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Abstract—It is widely held that debugging cyber-physical sys-
tems (CPS) is challenging; many strongly held beliefs exist regard-
ing how CPS are currently debugged and tested and the suitability
of various techniques. For instance, dissenting opinions exist as
to whether formal methods (including static analysis, theorem
proving, and model checking) are appropriate in CPS verifica-
tion and validation. Simulation tools and simulation-based testing
are also often considered insufficient for CPS. Many “experts”
posit that high-level programming languages (e.g., Java or C#) are
not applicable to CPS due to their inability to address (signifi-
cant) resource constraints at a high level of abstraction. To date,
empirical studies investigating these questions have not been done.
In this paper, we qualitatively and quantitatively analyze why
debugging CPS remains challenging and either dispel or confirm
these strongly held beliefs along the way. Specifically, we report
on a structured online survey of 25 CPS researchers (10 partic-
ipants classified themselves as CPS developers), semistructured
interviews with nine practitioners across four continents, and a
qualitative literature review. We report these results and discuss
several implications for research and practice related to CPS.

Index Terms—Computational modeling, computer simulation,
formal specifications, formal verification, networked control
systems, software engineering, software testing.

I. INTRODUCTION

C YBER-PHYSICAL systems (CPS) feature a tight cou-
pling between physical processes and software compo-

nents [67] and execute in varying spatial and temporal contexts
exhibiting diverse behaviors across runs [107]. CPS are widely
used in biomedical and healthcare systems, autonomous vehi-
cles, smart grids, and many industrial applications [67], [90],
[107]. Over the years, systems and control engineers have made
significant progress in developing system science and engi-
neering methods and tools (e.g., time and frequency domain
methods, state space analysis, filtering, prediction, optimiza-
tion, robust control, and stochastic control) [6]. At the same
time, computer science and software engineering researchers
have made breakthroughs in software verification and vali-
dation. Validation assures that a system meets the needs of
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the customers while verification assesses whether a system
complies with the specification. Software verification and val-
idation include but are not limited to systematic testing and
formal methods. While there are existing well-grounded test-
ing methodologies for other domains of software and formal
methods have been used for verification of mission-critical sys-
tems in practice, verifying and validating CPS are complicated
because of the physical aspects and external environment. For
instance, there are insufficient methods for investigating the
impact of the environment, or context, on a CPS [97]. External
conditions, which are often hard to predict, can invalidate esti-
mates (even worst-case ones) of the safety and reliability of a
system. Modeling any CPS is further hampered by the com-
plexity of modeling both the cyber (e.g., software, network, and
computing hardware) and the physical (physical processes and
their interactions) [71]. Simplified models that do not antici-
pate that the physical and logical components fail dependently
are easily invalidated.

In a 2007 DARPA Urban Challenge Vehicle, a bug unde-
tected by more than 300 miles of test-driving resulted in a near
collision. An analysis of the incident found that, to protect the
steering system, the interface to the physical hardware limited
the steering rate to low speeds [79]. When the path planner
produced a sharp turn at higher speeds, the vehicle physically
could not follow. The analysis also concluded that, although
simulation-centric tools are indispensable for rapid prototyping,
design, and debugging, they are limited in providing correctness
guarantees. In some mission-critical industries (e.g., medical
devices), correctness is currently satisfied by the documentation
for code inspections, static analysis, module-level testing, and
integration testing [56]. These tests do not consider the context
of the patient [56]. Such a lack of true correctness guarantees
could easily cause something like the Therac-25 disaster [70] to
reoccur.

We seek to address the dearth of empirical information avail-
able about CPS development, specifically in debugging and
testing. While limited studies of CPS verification and valida-
tion exist [66], [29], [94], there is no study that systematically
addresses the entire range of existing approaches. In the past
decade, as research on CPS has exploded, many strongly held
beliefs have emerged related to developing, debugging, and
testing these systems. We conduct a broad literature review,
a quantitative survey, and qualitative interviews with CPS
experts to uncover the state of the art and practice in CPS
verification and validation. Our surveys and interviews start
with basic questions, identifying the technical backgrounds of
actual CPS experts. We then move into specifics related to
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TABLE I
SUMMARY OF STRONGLY HELD BELIEFS ABOUT CPS DEVELOPMENT

tools and techniques used on a daily basis. We take a broad
view, encompassing simulation, formal methods, model-driven
development (MDD), and more ad hoc approaches. We also
attempt to ascertain what aspects of CPS development remain
unaddressed in practice, with the aim of eliciting a targeted
research agenda for software engineers desiring to support the
ever-growing domain of CPS development.

To the best of our knowledge, our study is the first to
quantitatively assess the state of the art in this area. We start
by identifying strongly held beliefs about CPS debugging
(Section II) and then review the relevant available literature
(Section III). We follow this with detailed results from an
online survey (Section IV) and one-on-one interviews with CPS
experts (Section V). We conclude with some future research
directions for CPS verification and validation elicited from our
investigation (Section VI).

II. METHODOLOGY

CPS are increasingly prevalent, and they pervade many other
emerging domains, including pervasive computing in general
and the Internet of Things. The rise has been so rapid over
the past decade that software engineering support for these new
domains has not kept pace. We seek to confirm or dispel several
widely held beliefs related to developing CPS, with a specific
focus on the verification and validation stages (specifically dur-
ing the testing and other later stages of a software development
cycle). Table I documents several of these beliefs, along with
relevant references to the literature. The section of this paper
in which we address each belief is listed in the right-most col-
umn of Table I. Our investigation takes three parts: 1) a broad
literature review; 2) a quantitative online survey; and 3) qualita-
tive interviews. This combined study benefits from the strengths
of each of its parts; while we feel the study methods are rig-
orous, some threats to validity still exist. We discuss these in
Section VII. For each of our three methods, before discussing
the results, we here briefly describe the goals of the approach,
our protocol, and how we analyzed the data.

A. Literature Review

It is obviously not possible (or desirable) to perform a com-
plete literature review of CPS verification and validation in this
paper. Instead we aim to provide a broad look at the variety of
techniques and approaches that could be applied to CPS verifi-
cation and validation. The approaches analyzed in the literature

review helped us shape the questions for the online survey and
interviews.

Protocol. We conducted this review by exploring related
publications in the recent past in the areas/categories of static
analysis, theorem proving, model checking, run-time verifi-
cation, simulation-based testing, synchronous approaches of
real-time systems testing, MDD-based tools, and finally social
and cultural impact of verification and validation. All of these
reviews were focused through a lens capturing CPS and other
closely related domains (e.g., hybrid systems and real-time sys-
tems). The review reported in this paper is a refinement of
a much broader look that included additional domains (e.g.,
distributed systems in general, reactive systems, and sensor net-
works) and a deeper look at specific categories of approaches.
The artifacts covered in this paper serve as (highly referenced)
exemplars of the state of the art in verification and validation
for CPS.

Data Analysis. For each category in our review, we chose
a few representative approaches (selected based on measures
of popularity including citations and discussions of practical
applications) and provide a short summary (due to the size
limitation) of their pros and cons.

B. Online Surveys

Our survey has two aims. 1) We aim to corroborate find-
ings from the literature review by cross-checking them with
those CPS researchers with hands-on experiences. 2) We seek
to confirm or dispel the strongly held beliefs listed in Table I.

Protocol. Based on the findings from our literature review,
we created a set of multiple choice questions that attempt to
resolve the veracity of the strongly held beliefs surrounding
CPS development and debugging. We also designed a set of
open-ended questions motivated to complement the variety of
information collected in the literature review.1

We sent the invitation of the online survey to 82 CPS
researchers, who publish work related to real-world CPS devel-
opment and deployment in relevant academic conferences and
received 25 responses. We reached experts from a wide range
of subfields, including electrical, mechanical, chemical, and
biological engineering and from computer science; 37.5% of
them have expertise in control systems and AI, 37.5% of them
in networking, 16.7% of them in cyber-security, 16.7% of
them in civil engineering, mechanical engineering, or other

1The surveys were delivered via SurveyMonkey; the full text is available at
https://www.surveymonkey.com/s/MP7HP7W.
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“traditional” engineering fields, 37.5% in real-time systems,
distributed systems, algorithm, verification, testing, and soft-
ware engineering, in general. When asked about their primary
role(s), 70.8% have roles as CPS modeling experts, designers,
and architects; 54.2% have roles in validation and verification;
and 41.7% classified themselves as CPS developers. The par-
ticipants had, on average, 8.35 years of software development
experience and 6.69 years of experience in CPS applications.

Data Analysis. We performed statistical analysis on the mul-
tiple choice questions. We collated the free-text responses by
combining responses that aligned contextually. We use a phe-
nomenological approach [26], which attempts to aggregate
meaning from multiple individuals based on their “lived expe-
riences” related to the concept (i.e., phenomenon) under study.
Our online survey (and, in fact, our interviews) is exactly tar-
geting the conclusions we can draw based on studies of the
experiences of a group of individuals, in this case, experts in
CPS development.

C. Interviews

To more deeply examine the implications of several of the
responses in the survey and corroborate the findings in the sur-
vey relative to the strongly held beliefs listed in Table I, we
created open-ended questions around the trends we saw in the
survey results, to explore further CPS practitioners opinions
related to CPS verification and validation. The full questions
list is available online.2

Protocol. We conducted these interviews through personal
interactions.3 The audio of the interviews was recorded with the
participants’ consent. In the case of in-person interviews, the
participants often showed the interviewer documents, papers,
devices, and other artifacts that were relevant to the inter-
view questions; this often highlighted the real constraints and
limitations or showcased the development and deployment
environments. The interviewees were CPS experts in charge
of real-world CPS systems from around the world (North
America, Europe, Asia, and Australia). The real CPS developed
and deployed by the interviewees include a large scale bridge
health monitoring system in Australia, an assisted living device
for elder persons in one of the biggest hospitals in Australia,
robots for extra-terrestrial exploration, an autonomous military
system, autonomous vehicles in the USA, a ventricular assist
device (VAD) in the USA, and a few others. We found the
participants through our review of the CPS literature and devel-
opment tools; the selected interview participants are in charge
of the development and deployment of real-world CPS applica-
tions development and deployment. We interviewed an expert
in autonomous vehicles, another in closely related autonomous
robots, one in medical CPS, two in formal methods, one in
unmanned aerial vehicles and wireless sensor networks, one
in assisted living, one in wearable devices, and the last one in
structural health monitoring.

Data Analysis. We transcribed the interviews and then used
the same methodologies as we did for the online survey.

2http://goo.gl/5vwvPf
3Two interviews were done over Skype; the remainder were in person.

III. LITERATURE REVIEW

In our literature review, we focus on breadth of coverage,
providing exemplars in the wide variety of applicable areas,
including formal methods, model- and simulation-based test-
ing, run-time verification, and multiple practical tools. We also
look briefly at social and cultural factors that have a nontrivial
impact on the adoption of these techniques.

A. Formal Methods

Static analysis is used to efficiently compute approximate but
sound guarantees about the behavior of a program without exe-
cuting it [33]. Abstract interpretation relates abstract analysis to
program execution [25] and can be used to compute invariants
[21], [30], [78]; these approaches have been applied in CPS,
including in flight control software [12] and outer space rovers
[53], [48]. In general, the efficiency and quality of static anal-
ysis tools have reached a level where they can be practically
useful in locating bugs that are otherwise hard to detect via test-
ing. However, for mission-critical CPS applications (which may
contain millions of lines of code that interact in complex ways
with a physical world), existing industry static analysis tools
either do not scale well (e.g., [53]) or tend to introduce many
false positives (e.g., [49], [50], [55]).

Theorem proving has been applied in deductive verifica-
tion [68], [69], where validity of the verification conditions are
determined. Theorem provers have also been used for verify-
ing hybrid systems [1], [82]. Isabelle/HOL [83] has been used
to formally verify the kernel piece of seL4 [60], which is the
foundation OS for a highly secure military CPS application.
This work shows that, with careful design, a (critical compo-
nent of a) complex CPS can be formally verified by the state of
art theorem prover. However, the requirement for human inter-
vention and high costs (the total effort for proof was about 20
person-years, and kernel changes require 1.5–6 person-years
to reverify [59]) makes applying theorem proving impossible
for general-purpose CPS applications, which may contain mil-
lions of lines of code [87] and require much quicker (and less
expensive) changes.

The verification world is also rife with highly capable model
checkers [28], [63], including those that handle real-time con-
straints [11], parametric constraints [45], stochastic effects [46],
and asynchronous concurrency with complex and/or dynamic
data structures (though not sharable between concurrent pro-
cesses) [38], all of which are common in CPS. Model abstrac-
tion and reduction can make analysis more tractable (and thus
more applicable to CPS) [24], [41], [104], however, error
bounds are usually unquantified, which makes the verifica-
tion unsafe. While model checking allows verification to be
fully automated, in addition to issues such as state-explosion,
complexity in property specification, and inevitable loss of
representativeness [8], CPS exhibits bugs that crop up only
at run-time based on the physical state of the deployment
world; such bugs cannot be captured by model checking alone.
In hybrid systems, online model-checking has received some
attention, investigating, e.g., the potential behavior of a system
over some short-term (time-bounded) future. Such approaches
have been applied to check medical device applications [17],
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where the findings have motivated further investigation into
adaptations of model checking targeted for CPS-like domains.

It is exceedingly difficult to prove properties of CPS automat-
ically because of the disconnect between formal techniques for
the cyber and well-established engineering techniques for the
physical [23], [86]. This disconnect is the root of Belief VIII
in Table I. In recent works [19], [36], physical and software
processes are modeled and composed together either as timed
automata or hybrid automata, and the compositional models
are verified by model checkers against correctness properties.
However, the combinatorial explosion both for the number
of reachable discrete states and the reachable sets of con-
tinuous variables remains an unresolved research challenge.
Furthermore, the large scale of CPS applications pushes scal-
ability requirements well beyond the capabilities of existing
tools. Although significant progress has been made in formal
verification that has the potential to change this landscape for
CPS, without support from other approaches, including run-
time verification (which is much less constrained by scalability
issues) [10], formal methods alone are not enough to tackle the
challenges in CPS verification and validation [22], [65]. These
positions from the literature are the root of Belief V in Table I;
our survey and interviews will try to further identify uses and
challenges associated with real-world CPS developers applying
formal techniques.

B. Run-Time Verification

In run-time verification, correctness properties specify all
admissible executions using extended regular expressions,
trace matches, and others formalisms [10]. Temporal log-
ics, especially variants of LTL [88] are popular in runtime
verification. However, basic temporal logics do not capture
nonfunctional specifications that are essential in CPS (e.g.,
timeouts and latency) and lack capabilities to deal with the
stochastic nature of many CPS applications [40], [89], [93].
Probabilistic temporal logic such as probabilistic computa-
tion tree logic (PCTL) [42] and continuous stochastic logic
(CSL) [7] have been introduced two decades ago to specify
probabilistic properties, and a subset of CSL [40] and a CSL-
compatible language [93] are used to monitor probabilistic
properties at runtime. However, these temporal logics lack the
capacity to monitor the continuous nature of the physical part
of CPS applications. In [100], a monitor is created for stochas-
tic hybrid systems and a monitorability theorem is provided.
However, there is little discussion of whether the monitor will
impact the system’s functional and nonfunctional behaviors. In
[61], an efficient runtime assertion checking monitor is pro-
posed for memory monitoring of C programs. This noninvasive
monitoring is well suited to mission- critical and time-critical
CPS applications. In summary, the state of art in run-time ver-
ification can potentially provide a great supplement for formal
methods and traditional testing in CPS. However many oppor-
tunities remain to make run-time verification more suitable to
the idiosyncrasies of CPS and approachable to CPS develop-
ers. For instance, aspect-oriented monitoring tools [18] are less
intrusive, and their adaptation to CPS run-time verification may
prove more approachable for developers.

C. Model-Based Approaches

In this category, we talk about model-based testing, which
uses formal models to enable (automatic) testing of CPS appli-
cations [105]. We also include simulation-based techniques
aimed at the model analysis of CPS applications [13], [37],
[72]. Modeling real-time components has been decomposed
into behaviors, their interactions, and priorities on them; rea-
soning can then occur layer by layer [9], [98]. In general, such
approaches allow the verification of all system layers from
the correctness proof of the lower layers (i.e., gate-level) to
the verification procedure for distributed applications; such an
approach has been used to verify automotive systems, a key
exemplar of CPS [15]. The practicality and costs of devel-
opment associated with these approaches are still unknown.
While there are many computational and network simulators
that many software engineers may be familiar with, in the CPS
domain, one of the most relevant systems is Simulink, which
is widely deployed in the automotive industry and other mis-
sion critical domains (e.g., avionic applications) [44]. In [5],
A MATLAB toolbox called S-Taliro is created to systemati-
cally test a given model by searching for a particular system
trajectory that falsifies a given property written in a tempo-
ral logic. However, S-Taliro suffers from a memory explosion
problem when a system contains larger specification formulas.
MATLAB also provides Simulink design verifier (SDV) [54]
as an extension toolset to perform exhaustive formal analysis
of Simulink models. SDV is able to create test suites satisfy-
ing a given model coverage [52], and generate counterexamples
for the violation of formal properties (e.g., temporal proper-
ties [51]). However, the test inputs are discrete and not suitable
for CPS models with time-continuous behaviors, which make
SDV an unlikely candidate to capture continuous dynamics
of CPS applications [76]. In [31], another MATLAB toolbox
called Breach is used for reachability analysis, parameter syn-
thesis, and monitoring of temporal logic formulas. In [32],
Breach is able to support time-frequency logic (an extension
to signal temporal logic [75]), which is capable of specifying
not only temporal logic properties but also frequency-domain
properties. However, this toolbox generally requires develop-
ers to write supplementary codes to guide the toolset and thus
the approach is error-prone. As explored further in our online
survey and interviews, the truthfulness of the application’s
behavior in simulation-based approaches is often in question
[66], and in practice extensive simulation can not cope with
modeling uncertainty and random disturbances, which are cur-
rently only addressed using ad hoc methods [6]. As a result
when system verification has relied exclusively on simulation,
the verification has failed to identify key failure points [79]; in
addressing Belief VI from Table I in our survey and interviews,
we seek to identify situations when real-world CPS developers
rely on simulation and when it falls short.

Model-based approaches are gaining momentum, and it
seems inevitable that approaches will emerge that can be
applied to general purpose CPS. For now, the high-learning
curve associated with creating the models, the costs of devel-
oping them, and scalability remain major hurdles to wide
adoption.
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D. Testing and Debugging Tools

Although sensor networks and CPS are not exactly the same,
several tools exist to support testing and debugging deployed
wireless sensor networks, which provide insight into directions
and challenges for CPS. Passive distributed assertions [92]
allow programmers to specify assertions that are preprocessed
to generate instrumented code that passively transmits relevant
messages as the assertions are checked. Dustminer [58] col-
lects system logs to look for sequences of events responsible
for faulty interactions among sensors. Clairvoyant [108] uses a
debugger on each sensor node to instrument the binary code to
enable GDB-like debugging behavior. MDB [102] provides the
same style of behavior for macroprograms specified at the net-
work level (instead of the node level). Envirolog [73] records all
events labeled with programmer-provided annotations, allow-
ing an entire execution trace to be replayed. Declarative trace-
points allow the programmer to insert checkpoints for specified
conditions that occur at runtime. Sympathy [91] collects and
analyzes a set of minimal metrics at a centralized sink node to
enable fault localization across the distributed nodes. Finally,
KleeNet [95] uses symbolic execution to generate distributed
execution paths and cover low-probability corner-case situa-
tions. In summary, these tools and algorithms can tackle various
similar issues in CPS; an immediate effort to adapt them more
specifically to CPS would be one that directly accounts for the
physical world with continuous dynamics.

E. Cultural and Social Concerns

To improve the state of art and practice of developing and
debugging CPS, it is essential to have a robust, scalable, and
integrated toolset that not only provides accessible approaches
for verification and validation but approaches that are also
more willingly adopted by practitioners. The major cultural and
social impediments include lack of funding and lack of priority
[4], which are not related to technical aspects at all. Apart from
commonly known false positives, the reasons developers do not
use static analysis tools have been documented as developers’
overload [57], while mandate from supervisors, the (in)ability
to find knowledgeable people, and code ownership all play a
role in how bugs are fixed [80].

In many of the approaches we reviewed, even when the CPS
developers attempted to provide significant rigor to verification
and validation tasks, they almost always had to fall back on
a “trial and error” approach, which results in a more ad hoc
approach to verifying the system [81]. In addressing Belief VII
from Table I, our survey and interviews seek to uncover how
pervasive trial and error is among real-world CPS developers. In
correlation with Belief I, we are also interested in whether real-
world CPS developers are classically trained software engineers
who are aware of more formal methods or whether they are
“outsiders” who simply default to ad hoc methods.

IV. ONLINE SURVEY

Our online survey consisted of 32 multiple choice and free
answer questions designed to: 1) understand participants’ def-
initions of CPS; 2) determine participants’ familiarity with

TABLE II
SUMMARY OF SURVEY QUESTIONS

See https://www.surveymonkey.com/s/MP7HP7W for complete survey.

existing techniques for verification and validation, and how they
are applied to CPS; and 3) to collect information about the main
challenges in verification and validation of CPS, from an “in the
trenches” perspective. Table II shows an abbreviated version of
the survey. The specific questions were driven by our litera-
ture review, which also helped elicit the strongly held beliefs
in Table I. The questions were crafted to help confirm or dispel
each of these beliefs. Our approach in the survey was inten-
tional. We began by generating definitions of both CPS and of
verification and validation. We then built on this foundation to
determine, in detail, the experts’ various approaches to and per-
ceptions of the wide array of CPS verification and validation
techniques.

A. Background and Definitions

Among CPS developers, there are strong opinions about
appropriate programming languages. The programming lan-
guage greatly influences the verification tools and techniques
that can be applied; while some techniques apply at the design
level and are thus more general purpose, others apply at the
language level. The responses to the question “What program-
ming languages are you familiar with?” mirror surveys of
programming language adoption in general (with C/C++ and
Java taking the top spots, and Python a close third). Only one of
our respondents was familiar with nesC, the programming lan-
guage for TinyOS sensor network platforms. This is interesting
given that many CPS experts purportedly believe that high-level
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Fig. 1. Programming language like Java is not applicable to systems with hard
real-time constraints.

programming languages are not appropriate for cyber-physical
style systems [39], [106].

A subsequent question broached this question directly, when
we asked participants to rate their agreement with, “A pro-
gramming language like Java is not applicable to systems
with hard real-time constraints.” Fig. 1 shows the results;
we were surprised by the implication that many of the sur-
veyed CPS experts found Java to be reasonably appropriate for
CPS development (50% of self-classified developers, referred
as developers, selected disagree/strong disagree, 30% selected
neutral). Consider other Java dialects such as RT-Java or Java
Embedded, or Java ME, that are designed specifically for devel-
oping real-time or embedded applications, this further counters
the colloquial claim expressed as Belief III in Table I that high-
level languages are not appropriate to CPS development, which
has a potential rippling effect on future research directions.
In our interviews, we found even stronger evidence for these
findings (Section V).

We also asked the participants to express definitions of both
CPS and verification and validation in their own words. This is
important in setting a foundation for the remainder of the sur-
vey responses. When we asked, “In your opinion, what are the
main differences between CPS and conventional embedded sys-
tems,” most respondents’ answers identified commonly cited
key distinctions; the following responses were typical:

“embedded systems were mostly focused on soft-
ware/hardware interacting with low-level sensing and
real-time control. CPS includes embedded systems but
also networks, security, privacy, cloud computing, and
even big data.”
“CPSs tend to focus more on the interplay between phys-
ical and virtual worlds, and the kind of applications
possible with the observation (and modification) of the
physical world done through devices embedded in the
environment.”

While the above gets at participants’ individual definitions of
CPS (which largely converge), we also wanted to understand
CPS developers’ perspectives on verification and validation.
In response to “How do you define verification and vali-
dation,” over half of the participants gave something quite
similar to commonly accepted definitions (i.e., that verification
establishes how well a software product matches its speci-
fication, while validation establishes how well that software
product achieves the actual goal [14]). Many other respondents

Fig. 2. Use of formal methods for verification and validation of CPS is not
tractable with respect to resources and time.

(30% developers with incorrect answers) failed to correctly
express the concepts. Intuitively, these results motivate the
creation of easy-to-use tools and better education that enable
even CPS developers without a rigorous software engineering
background to develop robust systems.

B. Perceptions

One of the primary goals of this survey is to uncover
the veracity of the beliefs in Table I. We phrased several of
these sometimes controversial points as questions about “per-
ceptions” associated with CPS development. We asked the
participants to rate their level of agreement (or disagreement)
with the statements using a five-point Likert scale.

It is often stated (and even empirically demonstrated [79])
that simulation does not sufficiently match a system’s behav-
ior in the real world. We asked our participants to rate their
agreement with “The use of simulation alone is sufficient for
supporting verification and validation of CPS.” Given the vari-
ety of backgrounds among our participants, this question has
the potential to tease out a potential dichotomy among CPS
developers with different backgrounds. In fact, all but one of
the survey respondents selected either “disagree” or “strongly
disagree.” The one respondent who selected “strongly agree”
was also one of the four survey respondents who gave their
primary area of expertise as “Civil Engineering/Mechanical
Engineering/Other Engineering,” where models are more tra-
ditionally accepted as complete representations of the system.

Another commonly held belief (Belief V in Table I) is that
formal approaches have too high of an overhead to be practi-
cally applied in CPS [103]. When we asked the participants to
rate “The use of formal methods for verification and validation
of CPS is not tractable with respect to resources and time,” the
diversity of answers was surprising, as was the apparent support
for at least limited use of formal methods for CPS. Fig. 2 shows
the distribution of responses (40% developers were in favor and
30% selected neutral).

CPS developers will widely claim that the most common
approach to debugging CPS requires a significant amount of
“trial and error” [81], [90] (Belief VII in Table I). To evaluate
this claim, we asked the participants’ opinions regarding “The
current state of the art of verification and validation of CPS
involves repeatedly rerunning the system in a ‘live’ deploy-
ment, observing its behavior, and subsequently tweaking the
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Fig. 3. Project time spent in debugging.

implementation (both hardware and software) to adjust the
system’s behavior to achieve the stated requirement.” 91.3%
of the participants expressed either “strongly agree or agree.”
The current “trial and error” processes are neither rigorous
nor repeatable, but the extensive amount of in situ debugging
that these responses demonstrate motivates better support for
approaches to verification and validation that function “in the
wild.”

Our literature review found that approaches to CPS veri-
fication and validation tend to focus either on computational
models or on models of physics. Rarely do the two converge. In
attempting to address Belief VIII from Table I, the next question
in our survey attempted to ascertain whether this is intentional
or accidental. We asked the participants to rate their agreement
with “A lack of formal connection to models of physics is a
key gap in the verification and validation of CPS.” We found
that 69.6% of the respondents (and 60% of the respondents who
also self-identified as CPS developers) selected either “strongly
agree” or “agree,” while 26.1% (30% of the CPS developers)
were “neutral.” This is corroborated by a second question, in
which we asked the respondents whether they agreed with the
statement, “Since CPS has both cyber and physical parts, any
approach for verification and validation would need to allow an
engineer to, in some way, examine both parts at the same time,”
to which only 27.3% of the respondents selected “disagree” or
“strongly disagree.” These two results in conjunction indicate a
need for more expressive and integrated models that cross the
cyber and physical worlds.

C. Experiences

The third section of our survey queried the participants about
their use of verification and validation techniques, most specif-
ically applied to CPS. As Fig. 3 shows, more than 60% of the
participants spent between 30%–60% of the system’s develop-
ment time on debugging; more than 20% of the respondents
spent more time than that. Clearly, debugging CPS is expensive
and time consuming.

Only about half of the participants indicated that they
employed code inspection. Of the respondents who did not use
code inspection, the majority found it to be “not relevant.”
While code inspection is not universally used, it is believed
by some developers to provide an important and useful tool
to improving code quality and code understanding, which is
known to lead to less error-prone implementations [101]. While

Fig. 4. Model checkers used.

this motivates better tool support for code inspection of CPS, it
is not a clear significant concern of active CPS developers.

We received an evenly balanced response to “Have you
used systematic testing to aid in verification and validation?”
Participants who responded affirmatively reported improve-
ment of code coverage, systematic review, and identification
of corner cases as benefits. Respondents who have not used
systematic testing gave standard reasons, including a “lack
of time and deep familiarity” and “no easily available tools.”
Generally, CPS developers are not universally familiar with tra-
ditional systematic testing tools. Although systematic testing
is well established in more general purpose software engineer-
ing domains, there are research challenges in bridging the gap
between existing techniques and CPS development.

When we asked “Have you used formal methods (e.g., model
checking) to aid in verification and validation?” the majority
replied affirmatively. When we followed up with the partici-
pants who had employed formal methods about the advantages,
they cited inferring useful patterns, complete testing, finding
corner cases, and verifying key components. Some partici-
pants even reported a sense that model checking was becoming
increasingly practical for real systems. Those who did not use
model checking said that it is:

“overly complicated for most purposes; most bugs
arise from time dependent interactions with physical
systems”;
“not applicable to my domain; demanding and unreli-
able.”

When we asked “What specific model checker(s) do
you employ?” participants reported high usage of Spin
[47] (53.85%), NuSMV [20] (46.15%), and UPPAAL [63]
(46.15%)), as shown in Fig. 4. There was also substantially high
use of other (mostly domain-specific) model checkers.

From the free form responses, we noticed that participants
gravitate toward general purpose model checkers for very small,
very specific pieces of their systems. These model checkers
do not enable combined reasoning about the cyber and phys-
ical portions of the systems, which is critical to complete and
correct verification of CPS.

The responses to “Have you used simulation to aid in ver-
ification and validation?” were overwhelmingly positive; only
one participant said “no.” Participants reported using simu-
lation to understand the system, prototype behavior, refine
specifications, explore configurations, and minimize test effort:
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Fig. 5. Simulation tools used.

“can provide some preliminary confidence of the
system”;
“can help refine the specification and validate the
system”;
“allows assumptions made in modeling to be cross-
validated against another source of ground truth”;
“helps save and focus testing effort.”

One participant noted, “modeling and simulation only goes
so far. No one ever found oil by drilling through a map on
a table.” The one participant who did not rely on simula-
tion stated that, “Good enough simulation does not exist.”
Participants reported high usage of Simulink (61.1%) and pro-
prietary tools (77.8%), as shown in Fig. 5. The remarkably
high use of in-house simulation is concerning because it nat-
urally limits reproducibility and generalizability and implies
that developers find that simulation tools in general are not
sufficient.

A common approach to debugging at the source level is to
augment a program with assertions that provide checkpoints on
the program’s state throughout its execution. When we asked
the participants about their use of assertions in CPS, the vast
majority (more than 70%) had used them. The respondents
used assertions primarily for bug detection and writing for-
mal specifications, and, to a slightly lesser extent, to document
assumptions. The participants stated that the use of assertions:

“[provides] formal documentation [and] explicitly states
otherwise implicit assumptions, enabling to detect errors
sooner and have a better indication of where a problem
stems from”;
“forces developer to write down (basically as part of
the code) the expectation for correct behavior [with] the
bonus of being able to ‘execute’ the assertion.”

The two main reasons cited for not having used assertions
in CPS development were concerns about performance and the
difficulty in tracing assertions in deployed systems. In general,
these results bolster our hypothesis that assertions are a useful
means to verify and validate CPS; future research that tailors
assertions to particular challenges of CPS (e.g., distribution and
physical aspects) may ameliorate some of the concerns.

Finally, we asked our participants’ perceptions of open chal-
lenges in verification and validation of CPS. Almost 50%
reported issues with physics models, more than a quarter cited

Fig. 6. Main research challenges.

scalability, and nearly a quarter reported issues with a lack of
systematic verification and validation methods. Fig. 6 reports
the complete results. Example statements include:

“CPS models are fragile. We need verification and val-
idation methods that scale with the complexity of the
model and are robust to slight variations of the model.”
“Time plays a critical role and is misunderstood.”
“Impossible to fully understand environment dynamics.”

The survey results indicate models of software systems,
models of physics, and the integration of the two are major
bottlenecks in verification and validation of CPS. Scalability
of existing techniques and a lack of a capability of directly
verifying CPS code from simulation motivate new, tailored
approaches that build on and complement the current state of
the practice. Before exploring these research challenges, we
look at individual interviews with CPS developers.

V. INTERVIEWS

The final piece of study is a set of in depth interviews with
CPS developers in charge of real-world CPS systems, most
of which are mission critical ones (e.g., medical device and
bridge structural health monitoring). We were somewhat sur-
prised to find that our survey respondents were not completely
against using high-level programming languages like Java to
build CPS. The interviews corroborated the survey results
and, in fact, highlighted high-level languages that are popular
among the CPS developers we interviewed. Specifically, typical
responses from our interviewees in response to the discussion
question “What are the main programming languages you used
in developing CPS applications?” were:

“For the high level, mostly it is Python. Low level is C
and C++. The middle is Java.”
“For wireless sensor networks, mainly C, nesC; for
aerial drones, mainly C++, Java. We also extended
C++, C, and Java with high-level abstractions for spe-
cific needs.”
“Algorithms developed in MATLAB for modeling and
off-line validation; C++ and Java are written on
Android phones to reproduce codes in MATLAB”
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“The sensor [. . .] software was mainly written in C and
C++. The [server software] shown to end users with
a web-based system was written in C++ and Ruby on
Rails.”

Quite simply, while “low-level” languages are still pop-
ular among CPS developers, high-level languages are also
commonly used for CPS development.

We entered our studies with the perception that CPS devel-
opers are hampered by severe resource constraints in their
deployment environments. Our analysis of the survey results
hinted that this might not be the case. In our one-on-one inter-
views, we discussed the actuality of the resource constraints of
the interviewees’ target platforms and their perceived impact of
those constraints on the debugging task. The interview results
indicate that CPS developers do not always perceive their tar-
get platforms to be resource constrained. Furthermore, the CPS
developers we interviewed did not perceive any resource con-
straints the platforms may have to be a significant impediment
to development and debugging:

“The computation platform is not resource constrained.”
“We don not have concerns of resources in general.
However, to me, wireless sensor networks are a spe-
cific type of CPS, the device nodes are for sure resource
constrained. But for other types of CPS applications, it
might not be the case.”

This is an important finding in the sense that techniques for
supporting development tasks for CPS (including those for ver-
ification and validation) often have a quite significant focus on
resource constraints; these efforts may, in fact, be misplaced or
at least over-emphasized.

We know from our experience and from the literature that
simulation is commonly used in verification and validation in
CPS. However, many researchers and practitioners discount the
value of simulation. During our interviews, we asked the inter-
viewees about the simulation tools they use and their perception
of the pros and cons of using simulation. The following are
some samples of the resulting discussions:

“These simulations are not very truthful. We used an
in-house hybrid simulation tool, [but] even with this in-
house simulation, we need real testing as the risk is too
big for any undetected errors in autonomous vehicles.”
“I am not happy with [. . .] simulation tools as they
are not accurate enough; they give you a basic sense
of how the system would work, but actually making
the simulation work requires [too much effort] to tune
parameters.”
“We used simulation but what you can test through simu-
lation is only a very small fraction of the problems which
can potentially come out when you deploy the system.”

A common theme was the revelation that the primary simula-
tion tools used were in-house simulators. Further, though from
our interviews, we noticed that simulation is increasingly likely
to be used primarily only in the earlier stages of design to give
a rough view of the system and its behavior.

Concerns about the applicability of model checking to CPS
appeared to crop up in our survey; our interviews delved deeper
into the use of model checkers by our interview subjects. The
responses we received to the question “How do you use model

checkers in verifying and validating CPS applications?” indi-
cate that model checkers enjoy only a limited use by in-the-field
CPS practitioners, usually employed to check only small pieces
of the larger system:

“We use a very simplistic model for partial ordered sets
and use Spin to check it.”
“We would like to transform our questions into timed
automata and feed the input into UPPAAL. But the
model checking suffers from space explosion, and we
have to restrict our input to very small set. It is not that
useful [. . .] model checking [does not] fit our needs.”

The interviewees’ comments related to model checking further
indicated a desire supplant model checking with more robust
run-time verification that is both “online” and “incremental.”

We asked, generally, “How do you test CPS applications?”
Across the board, the responses validated our view that trial
and error is currently the most prevalent approach:

“We use simulation and trial and error to observe
errors.”
“Mainly visual observation, look at what robots are
doing, take videos and sensor data. Basically, it is trial
and error.”
“Test software isolated from sensors and controller, then
use trial and error to visually observe what is going on.”
“Visual observation. We collect traces and print out sen-
sor values. We manually read the traces. It is trial and
error.”
“We use ground truth and testing to compare results.”
“We mainly use automated formal verification and some
code review for the kernel part.”
“We used volunteers to collect real data and applied
them to MATLAB models. The real test is done on real
patients. Trial and error. Ground truth is provided by
nurses and cameras.”

The majority of our survey respondents identified a lack of
formal connection to models of physics as a key concern. We
explored this gap more in the interviews by asking the subjects
about the software and physics models they employ. We were
surprised to find that CPS developers tend not to deeply con-
sider (formal) models of physical systems during development.
They also found available software models inadequate. Some
examples of their responses include:

“The environment is not ideal, we created static physics
models to handle noise. The models are still immature
and fixed. We need online learning models.”
“We used physics models of motors [and a] flow dynam-
ics model. We use these models to determine what forces
to counteract using actuation.”
“We mainly used distribution models (e.g., partial order
models, lattice models) to detect global [correctness]
predicates. We abstract away the physics model.”

Recent emerging work has demonstrated the use of MDD
to automatically generate CPS software from heavily validated
models [56], [85]. Our interviews attempted to ascertain a prac-
titioner’s view on the use of these approaches. MDD, although
having a quite lengthy history, is far from mature, especially
with respect to CPS. Some examples of our interviewees’
responses include:
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“For simple problems, MDD might be possible. But for
complex problems, [. . .] MDD is not very realistic.”
“I am not optimistic about this approach. To create mod-
els that are very accurate takes too long, which is not
useful.”
“There is a significant gap between the perceived
environment and the modeled environment. [You risk]
building a model more complex than the traditional
programming task.”

We also asked our subjects, “How have you used assertions?
What improvement you like to see for the use of assertions in
CPS?” Our results confirm our intuition that assertions are a
reasonable approach to debugging CPS, but that to make them
even more appealing, especially to domain experts, an assertion
framework should be complemented by CPS-specific features
(e.g., temporal and physics aspects).

“I used assertions to assert the effects of actuation,
mainly used for debugging. We actually need to debug
assertions, as assertion happens too quickly and it fails
to observe the effects of actuation. In CPS, actuation
latency is not taken care of by traditional assertions.”
“I used assertions to figure out errors. Since I could
not step through code since the interaction with
the physics, I find assertions is very useful in this
regard.”

Finally, to explore our subjects’ opinions on future research
directions for CPS development and debugging, we ask open-
ended questions, “What are your ideal testing tools for CPS that
are not currently available?” The interview subjects described
a need for integrated simulation tools, more accessible yet
expressive modeling languages, and debugging tools that give
programmers greater visibility into the entire system’s behav-
ior (both cyber and physical) and better fault localization. The
following are direct quotes:

“high-fidelity simulation with online learning of
models.”
“accurate run-time models of physics and software mod-
els to use for offline development.”
“tools that can reproduce bugs.We could throw random
errors into the model to check how the system reacts. It
is also ideal to have multi-domain models for motors,
mechanical systems (for integrated simulation).”
“[techniques for] formally specifying behaviors,
automating fault localization by specifying a syndrome
(e.g., a pattern).”
“Theorem proving requires too many human interven-
tion, any more automation can help.”
“There are automated code generation from MATLAB
models to C++ and Java ready for smart phones.
Integration tests have to be done manually; it would be
good to have integration test in simulation for heteroge-
neous models.”
“Need a formal specification language for better clarifi-
cation. Integration test can not be automated between
client and server side. [Sensor] node developers and
server developers have to manually collaborate for
testing.”

VI. FUTURE RESEARCH DIRECTIONS

From our literature review, survey, and interviews, we have
collected a set of potential research directions that have the
potential to move CPS debugging into a world where the tech-
niques are more rigorous and repeatable than the ad hoc testing
that is the current state of the practice.

A. Formal Methods

To analyze continuous aspects of CPS, higher-order-logic
automatic theorem provers [43] have been employed. Reducing
the enormous amount of user intervention required is a key
research challenge. Furthermore, these approaches need to be
made more expressive to capture the heterogeneity of CPS. As
a future direction, a generic prover supporting other forms of
differential equations (i.e., nonhomogeneous) is highly desired.
Theorem proving can also be supplemented by static timing
analysis to perform program flow analysis, making traditional
theorem proving more tenable. Future research in static analysis
must deal with the challenges imposed by complex hardware
(e.g., multicore platforms with caches) [16]. As for model
checking, it would be ideal to have an integrated platform to
combine model checkers; for instance, CPS systems could ben-
efit from a combination of a stochastic model checker [23] with
KRONOS [28] to explore both stochastic and real-time features
of CPS.

B. Simulation

From our online surveys and interviews, a simulation
approach that explicitly integrates the cyber and the physi-
cal is required. Such cosimulation has begun to be explored,
for instance, to combine the network simulator ns-2 [99] with
Modelica [35] to simulate industrial automation and a power
grid [3]. As a step further, CPS developers would benefit from
a flexible framework for moving between full simulation (co-
simulation) and a full testing environment, allowing aspects of
the simulation to be incrementally replaced by physical devices
and other characteristics of the real deployment environment.
This framework requires an environment in which models and
physical devices can “talk” the same language, making the tran-
sition from one to the other transparent to the CPS developer
and his debugging task.

C. Run-Time Verification

Temporal logics are often used to specify correct system
behaviors and used to generate run-time monitors for CPS.
However, there are no existing algorithms to generate moni-
tors from metric temporal logic [77], [84]. Combined with the
promise that run-time assertions demonstrated in our studies,
we expect that a run-time assertion checking framework [110]
that captures the essence in MTL (e.g., specifying latency) com-
bined with a high-level modeling language similar to Java mod-
eling language [64] would be more accessible to developers in
annotating CPS programs. Such automatically generated moni-
tors would enable CPS validation at run-time in a nonintrusive
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manner with respect to functional and nonfunctional behaviors
of the CPS applications under study.

In general, we should promote solutions that do not interfere
with the developer’s process (see existing testing methods, for
instance). Because the physical world is an essential component
of CPS, which means successful approaches will likely function
“in the wild.”

VII. THREATS TO VALIDITY

A. Internal Validity

We made some assumptions in some of the findings in
Sections IV and V. For instance, from the reported high ratio
of in-house simulation, we draw a conclusion that general pur-
pose simulation tools are not sufficient. There might be other
confounding variables that result in the high ratio of in-house
simulation, for instance participants might have no access to
the general purpose simulation tools due to license issues. The
online survey’s lack of interaction restricted us from ruling out
those confounding variables. To mitigate these issues, we used
the literature survey and interviews to corroborate our findings.
When analyzing interviews and free text answers, we chose
to use a phenomenological approach instead of grounded the-
ory [26] because we wanted to attempt to study the process of
CPS verification and validation and not the agents of the pro-
cess (i.e., the developers themselves) [74]. Grounded theory is
also particularly useful if existing theories about the process
do not exist [27], which, given our deep literature survey, is
clearly not the case here. In analyzing our results, we draw
usage conclusions from perceptions about the use (e.g., famil-
iarity with a programming language is indicative of the use of
the programming language); again conclusions from the sur-
vey were substantively corroborated by the interviews. In our
survey, 41% of the CPS researchers also classified themselves
as developers. We did not always distinguish results between
researchers and these self-classified developers. However, for
any questions with significant differences (i.e., the question
about the use of formal methods), we did explore these poten-
tial two communities for their comparability. Our interviews
focused more on practicing CPS developers.

B. Construct Validity

The categories in the literature review and questions in our
survey and interviews may neglect important aspects, which
may consequently cause us to overlook key issues in verifi-
cation and validation of CPS. To mitigate this, we carried out
an even more in-depth literature study than is reported here;
this study covers hundreds of research papers across relevant
domains and publication venues. This coverage mitigates the
concern that we missed a significant question for our survey or
interview. Another construct validity issue lies in the number
of participants in the online survey (25) and interviews (9). We
did successfully reach a wide cross section of disciplines and
cultures, including both researchers (survey) and practitioners
(interviews) across the world.

C. External Validity

The participants in the interview are (necessarily) from a lim-
ited set of domains. These interviews do not include CPS prac-
titioners from many interesting CPS fields like smart energy
grids and smart cities. The conclusions drawn from the inter-
views may not be applicable to these domains. To mitigate these
issue, we did hand pick practitioners across four continents who
are directly involved with developing and deploying real (a few
large scale) CPS applications from a wide range of subfields.

VIII. CONCLUSION

We generated an overall picture of the state of the art and
state of the practice of verification and validation in CPS though
a broad literature survey, an online survey of CPS researchers,
and qualitative interviews of CPS practitioners. We focused
our investigation around a set of strongly held beliefs asso-
ciated with the development of CPS. The results for the first
two beliefs were mixed: while some CPS developers are deeply
familiar with classical software engineering approaches, many
are not and even those that are familiar do not apply these tech-
niques generally to CPS. We dispelled the second two beliefs: in
fact, high-level programming languages are used by CPS devel-
oper experts, and these same experts are not overly hindered by
resource constraints. We confirmed that existing formal method
techniques and simulation are, as yet, insufficient for support-
ing the development of entire general-purpose CPS. We also
confirmed strongly that the current state of the practice in CPS
verification and validation remains an ad hoc trial and error pro-
cess. Finally, we confirmed that there are still significant gaps
between the formal models of computing and the formal models
of physics that underpin today’s CPS systems. This investi-
gation has elicited a set of research directions that have the
potential to directly address challenges that real CPS developers
cited in the experiences in developing and debugging real-world
CPS.

ACKNOWLEDGMENT

The authors would like to thank all participants in the studies.

REFERENCES

[1] E. Abrahám-Mumm, U. Hannemann, and M. Steffen, “Verification of
hybrid systems: Formalization and proof rules in PVS,” in Proc. Int.
Conf. Eng. Complex Comput. Syst. (ICECCS), 2001, pp. 48–57.

[2] R. Akella and B. M. McMillin, “Model-checking BNDC properties in
cyber-physical systems,” in Proc. 33rd Annu. IEEE Int. Comput. Softw.
Appl. Conf. (COMPSAC), 2009, vol. 1, pp. 660–663.

[3] A. T. Al-Hammouri, “A comprehensive co-simulation platform for
cyber-physical systems,” Comput. Commun., vol. 36, no. 1, pp. 8–19,
2012.

[4] J. Alglave, A. F. Donaldson, D. Kroening, and M. Tautschnig, “Making
software verification tools really work,” in Automated Technology for
Verification and Analysis. New York, NY, USA: Springer, 2011, pp. 28–
42.

[5] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, S-
TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems.
New York, NY, USA: Springer, 2011.

[6] R. Baheti and H. Gill, “Cyber-physical systems,” in The Impact of
Control Technology, 2011, pp. 161–166, www.ieeecss.org



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE SYSTEMS JOURNAL

[7] C. Baier, J.-P. Katoen, and H. Hermanns, “Approximative sym-
bolic model checking of continuous-time Markov chains,” in Proc.
Concurrency Theory (CONCUR’99), 1999, pp. 146–161.

[8] T. Ball, V. Levin, and S. K. Rajamani, “A decade of software model
checking with SLAM,” Commun. ACM, vol. 54, no. 7, pp. 68–76, 2011.

[9] A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous real-time
components in BIP,” in Proc. 4th IEEE Int. Conf. Softw. Eng. Formal
Methods (SEFM), 2006, pp. 3–12.

[10] A. Bauer, M. Leucker, and C. Schallhart, “Runtime verification for LTL
and TLTL,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 4, p. 14,
2011.

[11] M. Ben-Ari, Principles of the Spin Model Checker. New York, NY,
USA: Springer, 2008.

[12] B. Blanchet et al., “Design and implementation of a special-purpose
static program analyzer for safety-critical real-time embedded soft-
ware,” in The Essence of Computation. New York, NY, USA: Springer,
2002, pp. 85–108.

[13] C. D. Bodemann and F. De Rose, “The successful development process
with matlab simulink in the framework Of ESA’s ATV project,” in Proc.
Int. Astronaut. Conf. (IAC), 2004, IAC-04-U.3.B.03.

[14] B. Boehm, “Verifying and validating software requirements and design
specifications,” in IEEE Softw., vol. 1, no. 1, pp. 75–88, Jan. 1984.

[15] J. Botaschanjan et al., “On the correctness of upper layers of automotive
systems,” Formal Aspects Comput., vol. 20, no. 6, pp. 637–662, 2008.

[16] D. Broman, P. Derler, and J. Eidson, “Temporal issues in cyber-physical
systems,” J. Indian Inst. Sci., vol. 93, no. 3, pp. 389–402, 2013.

[17] L. Bu et al., “Toward online hybrid systems model checking of cyber-
physical systems’ time-bounded short-run behavior,” ACM SIGBED
Rev., vol. 8, no. 2, pp. 7–10, 2011.
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