
36 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 / 2 0 © 2 0 2 0 I E E E

FOCUS: THE AI EFFECT

SOFTWARE ENGINEERING (SE)
is currently meeting the data-cen-
tric discipline of artificial intelli-
gence (AI), machine learning (ML),
and big data. Almost on a daily ba-
sis, we hear about self-driving cars
and drones enabled by AI, and com-
panies hiring data scientists. Data
analytics (DA) is in high demand,
and the growth of DA- related hir-
ing has more than doubled since
2014.1

Similar to how bugs are problems
in large software systems, defects
could inevitably appear in data-cen-
tric software. In the case of Uber’s
self-driving vehicle, the consequence
of inaccuracy was fatal. In March
2018, Elaine Herzberg was the first
recorded case of a pedestrian fatality
involving a self-driving autonomous
car after a collision that occurred late
in the evening.2

Although bugs in DA pose increas-
ing risks, the SE research community
somehow gravitated to applying data
analytic techniques to SE problems,

as opposed to enhancing SE tech-
niques to improve data-centric devel-
opment. In preparation for my keynote
at the Automated Software Engi-
neering (ASE) conference in 2019, I
did a manual analysis of 285 papers
numbering more than 10 pages from
the last four years of ASE proceed-
ings (2016–2019), categorizing each
paper’s problem and approach. I
found that the percentage of papers
that employ AI, ML, or big data
has grown significantly from 2016
to 2019 (Figure 1). In fact, in 2019,
there were more DA-related papers
compared to the rest. However, most
of these are about solving existing
SE problems such as defect predic-
tion, bug finding, document summa-
rization, code recommendation, and
testing using DA techniques such
as deep learning, natural language
processing, heuristic-based searches,
multiobjective searches, classifica-
tion, information retrieval, and so
on, which I call data engineering for
SE (DA4SE). Very few papers, only
13 out of 285 (4% of research papers
at ASE 2016–2019) focused on im-
proving SE for DA (Figure 1).

In this article, I make the case
that we, the SE research community,
should expand its research scope to
extend and adapt existing SE to meet
the new demands of data-centric
software development and to im-
prove the productivity of AI, ML,
and big data engineers. I summarize
findings from empirical studies of
professional data scientists in collab-
oration with Microsoft Research.3,4

In my opinion, key differences ex-
ist between traditional software
development versus data-centric de-
velopment, which makes it hard for
software engineers to debug and test
data-centric software or AI/ML-
based software systems. I then share
a few example research projects that

Software
Engineering for
Data Analytics
Miryung Kim, University of California, Los Angeles

// We are at an inflection point where software

engineering meets the data-centric world

of big data, machine learning, and artificial

intelligence. In this article, I summarize

findings from studies of professional data

scientists and discuss my perspectives

on open research problems to improve

data-centric software development. //

Digital Object Identifier 10.1109/MS.2020.2985775
Date of current version: 18 June 2020

Authorized licensed use limited to: UCLA Library. Downloaded on August 10,2020 at 19:03:45 UTC from IEEE Xplore. Restrictions apply.

JULY/AUGUST 2020 | IEEE SOFTWARE 37

I have worked on with my students
and collaborators that adapted ex-
isting software debugging and test-
ing techniques to the domain of big
data analytics.4–10 I then sketch
open research directions in SE for
DA (SE4DA).

Data Scientists in
Software Teams
We are at a tipping point where soft-
ware companies are generating large-
scale telemetry, machines, quality,
and user data. Similar to how soft-
ware developers and testers are es-
tablished roles, data scientists are
becoming a part of software teams.
To understand what a data scientist
is, what they do, and what challenges
they face, we conducted the first in-
depth interview study3 as well as a
large-scale survey.4 We interviewed
16 data scientists and identified emerg-
ing themes from the transcripts, and
clustered the themes. Then, to quan-
tify and generalize their skills, work-
ing styles, tool usage, and challenges,
we conducted a survey of nearly 800
data scientists. Figure 2 summarizes
our two-phase study method and
study participants.

The readers may ask, “What does
a data scientist actually mean?” To
deeply characterize this workforce, we
clustered participants using a K-means
algorithm based on their relative time
spent on different activities. Nine cat-
egories emerged from the clustering
analysis,4 and the following three ex-
ample categories are described:

• Data shaper: Data shapers spend
a significant amount of time ana-
lyzing and preparing data. They
have a higher representation of
postgraduate degrees compared
to the others. They are skilled
in algorithms, ML, and numeri-
cal optimizations, but they are

rather unfamiliar with front-end
programming, which is required
for the instrumentation of data
collection. We named this cat-
egory data shapers, because they
extract and model relevant fea-
tures from data.

• Platform builder: Platform
builders spend 49% of their time
developing platforms that instru-
ment code to collect data. They
have a strong background in big
data distributed systems, back-
end and front-end programming,
and mainstream languages like
C, C++, and C#. Platform build-
ers identify as engineers who
contribute to a data engineer-
ing platform and pipeline. They
frequently mention the challenge
of data cleaning.

• Data analyzer: Data analyzers
often hold the job title of data
scientist and are familiar with
statistics, math, Bayesian sta-
tistics, and data manipulation.
Many are R users and mention
transforming data as a challenge.

Among all the categories of data
scientists, when we asked, “How do
you ensure correctness of your in-
put and correctness of analytics?”
many said that validation is a major
challenge. Explainability is impor-
tant: “To gain insights, you must go
one level deeper.” However, they ex-
pressed a general lack of confidence
in analytics: “Honestly, we don’t have
a good method for this,” and “just
because the math is right, [it] doesn’t
mean that the answer is right.”

FIGURE 1. DA growth in SE. SE4DA is underinvestigated compared to data

engineering for SE (DA4SE). (Source: ASE 2016–2019.)

SE4DA (4%):
Improving SE
for DA

DA4SE (4%):
Applying
DA to SERest

59%

100

50

0

38 50 40
39

21 22 28
47

2016 2017 2018 2019

DA Rest

Authorized licensed use limited to: UCLA Library. Downloaded on August 10,2020 at 19:03:45 UTC from IEEE Xplore. Restrictions apply.

38 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE AI EFFECT

How Is Traditional
Development Different
From Big Data
Analytics Development?
In the previous section, I discussed
how data scientists often have little
confidence in their analytics software.
By contrasting traditional develop-
ment and data-centric development,
I attempt to explain why data-centric

software development is challeng-
ing (see Figure 3). This explanation
is based on both our prior studies of
data scientists4 and other studies of
ML development practices.11,12 Data
scientists develop an application and
test it with samples using only a lo-
cal machine. Then they execute this
application on much larger data on
a cluster. Several hours later, when

the job crashes or produces a wrong
or suspicious output, they repeat a
trial-and-error debugging process. The
following summarized differences con-
tribute to the challenge of data-centric
software development:

1. Data is huge, remote, and
distributed.

2. Writing tests is hard. Develop-
ers often begin writing analytics
without seeing the entire original
input data, which are located in
storage services such as Amazon
S3. Because they write software
based on a downloaded sample,
which shows only an excerpt of
the original data, it is difficult to
write test oracles for the entire
original input.

3. Failures are hard to define, in
part due to a lack of tests and
corresponding oracles.

4. System stacks are complex with
little visibility because the un-
derlying distributed systems and
ML frameworks have complex
scheduling, cluster management,

FIGURE 3. The traditional development versus big data analytics development.

1

2

3

4

5

1

2

3

4

5

Develop

Run

Test

Debug

Repeat

Develop Locally

Test Locally With Sample Data

Execute the Job on the Cloud,
Hoping That It Works

Several Hours Later the Job Crashes
or Produces the Wrong Output

Repeat

1

2

3

4

Develop Locally

Test Locally With Sample Data

Execute the Job on the Cloud,
Hoping That It Works

Several Hours Later the Job Crashes
or Produces the Wrong Output

FIGURE 2. The methodology used for studying professional data scientists’ and participants’ demographics.

In-Depth Interviews [9]

• Five Women and 11 Men From
 Eight Different Microsoft Organizations

16 Data Scientists

Snowball Sampling
• Data-Driven Engineering Meet-Ups
 and Technical Community Meetings
 Word of Mouth

Coding With Atlas.TI

Clustering of Participants

Questions About

Survey [10]

• Demographics
• Skills and Tool Usage
• Self-Perception
• Working Styles
• Time Spent
• Challenges and Best Practices

• 599 Data Scientists
• 1,798 Data Enthusiasts
 Subscribed to Mailing
 Lists on Data Science

Sent to 2,397 Employees

793 Reponses (Response Rate 33%)

Experience: 13.6 Years on Average
(7.4 Years at Microsoft)

Education: 34% Have Bachelor’s Degrees,
41% Have Master’s Degrees, and 22%
Have Ph.D. Degrees

Gender: 24% Female, 74% Male

Job Title: 38% Data Scientists,
24% Software Engineers,
18% Program Managers, and
20% Others

Authorized licensed use limited to: UCLA Library. Downloaded on August 10,2020 at 19:03:45 UTC from IEEE Xplore. Restrictions apply.

JULY/AUGUST 2020 | IEEE SOFTWARE 39

data partitioning, job execution,
fault tolerance, and straggler
management.

5. There is a gap between physical
versus logical execution because
analytics applications are highly
optimized, lazily evaluated,
and the user-defined applica-
tion logic is interwoven with
the execution of the framework
code. For example, data-inten-
sive scalable computing systems
such as Spark provide execution
logs of submitted jobs. However,
these logs present only the physi-
cal view of big data process-
ing, as they report the number
of worker nodes, the job status
at individual nodes, the overall
job progress rate, the messages
passed between nodes, and so
on. These logs do not provide
the logical view of program
execution, for example, system
logs do not convey which inter-
mediate outputs are produced
from which inputs, nor do they
indicate what inputs are causing
incorrect results or delays, and
so forth.

6. Data tracing is hard. If there is a
failure, it is hard to know which
input contributed to which out-
put because the current frame-
works provide no traceability
nor provenance support.

Debugging and Testing
for Big Data Analytics
For the past five years, our team at
the University of California, Los An-
geles, has worked on extending and
adapting software debugging and
testing techniques to the domain of
big data analytics written in Apache
Spark.4-10 From this experience, we
have learned that designing interac-
tive debugging primitives for a data-
flow-based big data system requires

a deep understanding of an internal
execution model, job scheduling, and
materialization; providing traceability
requires reengineering a underlying
data-parallel runtime framework; ab-
straction is a powerful force in simpli-
fying code paths.

BigDebug: Interactive Debug
Primitives for Big Data Analytics
We have had tools such as GDB (the
GNU Project debugger) for a long
time. So why is it hard to build an in-
teractive debugger for Apache Spark?
The naive implementation of break-
points would not work because paus-
ing the entire computation in the
data-parallel pipeline reduces through-
put, and it is clearly infeasible for
a user to inspect billions of records
through a regular watchpoint. BigDe-
bug6 does not pause program execu-
tion but instead simulates a breakpoint
through on-demand state regeneration
from the latest checkpoint and delivers
program states in a guarded, stream-
processing fashion. By effectively tap-
ping into internal checkpointing and
job-scheduling mechanisms, we were
able to implement interactive debug-
ging and repair capability in Apache
Spark efficiently, while adding, at
most, 34% overhead.6

Titian: Data Provenance for
Apache Spark
Data provenance is a long-studied
problem in databases. Given an out-
put of query, data provenance iden-
tifies specific inputs contributing to
the query results. The idea is similar
to dynamic-taint propagation. For
big data analytics with terabyte data,
scalability poses a new challenge. To
provide record-level data provenance,
we reengineered Apache Spark’s run-
time by storing lineage tables (the
input and output tag mappings) at
a stage granularity in a distributed

manner and by building a distributed
optimized join for backward trac-
ing, which is an order-of-magnitude
faster than alternatives.8

BigSift: Automated Debugging
of Big Data Analytics
BigSift takes a program and a test
function as inputs and automatically
finds a minimum subset of inputs pro-
ducing test failures. BigSift combines
two mature ideas, data provenance
in database (DB) systems and delta
debugging in SE, and implements
several optimizations: 1) testing pred-
icate pushdown, 2) prioritizing back-
ward traces, and 3) bitmap-based
memorization, which enabled us to
build an automated debugging solu-
tion that is 66-times faster than delta
debugging and takes 62% less time
than the original job’s run.5

BigTest: White-Box Testing of Big
Data Analytics
Currently, developers sample data (for
example, random sampling, top-n sam-
pling, and top-k% sampling) to test
DA, which leads to low code coverage.
Another option is to use traditional test
generation procedures such as symbolic
execution, but such a technique would
not scale for Apache Spark, which is
roughly 700 KLOC.

To automatically generate tests
for a Spark application, BigTest
abstracts dataf low operators in
terms of clean first-order logic.7

For example, join could be defined
as three equivalence classes where a
key is only present in the left table,
the right table, and neither. Then for
a user-defined application code, Big-
Test performs symbolic execution
and combines it together with data-
flow logical specifications. These
combined constraints are then
solved using satisfiability modulo
theories to create concrete inputs.

Authorized licensed use limited to: UCLA Library. Downloaded on August 10,2020 at 19:03:45 UTC from IEEE Xplore. Restrictions apply.

40 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE AI EFFECT

Only 30 or so records are required
to achieve the same code coverage as
the entire data, implying that test-
ing on the entire data is not neces-
sary. By automatically generating
data with BigTest, we can reduce the
required test data by 108, achieving
nearly a 200-times speed-up.7

Open Research
Directions in Data-
Centric Development
This section discusses the open prob-
lems in SE4DA that have emerged

from my observation of professional
data scientists and my experience in
researching debugging and testing
techniques for big data analytics.5–10

Insight 1
We must expand the scope of debug-
ging to include both code errors and
data errors, and combine techniques
in code and data repair. The SE com-
munity traditionally considers bugs
as code defects, while the DB com-
munity considers bugs as data defects
based on unexpected statistical distri-
bution, functional dependencies, or
schema mismatches. My perspective is
that we need to combine insights from
both communities to understand code
errors and data errors in tandem. This
is because data scientists write soft-
ware systems based on an incomplete,
partial understanding of input data,
and thus, errors could exist in code

that makes wrong assumptions about
data, or new data could have drifted
from the implicit assumptions made
about the original input.

Consider the bug7 that uses wrong
delimiters such as splitting a string
with “[]” instead of “\[\],” leading to
a wrong output. A user may define
this as a data bug or an anomaly,
but it could be seen as a coding er-
ror based on the wrong assumptions
made about the data. In fact, this er-
ror could be fixed by a code update,
data cleaning, or both.

Similar to how the SE community
has worked on automated program
repair and the DB community has
worked on automated data cleaning
and repair, now is the time to com-
bine these insights to define what
DA bugs mean and how to repair
code errors and data errors together,
as they are closely interrelated.

Insight 2
Performance debugging is as impor-
tant as correctness debugging, and it
requires enabling visibility into system
stacks, code, and data. Based on our
studies of data scientists, we found
that the scope of debugging must go
beyond functional correctness in the
domain of big data analytics. Meet-
ing performance requirements, which
were often considered to be nonfunc-
tional, secondary requirements, is as
important as functional correctness.

Performance debugging, in par-
ticular, is often the biggest pain point
for data analytics developers, as it
depends on configuration, scaling,
unbalanced tasks, IO, and memory-
related issues in the cluster. A vertical
stack is complex because it consists of
a development environment, ML/AI
libraries, runtimes, storage services, a
Java virtual machine, containers, and
virtual machines that also run het-
erogeneous hardware [for example,
CPUs, GPUs, and FPGA (field pro-
grammable gate arrays)]. To diagnose
and repair performance bottlenecks,
we must consider the interaction be-
tween code, data, and system envi-
ronments across a vertical stack. For
example, debugging computational
skews caused by interaction between
code and a subset of data requires
tracking latency information for in-
dividual inputs throughout various
computational stages.10

Insight 3
We must design easy-to-use, easy-to-
extend oracle-specification techniques
for debugging and testing heuristics-
based, probabilistic, and predictive
analytics. Creating oracles for heuris-
tics-based, probabilistic, and predictive
DA is different from how we define
oracles in traditional unit testing. Met-
amorphic testing relates changes be-
tween two inputs to changes between
two corresponding outputs.13 Exist-
ing techniques for testing neural net-
works use metamorphic testing, but
they are limited to checking whether
input perturbations still produce the
same classification results and test
only an equivalence-based meta-
morphic relation.

Insight 4
We must design new debugging tech-
niques that quantify the degree of
influence and importance between

Performance debugging is as
important as correctness debugging,
and it requires enabling visibility into

system stacks, code, and data.

Authorized licensed use limited to: UCLA Library. Downloaded on August 10,2020 at 19:03:45 UTC from IEEE Xplore. Restrictions apply.

JULY/AUGUST 2020 | IEEE SOFTWARE 41

input distributions and unexpected
behavior. Traditionally, debugging
techniques such as delta debugging
attribute the cause of test failures to
individual failure-inducing inputs
equally. We must quantify the no-
tion of importance when debugging
faulty inputs, as a bug is often caused
by a subset of input data near deci-
sion boundaries, a particular data
partition, or a particular input distri-
bution drifted from the original data
assumption, as opposed to a single
input. For example, training-set de-
bugging in ML identifies a subset of
inputs, leading to mis-classifications
using the mathematical notion of in-
fluence functions14 by isolating input
data near decision boundaries. We
must leverage such ideas to extend
and adapt existing software debug-
ging to data-centric software.

By studying professional data
scientists, and based on the
experience of adapting SE

techniques to debug and test big
data applications, I have found that
data-centric software development is
different from traditional software de-
velopment in several ways. To support
data-centric software development, we
must investigate how code errors and
data errors interact, and we should not
limit the scope of debugging to correct-
ness debugging because performance
debugging is as important as correct-
ness debugging to many data scientists.
Inherently, it is challenging to define
what should be a correct behavior for
heuristics-based, probabilistic, and pre-
dictive analytics. Therefore, we must
design easy-to-extend, easy-to-use
specification techniques to facilitate de-
bugging and testing. Solving these open
problems requires the SE community
to work together with the AI, ML, sys-
tems, and DB communities.

Acknowledgments
I thank my collaborators Thomas
Zimmermann, Rob Decline, and
Andrew Begel for their joint work
on the study of data scientists. I also
thank University of California, Los
Angeles students and collaborators
Tyson Condie, Aria Emoji, Muham-
mad Ali Gulzar, Matteo Interlandi,
Shaghayegh Mardani, Todd Mill-
stein, Madanlal Musuvathi, Kshitij
Shah, Sai Deep Tetali, Jason Jia
Teoh, Seunghyun Yoo, and Harry
Xu for their automated debugging
and testing of Apache Spark. I thank
my Ph.D. student Gulzar for being a
sounding board for this software en-
gineering for data analytics journey.

This work is in part supported by
National Science Foundation award
1764077.

References
1. D. Culbertson “High demand for

data science jobs,” Indeed Hiring

Lab, Mar. 15, 2018. [Online].

Available: https://www.hiringlab

.org/2018/03/15/data-science-job

-postings-growing-quickly

2. Wikipedia, “Death of Elaine Herz-

berg,” Apr. 4, 2020. [Online]. Avail-

able: https://en.wikipedia.org/wiki/

Death_of_Elaine_Herzberg

3. S. Amershi et al, “Software engi-

neering for machine learning: A

case study,” in Proc. 2019 IEEE/

ACM 41st Int. Conf. Software

Engineering: Software Engineer-

ing Practice (ICSE-SEIP), May

2019, pp. 291–300. doi: 10.1109/

ICSE-SEIP.2019.00042.

4. M. A. Gulzar, M. Interlandi, X. Han,

M. Li, T. Condie, and M. Kim, “Au-

tomated debugging in data-intensive

scalable computing,” in Proc. 2017

Symp. Cloud Computing (SoCC ’17).

New York: ACM, 2017, pp. 520–534.

doi: 10.1145/3127479.3131624.

5. M. A. Gulzar et al., “Bigdebug:

Debugging primitives for interac-

tive big data processing in spark,”

in Proc. 38th Int. Conf. Software

Engineering (ICSE ’16). New York:

ACM, 2016, pp. 784–795. doi:

10.1145/2884781.2884813.

6. M. A. Gulzar, S. Mardani, M.

Musuvathi, and M. Kim, “White-

box testing of big data analytics

ABOUT THE AUTHOR

MIRYUNG KIM is a full professor in the Department of Computer
Science at the University of California, Los Angeles. Her research
interests include code clones and code duplication detection, man-
agement, and removal solutions. She has taken a leadership role in
defining the emerging area of software engineering for data science.
Kim received a Ph.D. in computer science and engineering from
the University of Washington, Seattle. She received various awards
including an NSF CAREER Award, a Microsoft Software Engineering
Innovations Foundation Award, a Google Faculty Research Award,
and an Okawa Foundation Research Award. She is the program
cochair of the ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering
2022 and the International Conference on Software Maintenance
and Evolution 2019 and is an associate editor of IEEE Transactions on
Software Engineering. Contact her at miryung@cs.ucla.edu.

Authorized licensed use limited to: UCLA Library. Downloaded on August 10,2020 at 19:03:45 UTC from IEEE Xplore. Restrictions apply.

42	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE AI EFFECT

with complex user-defined func-

tion,” in Proc. 2019 27th ACM

Joint Meeting European Software

Engineering Conf. and Symp. the

Foundations of Software Engineer-

ing (ESEC/FSE 2019). New York:

ACM, 2019, pages 290–301. doi:

10.1145/3338906.3338953.

7.	M. Interlandi et al., “Adding data

provenance support to apache

spark,” VLDB J., vol. 27, no. 5, pp.

595–615, Aug. 2017. doi: 10.1007/

s00778-017-0474-5.

8.	M. Interlandi et al., “Optimiz-

ing interactive development of

data-intensive application,” in

Proc. Seventh ACM Symp. Cloud

Computing, Santa Clara, CA, Oct.

5–7, 2016, pp. 510–522. 2016. doi:

10.1145/2987550.2987565.

9.	M. Kim, T. Zimmermann, R. DeLine,

and A. Begel, “The emerging role of

data scientists on software develop-

ment teams,” in Proc. 38th Int. Conf.

Software Engineerin (ICSE ’16). New

York: ACM, 2016, pages 96–107.

doi: 10.1145/2884781.2884783.

10.	M. Kim, T. Zimmermann, R. DeLine,

and A. Begel, “Data scientists in soft-

ware teams: State of the art and chal-

lenges,” IEEE Trans. Softw. Eng., vol.

44, no. 11, pp. 1024–1038, Nov. 1,

2018. doi: 10.1109/TSE.2017.2754374.

11.	P. W. Koh and P. Liang, “Understanding

black-box predictions via influence func-

tions,” in Proc. 34th Int. Conf. Machine

Learning (ICML-17), vol. 70. New

York: ACM, 2017, pp. 1885–1894.

12.	D. Sculley et al., “Hidden technical

debt in machine learning systems,”

in Advances in Neural Information

Processing Systems, vol. 28, C. Cor-

tes, N. D. Lawrence, D. D. Lee, M.

Sugiyama, and R. Garnett, Eds. Red

Hook, NY: Curran Associates, Inc.,

2015, pp. 2503–2511.

13.	S. Segura, G. Fraser, A. B. Sanchez,

and A. Ruiz-Cortes, “A survey on

metamorphic testing,” IEEE Trans.

Softw. Eng., vol. 42, no. 9, pp.

805–824, Sept. 2016. doi: 10.1109/

TSE.2016.2532875.

14.	J. Teoh, M. A. Gulzar, G. H. Xu,

and M. Kim, “Perfdebug: Perfor-

mance debugging of computation

skew in dataflow system,” in Proc.

ACM Symp. Cloud Computing

(SoCC ‘19), pp. 465–476. New

York: ACM, 2019. ACM. doi:

10.1145/3357223.3362727.

Write for the IEEE Computer
Society’s authoritative
computing publications
and conferences.

IEEE COMPUTER SOCIETY

Call for Papers

GET PUBLISHED
www.computer.org/cfp

Digital Object Identifier 10.1109/MS.2020.2996915

Authorized licensed use limited to: UCLA Library. Downloaded on August 10,2020 at 19:03:45 UTC from IEEE Xplore. Restrictions apply.

