IMSR 2012

An Empirical Study of Supplemen
tary Bug Fixes

Jihun Park!, Miryung Kim?, Baishakhi Ray?, Doo-Hwan Bae'

1. Korea Advanced Institute of Science and Technology
2. The University of Texas at Austin

* Human is five times more accurate at locating errors of
commission than errors of omission [Fry and Weimer
"10]

e Several tools recommend supplementary changes to r
educe omission errors.

 However, there has not been a comprehensive study
of the characteristics of omission errors.

Study Findings

* A considerable portion (22%~33%) of bugs requires
supplementary patches.

* Incomplete patches are larger in size and more scatt
ered than regular patches.

* Predicting a supplementary fix location using clone a
nalysis alone is insufficient.

 About 15% of supplementary change locations are b
eyond the scope of the direct neighbors of initial ch

ange locations. ;

Outline

* Research Questions
* Bug Categorization
e Study Results

e Related work

* Discussions

Research Questions

Q1. What is the extent and characteristics of suppleme
ntary changes?

Q2. What are the common causes of incomplete bug fi
xes?

Q3. Are supplementary bug fixes similar to correspondi
ng initial fixes?

Q4. Where is the location of supplementary bug fixes i
n relation to initial fixes?

Bug Fix Categorization

Fix #22 Fix #31 Fix #31 Fix #31
Fix commits | v v v

Development
history

Bug Fix Categorization

The bug IDs that were The bug IDs that were mentioned
mentioned only one commit. in multiple fix revisions.

\Type 1bug Type 2 bug /
Bug reports Bug22 | ... Bug3l |

Fix #22 Fix #31 Fix #31 Fix #31
v v v v,

Fix commits |

Development
history

Bug Fix Categorization

The bug IDs that were The bug IDs that were mentioned
mentioned only one commit. in multiple fix revisions.

\ _/

Type 1 bug Type 2 bug

Supplementary
Bug reports [Bug 22 J . [Bug?”\,;tc\hes
. . Fix #22 Fix #31 Fix #31 Fix #31
Fix commits | v j\/ v v,
Development
An initial

ch history
patc

Q1-1. What is the extent of Type 2 bugs?

_ Eclipse JDT core Eclipse SWT Mozilla project

Study period 2004/07 ~ 2006/07 | 2004/07 ~ 2006/07 | 2003/04 ~ 2005/07

Total revisions 17000 revisions 21530 revisions 200000 revisions
of bugs 1812 1256 11254
Type 1 bugs 1405 (77.54%) 954 (75.96%) 7562 (67.19%)
Type 2 bugs 407 (22.46%) 302(24.04%) 3692 (32.81%)

[22% ~ 33% bugs require supplementary bug fixes.]

Q1-2. What are the characteristics of bugs

that were fixed more than once?

* We examine the time taken to fix bugs: the time gap
between “REPORTED” to “FIXED” or “CLOSED” statu
S.

* We compare the total number of developers involve
din Type 1 vs. Type 2 bugs.

Q1-2. What are the characteristics of bugs

that were fixed more than once?

The time taken to resolve bugs

_ Typelbug | Type2bug | palue

Eclipse JDT core 120.79 188.27 3.84e-04
Eclipse SWT 176.99 337.32 2.65e-07
Mozilla 594.50 805.92 8.40e-42

The number of developers involved

| Tyrelbug | Type2bug | pvalue

Eclipse JDT core 3.67 4.44 1.45e-12
Eclipse SWT 3.13 4.29 1.39e-09
Mozilla 4.70 7.28 2.05e-84

[More developers are involved Type 2 bugs, and t]
hey take longer to be resolved.

Q2. What are the characteristics of incomp

lete patches?

* We compare patches of Type 1 bugs and initial patche
s of Type 2 bugs in terms of number of files, patch size
, entropy, etc.

a0

Typel Type2 Typel Type2 Typel Type2 Typel Type2 Typel Type?2
Total 3.30 5.72 | 147.98 309.38 60.92 @ 63.42 0.31 0.36 0.15 0.18

p-val 1.15E-18 4.46E-05 4.03E-12 2.05E-09 1.04E-10

[Initial patches of Type 2 bugs are larger in size, and m]
ore scattered than patches of Type 1 bugs.

10

Q2. What are the causes of incomplete bug

fixes?

* Manual investigation on 100 supplementary patches

. Ty | Frequeny

1 | Aninitial patch is ported to a different component or branch. 28%
2 | The conditional statement of an initial fix is not correct. 23%
3 | Code elements referring to or being referenced by changed code a 15%

re later updated.

4 | Two different parts calling different subclasses of the same type ar 4%
e not updated together.

5 | Incomplete refactoring induces a supplementary patch 3%

The common causes of incomplete fixes include missed por
ting updates, incorrect conditional statements, and incomp
lete refactoring.

\— J

* more types are on the paper

Q3. Are supplementary bug fixes similar to

corresponding initial fixes?

 Study method: We identify similar patches using clone

analysis tool (CCFinder, Kamiya et al. 2002)

Eclipse JDT core

/ 424

(70.20%)

~

Eclipse SWT

/ 392

(68.54%)

\

Mozilla

/5477

(78.75%)

~

Cloned patches

12

Q3. Are supplementary bug fixes similar to

corresponding initial fixes?

e Study method: We identify similar patches using clone
analysis tool (CCFinder, Kamiya et al. 2002)

 We exclude backported patches, because they are simply
identical patches applied to different branch locations.

Eclipse JDT core

/ 424

(70.20%)

108
(17.88%)

~

72

(11.92%)

J

Eclipse SWT

/ 392

(68.54%)

\

145
(25.35%)

Mozilla

/5477

(78.75%)

\
620
/ (8.91%)

‘ -
858
Q2.34%) /

Cloned patches

Backported
patches

12

Q3. Are supplementary bug fixes similar to

correspondin

o initial fixes?

e Study method: We identify similar patches using clone
analysis tool (CCFinder, Kamiya et al. 2002)

 We exclude backported patches, because they are simply
identical patches applied to different branch locations.

 Only

Eclipse JDT core

include at least five similar lines.

Eclipse SWT

/ 424

(70.20%)

108
(17.88%)

(11.92%)

\ /392

(68.54%)

72

35

/ ue.u%)

145

(25.35%)

J

Mozilla
/5477 \
(78.75%)
620
/ (8.91%)
858 /‘
Q2.34%) /

Cloned patches

Backported
patches

[

Predicting a supplementary fix location using

code clone analysis alone is insufficient.

).

Q4. Where is the location of supplementary

bug fixes in relation to initial fixes?

are made at the similar line location of
an initial patch. (similar heuristics with Yin et al. ‘11)

Eclipse JDT core Eclipse SWT
Similar location

504 454
(48.09%) (41.54%)

|

13

Q4. Where is the location of supplementary

bug fixes in relation to initial fixes?

are made at the similar line location of
an initial patch. (similar heuristics with Yin et al. ‘11)

have structural dependences with an in
itial patch. (using LSdiff by Kim and Notkin ‘09)

Eclipse JDT core Eclipse SWT
Similar location
158 151
(15.08% 504 (13.82% 454 The same file,
ars (“s00%) (" ,(41:54%) " different line location
(31.97%) 314

(28.73%) Structural dependent

\. \ 74

51

(4.87%) (15.92%)

13

Q4. Where is the location of supplementary

bug fixes in relation to initial fixes?

are made at the similar line location of
an initial patch. (similar heuristics with Yin et al. ‘11)

have structural dependences with an
initial patch. (using LSdiff by Kim and Notkin ‘09)

Eclipse JDT core Eclipse SWT
158 151 Similar location
(15.08% 504 (13.82% 454 The same file,
335 (48.09%) ,(4L54%) different line location
(31.97%) 314
(28.73%) Structural dependent

174 B Beyond direct neighbor

1
> (15.92%)

(4.87%)

About 15% of supplementary change locations are beyond the
scope of the direct neighbors of initial patch locations. 5

Related Work

* 17% to 45% of fixes are recurring and they can be ide
ntified using similar code units. (Nguyen et al.)

 14.8% to 24.4% of post release patches are incorrect.
(Yin et al.)

* 9% of all bugs are re-opened. (Gu et al.)

14

Limitations and Future Work

* Expand the studied period of bug reports.

* |nvestigate the relationship among supplementary fix
es.

 Develop new tools for reducing incomplete bug fixes.
(e.g., detection of incomplete refactoring)

15

Summar

* A considerable portion of bugs requires supplement
ary patches.

* Incomplete patches are larger in size and more scatt
ered than regular patches.

* Predicting a supplementary fix location using code cl
one analysis alone is insufficient.

 About 15% of supplementary change locations are
beyond the scope of the direct neighbors of initial p

atch locations.
16

Acknowledgements

* This research was sponsored by the Agency for Defe
nse Development, Republic of Korea, under the grant
UD100031CD.

* This work was in part supported by National Science
Foundation under the grants CCF-1149391, CCF-1043
810, and CCF-1117902, and by a Microsoft SEIF awar
d.

17

Jihun Park

Email: jhpark@se.kaist.ac.kr
PhD Candidate

Software Engineering LAB
Computer Science Dept.
KAIST, Daejeon, South Korea

