making the transfor-
mation. Although some tools allow developers to define new refactoring types,
specifying refactoring preconditions and code transformation from scratch is time
consuming and error-prone.

Existing interactive text-editing approaches, such as a search-and-replace feature
of a text editor, can help developers look for edit locations based on keywords or
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1 public ILaunchConfiguration[] getLaunchConfigurations
2 (ILaunchConfigurationType type) throws CoreException {
3 Iterator iter = getAllLaunchConfigurations().iterator();
4 List configs = new ArrayList();
5 + ILaunchConfiguration config = null;
6 while (iter.hasNext()) {
7 - ILaunchConfiguration config = (ILaunchConfiguration)iter.next

();
8 + config = (ILaunchConfiguration)iter.next();
9 + if (!config.inValid()) {

10 + config.reset();
11 + }
12 if (config.getType().equals(type)) {
13 configs.add(config);
14 }
15 }
16 return (ILaunchConfiguration[])configs.toArray
17 (new ILaunchConfiguration[configs.size()]);
18 }

a

1 protected List getLaunchConfigurations(IProject project) {
2 Iterator iter = getAllLaunchConfigurations().iterator();
3 + ILaunchConfiguration cfg = null;
4 List cfgs = new ArrayList();
5 while (iter.hasNext()) {
6 - ILaunchConfiguration cfg = (ILaunchConfiguration)iter.next();
7 + cfg = (ILaunchConfiguration)iter.next();
8 + if (!cfg.inValid()) {
9 + cfg.reset();

10 + }
11 IFile file = cfg.getFile();
12 if (file != null && file.getProject().equals(project)) {
13 cfgs.add(cfg);
14 }
15 }
16 return cfgs;
17 }

b

Fig. 16.1 Systematic edit from revisions of org.eclipse.debug.core [37]. (a) mAo to mAn.
(b) mBo to mBn

regular expressions, and apply edits by replacing the matching text at each location
with user-specified text. These approaches treat programs as plain text. Therefore,
they cannot handle nontrivial program transformations that require analysis of
program syntax or semantics.

This chapter presents several state-of-the art approaches that overcome these
limitations by leveraging user-specified change examples. First, it discusses
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programming-by-demonstration (PBD) approaches that automate repetitive tasks
by inferring a generalized action script from a user’s recorded actions. However,
these PBD approaches are not suitable for updating code as they are designed for
regular text. Second, it presents edit location suggestion approaches that stop at only
recommending candidate locations but do not apply necessary code transformations.
Thus these approaches still require programmers to edit code manually. Finally, it
describes program transformation approaches that take code change examples
as input, automatically identify candidate edit locations and also apply context-
aware, customized program transformations to generate a new program version. In
particular, this chapter describes two concrete techniques in detail, Sydit [36, 37]
and Lase [38]. We chose to describe these two in detail because Lase has the most
advanced edit capability among the techniques that handle both issues of finding
edit locations and applying transformation and Sydit is the predecessor of Lase.

Given an exemplar edit, Sydit generates a context-aware, abstract edit script,
and then applies the edit script to new program locations specified by the user.
Evaluations show that Sydit is effective in automating program transformation.
However, the tool depends on the user to specify edit locations.

Lase addresses this problem by learning edit scripts from multiple examples as
opposed to a single example [38]. Lase (1) creates context-aware edit scripts from
two or more examples, uses these scripts to (2) automatically identify edit locations
and to (3) transform the code. Evaluation shows that Lase can identify edit locations
with high precision and recall.

There are several open issues and remaining challenges in recommending
program transformations based on examples. First, it is currently difficult for
developers to view recommended program transformations, especially when the rec-
ommendation spans across multiple locations in the program. Second, it is difficult
for developers to check correctness of the recommended program transformations,
because none of the existing techniques provide additional support for validating
recommended edits. Third, the granularity of program transformations is limited to
intra-function or intra-method edits at large, making it difficult to apply high-level
transformations such as modifications to class hierarchies and method signatures.
Finally, existing techniques are limited to automating homogeneous, repetitive edits,
but leave it to developers to coordinate heterogeneous edits.

16.2 Motivation

Software Evolution Often Requires Systematic Changes. This insight arises
from numerous other research efforts, primarily within the domain of crosscutting
concerns and refactorings. Crosscutting concerns represent design decisions that are
generally scattered throughout a program such as performance, error handling, and
synchronization [21, 59]. Modifications to these design decisions involve similar
changes to every occurrence of the design decision. Refactoring is the process
of improving internal software structure in ways that do not alter its external
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behavior. Refactoring often consists of one or more elementary transformations,
such as “moving the print method in each Document subclass to its superclass” or
“introducing three abstract visit* methods.” Another class of systematic changes
occur when the evolution of an application programming interface (API) requires all
API clients to update their API usage code [17], though the details can vary from
location to location [19]. A recent study of bug fixes shows that a considerable
portion of bug fixes (17–45 %) are actually recurring fixes that involve similar
edits [45]. Another study on code changes finds that on average 75 % of changes
share similar structural-dependence characteristics, e.g., invoking the same method
or accessing the same data field [23]. These studies indicate that systematic code
updates are common and often unavoidable.

Manual Implementation of Systematic Changes Is Tedious and Error-Prone.
Purushothaman and Perry [53] found that only about 10 % of changes (in one, large
industrial system) involve a single line of code, but even a single line change has
about a 4 % chance of resulting in an error; on the other hand, changes of 500 lines
or more have nearly a 50 % chance of causing at least one defect. Eaddy et al. [11]
find that the more scattered the implementation of a concern is, the more likely
it is to have defects. Murphy-Hill et al. [43] find that almost 90 % of refactorings
are performed manually without the help of automated refactoring tools. These
refactorings are potentially error-prone since they often require coordinated edits
across different parts of a system. Weißgerber and Diehl [64] find that there is an
increase in the number of bugs after refactorings. Kim et al. [22] also find a short-
term increase in the number of bug fixes after API-level rename, move, and signature
change refactorings. Some of these bugs were caused by inconsistent refactorings.
These studies motivate automated tool support for applying systematic edits.

Systematic Changes Are Generally not Semantics-Preserving and They Are
Beyond the Scope and Capability of Existing Refactoring Engines. To inves-
tigate the challenges associated with refactorings, Kim et al. [25] conducted a
survey with professional developers at Microsoft. They sent a survey invitation
to 1,290 engineers whose commit messages include a keyword “refactoring” in
the last 2 years of version histories of five MS products; 328 of them responded
to the survey. More than half of the participants said they carry out refactorings
in the context of bug fixes or feature additions, and these changes are generally
not semantics-preserving transformations. In fact, when developers are asked about
their own definition of refactoring, 46 % of participants did not mention preservation
of semantics, behavior, or functionality at all. During a follow-up interview, some
developers explicitly said, “Strictly speaking, refactoring means that behavior does
not change, but realistically speaking, it usually is done while adding features or
fixing bugs.” Furthermore, over 95 % of participants in the study said that they do
most refactorings manually; 53 % reported that refactorings that they perform do not
match the types and capability of transformations supported by existing refactoring
engines. This motivates a flexible, example-based approach for applying systematic
program transformations.
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16.3 State-of-the Art Approaches to Recommending
Program Transformations

This section describes state-of-the art approaches to recommending program
transformations, compares these approaches using a unified framework, and
discusses their strengths and weaknesses. We first discuss individual approaches and
present comparison results in Tables 16.1–16.3. Table 16.1 shows the comparison of
existing approaches in terms of input, output, edit type, and automation capability.
Table 16.2 describes the comparison of existing approaches in terms of edit
capability: the second column shows whether each technique can handle single
line or multiple-line edits; the third column shows whether each technique handles
a sequence of contiguous edits or non-contiguous edits; the fourth column shows
whether it supports only replication of concrete edits or edits that can be customized
to individual target contexts; and the last column shows whether the technique
models surrounding unchanged code or not. Table 16.3 shows the comparison of
existing approaches, in terms of evaluation subjects, programming languages, data
set size, and assessment methods.

16.3.1 Programming-by-Demonstration

Programming-by-example [30] (PbE) is a software agent-based approach that
infers a generalized action script from a user’s recorded actions. SMARTedit [28]
automates repetitive text edits by learning a series of functions such as “move a
cursor to the end of a line." Like macro recording systems, SMARTedit learns
the program by observing a user performing her or his task. However, unlike
macro-recorders, SMARTedit examines the context in which the user’s actions
are performed and learns programs that work correctly in new contexts. Using a
machine learning concept called version space algebra, SMARTedit is able to learn
useful text-editing after only a small number of demonstrations. Similarly, Visual
AWK [27] allows users to interactively generalize text edits.

Several approaches learn string manipulations or a skeleton of repetitive editing
tasks from examples or demonstrations. For example, the Editing by Example (EBE)
system looks at the input and output behavior of the complete demonstration [47].
EBE synthesizes a program that generalizes the transformation expressed by text
change examples. The TELS system records editing actions, such as search-and-
replace, and generalizes them into a program that transforms input into output [65].
TELS also uses heuristic rules to match actions against each other to detect loops in
the user’s demonstrated program. However, TELS’s dependence on domain-specific
heuristic rules makes it difficult to apply the same techniques to a different domain,
such as editing Java programs. The Dynamic Macro system of Masui and Nakayama
[32] records macros in the emacs text editor. Dynamic Macro performs automatic
segmentation of the user’s actions, breaking up the stream of actions into repetitive
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Table 16.2 Comparison of existing approaches in terms of edit capability

Multiple vs. Contiguous vs. Abstract vs. Context
Tool Single non-contiguous concrete modeling

Visual AWK [27] Single Contiguous Concrete No
EBE [47] Single Contiguous Concrete No
TELS [65] Single Contiguous Concrete No
Dynamic macro system [32] Single Contiguous Concrete No
Cima [33] Single Contiguous Concrete Yes
Simultaneous text editing [41] Single Contiguous Concrete No
Linked editing [60] Multiple Non-contiguous Concrete Yes
CloneTracker [10] Multiple Non-contiguous Concrete Yes
Clever [46] Multiple Non-contiguous Concrete Yes
Trident [19] Single Non-contiguous Abstract No
Program synthesis [13] Single Contiguous Concrete No

Reverb [34, 35] – – – –
DQL [62] – – – –
PQL [31] Single Contiguous Abstract Yes
PR-Miner [29] – – – –
HAM [5] – – – –
Find-concept [57] – – – –
FixWizard [45] – – – –
LibSync [44] – – – –

iXj [4] Single Contiguous Abstract No
ChangeFactory [55] – – – –
spdiff [2] Single Contiguous Abstract No
Coccinelle [48] Single Contiguous Abstract No
ClearView [50] Multiple Non-contiguous Abstract Yes
Weimer et al. [63] Single Contiguous Concrete No
Sydit [36, 37] Multiple Non-contiguous Abstract Yes
Lase [18, 38] Multiple Non-contiguous Abstract Yes

subsequences, without requiring the user to invoke the macro-editor explicitly.
Dynamic Macro performs no generalization and relies on several heuristics for
detecting repetitive patterns of actions. The Cima system [33] learns generalized
rules for classifying, generating, and modifying data, given examples, hints, and
background knowledge. It allows a user to give hints to the learner to focus its
attention on certain features, such as the particular area code preceding phone
numbers of interests. However, the knowledge gained from these hints is combined
with a set of hard-coded heuristics. As a result, it is unclear which hypotheses Cima
is considering or why it prefers a certain inferred program over another. In general,
these PBD approaches are not suitable for editing a program because they do not
consider a program’s syntax, control, or data dependencies.

Simultaneous text editing automates repetitive editing [41]. Users interactively
demonstrate their edit in one context and the tool replicates identical, lexical edits
on the preselected code fragments. Simultaneous text editing cannot easily handle
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similar yet different edits because its capability is limited in instantiating a syntactic,
context-aware, abstract transformation. Linked Editing [60] applies the same edits
to a set of code clones specified by a user. CloneTracker [10] takes the output of a
clone detector as input and automatically produces an abstract syntax-based clone
region descriptor for each clone. Using this descriptor, it automatically tracks clones
across program versions and identifies modifications to the clones. Similar to Linked
Editing, it uses the longest common subsequence algorithm to map corresponding
lines and to echo edits in one clone to other counterparts upon a developer’s
request. The Clever version control system detects inconsistent changes in clones
and propagates identical edits to inconsistent clones [46]. Clever provides limited
support in adapting the content of learned edits by renaming variable names suitable
for target context. However, because Clever does not exploit program structure,
when abstracting edits, it does not adapt the edit content to different contexts
beyond renaming of variables. Trident [19] aims to support refactoring of dangling
references by permitting the developer to specify lexical and syntactic constraints
on search terms and replacement terms, locating potential matches and applying
requested replacements; an iterative process is supported allowing the developer to
back out of a given requested change atomically.

Program synthesis is the task of automatically synthesizing a program in
some underlying language from a given specification using some search tech-
niques [13]. It has been used for a variety of applications such as string manipulation
macros [14], table transformation in Excel spreadsheets [16], geometry construc-
tion [15], etc. The synthesizer then completes the program satisfying the specifi-
cation [58]. However, these program synthesis approaches do not currently handle
automation of similar program changes in mainstream programming languages such
as Java because they do not capture control and data flow contexts nor abstract
identifiers in edit content.

In summary, the programming by demonstration approaches can learn edits from
examples, but they are mostly designed for regular text documents instead of pro-
grams. Thus they cannot handle program transformations that require understanding
program syntax and semantics.

In Table 16.1, the top one-third compares the above-mentioned PBD approaches
in terms of inputs, outputs, and automation capability. Column Type describes
the type of edit operations: textual edit vs. syntactic edits vs. semantic edits. Col-
umn Location describes whether each technique can find locations automatically,
semiautomatically, or manually. Column Transformation describes whether each
technique can apply transformations automatically, semiautomatically, or manually.
Table 16.1 shows that most PBD approaches can handle only textual edits or they
are very limited in terms of syntactic program editing capability.

In Table 16.2, the top one-third compares the above-mentioned PBD approaches
in terms of edit capability. Column Multiple vs. Single shows whether each
technique can apply multiline or single line edits. Column Contiguous vs.
Non-contiguous describes whether each technique can only apply contiguous
program transformations or also apply transformations separated with gaps.
Column Abstract vs. Concrete describes whether each technique can apply
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customized abstract edits to different edit locations or simply apply identical
concrete edits. Column Context Modeling describes whether each technique
models the surrounding unchanged code relevant to edit operations in order to
position edits correctly. The symbol “—” is recorded when a technique does not
apply any edit automatically. Table 16.2 shows that most PBD approaches handle
only concrete edits and are unable to apply edits customized to fit target program
contexts.

Furthermore, as shown in Table 16.3, some techniques do not have any user study
or only have done a study involving a handful of editing tasks. When the symbol
“—” is recorded for Subjects, Data size, and Evaluation means no empirical study
is reported. “—” recorded for Lng. (Language) means the technique targets plain
text instead of any specific programming language.

16.3.2 Edit Location Suggestion

Code matching and example search tools can be used to identify similar code
fragments that often require similar edits. Reverb [34] watches the developer make
a change to a method and searches for other methods in the project where the
syntax and semantics are similar to the original ones of the exemplar; however,
it does not apply the transformations. DQL [62] helps developers to locate code
regions that may need similar edits; developers can write and make queries involving
dependence conditions and textual conditions on the system-dependence graph of
the program so that the tool automatically locates code satisfying the condition.
PQL [31] is a high-level specification language focusing on specifying patterns
that occur during a program run. The PQL query analyzer can automatically detect
code regions matching the query. Similarly, PR-Miner [29] automatically extracts
implicit programming rules from large software code and detects violations to the
extracted programming rules, which are strong indications of bugs. While all these
tools could be used to identify candidate edit locations that may require similar edits,
none of these tools help programmers in automatically applying similar changes
to these locations. There are other tools that are similar to PQL and PR-Miner,
such as JQuery [9] or SOUL [40]. While they can be used to find edit locations
via pattern matching, they do not have a feature of automatically applying program
transformations to the found code snippets. Similarly, Castro et al. diagnose and
correct design inconsistencies but only semiautomatically [7].

Concern mining techniques locate and document crosscutting concerns [5, 57].
Shepherd et al. [57] locate concerns using natural language program analysis. Breu
and Zimmermann [5] mine aspects from version history by grouping method-calls
that are added together. However, these tools leave it to a programmer to apply
similar edits, when these concerns evolve. We do not exhaustively list all concern
mining techniques here. Please refer to Kellens et al. [20] for a survey of automated
code-level aspect mining techniques. In Chap. 5, Mens and Lozano [39] discuss
techniques that recommend edit locations based on mined source code patterns.
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FixWizard identifies code clones, recognizes recurring bug fixes to the clones,
and suggests edit locations and exemplar edits [45]. Yet, it does not generate
syntactic edits, nor does it support abstraction of variables, methods, and types.
LibSync helps client applications migrate library API usages by learning migration
patterns [44] with respect to a partial AST with containment and data dependencies.
Though it suggests example API updates, it is unable to transform code. These
limitations leave programmers with the burden of manually editing the suggested
edit locations, which is error-prone and tedious.

In summary, the middle parts of Tables 16.1–16.3 show the comparison of the
above-mentioned edit location suggestion techniques. These techniques can be used
to find changed locations automatically, but leave it to developers to manually apply
necessary transformations. While the evaluation of some techniques involves real
open source project data, none evaluates them in the context of a user applying
similar program transformations to the found locations.

16.3.3 Generating and Applying Program Transformations
from Examples

To reduce programmers’ burden in making similar changes to similar code
fragments, several approaches take code change examples as input, find change
locations, and apply customized program transformations to these locations.
These approaches are fundamentally different from source transformation tools
or refactoring engines, because users do not need to specify the script of
repetitive program transformations in advance. Rather, the skeleton of repetitive
transformations is generalized from change examples. This section lists such
approaches and discusses their capability.

Sydit takes a code change example in Java as input and automatically infers
a generalized edit script that a user can use to apply similar edits to a specified
target [36,37]. Their subsequent work Lase uses multiple change examples as input,
automatically infers a generalized edit script, locates candidate change locations,
and applies the inferred edit to these change locations [38]. Both Sydit and Lase
infer the context of edit, encode edit positions in terms of surrounding data and
control flow contexts, and abstract the content of edit scripts, making it applicable
to code that has a similar control and data flow structure but uses different variable,
type, and method names.

iXj [4] and ChangeFactory [55] provide interactive source transformation tools
for editing a program. iXj does not generalize code transformation, though it has
a limited capability of generalizing the scope of transformation. ChangeFactory
requires a user to generalize edit content and location manually.

To support API migration, Lawall et al. [1, 2, 48] find differences in the API
usage of client code, create an edit script, and transform programs to use updated
APIs. Their approach is limited in two respects: the edit scripts are confined
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to term-replacements and they only apply to API usage changes. While it uses
control- and data-dependence analysis to model the context of edits [1], the inferred
context includes only inserted and deleted API method invocations and control and
data dependencies among them. Their context does not include unchanged code on
which the edits depend. Thus, when there is no deleted API method invocation,
the extracted context cannot be used to position edits in a target method. Sydit is
more flexible, because it computes edit context that is not limited to API method
invocations and it can include unchanged statements related to edits. Therefore,
even if the edits include only insertions, Sydit can correctly position edits by finding
corresponding context nodes in a target method.

Automatic program repair generates candidate patches and checks correctness
using compilation and testing [50, 63]. For example, the approach of Perkins et al.
[50] generates patches that enforce invariants observed in correct executions but are
violated in erroneous executions. It tests patched executions and selects the most
successful patch. Weimer et al. [63] generate their candidate patches by replicating,
mutating, or deleting code randomly from the existing program and thus far have
focused on single line edits.

In summary, the bottom one-third of Tables 16.1–16.3 summarizes the compari-
son of the above-mentioned techniques. While these techniques can be used to find
edit locations and apply transformations, some can handle only single line edits or
contiguous edits. Very few can go beyond replication of concrete edits.

In the next two sections, we discuss two concrete example-based program
transformation approaches in detail, Sydit and Lase. These two approaches are
selected to discuss in depth for two reasons. First, they are specifically designed for
updating programs as opposed to regular text documents. Second, they handle the
issue of both recommending edit locations and applying transformations. They also
have strengths of modeling change contexts correctly and customizing edit content
appropriately to fit the target contexts. We discuss Sydit first, because Lase extends
Sydit by leveraging multiple edit examples instead of a single example.

16.4 SYDIT: Generating Program Transformations
from a Single Example

This section describes Sydit [37], which generates an abstract, context-aware edit
script from a single changed method and applies it to a user-specified target. To
facilitate illustration, we use Fig. 16.1 as a running example throughout this section.

16.4.1 Generating an Edit Script from a Single Example

There are two phases in Sydit. Phase I takes as input an old and new version of
method mA to create an abstract, context-aware edit script �. Phase II applies � to
a target method, mB, producing a modified method mBs .
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Fig. 16.2 Extraction of a syntactic edit from Aold and Anew and identification of its context [37]

Phase I: Creating Edit Scripts. Given mAo and mAn, Sydit compares their syntax
trees using a program differencing tool [12], to create an edit �A D Œe1; e2; : : : ; en�,
as a sequence of abstract syntax tree (AST) node additions, deletions, updates, and
moves, described as follows:

insert (Node u, Node v, int k) Insert u and position it as the .k C 1/th child of v.
delete (Node u) Delete u.
update (Node u, Node v) Replace u’s label and AST type with v’s while maintain-

ing u’s position in the tree.
move (Node u, Node v, int k) Delete u from its current position and insert it as

the .k C 1/th child of v.

For our example, the inferred edit �A between mAo and mAn is shown below.

1. update (“ILaunchConfiguration config = (ILaunchConfiguration)

iter.next();”, “ILaunchConfiguration config = null;”)
2. move (“ILaunchConfiguration config = null;”, ‘’protected List

getLaunchConfigurations(IProject project){”, 2)
3. insert (“config = (ILaunchConfiguration)iter.next();”,

“while (iter.hasNext()){”, 0)
4. insert (“if (config.inValid()) {!”, “while (iter.hasNext()){”, 1)
5. insert (“then”, “if (config.inValid()) {!”, 0)
6. insert (“config.reset()”, “then”, 0)

Figure 16.2 shows the edit in a graphical way. It indexes all nodes to simplify
explanation. For each edit, Sydit extracts relevant context from both old and new
versions of a changed method using control-, data-, and containment-dependence
analysis. Here, the context relevant to an edit includes the edited nodes and nodes
on which they depend. For instance, since the inserted node N7 is contained by
and control dependent on N5, data dependent on N2 and N4, N2, N4, N5, and N7 are
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Fig. 16.3 Abstract edit script
derived from Fig. 16.2 [37]

extracted as context relevant to the insert operation. The extracted context reflects
the control-, data-, and containment-dependence constraints the exemplar changed
method has on the derived edit. Given a target method, Sydit looks for the context’s
correspondence in the method to ensure that all underlying constraints are satisfied.
If such a correspondence is found, Sydit infers that a similar edit is applicable to the
method, ignoring statements irrelevant to the edit.

Sydit then creates an abstract, context-aware edit script �, by replacing all
concrete types, methods, and variables with unique symbolic identifiers $Tx, $mx,
and $vx, where x is a number, and recalculating each edit operation’s location
with respect to its extracted context. This step generalizes the edit script, making
it applicable to code using different identifiers or structurally different code. For
instance, Fig. 16.3 shows a resulting abstract edit script derived from Fig. 16.2. It
abstracts the config variable in mA to $v2. After removing all irrelevant statements,
for the moved ILaunchConfiguration declaration, Sydit calibrates its source
location as a child position 0 of while (i.e., its first AST child node), and target
location as a child position 1 of the method declaration node.

Phase II: Applying Edit Scripts. When given a target method, Sydit looks for
nodes in the method that match the abstract context nodes in � and induce one-
to-one mappings between abstract and concrete identifiers. The node mapping
problem can be rephrased as a subtree isomorphism problem, which looks for a
subtree in the target method’s AST matching the given context’s tree. Sydit uses an
algorithm specially designed to solve the problem [37]. The algorithm establishes
node matches in a bottom-up manner. It first establishes matches for all leaf nodes
in the context tree, and then does so for all inner nodes based on leaf matching
result. If every node in the abstract context finds a unique correspondence in the
target method’s tree, Sydit infers that the abstract edit script can be customized to
an edit script applicable to the method. It then establishes identifier mappings based
on the node mappings. In our example, mBo contains a subtree corresponding to the
abstract context for �, so Sydit can create a concrete edit script for mBo out of �.
Since Sydit establishes a mapping between the abstract node $T2 $v2 = null and
concrete node ILaunchConfiguration cfg = null, it aligns the identifiers used
and infers mapping $T2 to ILaunchConfiguration , $v2 to cfg.

Sydit next proceeds to generate concrete edits for the target. With identifier map-
pings derived above, it replaces abstract identifiers used in � with corresponding
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concrete identifiers found in the target method, such as replacing $v2 with cfg.
With node mappings derived above, it recalculates each edit operation’s location
with respect to the concrete target method. For example, it calibrates the target move
location as child position 1 of mBo’s method declaration node. After applying the
resulting edit script to mBo, Sydit produces a suggested version mBs , which is the
same as mBn shown at the bottom of Fig. 16.1.

16.4.2 Evaluation

Sydit is evaluated on 56 method pairs that experienced similar edits from Eclipse
JDT Core, Eclipse Compare, Eclipse Core Runtime, Eclipse Debug, and jEdit. The
two methods in each pair share at least one common syntactic edit and their content
is at least 40 % similar according to the syntactic differencing algorithm of Fluri
et al. [12]. These examples are then manually inspected and categorized based
on (1) whether the edits involve changing a single AST node vs. multiple nodes,
(2) whether the edits are contiguous vs. non-contiguous, and (3) whether the edits’
content is identical vs. abstract over types, methods, and identifiers. Table 16.4
shows the number of examples in each of the six categories. Note that there are only
six categories instead of eight, since non-contiguous edits always involve multiple
nodes.

For each method pair (mAo, mBo) in the old version that changed similarly to
become (mAn, mBn) in the new version, Sydit generates an edit script from mAo and
mAn and tries to apply the learned edits to the target method mBo, producing mBs ,
which is compared against mBn to measure Sydit’s effectiveness. In Table 16.4,
“matched” is the number of examples for which Sydit matches the change context
learnt from mA to the target method mBo and produces some edits. The “compilable”
row is the number of examples for which Sydit produces a syntactically valid
program, and “correct” is the number of examples for which Sydit replicates edits
that are semantically identical to what the programmer actually did, i.e., that mBs is
semantically equivalent to mBn.

The “coverage” row is
“matched”

“examples”
; and “accuracy” is

“correct”

“examples”
:

The “similarity” measures how similar mBs is to mBn for the examples which Sydit
can match learnt context and produce some edits. The results are generated using
Sydit’s default context extraction method, i.e., one source node and one sink node
for each control- and data-dependence edge, in addition to a parent node of each
edited node, since the configuration is evaluated to produce the best results. For this
configuration, Sydit matches the derived edit context and creates an edit for 46 of
56 examples, achieving 82 % coverage. In 39 of 46 cases, the edits are semantically
equivalent to the programmer’s hand edit. Even for those cases in which Sydit



16 Recommending Program Transformations 439

Table 16.4 Sydit’s coverage and accuracy on preselected
targets [37]

Single node Multiple nodes

Contiguous Non-contiguous

Identical SI CI NI

examples 7 7 11
matched 5 7 8
compilable 5 7 8
correct 5 7 8

coverage 71% 100% 73%
accuracy 71% 100% 73%
similarity 100% 100% 100%

Abstract SA CA NA

examples 7 12 12
matched 7 9 10
compilable 6 8 9
correct 6 6 7

coverage 100% 75% 83%
accuracy 86% 50% 58%
similarity 86% 95% 95%

Total coverage 82% (46/56)
Total accuracy 70% (39/56)
Total similarity 96% (46)

produces a different edit, the output and the expected output are often similar. On
average, Sydit’s output is 96 % similar to the version created by a human developer.
While this preliminary evaluation shows accuracy for applying a known systematic
edit to a given target location, it does not measure the accuracy for applying the
edit to all locations where it is applicable because Sydit is unable to find edit
locations automatically. The next section describes the follow-up approach (Lase)
that leverages multiple examples to find edit candidates automatically.

16.5 LASE: Locating and Applying Program
Transformations from Multiple Examples

Sydit produces code transformation from a single example. It relies on programmers
to specify where to apply the code transformation, and it does not automatically
find edit locations. This section describes Lase, which uses multiple edit examples
instead of a single example to infer code transformation, automatically searches for
edit locations, and applies customized edits to the locations [38].
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16.5.1 Why Learning from Multiple Examples?

The edit script inferred by Sydit is not always well suited to finding edit locations
for two reasons. First, the mechanism of learning from a single example cannot
disambiguate which changes in the example should be generalized to other places
while which should not. As a result, it simply generalizes every change in the
example and thus may overspecify the script. The over-specification may make the
extracted edit context too specific to the example, failing to match places where it
should have matched. Second, the full identifier abstraction may over generalize the
script, allowing the extracted edit context to match places that it should not have
matched, because they use different concrete identifiers.

Lase seeks an edit script that serves double duty, both finding edit locations and
accurately transforming the code. It learns from two or more exemplar edits given
by the developer to solve the problems of over-generalization and over-specification.
Although developers may also want to directly create or modify a script, since they
already make similar edits to more than one place, providing multiple examples
could be a natural interface.

We use Fig. 16.4 as a running example throughout the section. Consider the three
methods with similar changes: mA, mB, and mC. All these methods perform similar
tasks: (1) iterate over all elements returned by values(), (2) process elements one
by one, (3) cast each element to an object of a certain type, and (4) when an element
meets a certain condition, invoke the element’s update() method. Additionally, mA
and mB also experience some specific changes, respectively. For instance, mA deletes
two print statements before the while loop. mB deletes one print statement inside
the while loop and adds an extra type check and element processing.

16.5.2 Learning and Applying Edits from Multiple Examples

Lase creates a partially abstract, context-aware edit script from multiple exemplar
changed methods, finds edit locations using the extracted context in the edit script,
and finally applies the edit script to each location. There are three phases in Lase.
Phase I takes as input several changed methods, such as mA and mB, to create a
partially abstract, context-aware edit script �p. Phase II uses the extracted context
in �p to search for edit locations which can be changed similarly, such as mC. Phase
III applies �p to each found location and suggests a modified version to developers.
Figure 16.5 shows the inferred edit script from mA and mB in Fig. 16.4. The details
of Lase’s edit generalization, location search, and edit customization algorithms are
described elsewhere [38].
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Fig. 16.4 A systematic edit to three methods based on revisions from 2007-04-16 and 2007-04-30
to org.eclipse.compare [38]. (a) mAo to mAn. (b) mBo to mBn. (c) mCo to mCn



442 M. Kim and N. Meng

Fig. 16.5 Partially abstract, context-aware edit script derived from mA and mB [38]

Fig. 16.6 A programmer makes similar but not identical edits to getTrailingComments and
getLeadingComments . While getTrailingComments involves edits to trailing-
Comments and trailingPtr, getLeadingComments involves edits to leading-
Comments and leadingPtr. The two examples are provided as input to Lase to generate a
partially abstract, context-aware edit script [38]

16.5.3 LASE as an Eclipse Plugin

The Lase approach described above is implemented as an Eclipse IDE plugin [18].
Suppose that Bob modifies the code comment processing logic in org.eclipse.

jdt by updating two methods getTrailingComments and getLeadingComments

in org.eclipse.jdt.core.dom.DefaultCommentMapper, shown in Fig. 16.6. In
the getTrailingComments method, he modifies the if condition, modifies an
assignment to range, and inserts a for loop to scan for a given AST node. In
the getLeadingComments method, he makes a similar edit by modifying its if

condition, an assignment to range, and by inserting a for loop. After making these
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repetitive edits to the two methods, Bob suspects a similar edit may be needed to all
methods with a comment processing logic. He uses Lase to automatically search for
candidate edit locations and view edit suggestions.

Input Selection. Using the input selection user interface, Bob provides a set of
edit examples. He specifies the old and new versions of getTrailingComments
and getLeadingComments, respectively. He names this group of similar changes as
a comment processing logic change. He then selects an edit script generation option
to derive generalized program transformation among the specified examples.

Edit Operation View. For each example, using an edit operation view, Bob
examines the details of constituent edit operations (insert, delete, move, and update)
with respect to underlying abstract syntax trees. In this view, Bob can also examine
corresponding edit context—surrounding unchanged code that is control- or data
dependent on the edited code. Figure 16.7a shows edit operations and corresponding
context within the AST of the method getTrailingComments . The AST nodes
include both unchanged nodes and changed nodes which are the source and/or
target of individual insert, delete, move, or update operations. These nodes can be
expanded to show more details.

Edit Script Hierarchy View. To create an edit script from multiple examples, Lase
generalizes exemplar edits, pair-by-pair. Lase creates a base cluster for each method.
It then compares them pair-by-pair. By merging the results of two cluster nodes,
Lase generalizes common edit sequences in the edit hierarchy through a bottom-up
construction.

For example, by opening the edit script hierarchy view shown in Fig. 16.7b,
Bob can examine a group of inferred edit scripts at different abstraction levels. By
default, Lase uses the top node, i.e., an edit script inferred from all examples. By
clicking a node in the edit script hierarchy, Bob may select a different subset of
provided examples to adjust the abstraction level of an edit script. The selected
script is used to search for edit locations and generate customized edits.

Searching for Edit Locations and Applying Customized Edits. Bob begins his
search for edit locations with similar context. In this case, when Lase finishes
searching for the target locations, Bob sees four candidate change locations in the
menu. Two of them are getTrailingComments and getLeadingComments, which
are used as input examples and thus match the context of the inferred edit script—
this provides an additional confirmation that the edit script can correctly describe
the common edits for the two examples.

Bob then examines the edit suggestions for the first candidate method getExt

endedEnd using the comparison view (see Fig. 16.8). He sees that getExtendedEnd
contains the same structure as his example methods. For example, the if statement
checking whether trailingComments is set to null and the assignment to range.
When viewing the Lase’s edit suggestions, Bob notices that the suggested change
involves inserting new variables. Lase cannot infer the names of the new variables
because there are no matching variable names in the target context. Bob thus chooses
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Fig. 16.7 (a) Lase visualizes edit operations and corresponding context with respect to the AST.
(b) Lase learns an edit from two or more examples. Each node in the edit script hierarchy
corresponds to an edit script from a different subset of the input examples [38]

Fig. 16.8 A user can review and correct edit suggestions generated by Lase before approving the
tool-suggested edit [38]
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the names of those variables by replacing $v_1_, $v_2_, and $v_3_ with concrete
names. Choosing variables and any other changes Bob wishes to make could be
easily done by making direct modifications on the edit suggestion in this comparison
view. He applies the modified edits and repeats the process with the other methods.

16.5.4 Evaluation

To measure Lase’s precision, recall, and edit correctness, a test suite of supplemen-
tary bug fixes [49,54] was used. (See Walker and Holmes [61] in Chap. 12 about an
evaluation method using a change history-based simulation). Precision and recall are
regarding identified method-level edit locations and edit correctness measures the
accuracy of applied edits to the found method locations. Supplementary bug fixes
are fixes that span multiple commit, where initial commits tend to be incomplete
or incorrect, and thus developers apply supplementary changes to resolve the issue
or the bug. If a bug is fixed more than once and there are clones of at least two
lines in bug patches checked in at different times, they are manually examined for
systematic changes. Using this method, 2 systematic edits in Eclipse JDT and 22
systematic edits in Eclipse SWT are found.

Meng et al. then use these patches as an oracle test suite for correct systematic
edits and test if Lase can produce the same results as the developers given the first
two fixes in each set of systematic fixes. If Lase, however, produces the same results
as developers do in later patches, it indicates that Lase can help programmers detect
edit locations earlier, reduce errors of omissions, and make systematic edits. Lase
locates edit positions with respect to the oracle data set with 99 % precision, 89 %
recall, and performs edits with 91 % edit correctness. Furthermore, given the test
suite, Lase identifies and correctly edits nine locations that developers confirmed
they missed.

The number of exemplar edits from which Lase learns a systematic edit affects its
effectiveness. To determine how sensitive Lase is to different numbers of exemplar
edits, Meng et al. randomly pick seven cases in the oracle data set and enumerate
subsets of exemplar edits, e.g., all pairs of two exemplar methods. They evaluate
the precision, recall, and edit correctness for each set separately and calculate an
average for exemplar edit sets for each cardinality to determine how sensitive Lase
is to different numbers of exemplar edits. Table 16.5 shows the results.

Our hypothesis is as the number of exemplar edits increases, precision and edit
correctness should decrease while recall should increase, because the more exemplar
edits provided, the less common context is likely to be shared among them, and the
more methods may be found to match the context. However, as shown in Table 16.5,
precision P does not change as a function of the number of exemplar edits except
for case 12, where two exemplar edits cause the highest precision because exemplar
edits are very different from each other. Recall R is more sensitive to the number of
exemplar edits, increasing as a function of exemplars.
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Table 16.5 Lase’s effectiveness when learning from multiple examples [38]

Exemplars (#) P (%) R (%) EC (%)

Index 4 2 100 51 72
3 100 82 67
4 100 96 67
5 100 100 67

Index 5 2 100 80 100
3 100 84 100
4 100 91 100

Index 7 2 100 83 100
3 100 84 100
4 100 88 100
5 100 92 100
6 100 96 100

Index 12 2 78 90 85
3 49 98 83
4 31 100 82

Index 13 2 100 100 95
3 100 100 94
4 100 100 93
5 100 100 91

Index 19 2 100 66 100
3 100 94 100
4 100 100 100
5 100 100 100

Index 23 2 100 72 100
3 100 88 100
4 100 96 100

In theory, edit correctness EC can vary inconsistently with the number of
exemplar edits, because it strictly depends on the similarity between edits. For
instance, when exemplar edits are diverse, Lase extracts fewer common edit
operations, which lowers edit correctness. When exemplar edits are similar, adding
exemplar methods may not decrease the number of common edit operations, but
may induce more identifier abstraction and result in a more flexible edit script, which
increases edit correctness.

16.6 Open Issues and Challenges

This section discusses open issues and challenges of recommending program
transformations from examples.

Finding Input Examples. While the techniques discussed in Sects. 16.4 and 16.5
learn a generalized program transformation script from examples, it is still left to
developers to provide multiple examples for edit script generation and refinement.
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Where do these examples come from? Developers can construct the examples
on purpose or carefully pick them out of the codebase they are working on.
However, a more efficient way is to automatically detect repetitive code changes.
One possibility is to mine software version history for similar code changes [23,26]
by comparing subsequent snapshots of codebase. Another possibility is to observe
developers’ edit actions to recognize recurring code changes by monitoring the
commands or keystrokes a developer inputs.

Granularity. Most approaches in Sect. 16.3 target replication of intra-method
edits. For higher level edits, such as modifying a class hierarchy or delegating an
existing task to a newly created methods, we need more complicated edit types to
define and more sophisticated context modeling approaches to explore. The edit
types should handle the coordination of heterogeneous edits, i.e., various edits to
different program entities, in addition to replication of homogeneous edits. For
instance, an edit type “Rename” includes renaming an entity (i.e., class, method,
field, variable) and modifying all references to the entity. The context modeling
approaches should correlate a changed code entity with other entities in the same
class hierarchy or performing the same task. For instance, if a method is inserted to
an interface, all classes directly implementing the class should be included as edit
context as they need to add implementations for the newly declared method.

Context Characterization. The effectiveness of example-based program transfor-
mation approaches is affected by the amount of dependence information encoded
in the abstract change context C derived from an exemplar edit. For example,
given a statement inserted in a for loop, the edit could be applicable to all
for loops, resulting in higher recall but lower precision. However, if the approach
requires a context with a control-dependence chain that includes an if controlling
execution of the for, then this context will help find fewer candidates and waste
less time on testing extraneous cases. Determining a setting for context extraction
requires a rigorous empirical study: (1) varying the number of dependence hops k,
(2) varying the degree of identifier abstraction for variable, method, and type
names, (3) including upstream- and/or downstream-dependence relations, (4) using
containment dependencies only, etc.

Edit Customization. While some approaches are able to customize edit content
to fit the target context, it is generally difficult to customize edit content in the
target context, when it involves inserted code only. For example, in Lase, edits are
customized based on mapping between symbolic identifiers and concrete identifiers
discovered from a target context. However, such mappings cannot always be found
for inserted code that only exists in the new version. For instance, as shown in
Fig. 16.9, since actionBars only exists in Anew and serviceLocator only exists in
Bnew, it is difficult to infer serviceLocator to use in Bnew from actionBars used
in Anew. In this case, existing approaches borrow verbatim code, actionBars, from
the source edit, and add it to the target edit without recognizing naming conversion
patterns. As a result, it may produce semantically equivalent code with poor
readability: e.g., IServiceLocator actionBars instead of IServiceLocator
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Fig. 16.9 A motivating example for synthesizing target-specific identifiers [37]. (a) Aold to Anew.
(b) Bold to Bsuggested

serviceLocator. A better strategy is to synthesize the target-specific identifiers
by inferring naming patterns from the source edit. This requires a natural language
analysis of programs [52], e.g., semantic analysis of identifier names used in the
target context.

Integrated Compilation and Testing. Existing tools suggest edits without check-
ing correctness, so developers need to decide whether the suggestion is correct on
their own. In extreme cases, when tools provide suggestions with many false posi-
tive, developers may spend more time examining the tools’ useless suggestions than
manually making systematic changes without any tool support. Before suggesting
the edits, a recommendation tool may proactively compile a suggested version and
run regression tests relevant to the proposed edits by integrating existing regression
test selection algorithms. If the suggested version does not fail more tests, a user
may have higher confidence in it. Otherwise, the tool may locate failure-inducing
edits by integrating existing change impact analysis algorithms. This step is similar
to speculatively exploring the consequences of applying quick fix recommendations
in an IDE [42] and can help prevent a user from approving failure-inducing edits.

Edit Validation. During the inspection process, a user may still want to reason
about the deeper semantics of the suggested edits. While this is a program
differencing problem, a naive application of existing differencing algorithms may
not help developers much—by definition, syntactic edits to the source and the target
are the same. A new validation approach is needed to allow developers to focus their
attention to differential deltas—differences between the effect of a reference edit
(Aold to Anew) and the effect of a target edit (Bold to Bsuggested). The insight behind this
approach is that developers may have good understanding of a reference edit already
and what they want to know is subtle semantic discrepancies caused by porting a
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reference edit to a new context. For example, one may compare the control and data
flow contexts of a reference edit against those of a ported edit. Another possible
approach is to compare the path conditions and effects involving a reference edit
against those of a ported edit in the target context [51]. Such semantic comparison
could help developers validate whether there exists behavioral differences.

Edit Script Correction. Before accepting recommendation transformations, a user
may want to correct the derived script or suggested edits. After correction, the
tool may rematch the modified script and recompute the suggested edits, providing
feedback to the user. To detect errors inadvertently introduced by manual edits such
as a name capture of a preexisting variable, the tool must check name binding and
def-use relation preservation [56].

16.7 Conclusion

Systematic changes—making similar but not identical changes to multiple code
locations—are common and often unavoidable, when evolving large software
systems. This chapter has described the existing body of knowledge and approaches
to address this problem. First, it described PBD techniques designed to automate
repetitive tasks and discussed how EBE approaches are inadequate for automating
program transformations due to their inability to model program-specific syntax
and semantics. Second, it overviewed recommendation techniques that suggest
candidate edit locations but do not manipulate code by applying code transforma-
tions to these locations. Third, it described example-based program transformation
approaches that take code change examples as input, infer a generalized program
transformation script, locate matching candidate locations, and apply the script
to these locations. Existing approaches were compared using unified comparison
criteria in terms of required inputs, user involvement, the degree of automation,
edit capability, evaluation method, and scale to date. In particular, this chapter
summarized two approaches, Sydit and Lase. These approaches were selected for an
in-depth discussion because they are the most advanced in terms of their capability
to position edits correctly by capturing the control- and data-flow contexts of the
edits, and to apply non-contiguous, abstract program edits. These strengths make it
possible to apply the inferred script to new contexts in a robust manner. The chapter
concluded with a set of open problems and challenges that remain to be tackled to
fully solve the problem of automating systematic software updates.
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