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FOCUS: THE AI EFFECT

SOFTWARE ENGINEERING (SE) 
is currently meeting the data-cen-
tric discipline of artificial intelli-
gence (AI), machine learning (ML), 
and big data. Almost on a daily ba-
sis, we hear about self-driving cars 
and drones enabled by AI, and com-
panies hiring data scientists. Data 
analytics (DA) is in high demand, 
and the growth of DA- related hir-
ing has more than doubled since 
2014.1

Similar to how bugs are problems 
in large software systems, defects 
could inevitably appear in data-cen-
tric software. In the case of Uber’s 
self-driving vehicle, the consequence 
of inaccuracy was fatal. In March 
2018, Elaine Herzberg was the first 
recorded case of a pedestrian fatality 
involving a self-driving autonomous 
car after a collision that occurred late 
in the evening.2

Although bugs in DA pose increas-
ing risks, the SE research community 
somehow gravitated to applying data 
analytic techniques to SE problems, 

as opposed to enhancing SE tech-
niques to improve data-centric devel-
opment. In preparation for my keynote 
at the Automated Software Engi-
neering (ASE) conference in 2019, I 
did a manual analysis of 285 papers 
numbering more than 10 pages from 
the last four years of ASE proceed-
ings (2016–2019), categorizing each 
paper’s problem and approach. I 
found that the percentage of papers 
that employ AI, ML, or big data 
has grown significantly from 2016 
to 2019 (Figure 1). In fact, in 2019, 
there were more DA-related papers 
compared to the rest. However, most 
of these are about solving existing 
SE problems such as defect predic-
tion, bug finding, document summa-
rization, code recommendation, and 
testing using DA techniques such 
as deep learning, natural language 
processing, heuristic-based searches, 
multiobjective searches, classifica-
tion, information retrieval, and so 
on, which I call data engineering for 
SE (DA4SE). Very few papers, only 
13 out of 285 (4% of research papers 
at ASE 2016–2019) focused on im-
proving SE for DA (Figure 1).

In this article, I make the case 
that we, the SE research community, 
should expand its research scope to 
extend and adapt existing SE to meet 
the new demands of data-centric 
software development and to im-
prove the productivity of AI, ML, 
and big data engineers. I summarize 
findings from empirical studies of 
professional data scientists in collab-
oration with Microsoft Research.3,4

In my opinion, key differences ex-
ist between traditional software 
development versus data-centric de-
velopment, which makes it hard for 
software engineers to debug and test 
data-centric software or AI/ML-
based software systems. I then share 
a few example research projects that 
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I have worked on with my students 
and collaborators that adapted ex-
isting software debugging and test-
ing techniques to the domain of big 
data analytics.4–10 I then sketch 
open research directions in SE for 
DA (SE4DA).

Data Scientists in 
Software Teams
We are at a tipping point where soft-
ware companies are generating large-
scale telemetry, machines, quality, 
and user data. Similar to how soft-
ware developers and testers are es-
tablished roles, data scientists are 
becoming a part of software teams. 
To understand what a data scientist 
is, what they do, and what challenges 
they face, we conducted the first in-
depth interview study3 as well as a 
large-scale survey.4 We interviewed 
16 data scientists and identified emerg-
ing themes from the transcripts, and 
clustered the themes. Then, to quan-
tify and generalize their skills, work-
ing styles, tool usage, and challenges, 
we conducted a survey of nearly 800 
data scientists. Figure 2 summarizes 
our two-phase study method and 
study participants.

The readers may ask, “What does 
a data scientist actually mean?” To 
deeply characterize this workforce, we 
clustered participants using a K-means 
algorithm based on their relative time 
spent on different activities. Nine cat-
egories emerged from the clustering 
analysis,4 and the following three ex-
ample categories are described:

• Data shaper: Data shapers spend 
a significant amount of time ana-
lyzing and preparing data. They 
have a higher representation of 
postgraduate degrees compared 
to the others. They are skilled 
in algorithms, ML, and numeri-
cal optimizations, but they are 

rather unfamiliar with front-end 
programming, which is required 
for the instrumentation of data 
collection. We named this cat-
egory data shapers, because they 
extract and model relevant fea-
tures from data.

• Platform builder: Platform 
builders spend 49% of their time 
developing platforms that instru-
ment code to collect data. They 
have a strong background in big 
data distributed systems, back-
end and front-end programming, 
and mainstream languages like 
C, C++, and C#. Platform build-
ers identify as engineers who 
contribute to a data engineer-
ing platform and pipeline. They 
frequently mention the challenge 
of data cleaning.

• Data analyzer: Data analyzers 
often hold the job title of data 
scientist and are familiar with 
statistics, math, Bayesian sta-
tistics, and data manipulation. 
Many are R users and mention 
transforming data as a challenge.

Among all the categories of data 
scientists, when we asked, “How do 
you ensure correctness of your in-
put and correctness of analytics?” 
many said that validation is a major 
challenge. Explainability is impor-
tant: “To gain insights, you must go 
one level deeper.” However, they ex-
pressed a general lack of confidence 
in analytics: “Honestly, we don’t have 
a good method for this,” and “just 
because the math is right, [it] doesn’t 
mean that the answer is right.”

FIGURE 1. DA growth in SE. SE4DA is underinvestigated compared to data 

engineering for SE (DA4SE). (Source: ASE 2016–2019.)
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How Is Traditional 
Development Different 
From Big Data 
Analytics Development?
In the previous section, I discussed 
how data scientists often have little 
confidence in their analytics software. 
By contrasting traditional develop-
ment and data-centric development, 
I attempt to explain why data-centric 

software development is challeng-
ing (see Figure 3). This explanation 
is based on both our prior studies of 
data scientists4 and other studies of 
ML development practices.11,12 Data 
scientists develop an application and 
test it with samples using only a lo-
cal machine. Then they execute this 
application on much larger data on 
a cluster. Several hours later, when 

the job crashes or produces a wrong 
or suspicious output, they repeat a 
trial-and-error debugging process. The 
following summarized differences con-
tribute to the challenge of data-centric 
software development:

1. Data is huge, remote, and 
distributed.

2. Writing tests is hard. Develop-
ers often begin writing analytics 
without seeing the entire original 
input data, which are located in 
storage services such as Amazon 
S3. Because they write software 
based on a downloaded sample, 
which shows only an excerpt of 
the original data, it is difficult to 
write test oracles for the entire 
original input.

3. Failures are hard to define, in 
part due to a lack of tests and 
corresponding oracles.

4. System stacks are complex with 
little visibility because the un-
derlying distributed systems and 
ML frameworks have complex 
scheduling, cluster management, 

FIGURE 3. The traditional development versus big data analytics development.
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FIGURE 2. The methodology used for studying professional data scientists’ and participants’ demographics. 
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data partitioning, job execution, 
fault tolerance, and straggler 
management.

5. There is a gap between physical 
versus logical execution because 
analytics applications are highly 
optimized, lazily evaluated, 
and the user-defined applica-
tion logic is interwoven with 
the execution of the framework 
code. For example, data-inten-
sive scalable computing systems 
such as Spark provide execution 
logs of submitted jobs. However, 
these logs present only the physi-
cal view of big data process-
ing, as they report the number 
of worker nodes, the job status 
at individual nodes, the overall 
job progress rate, the messages 
passed between nodes, and so 
on. These logs do not provide 
the logical view of program 
execution, for example, system 
logs do not convey which inter-
mediate outputs are produced 
from which inputs, nor do they 
indicate what inputs are causing 
incorrect results or delays, and 
so forth.

6. Data tracing is hard. If there is a 
failure, it is hard to know which 
input contributed to which out-
put because the current frame-
works provide no traceability 
nor provenance support.

Debugging and Testing 
for Big Data Analytics
For the past five years, our team at 
the University of California, Los An-
geles, has worked on extending and 
adapting software debugging and 
testing techniques to the domain of 
big data analytics written in Apache 
Spark.4-10 From this experience, we 
have learned that designing interac-
tive debugging primitives for a data-
flow-based big data system requires 

a deep understanding of an internal 
execution model, job scheduling, and 
materialization; providing traceability 
requires reengineering a underlying 
data-parallel runtime framework; ab-
straction is a powerful force in simpli-
fying code paths.

BigDebug: Interactive Debug 
Primitives for Big Data Analytics
We have had tools such as GDB (the 
GNU Project debugger) for a long 
time. So why is it hard to build an in-
teractive debugger for Apache Spark? 
The naive implementation of break-
points would not work because paus-
ing the entire computation in the 
data-parallel pipeline reduces through-
put, and it is clearly infeasible for 
a user to inspect billions of records 
through a regular watchpoint. BigDe-
bug6 does not pause program execu-
tion but instead simulates a breakpoint 
through on-demand state regeneration 
from the latest checkpoint and delivers 
program states in a guarded, stream-
processing fashion. By effectively tap-
ping into internal checkpointing and 
job-scheduling mechanisms, we were 
able to implement interactive debug-
ging and repair capability in Apache 
Spark efficiently, while adding, at 
most, 34% overhead.6

Titian: Data Provenance for 
Apache Spark
Data provenance is a long-studied 
problem in databases. Given an out-
put of query, data provenance iden-
tifies specific inputs contributing to 
the query results. The idea is similar 
to dynamic-taint propagation. For 
big data analytics with terabyte data, 
scalability poses a new challenge. To 
provide record-level data provenance, 
we reengineered Apache Spark’s run-
time by storing lineage tables (the 
input and output tag mappings) at 
a stage granularity in a distributed 

manner and by building a distributed 
optimized join for backward trac-
ing, which is an order-of-magnitude 
faster than alternatives.8

BigSift: Automated Debugging 
of Big Data Analytics
BigSift takes a program and a test 
function as inputs and automatically 
finds a minimum subset of inputs pro-
ducing test failures. BigSift combines 
two mature ideas, data provenance 
in database (DB) systems and delta 
debugging in SE, and implements 
several optimizations: 1) testing pred-
icate pushdown, 2) prioritizing back-
ward traces, and 3) bitmap-based 
memorization, which enabled us to 
build an automated debugging solu-
tion that is 66-times faster than delta 
debugging and takes 62% less time 
than the original job’s run.5

BigTest: White-Box Testing of Big 
Data Analytics
Currently, developers sample data (for 
example, random sampling, top-n sam-
pling, and top-k% sampling) to test 
DA, which leads to low code coverage. 
Another option is to use traditional test 
generation procedures such as symbolic 
execution, but such a technique would 
not scale for Apache Spark, which is 
roughly 700 KLOC.

To automatically generate tests 
for a Spark application, BigTest 
abstracts dataf low operators in 
terms of clean first-order logic.7

For example, join could be defined 
as three equivalence classes where a 
key is only present in the left table, 
the right table, and neither. Then for 
a user-defined application code, Big-
Test performs symbolic execution 
and combines it together with data-
flow logical specifications. These 
combined constraints are then 
solved using satisfiability modulo 
theories to create concrete inputs. 
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Only 30 or so records are required 
to achieve the same code coverage as 
the entire data, implying that test-
ing on the entire data is not neces-
sary. By automatically generating 
data with BigTest, we can reduce the 
required test data by 108, achieving 
nearly a 200-times speed-up.7

Open Research 
Directions in Data-
Centric Development
This section discusses the open prob-
lems in SE4DA that have emerged 

from my observation of professional 
data scientists and my experience in 
researching debugging and testing 
techniques for big data analytics.5–10

Insight 1
We must expand the scope of debug-
ging to include both code errors and 
data errors, and combine techniques 
in code and data repair. The SE com-
munity traditionally considers bugs 
as code defects, while the DB com-
munity considers bugs as data defects 
based on unexpected statistical distri-
bution, functional dependencies, or 
schema mismatches. My perspective is 
that we need to combine insights from 
both communities to understand code 
errors and data errors in tandem. This 
is because data scientists write soft-
ware systems based on an incomplete, 
partial understanding of input data, 
and thus, errors could exist in code 

that makes wrong assumptions about 
data, or new data could have drifted 
from the implicit assumptions made 
about the original input. 

Consider the bug7 that uses wrong 
delimiters such as splitting a string 
with “[]” instead of “\[\],” leading to 
a wrong output. A user may define 
this as a data bug or an anomaly, 
but it could be seen as a coding er-
ror based on the wrong assumptions 
made about the data. In fact, this er-
ror could be fixed by a code update, 
data cleaning, or both.

Similar to how the SE community 
has worked on automated program 
repair and the DB community has 
worked on automated data cleaning 
and repair, now is the time to com-
bine these insights to define what 
DA bugs mean and how to repair 
code errors and data errors together, 
as they are closely interrelated.

Insight 2 
Performance debugging is as impor-
tant as correctness debugging, and it 
requires enabling visibility into system 
stacks, code, and data. Based on our 
studies of data scientists, we found 
that the scope of debugging must go 
beyond functional correctness in the 
domain of big data analytics. Meet-
ing performance requirements, which 
were often considered to be nonfunc-
tional, secondary requirements, is as 
important as functional correctness.

Performance debugging, in par-
ticular, is often the biggest pain point 
for data analytics developers, as it 
depends on configuration, scaling, 
unbalanced tasks, IO, and memory-
related issues in the cluster. A vertical 
stack is complex because it consists of 
a development environment, ML/AI 
libraries, runtimes, storage services, a 
Java virtual machine, containers, and 
virtual machines that also run het-
erogeneous hardware [for example, 
CPUs, GPUs, and FPGA (field pro-
grammable gate arrays)]. To diagnose 
and repair performance bottlenecks, 
we must consider the interaction be-
tween code, data, and system envi-
ronments across a vertical stack. For 
example, debugging computational 
skews caused by interaction between 
code and a subset of data requires 
tracking latency information for in-
dividual inputs throughout various 
computational stages.10

Insight 3
We must design easy-to-use, easy-to-
extend oracle-specification techniques 
for debugging and testing heuristics-
based, probabilistic, and predictive 
analytics. Creating oracles for heuris-
tics-based, probabilistic, and predictive 
DA is different from how we define 
oracles in traditional unit testing. Met-
amorphic testing relates changes be-
tween two inputs to changes between 
two corresponding outputs.13 Exist-
ing techniques for testing neural net-
works use metamorphic testing, but 
they are limited to checking whether 
input perturbations still produce the 
same classification results and test 
only an equivalence-based meta-
morphic relation.

Insight 4
We must design new debugging tech-
niques that quantify the degree of 
influence and importance between 

Performance debugging is as 
important as correctness debugging, 
and it requires enabling visibility into 

system stacks, code, and data.
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input distributions and unexpected 
behavior. Traditionally, debugging 
techniques such as delta debugging 
attribute the cause of test failures to 
individual failure-inducing inputs 
equally. We must quantify the no-
tion of importance when debugging 
faulty inputs, as a bug is often caused 
by a subset of input data near deci-
sion boundaries, a particular data 
partition, or a particular input distri-
bution drifted from the original data 
assumption, as opposed to a single 
input. For example, training-set de-
bugging in ML identifies a subset of 
inputs, leading to mis-classifications 
using the mathematical notion of in-
fluence functions14 by isolating input 
data near decision boundaries. We 
must leverage such ideas to extend 
and adapt existing software debug-
ging to data-centric software.

By studying professional data 
scientists, and based on the 
experience of adapting SE 

techniques to debug and test big 
data applications, I have found that 
data-centric software development is 
different from traditional software de-
velopment in several ways. To support 
data-centric software development, we 
must investigate how code errors and 
data errors interact, and we should not 
limit the scope of debugging to correct-
ness debugging because performance 
debugging is as important as correct-
ness debugging to many data scientists. 
Inherently, it is challenging to define 
what should be a correct behavior for 
heuristics-based, probabilistic, and pre-
dictive analytics. Therefore, we must 
design easy-to-extend, easy-to-use 
specification techniques to facilitate de-
bugging and testing. Solving these open 
problems requires the SE community 
to work together with the AI, ML, sys-
tems, and DB communities. 

Acknowledgments
I thank my collaborators Thomas 
Zimmermann, Rob Decline, and 
Andrew Begel for their joint work 
on the study of data scientists. I also 
thank University of California, Los 
Angeles students and collaborators 
Tyson Condie, Aria Emoji, Muham-
mad Ali Gulzar, Matteo Interlandi, 
Shaghayegh Mardani, Todd Mill-
stein, Madanlal Musuvathi, Kshitij 
Shah, Sai Deep Tetali, Jason Jia 
Teoh, Seunghyun Yoo, and Harry 
Xu for their automated debugging 
and testing of Apache Spark. I thank 
my Ph.D. student Gulzar for being a 
sounding board for this software en-
gineering for data analytics journey.

This work is in part supported by 
National Science Foundation award 
1764077.

References
1. D. Culbertson “High demand for 

data science jobs,” Indeed Hiring 

Lab, Mar. 15, 2018. [Online]. 

Available: https://www.hiringlab

.org/2018/03/15/data-science-job

-postings-growing-quickly

2. Wikipedia, “Death of Elaine Herz-

berg,” Apr. 4, 2020. [Online]. Avail-

able: https://en.wikipedia.org/wiki/

Death_of_Elaine_Herzberg

3. S. Amershi et al, “Software engi-

neering for machine learning: A 

case study,” in Proc. 2019 IEEE/

ACM 41st Int. Conf. Software 

Engineering: Software Engineer-

ing Practice (ICSE-SEIP), May 

2019, pp. 291–300. doi: 10.1109/

ICSE-SEIP.2019.00042.

4. M. A. Gulzar, M. Interlandi, X. Han, 

M. Li, T. Condie, and M. Kim, “Au-

tomated debugging in data-intensive 

scalable computing,” in Proc. 2017 

Symp. Cloud Computing (SoCC ’17). 

New York: ACM, 2017, pp. 520–534. 

doi: 10.1145/3127479.3131624.

5. M. A. Gulzar et al., “Bigdebug: 

Debugging primitives for interac-

tive big data processing in spark,” 

in Proc. 38th Int. Conf. Software 

Engineering (ICSE ’16). New York: 

ACM, 2016, pp. 784–795. doi: 

10.1145/2884781.2884813.

6. M. A. Gulzar, S. Mardani, M. 

Musuvathi, and M. Kim, “White-

box testing of big data analytics 

ABOUT THE AUTHOR

MIRYUNG KIM is a full professor in the Department of Computer 
Science at the University of California, Los Angeles. Her research 
interests include code clones and code duplication detection, man-
agement, and removal solutions. She has taken a leadership role in 
defining the emerging area of software engineering for data science. 
Kim received a Ph.D. in computer science and engineering from 
the University of Washington, Seattle. She received various awards 
including an NSF CAREER Award, a Microsoft Software Engineering 
Innovations Foundation Award, a Google Faculty Research Award, 
and an Okawa Foundation Research Award. She is the program 
cochair of the ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering 
2022 and the International Conference on Software Maintenance 
and Evolution 2019 and is an associate editor of IEEE Transactions on 
Software Engineering. Contact her at miryung@cs.ucla.edu.

Authorized licensed use limited to: UCLA Library. Downloaded on August 10,2020 at 19:03:45 UTC from IEEE Xplore.  Restrictions apply. 



42	 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

FOCUS: THE AI EFFECT

with complex user-defined func-

tion,” in Proc. 2019 27th ACM 

Joint Meeting European Software 

Engineering Conf. and Symp. the 

Foundations of Software Engineer-

ing (ESEC/FSE 2019). New York: 

ACM, 2019, pages 290–301. doi: 

10.1145/3338906.3338953.

7.	M. Interlandi et al., “Adding data 

provenance support to apache 

spark,” VLDB J., vol. 27, no. 5, pp. 

595–615, Aug. 2017. doi: 10.1007/

s00778-017-0474-5.

8.	M. Interlandi et al., “Optimiz-

ing interactive development of 

data-intensive application,” in 

Proc. Seventh ACM Symp. Cloud 

Computing, Santa Clara, CA, Oct. 

5–7, 2016, pp. 510–522. 2016. doi: 

10.1145/2987550.2987565.

9.	M. Kim, T. Zimmermann, R. DeLine, 

and A. Begel, “The emerging role of 

data scientists on software develop-

ment teams,” in Proc. 38th Int. Conf. 

Software Engineerin (ICSE ’16). New 

York: ACM, 2016, pages 96–107. 

doi: 10.1145/2884781.2884783.

10.	M. Kim, T. Zimmermann, R. DeLine, 

and A. Begel, “Data scientists in soft-

ware teams: State of the art and chal-

lenges,” IEEE Trans. Softw. Eng., vol. 

44, no. 11, pp. 1024–1038, Nov. 1, 

2018. doi: 10.1109/TSE.2017.2754374. 

11.	P. W. Koh and P. Liang, “Understanding 

black-box predictions via influence func-

tions,” in Proc. 34th Int. Conf. Machine 

Learning (ICML-17), vol. 70. New 

York: ACM, 2017, pp. 1885–1894.

12.	D. Sculley et al., “Hidden technical 

debt in machine learning systems,” 

in Advances in Neural Information 

Processing Systems, vol. 28, C. Cor-

tes, N. D. Lawrence, D. D. Lee, M. 

Sugiyama, and R. Garnett, Eds. Red 

Hook, NY: Curran Associates, Inc., 

2015, pp. 2503–2511.

13.	S. Segura, G. Fraser, A. B. Sanchez, 

and A. Ruiz-Cortes, “A survey on 

metamorphic testing,” IEEE Trans. 

Softw. Eng., vol. 42, no. 9, pp. 

805–824, Sept. 2016. doi: 10.1109/

TSE.2016.2532875.

14.	J. Teoh, M. A. Gulzar, G. H. Xu, 

and M. Kim, “Perfdebug: Perfor-

mance debugging of computation 

skew in dataflow system,” in Proc. 

ACM Symp. Cloud Computing 

(SoCC ‘19), pp. 465–476. New 

York: ACM, 2019. ACM. doi: 

10.1145/3357223.3362727.

Write for the IEEE Computer 
Society’s authoritative 
computing publications 
and conferences.

IEEE COMPUTER SOCIETY

Call for Papers

GET PUBLISHED
www.computer.org/cfp

Digital Object Identifier 10.1109/MS.2020.2996915

Authorized licensed use limited to: UCLA Library. Downloaded on August 10,2020 at 19:03:45 UTC from IEEE Xplore.  Restrictions apply. 


