MSR 2012

An Empirical Study of Supplemen tary Bug Fixes

<u>Jihun Park</u>¹, Miryung Kim², Baishakhi Ray², Doo-Hwan Bae¹

- 1. Korea Advanced Institute of Science and Technology
 - 2. The University of Texas at Austin

Motivation

 Human is five times more accurate at locating errors of commission than errors of omission [Fry and Weimer '10]

Several tools recommend supplementary changes to reduce omission errors.

 However, there has not been a comprehensive study of the characteristics of omission errors.

Study Findings

- A considerable portion (22%~33%) of bugs requires supplementary patches.
- Incomplete patches are larger in size and more scatt ered than regular patches.
- Predicting a supplementary fix location using clone a nalysis alone is insufficient.
- About 15% of supplementary change locations are been eyond the scope of the direct neighbors of initial change locations.

Outline

- Research Questions
- Bug Categorization
- Study Results
- Related work
- Discussions

Research Questions

- Q1. What is the **extent** and **characteristics** of suppleme ntary changes?
- Q2. What are the common causes of incomplete bug fixes?
- Q3. Are supplementary bug fixes **similar** to corresponding initial fixes?
- Q4. Where is **the location of supplementary bug fixes** in relation to initial fixes?

Bug Fix Categorization

Bug Fix Categorization

Bug Fix Categorization

Q1-1. What is the extent of Type 2 bugs?

	Eclipse JDT core	Eclipse SWT	Mozilla project
Study period	2004/07 ~ 2006/07	2004/07 ~ 2006/07	2003/04 ~ 2005/07
Total revisions	17000 revisions	21530 revisions	200000 revisions
# of bugs	1812	1256	11254
Type 1 bugs	1405 (77.54%)	954 (75.96%)	7562 (67.19%)
Type 2 bugs	407 (22.46%)	302(24.04%)	3692 (32.81%)

22% ~ 33% bugs require supplementary bug fixes.

Q1-2. What are the characteristics of bugs that were fixed more than once?

 We examine the time taken to fix bugs: the time gap between "REPORTED" to "FIXED" or "CLOSED" status.

 We compare the total number of developers involve d in Type 1 vs. Type 2 bugs.

Q1-2. What are the characteristics of bugs that were fixed more than once?

The time taken to resolve bugs

	Type 1 bug	Type 2 bug	p-value
Eclipse JDT core	120.79	188.27	3.84e-04
Eclipse SWT	176.99	337.32	2.65e-07
Mozilla	594.50	805.92	8.40e-42

The number of developers involved

	Type 1 bug	Type 2 bug	p-value
Eclipse JDT core	3.67	4.44	1.45e-12
Eclipse SWT	3.13	4.29	1.39e-09
Mozilla	4.70	7.28	2.05e-84

More developers are involved Type 2 bugs, and they take longer to be resolved.

Q2. What are the characteristics of incomp lete patches?

 We compare patches of Type 1 bugs and initial patche s of Type 2 bugs in terms of number of files, patch size , entropy, etc.

	Files		LC	DC Adde		d LOC	Entrop	Entropy (file)		Entropy (package)	
	Type 1	Type 2	Type 1	Type 2	Type 1	Type 2	Type 1	Type 2	Type 1	Type 2	
Total	3.30	5.72	147.98	309.38	60.92	63.42	0.31	0.36	0.15	0.18	
p-val ue	1.15	E-18	4.46	E-05	4.03	E-12	2.05	E-09	1.04	E-10	

Initial patches of Type 2 bugs are larger in size, and m ore scattered than patches of Type 1 bugs.

Q2. What are the causes of incomplete bug fixes?

Manual investigation on 100 supplementary patches

	Types	Frequency
1	An initial patch is ported to a different component or branch.	28%
2	The conditional statement of an initial fix is not correct.	23%
3	Code elements referring to or being referenced by changed code a re later updated.	15%
4	Two different parts calling different subclasses of the same type ar e not updated together.	4%
5	Incomplete refactoring induces a supplementary patch	3%

The common causes of incomplete fixes include missed por ting updates, incorrect conditional statements, and incomp lete refactoring.

^{*} more types are on the paper

Q3. Are supplementary bug fixes similar to corresponding initial fixes?

 Study method: We identify similar patches using clone analysis tool (CCFinder, Kamiya et al. 2002)

Q3. Are supplementary bug fixes similar to corresponding initial fixes?

- Study method: We identify similar patches using clone analysis tool (CCFinder, Kamiya et al. 2002)
- We exclude backported patches, because they are simply identical patches applied to different branch locations.

Q3. Are supplementary bug fixes similar to corresponding initial fixes?

- Study method: We identify similar patches using clone analysis tool (CCFinder, Kamiya et al. 2002)
- We exclude backported patches, because they are simply identical patches applied to different branch locations.
- Only 12%, 25%, and 9% include at least five similar lines.

Predicting a supplementary fix location using code clone analysis alone is insufficient.

Q4. Where is the location of supplementary bug fixes in relation to initial fixes?

 48% and 42% are made at the similar line location of an initial patch. (similar heuristics with Yin et al. '11)

Q4. Where is the location of supplementary bug fixes in relation to initial fixes?

- 48% and 42% are made at the similar line location of an initial patch. (similar heuristics with Yin et al. '11)
- 32% and 29% have structural dependences with an in itial patch. (using LSdiff by Kim and Notkin '09)

Q4. Where is the location of supplementary bug fixes in relation to initial fixes?

- 48% and 42% are made at the similar line location of an initial patch. (similar heuristics with Yin et al. '11)
- 32% and 29% have **structural dependences** with an initial patch. (using LSdiff by Kim and Notkin '09)

About 15% of supplementary change locations are beyond the scope of the direct neighbors of initial patch locations.

Related Work

• 17% to 45% of fixes are recurring and they can be ide ntified using similar code units. (Nguyen et al.)

- 14.8% to 24.4% of post release patches are incorrect.
 (Yin et al.)
- 9% of all bugs are re-opened. (Gu et al.)

Limitations and Future Work

- Expand the studied period of bug reports.
- Investigate the relationship among supplementary fix es.
- Develop new tools for reducing incomplete bug fixes.
 (e.g., detection of incomplete refactoring)

Summary

- A considerable portion of bugs requires supplement ary patches.
- Incomplete patches are larger in size and more scatt ered than regular patches.
- Predicting a supplementary fix location using code cl one analysis alone is insufficient.
- About 15% of supplementary change locations are beyond the scope of the direct neighbors of initial p atch locations.

Acknowledgements

- This research was sponsored by the Agency for Defe nse Development, Republic of Korea, under the grant UD100031CD.
- This work was in part supported by National Science Foundation under the grants CCF-1149391, CCF-1043 810, and CCF-1117902, and by a Microsoft SEIF awar d.

Jihun Park

Email: jhpark@se.kaist.ac.kr
PhD Candidate
Software Engineering LAB
Computer Science Dept.
KAIST, Daejeon, South Korea