Program Element Matching for Multi-Version Program
Analyses

Miryung Kim, David Notkin
Computer Science & Engineering
University of Washington
Seattle, WA

{miryung,notkin}@cs.washington.edu

ABSTRACT

Multi-version program analyses require that elements of one
version of a program be mapped to the elements of other ver-
sions of that program. Matching program elements between
two versions of a program is a fundamental building block
for multi-version program analyses and other software evolu-
tion research such as profile propagation, regression testing,
and software version merging.

In this paper, we survey matching techniques that can be
used for multi-version program analyses and evaluate them
based on hypothetical change scenarios. This paper also lists
challenges of the matching problem, identifies open prob-
lems, and proposes future directions.

Categories and Subject Descriptor: D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement
—restructuring, reverse engineering, and reengineering

General Terms: Documentation, Algorithms

Keywords: matching, software evolution, multi-version anal-

ysis

1. INTRODUCTION

In the last several years, researchers in software engineer-
ing have begun to analyze programs together with their
change history. In contrast to traditional program analyses
that examine a single version, multi-version program anal-
yses use multiple versions of a program as input and mine
change patterns.

There are roughly two different types of multi-version
analyses: (1) coarse-grained analyses and (2) fine-grained
analyses. Coarse-grained analyses compute changes between
two consecutive versions of a program, aggregate the change
information across multiple versions or across multiple files,
and infer coarse-grained patterns [37, 15, 20, 17]. For ex-
ample, Nagappan and Ball’s analysis [37] finds line-level
changes between two consecutive versions, counts the total
number of changes per binary module, and infers the charac-
teristics of frequently changed modules. On the other hand,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MSR' 06, May 22-23, 2006, Shanghai, China.

Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

fine-grained analyses track how individual code fragments
changed during program evolution to infer fine-grained change
patterns [29, 31, 52, 38, 43, 48, 51, 11]. For example, a
clone genealogy extractor tracks individual code snippets
over multiple versions to infer clone evolution patterns [29].
As another example, a signature change pattern analysis
[31, 30] traces how the name and the signature of functions
change. Matching elements between two versions of a pro-
gram is a fundamental building block for fine-grained multi-
version analyses as well as other software evolution research
such as software version merging, regression testing, profile
propagation, etc [36, 42, 21, 46].

We first define the problem of matching code elements
between two versions:

Suppose that a program P’ is created by modifying P. De-
termine the difference A between P and P’. For a code
fragment ¢’ € P’, determine whether ¢ € A. If not, find
c'’s corresponding origin c in P.

The problem definition states that we must compute the
difference between two programs. Computing semantic dif-
ferences requires solving the problem of semantic program
equivalence, which is an undecidable problem. Thus, once
the problem is approximated by matching a code element
by its syntactic and textual similarity, solutions depend on
the choices of (1) an underlying program representation,
(2) matching granularity, (3) matching multiplicity, and (4)
matching heuristics. In this paper, we explain how the
choices impact applicability of each matching method and
how the choices affect effectiveness and accuracy of matching
by creating an evaluation framework for existing matching
techniques.

The rest of this paper is organized as follows. The next
section discusses several multi-version analyses, which demon-
strate the needs of program element matching. Then, we
discuss challenges of program element matching in Section
3. Section 4 presents a survey of state-of-the-art match-
ing techniques from various research areas such as multi-
version program analyses, profile propagation, software ver-
sion merging, and regression testing. Section 5 compares
the surveyed techniques and Section 6 evaluates each tech-
nique using hypothetical program change scenarios. Section
7 presents open problems and future directions.

2. MOTIVATING PROBLEMS

In this section, we describe several multi-version analysis
problems that demonstrate importance of program element
matching.

The first problem is maintaining two similar programs

that originated from the same source but evolved differently
in parallel.! In many organizations, it is a common practice
to clone a product or a module and maintain the clones in
parallel [13]. Maintenance difficulties arise when program-
mers discover a critical bug in cloned parts. If program-
mers do not know whether the discovered bug is relevant to
other cloned counterparts, they must inspect source code of
the counterparts. We believe that programmers can better
locate relevant counterparts by understanding how clones
change over time. Monitoring clones requires tracking each
clone by its physical location such as a file name, a procedure
name, or calibrated line numbers [29].

Our second motivating problem is understanding the evo-
lution of information hiding interfaces. The information hid-
ing principle [41] states that programmers should anticipate
what kinds of decisions are likely to change in the future and
hide them using an interface. In general, it is difficult for
programmers to predict which design decisions are likely to
change; thus, unanticipated design decisions result in degra-
dation of original software design. We believe that under-
standing interface evolution can shed light on (1) which de-
cisions were originally hidden but later exposed and (2) how
unanticipated decisions impact original interface design.

In addition to the problems above, type change analysis
[38], signature change analysis [31], and instability analysis
[11] also require matching program elements in order to track
code elements over time.

3. MATCHING CHALLENGES

This section lists challenges of program element matching.

3.1 Absence of Benchmarks

It is difficult to evaluate matching techniques because
there is no reference data set or archive of editing logs.
Previous studies [30] also indicate that programmers often
disagree about the origin of code snippets; low inter-rater
agreement suggests that there may be no ground truth in
program element matching.

3.2 VariousGranularity Support

With respect to our motivating problems in Section 2,
we cannot assume that programmers intend to track pro-
gram elements at a fixed granularity. There are two reasons
why matching techniques must support various granular-
ity. First, a programmer may want to track design decisions
that cannot be mapped to program units precisely. Second,
a programmer may want track program elements at a dif-
ferent granularity depending on the nature of tasks. For
example, if matching techniques are to be used for profile
propagation or precise regression test selection, mappings
should be found at a fine granularity such as at the level of
control flow graph edges [42] or at the level of code blocks
[46, 44]. On the other hand, if a programmer wants to use
matching results for program understanding tasks, it would
be more appropriate to find associations at a higher level
such as a file.

3.3 Typesof Code Changes

Certain types of code changes make the matching prob-
lem non-trivial. For example, tracking code by its enclosing

'In an open source project community, this practice is often
called as forking.

procedure name would fail if programmers merged, split,
or renamed procedures. When a programmer copies code,
matching techniques cannot assume one-to-one mappings
between old elements and new elements because an old code
element can have more than one matching descendants in a
new version.

4. MATCHING TECHNIQUES

This section describes matching techniques used for soft-
ware version merging, program differencing, profile propaga-
tion, regression testing, and multi-version program analyses.
For easy comparison, we group techniques by program rep-
resentation. We describe clone detectors and tools that infer
refactoring events in Section 4.7 and 4.8 because these tools
can be leveraged for finding correspondences between two
versions.

4.1 Entity Name Matching

The simplest matching method treats program elements
as immutable entities with a fixed name and matches the
elements by name. For example, Zimmermann et al. mod-
eled a function as a tuple, (file name, FUNCTION, function
name), and a field as a tuple, (function name, FIELD, field
name) [51]. Similarly, Ying et al. [48] modeled a file with its
full path name. In fact, matching by name would be suffi-
cient for many multi-version analyses that intend to identify
coarse-grained patterns such as the characteristics of fault
prone modules [15, 20, 37].

4.2 String Matching

When a program is represented as a string, the best match
between two strings is computed by finding the longest com-
mon subsequence (LCS) [7]. The LCS problem is built on
the assumption that (1) available operations are addition
and deletion, and (2) matched pairs cannot cross one an-
other. Thus, the longest common subsequence does not
necessarily include all possible matches when available edit
operations include copy, paste, and move. Tichy [45] (bdiff)
extended the LCS problem by relaxing the two assumptions
above: permitting crossing block moves and not requiring
one-to-one correspondence.

The line-level LCS implementation, diff [25], has served as
basis for many multi-version analyses, because (1) diff is fast
and reliable, and (2) popular version control systems such as
CVS [2] or Subversion [1] already store changes as line-level
differences. For example, a clone genealogy extractor tracks
code snippets by their file name and line number [29]. As
another example, fix-inducing code snippets [43] are inferred
by tracking backward a tuple of (file name:: function name::
line number) from the moment that a bug is fixed.

4.3 Syntax Tree Matching

For software version merging, Yang [47] developed an AST
differencing algorithm. Given a pair of two functions (fr, fr)
the algorithm creates two abstract syntax trees 7" and R
and attempts to match the two tree roots. If the two roots
match, the algorithm aligns 7”s subtrees t1,t2,...,t; and R’s
subtrees r1,72,...r; using the LCS algorithm and matches
subtrees recursively. This type of tree matching respects the
parent-child relationship as well as the order between sibling
nodes, but is very sensitive to changes in nested block and
control structures because tree roots must be matched for
every level.

)

Hunt and Tichy do not directly compare ASTs but use
syntactic information to guide string level differencing. Their
3-way merging tool [24] parses a program into a language
neutral form, compares token strings using the LCS algo-
rithm, and finds syntactic changes using structural informa-
tion from the parse.

For dynamic software updating, Neamtiu et al. [38] built
an algorithm that tracks simple changes to variables, types,
and functions based on a AST representation. Neamtiu’s
algorithm assumes that function names are relatively sta-
ble over time and matches the ASTs of functions with the
same name; the algorithm traverses two ASTs in parallel
and incrementally adds one-to-one mappings as long as the
ASTs have the same shape. In contrast to Yang’s algorithm,
Neamtiu’s algorithm cannot compare structurally different
ASTs.

4.4 Control Flow Graph Matching

Laski and Szermer [33] first developed an algorithm that
computes one-to-one correspondences between CFG nodes
in two programs P1 and P2. This algorithm first reduces a
CFG to a series of single-entry, single-exit subgraphs called
hammocks and matches a sequence of hammock nodes us-
ing a depth first search (DFS). Once a pair of corresponding
hammock nodes is found, the hammock nodes are recur-
sively expanded in order to find correspondences within the
matched hammocks.

Jdiff [5] extends Laski and Szermer’s (LS) algorithm to
compare Java programs based on an enhanced control flow
graph (ECFG). Jdiff is similar to the LS algorithm in the
sense that hammocks are recursively expanded and com-
pared, but is different in three ways: First, while the LS
algorithm compares hammock nodes by the name of a start
node in the hammock, Jdiff checks whether the ratio of
unchanged-matched pairs in the hammock is greater than
a chosen threshold in order to allow for flexible matches.
Second, while the LS algorithm uses DFS to match ham-
mock nodes, Jdiff only uses DFS up to a certain look-ahead
depth to improve its performance. Third, while the LS algo-
rithm requires hammock node matches at the same nested
level, Jdiff can match hammock nodes at a different nested
level; thus, Jdiff is more robust to addition of while loops
or if-statements at the beginning of a code segment. Jdiff
has been used for regression test selection [40] and dynamic
impact analysis [6].

45 Program Dependence Graph Matching

There are several program differencing algorithms based
on a program dependence graph [23, 12, 26]. These algo-
rithms are not applicable to popular modern program lan-
guages because they can run only on a limited subset of
C languages without global variables, pointers, arrays, or
procedures.

4.6 Binary Code Matching

BMAT [46] is a fast and effective tool that matches two
versions of a binary program without knowledge of source
code changes. BMAT was used for profile propagation and
regression test prioritization [44]. BMAT’s algorithm matches
blocks in three steps. The first step of BMAT’s matching
algorithm is to find one-to-one mappings between the pro-
cedures in two versions based on their names, type informa-
tion, and code contents. To match procedures with different

names, block trial matching is done on procedure pairs with
a small number of character differences in their hierarchical
names. In this step, the thresholds for procedure name dif-
ference and block matching percentage are both set heuris-
tically. In the second step, BMAT first matches data blocks
within each pair of matched procedures using a hash func-
tion and matches remaining unmatched data blocks if the
unmatched blocks are sandwiched by already matched pairs.
In the third step, BMAT matches code blocks in multiple
hashing passes. During hash-based matching, if hash values
collide, two heuristics are used to break ties: (1) crossing
matches are forbidden at certain hashing passes, and (2) a
pair of blocks is preferred to other tied pairs if either its
predecessors or successors are also matched. For remaining
unmatched blocks, BMAT matches blocks based on control
flow equivalence, allowing one-to-many mappings between
old code blocks and new code blocks.

4.7 Clone Detection

A clone detector is simply an implementation of an arbi-
trary equivalence function. The equivalence function defined
by each clone detector depends a program representation
and a comparison algorithm. Most clone detectors [8, 28,
9, 32, 27] are heavily dependent on (1) hash functions to
improve performance, (2) parameterization to allow flexible
matches, and (3) thresholds to remove spurious matches. A
clone detector can be considered as a many-to-many matcher
based solely on content similarity heuristics.

4.8 Origin AnalysisTools

Origin analysis infers refactoring events such as splitting,
merging, renaming and moving by comparing two versions
of a program [14, 52, 31, 4, 18, 35, 19]. Origin analysis
tackles the program element matching problem directly but
produces matching results only at a predefined granularity
such as a procedure, class or file.

Demeyer et al. [14] first proposed the idea of inferring
refactoring events by comparing the two programs. De-
meyer et al. used a set of ten characteristics metrics for
each class, such as LOC and the number of method calls
within a method (i.e., fan-out) and inferred where refactor-
ing events occurred based on the metric values and a class
inheritance hierarchy.

Zou and Godfrey’s origin analysis [52] matches procedures
using multiple criteria (names, signatures, metric values,
and a set of callers and callees) and infers merging, split-
ting, and renaming events. Both Demeyer et al. and Zou
and Godfrey’s analyses are semi-automatic in the sense that
a programmer must manually tune matching criteria and
select a match among candidate matches.

Kim et al. [30] automated Zou and Godfrey’s procedure
renaming analysis. In addition to matching criteria used
by Zou and Godfrey, Kim et al. used clone detectors such
as CCFinder [28] and Moss [3] to calculate content simi-
larity between procedures. An overall similarity is com-
puted as a weighted sum of each similarity metric, and a
match is selected if the overall similarity is greater than a
certain threshold. To create an evaluation data set, ten hu-
man judges identified renaming events in the Subversion and
the Apache projects, and if seven out of ten judges agreed
the origin of a renamed procedure, a match was added to
a reference data set. Using the reference data set, Kim et
al. optimized each factor’s weight and tuned the threshold

Table 1: Comparison of Matching Techniques

Program Citation Granularity Assumed Multiplicity Heuristics Application
Representation Correspondence NTPTS
A set of [20, 15, 37 Module 1:1 V4 Fault proneness
entities Bevan et al. [11] File 1:1 VA Instability
Ying et al. [4§] File 1:1 VA Co-change
Zimmermann et al. File 1:1 V4
[51] Procedure
Field
String diff [25] Line File 1:1 V4 Merging
Clone genealogy [29]
Fix inducing code [43]
bdiff 145 Line File 1:n VA Merging
AST cdiff 147 AST Node Procedure 1:1 v/
Neamtiu et al.[3§] Type, Var 1:1 NARY Type change
Hunt, Tichy[24, 35] Token File 1.1 VARV Merging
CFG Jdiff 5] CFG node 1:1 V4 V4 Regression testing
Impact analysis
Binary BMAT [46] Code block 1:1 (procedure) | /| v/ | v/ | Profile propagation
n:1 (block) Regression testing
Hybrid Zou, Godfrey [52] Procedure I:1or I'nor n:1 | v/ N4 Origin analysis
Kim et al. [30] Procedure 1:1 VA v/ | Signature change [31]
Renaming analysis

N: Name-based heuristics, P: Position-based heuristics, S: Similarity-based heuristics

value. The accuracy of Kim’s tool was better than the aver-
age accuracy of human judges, indicating that human judges
significantly disagreed about the origin of procedures.

5. COMPARISON

Table 1 shows comparison of the state-of-the-art matching
techniques in Section 4. As shown in the fourth column of
Table 1, many matching techniques assume correspondence
at a certain granularity no matter whether this assumption
is explicitly stated or not. For example, using diff to match
code snippets assumes that input files already are matched.
As another example, using cdiff to match AST nodes as-
sumes that enclosing functions are matched by the same
name.

All matching techniques heavily rely on heuristics to re-
duce a matching scope and to improve precision and recall.
The heuristics are categorized into three categories: 2

1. Name-based heuristics match entities with similar names.

For example, BMAT and Jdiff match procedures in
multiple phases by the same globally qualified name

(e.g., System.out.println), by the same hierarchical name,

by the same signature, and by the same name.

2. Position-based heuristics match entities with similar
positions. If entities are placed in the same syntac-
tic position or surrounded by already matched pairs
(i.e., a sandwich heuristic), they become a matched
pair. For example, BMAT uses a sandwich heuristic
aggressively to remove unmatched pairs. As another
example, Neamtiu’s algorithm traverses two ASTs in
parallel and matches variables placed in the same syn-
tactic position regardless of their labels.

3. Similarity-based heuristics match entities that are nearly

identical; they often rely on parameterization and a
hash function to find near identical entities. All clone
detectors can be viewed as a similarity-based matcher.

2The three categories are not comprehensive or mutually
exclusive.

The three different types of heuristics complement one an-
other. For example, when hash values collide or parameteri-
zation results in spurious matches, position-based heuristics
will select a matched pair that preserves linear ordering or
structural ordering by checking neighboring matches. Table
1 (column 6 to 8) summarizes which kinds of heuristics that
each matching technique uses.

6. EVALUATION

Matching techniques are often inadequately evaluated—Only
Kim et al. conducted a comparative study using human sub-
jects [30]. This lack of evaluation is exacerbated by the fact
that there are no agreed evaluation criteria or representa-
tive benchmarks. Finding such universal criteria would be
difficult since each technique is built for a different goal. For
example, matching techniques for regression testing or pro-
file propagation [5, 46, 49] can be evaluated by the accuracy
of static branch prediction and code coverage; but even this
evaluation method is not applicable to programs without
test suites. To evaluate matching techniques uniformly, we
take a scenario-based evaluation approach; we design a small
set of hypothetical program change scenarios, on which we
gescribe how well various matching techniques will perform.

Scenario 1: (1) a programmer inserts if-else statements
in the beginning of the method ma, and (2) the program-
mer reorders several statements in the method mp without
changing semantics as shown in Table 2.

The ideal matching technique should produce (s1-s1’), (s2-
s27), (s3-s4’), (s4-s3’), and (s5-s5’) and identify that s0’ is
added. The third column of Table 3 summarizes how well
each technique will work in this scenario. Diff can match
lines of m 4 but cannot match reordered lines in m g because
the LCS algorithm does not allow crossing block moves. On
the other hand, bdiff can match reordered lines in mp be-
cause crossing block moves are allowed. Neamtiu’s algo-

3PDG-based matching techniques are excluded due to lack
of modern programming language support.

Table 2: Scenario 1 Code Change

before after
mA Of mA OF
if (pred_a) { \\s1 if (pred_a0) { \\sO’
foo() \\s2 if (pred_a) { \\si1
} foo() \\s2’
} }
mB (b){ }
a:= 1 \\s3 }
b:= b+l \\s4 mB (b){
fun(a,b) \\s5 b:= b+1 \\s3’
} a:= 1 \\s4’

fun(a,b) \\s5’
}

rithm will perform poorly in both ma and mp because it
does not perform a deep structural match. Cdiff cannot
match unchanged parts in m 4 correctly because cdiff stops
early if roots do not match for each level. Jdiff will be
able to skip the changed control structure, map unchanged
parts in ma, and match reordered statements in mp if the
look-ahead threshold is greater than the depth of nested
controls. BMAT cannot track code blocks in mp because
BMAT’s hashing algorithms are instruction order sensitive.
In conclusion, Jdiff will work the best for changes within
procedures at a statement or predicate level.

Scenario 2: A file PElmtMatch changed its name to PMatch-

ing. A procedure matchBlck are split into two procedures
matchDBlck and matchCBlck. A procedure matchAST
changed its name to matchAbstractSyntazTree.

The ideal matching technique should produce (PElmt-
Match, PMatching), (matchBlck, matchDBIck), (matchBlck,
matchCBlck), and (matchAST, matchAbstractSyntaxTree).
The fourth column of Table 3 summarizes how each tech-
nique will work in this scenario. Most name-based match-
ing techniques will do poorly due to renaming events. Diff
and bdiff will be able to track each line only if file names
did not change. Both cdiff and Neamtiu’s algorithm will
perform poorly if procedure names changed. Both BMAT
and origin analysis tools will perform well because they rely
on multiple passes of hash functions and multiple phases of
name matching.

The remaining columns of Table 3 describe how well each
matching technique will work in case of restructuring tasks
at a procedure level or at a file level.

Based on Table 1 and 3, we conclude the following:

e Matching techniques based on AST or CFG produce
matches at fine-grained levels but are only applicable
to a complete and parsable program. Researchers must
consider the trade-off between matching granularity,
matching requirements, and matching cost.

e Many techniques employ the LCS algorithm even when
matching AST or CFG, thus inheriting the assump-
tions of LCS: one-to-one correspondences between
matched entities and linear ordering among matched
pairs. This sort of implicit assumptions must be care-
fully examined before implementing a matcher.

e Most techniques support only one-to-one mappings at
a fixed granularity. Therefore, they will perform poorly
when merging or splitting occurs.

e The more heuristics are used, the more matches can
be found by complementing one another. For exam-
ple, name-based matching is easy to implement and
can reduce matching scope quickly, but it is not ro-
bust to renaming events. In this case, similarity-based
matching can produce matches between renamed enti-
ties and position-based matching can leverage already
matched pairs to infer more matches.

7. FUTURE DIRECTIONS

This section lists remaining open problems and future di-
rections.

Hybrid Matcher. Although no single technique per-
forms perfectly in all change scenarios but the combination
of all techniques does. Thus combining multiple techniques
may improve the accuracy of matches by complementing one
another. The simplest way is to run all matching techniques
separately and find consensus among the results. Another
way of building a hybrid matcher is to leverage a feedback
loop between matching tools and tools that infer refactoring
events. Determining which refactoring occurred and deter-
mining correspondences is a chicken and egg problem; in-
ferring refactoring events requires knowledge of correspon-
dences, and finding good correspondences is achieved by
knowing which refactoring occurred. This feedback cycle
provides an opportunity to find more matches. The results
of inferred transformations are fed to matching tools, and
the matching results are fed back to a refactoring recon-
struction tool iteratively until optimal correspondences are
found.

‘We must note that combining results from multiple match-
ers will require tremendous efforts because (1) not every
matching tool is available for public use or applicable to
popular programming languages and (2) different matchers
use different program representations.

Capturing Editing Operations. Having a complete
history of logical editing operations would nullify the match-
ing problem. However, most software repositories employ
state-based merging not operation-based merging [34], thus
making it impossible to restore logical editing operations
completely. Even when an edit log is available, if editing
operations are captured at a key stroke level, it is not trivial
to reconstruct logical editing operations (such as procedure
renaming, splitting, and merging) and produce matches be-
tween program elements. Recently, capturing and replaying
refactoring operations is shown to be possible in an Eclipse
IDE [22], so we can leverage this type of refactoring history
to initiate the feedback loop discussed above.

Interval Manipulation vs. Matching Tool Selec-
tion. In this paper, we simplified a multi-version program
matching problem as a two version matching problem. To
use a matching technique in the context of multi-version
analyses, the interval between each pair of versions must
be determined. In the past, the granularity of available
historical data limited a sampling interval for multi-version
analyses. Recently, several infrastructures [10, 51, 50] were
built to facilitate multi-version analyses by restoring commit
transactions from a source code repository and automati-
cally extracting multiple versions separated by an arbitrary
time interval. These infrastructures enable multi-version
analyses to manipulate a sampling interval. Therefore, the
remaining problem is to determine an optimal sampling in-
terval for each matching technique (or select an appropriate

Table 3: Evaluation of the Surveyed Matching Techniques

Program Citation Scenario Transformations Strength and Weakness
Representation Split/Merge Rename
1 2 Proc | File | Proc | File
String diff [25] X | O O O X OO | — sensitive to file name changes
bdiff T45] H| O X O X O | + can trace copied blocks
AST cdiff |47 o) O O O O O | — sensitive to nested level change
— require procedure level mappings
Neamtiu et al. [38] [O | O O O O O | — partial AST matching
Hunt, Tichy [24, 35] | X | O O d [] O | — require file level mappings
+ can identify procedure renaming
CFG JDiff [5] | X [] X X | + robust to signature changes
— sensitive to control structure changes
Binary BMAT [46] Ol m [O [] B | + robust to procedure renaming
— assume 1:1 procedure correspondence
— only applicable to binary programs
Hybrid Zou, Godfrey [52] ol m [] [] [] B | — semi-automatic, manual analysis
Kim et al. [30] | u] W] [] M | — assume 1:1 procedure correspondence

B good X mediocre [J poor

matching tool depending on the logical gap between two
versions of a program). Another interesting open question
is, ”can we design a matching technique that works as well
as aggregating results from a set of program snapshots that
separated by only small changes?”

Matching Result Aggregation. As matching com-
plexity increases by supporting multiple granularities and
many-to-many mappings, representing match results becomes
a non-trivial problem. In addition, when a two-version match-
ing tool is used for multi-version program analyses, aggre-
gating individual matching results and representing the final
results in a compact form remains as an open problem.

Leveraging Dynamic Information. Most matching
techniques are based on syntactic similarities at a source
code level. In comparison checking research [49, 39], dy-
namic information has been used to match an optimized ver-
sion and an unoptimized version of the same program when
the two versions were executed on the same input. Abstrac-
tion of multiple execution traces may guide matching of a
static program representation. For example, comparing dy-
namic invariants [16] may be useful for identifying variable
level matches at the entry (or exit) of a function.

8. CONCLUSION

In this paper, we defined the program element matching
problem and argued its importance for fine-grained multi-
version analyses. We presented a survey of matching tech-
niques from various research areas and evaluated them based
on hypothetical program change scenarios by hand. We be-
lieve that our assessment of existing techniques will guide
researchers to choose an appropriate matching technique for
their analysis.

In conclusion, every matching technique is an implemen-
tation of some pseudo equivalence function, and the more
heuristics are used, the better the matching technique will
work. One direction of future work involves building a hy-
brid matcher that leverages a feedback loop between match-
ing tools and tools that infer refactoring events. Another
future direction is to customize existing matchers in the con-
text of a specific type of multi-version analysis and build
an evaluation data set for that analysis. In addition, de-

termining an optimal sampling interval for each matching
technique remains as an open problem.

Our longer-term objectives are to (1) define the problem
more precisely, allowing for better assessment and sharing
of the approaches and (2) lay a foundation for more effec-
tive solutions applicable to specific kinds of multi-version
analyses.

9. ACKNOWLEDGMENTS

We thank Dagstuhl 05261 seminar participants for fruitful
discussions. We also thank Michael Toomim for reading our
draft and Vibha Sazawal, Dan Grossman, and Rob DeLine
for discussions that helped us refine our ideas.

10. REFERENCES

[1] subversion.tigris.org.

[2] www.cvshome.org.

[3] A. Aiken. A system for detecting software plagiarism.
[4] G. Antoniol, M. D. Penta, and E. Merlo. An
automatic approach to identify class evolution
discontinuities. In IWPSE, pages 31-40, 2004.

T. Apiwattanapong, A. Orso, and M. J. Harrold. A
differencing algorithm for object-oriented programs. In
ASE, pages 2-13. IEEE Computer Society, 2004.

T. Apiwattanapong, A. Orso, and M. J. Harrold.
Efficient and precise dynamic impact analysis using
execute-after sequences. In ICSFE, pages 432—441, 2005.
A. Apostolico and Z. Galil, editors. Pattern matching
algorithms. Oxford University Press, UK, 1997.

B. S. Baker. A program for identifying duplicated
code. Computing Science and Statistics, 24:49-57,
1992.

I. D. Baxter, A. Yahin, L. M. de Moura,

M. Sant’Anna, and L. Bier. Clone detection using
abstract syntax trees. In ICSM, pages 368377, 1998.
J. Bevan, J. E. James Whitehead, S. Kim, and

M. Godfrey. Facilitating software evolution research
with Kenyon. In ESEC/FSE, pages 177-186, 2005.

J. Bevan and E. J. W. Jr. Identification of software
instabilities. In WCRE, pages 134-145, 2003.

[5]

(12]

(13]

(14]

(15]

(18]

(19]

20]

(21]

(22]

23]

(24]

25]

(26]

29]

(30]

(31]

(32]

D. Binkley, S. Horwitz, and T. Reps. Program
integration for languages with procedure calls. ACM
TOSEM, 4(1):3-35, 1995.

J. R. Cordy. Comprehending reality: Practical barriers
to industrial adoption of software maintenance
automation. In IWPC 03, page 196, 2003.

S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding
refactorings via change metrics. In OOPSLA ’00,
pages 166—177, 2000.

S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron,
and A. Mockus. Does code decay? Assessing the
evidence from change management data. IEEE Trans.
Softw. Eng., 27(1):1-12, 2001.

M. D. Ernst. Dynamically Discovering Likely Program
Invariants. Ph.D. Disseratation, University of
Washington, Seattle, Washington, Aug. 2000.

H. Gall, K. Hajek, and M. Jazayeri. Detection of
logical coupling based on product release history. In
1CSM, pages 190-197, 1998.

C. Gorg and P. Weifigerber. Error detection by
refactoring reconstruction. In MSR ’05, pages 29-35.
C. Gorg and P. Weiigerber. Detecting and visualizing
refactorings from software archives. In IWPC, pages
205-214, 2005.

T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy.
Predicting fault incidence using software change
history. IEEE Trans. Softw. Eng., 26(7):653-661, 2000.
M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso,
M. Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi.
Regression test selection for Java software. In
OOPSLA 01, pages 312—-326, 2001.

J. Henkel and A. Diwan. Catchup!: capturing and
replaying refactorings to support API evolution. In
ICSE 05, pages 274-283, 2005.

S. Horwitz. Identifying the semantic and textual
differences between two versions of a program. In
PLDI’90, volume 25, pages 234-245, June 1990.

J. J. Hunt and W. F. Tichy. Extensible language-aware
merging. In ICSM, pages 511-520, 2002.

J. W. Hunt and T. G. Szymanski. A fast algorithm for
computing longest common subsequences. Commun.
ACM, 20(5):350-353, 1977.

D. Jackson and D. A. Ladd. Semantic Diff: A tool for
summarizing the effects of modifications. In ICSM 94,
pages 243-252, 1994.

J. H. Johnson. Identifying redundancy in source code
using fingerprints. In CASCON, pages 171-183. IBM
Press, 1993.

T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection
system for large scale source code. IEEE Trans. Softw.
Eng., 28(7):654-670, 2002.

M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy.
An empirical study of code clone genealogies. In
ESEC/SIGSOFT FSE, pages 187-196, 2005.

S. Kim, K. Pan, and J. E. James Whitehead. When
functions change their names: Automatic detection of
origin relationships. In WCRE, 2005.

S. Kim, E. J. Whitehead, and J. Bevan. Analysis of
signature change patterns. In MSR ’05, pages 64-68.
R. Komondoor and S. Horwitz. Using slicing to

(46]

(47]

(48]

identify duplication in source code. In SAS, pages
40-56, 2001.

J. Laski and W. Szermer. Identification of program
modifications and its applications in software
maintenance. In ICSM, 1992.

E. Lippe and N. van Oosterom. Operation-based
merging. In SDE’92, pages 78-87, 1992.

G. Malpohl, J. J. Hunt, and W. F. Tichy. Renaming
detection. Autom. Softw. Eng., 10(2):183-202, 2000.
T. Mens. A state-of-the-art survey on software
merging. IEEE Trans. Softw. Eng., 28(5):449-462,
2002.

N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In ICSE,
pages 284-292, 2005.

I. Neamtiu, J. S. Foster, and M. Hicks. Understanding
source code evolution using abstract syntax tree
matching. In MSR’05, pages 2—6.

G. C. Necula. Translation validation for an optimizing
compiler. In PLDI ’00, pages 83-94, 2000.

A. Orso, N. Shi, and M. J. Harrold. Scaling regression
testing to large software systems. In SIGSOFT
04/FSE-12, pages 241-251, 2004.

D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12):1053-1058, 1972.

G. Rothermel and M. J. Harrold. A safe, efficient
regression test selection technique. ACM TOSEM,
6(2):173-210, 1997.

J. Sliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In MSR ’05, pages 24-28, 2005.
A. Srivastava and J. Thiagarajan. Effectively
prioritizing tests in development environment. In
ISSTA 02, pages 97-106, 2002.

W. F. Tichy. The string-to-string correction problem
with block moves. ACM Trans. Comput. Syst.,
2(4):309-321, 1984.

Z. Wang, K. Pierce, and S. McFarling. BMAT - a
binary matching tool for stale profile propagation. J.
Instruction-Level Parallelism, 2, 2000.

W. Yang. Identifying syntactic differences between
two programs. Software - Practice and Ezxperience,
21(7):739-755, 1991.

A.T. T. Ying, G. C. Murphy, R. Ng, and

M. Chu-Carroll. Predicting source code changes by
mining change history. IEEE Trans. Softw. Eng.,
30(9):574-586, 2004.

X. Zhang and R. Gupta. Matching execution histories
of program versions. In ESEC/SIGSOFT FSE, pages
197-206, 2005.

T. Zimmermann and P. Weifigerber. Preprocessing
CVS data for fine-grained analysis. In MSR’0/, pages
2-6.

T. Zimmermann, P. Weifigerber, S. Diehl, and

A. Zeller. Mining version histories to guide software
changes. IEEE Trans. Softw. Eng., 31(6):429-445,
2005.

L. Zou and M. W. Godfrey. Using origin analysis to
detect merging and splitting of source code entities.
IEEE Trans. Softw. Eng., 31(2):166-181, 2005.

