
An Empirical Study of API Stability and Adoption in the Android Ecosystem

Tyler McDonnell, Baishakhi Ray, Miryung Kim
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX, USA

Email: tscottmcdonnell@gmail.com, rayb@utexas.edu, miryung@ece.utexas.edu

Abstract—When APIs evolve, clients make corresponding
changes to their applications to utilize new or updated APIs.
Despite the benefits of new or updated APIs, developers are
often slow to adopt the new APIs. As a first step toward under-
standing the impact of API evolution on software ecosystems,
we conduct an in-depth case study of the co-evolution behavior
of Android API and dependent applications using the version
history data found in github.

Our study confirms that Android is evolving fast at a rate of
115 API updates per month on average. Client adoption, how-
ever, is not catching up with the pace of API evolution. About
28% of API references in client applications are outdated with
a median lagging time of 16 months. 22% of outdated API
usages eventually upgrade to use newer API versions, but the
propagation time is about 14 months, much slower than the
average API release interval (3 months). Fast evolving APIs are
used more by clients than slow evolving APIs but the average
time taken to adopt new versions is longer for fast evolving
APIs. Further, API usage adaptation code is more defect prone
than the one without API usage adaptation. This may indicate
that developers avoid API instability.

I. INTRODUCTION

Over the course of the past few years, the mobile applica-
tion arena has exploded with the dissemination of affordable
and powerful smart phones. As of 2012, the Apple App
Store and Google Play Store boast a combined 1.5 million
available apps and 55 billion app downloads worldwide [27].
Google and Apple support mobile app development with
their own operating systems and associated Application
Programming Interfaces (APIs). These APIs give developers
access to features like location services, wi-fi connections,
bluetooth functionality, and graphics.

When APIs evolve to accommodate new feature requests,
to fix bugs, to meet new standards, and to provide higher
performance, client applications often need to make cor-
responding changes to use new or updated APIs. Despite
the benefits of new or improved APIs, developer adoption
is often slow among client applications. For example, the
Android Operating System is evolving fast, yet API adoption
is slow and the consumer pool is fragmented by the Android
version numbers [5].

Though many techniques have been proposed to ease li-
brary migration and to address API version incompatibilities,
API evolution and its associated ripple effect throughout
software ecosystems are still under-studied. For example,

Robbes et al. [21] studied how client applications react to
API evolution in libraries or frameworks, but the study was
confined to the issue of API deprecation in Smalltalk.

As a first step towards understanding the impact of API
evolution on developer adoption, we conduct an in-depth
case study of the Android API and dependent applications.
Using the version history data of Android applications found
in github and the API evolution data derived from Android
OS documentation pages, we quantify their co-evolution
behavior. We analyze the average time between API updates
and record the number of method and field changes in
each Android version. We also track changes in each major
feature of Android. On the side of client applications, we
calculate the percentage of Android API method calls and
field references and categorize them by the API version
number. By comparing the commit time of an API reference
in client code against the release time of newer APIs,
we identify outdated API usages and measure the lagging
time—how far existing API references are lagging behind
newly released APIs. We also measure the propagation time
—the time taken for the client code to adopt new API
usages. Then we correlate these adoption statistics with the
frequency and location of evolving APIs in Android OS.

By characterizing the co-evolution behavior of APIs and
dependent applications, we address the following research
questions. Our findings are summarized as follows:

• How fast does the Android API change, and which
parts change the most? Android APIs are evolving
at the rate of 115 API updates per month on average.
APIs related to hardware, user interface, and web are
evolving much faster than others.

• How dependent is client code on Android APIs,
and how long does it take to adopt new APIs?
Around 25% of all method and field references in the
client code use the Android APIs. However, application
developers are hesitant to adopt new APIs. On average,
28% of Android API calls are lagging behind the latest
released version. 22% of outdated APIs eventually
upgrade to use newer APIs; nevertheless it takes a
considerable amount of time, 14 months, on average.

• What is the relationship between API stability, us-
age, adoption, and bugs? Fast evolving APIs are used
more by clients than slow evolving APIs. However, the

pace of client update is slower for fast evolving APIs.
Files which are changed to use new APIs are more
defect prone than files without API usage adaptation.
This may imply that developers avoid frequent upgrades
to unstable or rapidly evolving APIs.

To the best of our knowledge, we are the first to quantify
the co-evolution behavior of Android and mobile applica-
tions and to confirm that client adoption is not keeping
pace with API evolution. We are the first to find that API
updates are more defect prone than other types of changes
by investigating the relationship between API instability and
bugs in client code as opposed to a library. Our study shows
that fast-evolving APIs are used more and adopted more,
but the time taken for API adoption is longer. Though many
tools exist to automate API usage updates in client code,
these tools are inadequate for promoting adoption alone as
various stakeholders affect the process of API adoption. We
call for further studies on how to promote API adoption and
ultimately facilitate the growth of software ecosystems.

II. RELATED WORK

Empirical Studies of API Evolution. In this paper, we seek
to understand developer response to evolving APIs. Several
studies analyze different software ecosystems and attempt
to assess the ripple effect that API changes may have on
client applications. Dig and Johnson found that 80% of the
code changes that break client-side code are API refactorings
[10]. Similarly, Xing and Stroulia studied Eclipse evolution
history and found that 70% of structural changes are due
to refactorings and existing IDEs lack support for complex
refactorings [28]. In our study of API evolution, we examine
the relationship between API stability and the degree of
adoption measured in propagation and lagging time, which
have not been investigated before in the above studies. Hou
and Yao study the Java API documentation and find that a
stable architecture played an important role in supporting
the smooth evolution of the AWT/Swing API [15].

In a large scale study of the Smalltalk development com-
munities, Robbes et al. found that only 14% of deprecated
methods produce non-trivial API change effects in at least
one client-side project; however, these effects vary greatly
in magnitude. On average, a single API deprecation resulted
in 5 broken projects, while the largest caused 79 projects
and 132 packages to break [21]. In contrast to Robbes
et al., our study is not limited to API deprecation and
we focus on applications written in Java as opposed to
Smalltalk. The mobile software arena may also differ from
other applications by placing the burden on developers to
support users running a wide variety of devices and different
OS versions.

Kim et al. investigate the relationship between API refac-
torings and bugs and find that the number of bug fixes
increases after API refactorings [16]. Weißgerber and Diehl
also find that API refactorings often occur together with

other types of changes and that API refactorings are followed
by an increasing number of bugs [26]. These studies inves-
tigate the relationship between API refactorings and bugs in
libraries only, as opposed to bugs in clients.

Yau et al. [29] and Black [7] investigate the ripple effects
of evolving software, but these studies focus on a single
system, as opposed to the impact of evolving APIs on clients.
In this paper, we investigate how mobile applications react
to API changes in the Android ecosystem, following Lungu
et al.’s definition—a collection of software projects which
are developed and co-evolve in the same environment [18].
Techniques for Easing API Migration. Several techniques
can help programmers deal with broken code as a result of
API evolution. Henkel and Diwan and Ekman and Asklund
record API refactorings performed in an IDE in order to
replay them in the client applications [13], [14]. Dig et
al. present a refactoring-aware version control system to
account for refactoring edits during the version merging
process [11]. Chow and Notkin suggest how to adapt client
applications using API usage adaptation rules written by
developers [8]. Dig et al. adopt a proactive approach and
create a layer between clients and each updated library
version [12]. This approach has the advantage of preventing
broken code with no client-side effort, but it can discourage
the use of new functionality of upgraded APIs.

Other techniques recommend API replacement using var-
ious types of underlying analyses: lexical comparison of
method signatures syntactic and semantic similarity of APIs,
shingles analysis, analysis of how a library’s internal API
usage changes between versions, analysis of code com-
ments and release documents, source code implementation
details, analysis of how other developers adapted their code,
and combination of method signatures and call usages. A
survey of techniques for easing API migration is found
elsewhere [9], [17]. Cossette and Walker found that, while
most broken code may be mended using one or more of these
techniques, each is ineffective when used in isolation [9].
Studies on Android Applications. Shabtai et al. is the
first to conduct a formal study of Android Packages files
(APK) [24]. They apply machine learning techniques to
classify applications into two categories: tools vs. games.
Syer et al. [25] compare the source code size, churn, and
dependency characteristics of mobile applications for the
Android platform against those for the Blackberry platform.
Ruiz et al. investigate the extent of reuse in the Android
Market using Software Bertillonage techniques to track code
across mobile applications [22]. Sanz et al. [23] detect
malicious Android applications in the Android market. Our
study differs from these studies by investigating the impact
of evolving APIs on adoption. By analyzing bug reports and
developers’ discussion, Pathak et al. [20] find that 20% of
overall energy related bugs in Android occur after an OS
update. This may explain our study finding that the number
of bugs increases in Android applications following an API

update.

III. STUDY METHOD

Section III-A describes the Google Android API, its evo-
lution history, and developer pool. Section III-B describes
the client applications we selected as subjects.

A. Android API

Android is an open source Linux-based operating system
owned by Google and designed for touchscreen mobile
devices such as smart-phones and tablet computers.

The rapid commercial growth of the mobile sector is
coupled with similarly fast-paced hardware and software
evolution. Google released the first Android version (An-
droid 1.0, API level 1) on September 23rd 2008. Since then
a new version is released approximately in every 3 months,
till the release of the current version, (Android 4.2, API level
17) on November 13th 2012. Figure 1 shows the API version
history, including release dates, version numbers, associated
API levels, and codenames [4].

Version Codename API Dist. Release Date
1.0 None 1 * Sep 23, 2008
1.1 None 2 * Feb 9, 2009
1.5 Cupcake 3 * Apr 30, 2009
1.6 Donut 4 0.2% Sep 15, 2009
2.0 Eclair 5 * Oct 26, 2009

2.0.1 Eclair 6 * Dec 3, 2009
2.1 Eclair 7 8.1% Jan 12, 2010
2.2 Froyo 8 8.1% May 20, 2010

2.3-2.3.2 Gingerbread 9 0.2% Dec 6, 2010
2.3.3-2.3.7 Gingerbread 10 45.4% Feb 9, 2011

3.0 Honeycomb 11 * Feb 22, 2011
3.1 Honeycomb 12 0.3% May 10, 2011
3.2 Honeycomb 13 1.0% Jul 15, 2011

4.0-4.0.2 Honeycomb 14 * Oct 19, 2011
4.0.3-4.0.4 Ice Cream Sandwich 15 29.0% Dec 16, 2011

4.1 Jelly Bean 16 12.2% Jul 9, 2012
4.2 Jelly Bean 17 1.4% Nov 13, 2012

data provided by Google
∗ indicates that no distribution data is available

Figure 1. Client API Usage

Because the Android operating system runs on a wide
variety of different devices, the consumer pool is fragmented
by Android version numbers. Older mobile devices often
ship with earlier versions of the Android OS and may be
incapable of updating to the most recent Android API due to

hardware limitations. Figure 1 shows the current breakdown
of Android version usage based on devices that accessed
Google Play within a 14-day period in January 2013 [4].
Notably, this distribution shows either a hesitancy towards
newer versions or at least a slow adoption trend, with 50%
of users running a version released 20 or more months prior
to the current version. Many analysts note how little change
they have seen in the market share of the dominant Android
version in the past 12 months and how this fragmentation
differs from Apple’s iOS [6].

For this study, we correlate changes in client applications
with changes in Android OS. We build a data structure
to store the Android API version history. We analyze the
api-versions.xml file and the apidiff directory that
Google provides to developers along with the Android Soft-
ware Development Kit (SDK). The api-versions.xml
file provides a complete listing of all Android classes, meth-
ods, and fields available in API version 1. The apidiff
directory is a set of html files, cataloging changes to any
classes, methods, or fields from the previous API version.

B. Study Subjects

To build a representative picture of the Android ecosys-
tem, we select active open source Android applications
from several different domains such as media, politics, and
transportation, with a wide variety of active developers,
application sizes (measured in lines of code), revisions, and
revision rates.

CP Congress Tracker is an app that allows users to
manage a personal schedule, locate opinion leaders, and
provide general coverage of related congressional events.
Apollo Music Player is a customizable lightweight Android
music app. Cyanogen is a set of multimedia and user
interface suites. It allows users to place widgets like analog
clocks on the home screen of their phone. Google Play
Analytics allows users access real-time Google Analytics
profiles. LastFM is a music listening and sharing applica-
tion. mp3Tunes allows users to access and listen to the songs
in iTunes. OneBusAway is a mobile app that provides real-
time arrival information for Seattle area buses. ownCloud
allows users to access and share files stored in the cloud.
RedPhone is an app for making secure calls by providing
end-to-end encryption. XMBCremote is a full featured
remote control software for the XMBC media center. Table I
shows the last updated time, the number of revisions, change
rate, the number of authors, and code size.

IV. STUDY RESULTS

Section IV-A presents the extent and characteristics of
Android API evolution. Section IV-B investigates how fast
client code is adapting the updated APIs. Section IV-C
analyzes the impact of API evolution on client code.

A. Characteristics of Android API Evolution

RQ1. How fast do Android APIs evolve? We first identify
added, changed, and removed APIs for each Android ver-
sion. When a new API version is released, Google provides
an html file documenting all API changes in each release [4].
We built a tool that extracts API change information from
the html file and stores the API Version history data. We
define a changed class as one that is either new in the
particular version or has at least one changed, added, or
removed API method or field. Similarly, changed methods
and fields are the ones with a modified signature since the
previous version. Removed methods and fields are those that
existed in the previous version but no longer do in the current
version. Table II shows the extent of API evolution at the
class, method, and field granularity.

To measure the rate of Android API evolution, we com-
pute how many APIs are updated in each month on average.

avg. update rate =
∑

releases # API updates

months

In each month, 44 methods are changed, 11 methods are
added, 51 fields are changed, 9 fields are added, and less
than one method or field is removed on average. Android is
constantly evolving to include more method and field vari-

Table I
CHARACTERISTICS OF CLIENT MOBILE APPS

Apps Updated Rev Rev/mo Author LOC
Apollo M 03-24-2013 9 0.4 1 15783
Congress Tracker 04-15-2013 1359 25.6 7 13349
Cyanogen 01-10-2011 109 2.3 20 28972
Google A 03-12-2013 926 77.1 23 52932
LastFM 03-03-2013 212 8.2 7 9771
mp3Tunes 02-17-2013 104 2.2 1 9608
OneBusAway 03-09-2013 497 33.1 5 51784
ownCloud 04-12-2013 665 55.4 12 25109
RedPhone 03-23-2013 116 4.8 5 21315
XMBCremote 04-05-2013 928 19.3 24 92893

Table II
API CHANGES IN ANDROID PER VERSION AND EVOLUTION RATES

API Release Class Methods Fields
Version Date ∆ ∆ + - ∆ + -

3 Apr 30, 2009 246 368 60 0 296 68 0
4 Sep 15, 2009 128 70 41 1 208 27 0
5 Oct 26, 2009 187 199 64 0 234 205 0
6 Dec 3, 2009 37 0 2 0 7 1 0
7 Jan 12, 2010 61 52 2 0 22 3 0
8 May 20, 2010 191 200 38 1 195 23 0
9 Dec 6, 2010 244 348 42 9 141 11 0
10 Feb 9, 2011 46 7 0 0 10 0 0
11 Feb 22, 2011 263 416 95 7 619 36 0
12 May 10, 2011 118 73 27 1 87 9 0
13 Jul 15, 2011 69 22 11 0 68 1 0
14 Oct 19, 2011 269 271 98 8 405 34 0
15 Dec 16, 2011 84 25 3 0 38 2 0

Min 37 0 0 0 7 0 0
Max 269 416 98 9 619 205 0
Mean 149 158 37 2 179 32 0
Rate (Total update/month) 42 44 11 <1 51 9 0

ables, with existing methods and fields frequently changed
to add new functionality. However, removal of existing
functionalities is rare.

RQ2. What functions of Android API are updated
most? We investigate the areas of the Android API that
are updated most frequently. From Android packages,
we select certain keywords to characterize API features.
For example, the taxon text is drawn from all packages
relevant to rendering or tracking text on an Android device:
android.text.format, android.text.method,
android.text.style, and android.text.util.
We create 25 taxa using various keywords such as:
animation, bluetooth, database, graphics, io, os, security,
and text. We then categorize each new, changed, or removed
API method and field for each taxon. Table III shows which
taxa are updated most frequently.

Table III
API CHANGE DISTRIBUTION PER TAXON (FEATURE)

Taxon Total
Updated
Versions

Total
Updated
APIs

Avg. Changes
Per API
Release

Avg Update
Interval
(Month)

animation 7 37 5 5.4
appwidget 3 12 4 12.7
bluetooth 5 9 2 7.6

content 10 179 18 3.8
database 6 100 17 6.3

gest 1 3 3 38.0
graphics 10 84 8 3.8

hardware 10 121 12 3.8
io 2 18 9 19.0

location 4 38 10 9.5
media 8 93 12 4.8

net 8 87 11 4.8
opengl 5 10 2 7.6

os 11 94 9 3.5
rtp 0 0 0

security 2 25 13 19.0
sip 1 2 2 38.0

support 0 0 0
telephony 5 49 10 7.6

test 8 70 9 4.8
text 9 147 16 4.2
util 6 180 30 6.3

view 12 546 46 3.2
webkit 10 172 17 3.8

wifi 4 14 4 9.5

We find that the most frequently evolving packages
(the lowest average time between API changes) in-
clude content, graphics, hardware, os, view, and
webkit—each updated in 10 or more of the 14 API
releases under consideration. We also find that content,
hardware, text, util, view, and webkit have more
than 100 API changes since the original Android release.

The high frequency of API updates related to hardware,
graphics, and views may be due to the Android hardware
fragmentation. In contrast to iOS, which supports five unique
devices, there are at least 170 Android devices. Google may
rapidly update the hardware and graphics APIs to support
widely-varying hardware features.

B. Characteristics of API adoption by the client programs

This section investigates how client programs respond to
API evolution. We study the degree of dependence that client
applications have on Android APIs and how fast clients are
adopting new or updated APIs.

Android API Version History Client Source Code

1.  Commit	
 date	
 a,er	
 API	
 release	

2.  Matches	
 imported	
 classes	

3.  Matches	
 method	
 names	
 	

4.  Matches	
 parameters	

void setRemoteAdapter(int, Intent)

API Version: 14

Release date: October 19, 2011

Class: android.widget.RemoteViews

[3] [4]

[2]

[1]

setRemoteAdapter(viewID, I);

Client Code : Remote.java

Commit Date: January 26, 2012

import android.widget.RemoteViews;

[3] [4]

[2]

[1]

int viewID = settings.getViewID();!
Intent I = new Intent(this,
ActivityTwo.class);!

Figure 2. Identifying Android References in Client Source Code

RQ3. How dependent is client code on Android APIs?
We analyze client application source code to measure the
degree of dependence on Android APIs. We identify all
Android methods and fields references using a syntax-based
lexical search on Java source files. By analyzing the import
statements, we detect the Android classes referenced in
each Java file. For each referenced API method call or
field access, we search through our Android API Version
History data structure (see Section IV-A) to find a cor-
responding API declaration and its version. We match an
API invocation with a corresponding API declaration based
on a method name and the number of parameters. We
detect API usage updates by monitoring changes to the
used method name, the number of arguments, and argument
names. We also use the commit date of a source file
to determine the most recent available API version. For
example, Figure 2 shows an Android API method invo-
cation setRemoteAdapter(int, Intent) in client
code. When scanning the client source file, we find an
entry in the Android API Version History data structure of
method setRemoteAdapter. By matching the number of
parameters, the release date of the API entry, the commit
date of client code, and the list of imported classes in
the source file, we infer that the client code is using the
API version 14 for method setRemoteAdapter(int,
Intent).

By measuring the proportion of Android API method calls
and field references out of all references, we investigate how
dependent client apps are on Android APIs (see Figure 3).
Approximately 25% of all method and field references in
client code are about Android APIs. Around 80% of the
references in the most recent version of client code refer to
Android API Version 1 or Version 3, released in September
2008 and April 2009 respectively. These results show that
though mobile apps are heavily dependent on Android OS
and its functionality, developers are hesitant to embrace or

fully utilize more recent API features.

1	

70%	

3	

9%	

4	

2%	

5	

2%	

9	

2%	

11	

6%	
 13	

1%	

14	

7%	

16	

1%	

Client Android Total % Android Unique
Applications API API API Android API

Apollo Music 1332 3820 35% 155
Congress Tracker 1007 3396 30% 82

Cyanogen 1439 5992 24% 144
Google A 3164 12145 26% 336

LastFM 371 2122 16% 64
mp3Tunes 510 2275 22% 101

OneBusAway 2416 10932 22% 297
ownCloud 1838 6132 30% 194
RedPhone 830 4303 19% 160

XMBCremote 3209 14626 22% 275

Figure 3. Degree of Android API dependence of client code

RQ4. What is the lag time between client code and
the most recent Android API? We detect the lag time
between a client API reference (i.e., API method calls)
and its most recent available version. An API method
invocation in client code is considered to be lagging if
a more recent version of the method is available at the
time of its commit. We define the lag time of outdated
API usage as the number of months elapsed between the
release of the new version and the commit time of the
outdated API usage code. For example, Figure 4 shows
setbutton2(charSequence) is deprecated between
API version 4 and 7. In client code, developers use the
deprecated method at a later date, on December 20th 2009.
We consider this method reference is lagging because the
method was deprecated prior to the client code commit. The
lag time in this case is approximately two months, the time
difference between the client code commit on December
20th 2009 and the deprecation in API Version 7 on October
26th 2009.

We measure the number of outdated API calls and their
lagging time. This analysis is done on a git commit
granularity. For each API invocation in each commit, we
first identify the used API version by comparing the method
signature of the API call in client code with our Android API
Data Structure. We then retrieve the most recent API version

Android API

API Version: 4
Release Date: September 15,
2009
Added Method:
void setButton2(charSequence)

API Version: 7
Release Date: October 26, 2009
Changed Method:
void setButton2(charSequence)
now deprecated

Client Code

Client Code
Commit Date: December 20,
2009
Method Use:
setButton2(charSequence)

Lag Time: 2 months

Figure 4. Lag Time Example

of that method available at the time of commit. Finally,
by comparing the commit date and the release date of its
updated version, we compute the lagging time. Table IV
summarizes the results. At any point in time, on average,
28% of Android method calls are out-of-date and lagging
behind the most recent available Android API version. The
percentage of outdated API usage varies from a minimum
value of 11% to a maximum value of 43% on average.

Table IV
LAG TIME STATISTICS

Apps Lag (# Methods) # Affected Files
Max Avg Min Max Avg Min

Apollo M 968 (72%) 964 (72%) 961(72%) 64 64 64
Congress T 516 (50%) 216 (18%) 0 (0%) 81 64 0
Cyanogen 256 (17%) 171 (12%) 0 (0%) 35 20 0
Google A 1784 (46%) 1409 (37%) 0 (0%) 134 86 0
LastFM 291 (70%) 181 (43%) 0 (0%) 47 28 0
mp3Tunes 47 (8%) 26 (5%) 4 (1%) 13 8 4
OneBusAway 19 (4%) 14 (3%) 0 (0%) 4 2 0
ownCloud 1488 (52%) 489 (18%) 4 (<1%) 171 121 2
RedPhone 547 (48%) 498 (43%) 414 (35%) 82 72 69
XMBCremote 1421 (41%) 537 (15%) 0 (0%) 238 123 0

Mean 777 (43%) 451 (28%) 138 (11%) 87 60 14

We combine the lagging time results across all subject
apps to produce a cumulative distribution of lag time in
Figure 5. 50% of all outdated API references are lagging
behind the most recent available API by 16 or more months.

The results suggest that developers do not quickly adopt
new APIs. They keep the outdated API references, avoiding
the instability of newer APIs and the work that comes with
API upgrade.

RQ5. How long does it take for API changes to prop-
agate throughout the Android ecosystem? We measure
how long it takes for clients to adopt new API usages once
a new or updated API becomes available. When a method
is eventually updated to a newer API version in client code,
we measure its propagation time—time difference in months
between the API release and the client adaptation timing
when the updated usage is committed in the client repository.
Figure 6 illustrates this concept by comparing the parallel
evolution of Android and a client project. In the Android

0	

0.25	

0.5	

0.75	

1	

1	
 8	
 15	
 22	
 29	
 36	

Pr
ob

ab
ili
ty
	
 D
en

si
ty
	

Lag	
 Time	
 (months)	

Figure 5. Cumulative Distribution of Lag Time (CDF)

development time line, the signature of getMethod is
altered in API version 9 on December 6th 2010 to include
an additional Class parameter. Client code committed on
March 8th 2011 changes the usage of getMethod to
match the updated API version 9 signature. In this example,
the propagation time is three months, the time difference
between the updated API usage on March 8th 2011 and the
release of API version 9 on December 6th 2010.

Android API

API Version: 1
Release Date: September 23,
2008
Added Method:
Method getMethod(String)

API Version: 9
Release Date: December 6,
2010
Changed Method:
Method getMethod(String, Class)

Client Code

Client Code
Commit Date: March 18, 2009
Method Use:
getMethod(String)

Client Code
Commit Date: March 8, 2011
Method Use:
getMethod(String, Class)

Propagation Time: 3 months

Figure 6. Propagation Time Example

Figure 7 shows the results of propagation time analysis.
We inspect each commit patch of the client projects to look
for method calls updated to new APIs. For each updated
method, we record the propagation time in months. Figure 7
represents the distribution of propagation times across all
subject applications in the form of a cumulative distribution
plot. The mean propagation time is 14 months (or almost
five Android releases) and 50% of all API usage updates
occur within approximately 14 months of the associated
API release. Outdated API usages eventually upgrade to use
newer APIs, but at a much slower pace than the rate of API
evolution.
C. Interplay between Android API evolution and client
adoption.

This section investigates the relationship between API
stability, usage, adoption, and bugs.

RQ6. What is the relationship between API stability
and adoption? To understand how API stability affects

0	

0.25	

0.5	

0.75	

1	

1	
 8	
 15	
 22	
 29	
 36	

Pr
ob

ab
ili
ty
	
 D
en

si
ty
	

Propaga1on	
 Time	
 (months)	

Figure 7. Propagation Time of Methods in Client Code (CDF)

adoption, we measure the Spearman rank correlation be-
tween the API evolution rate and adoption measures. For
each taxon in Table III, we use the average API update
interval (Column Avg Update Interval in Table III), the
percentage of total API calls made throughout all revisions
of all applications each taxon accounts for (API usage), and
the number of API references that were upgraded to newer
API versions in client code (propagation count). Table VI
summarizes the results. The Spearman correlation between
API update interval and API usage is −0.47 with a p-value
of 0.01757 (See Table VI). A negative correlation value
indicates that fast evolving APIs are used more by clients
and this trend is statistically significant. The left graph of
Figure 8 represents the average API update interval and the
API usage percentage for each taxon.

The Spearman correlation between the average API up-
date interval and the propagation count is −0.707 with a
p-value 0.0001113). A negative correlation suggests that
clients upgrade to faster evolving APIs more frequently. The
right side of Figure 8 shows the average API update interval
and the number of API usage propagations. These results
indicate that faster evolving APIs are used and adopted more
by clients.

RQ7. What is the relationship between API usage
and adoption? To understand the relationship between API
usage and adoption, we measure the Spearman correlation
between the percentage of total API calls made throughout
all revisions of all taxon accounts for (API usage) and the
average propagation time per taxon (see Table V). In order to
find API usage percentage, we recorded calls to all Android
API taxa across all revisions of all applications and divided
the total calls for a given taxon by the total across all taxa.
When computing the correlation, we remove all taxa whose
propagation count is zero. The correlation is 0.6966 with p-
value 2.72E-03, indicating that APIs that are used more often
have higher propagation times. In conjunction with RQ6’s
results, this implies that the pace of client updates is slower
for widely used, faster evolving APIs and that developers

Table VII
SPEARMAN RANK CORRELATION BETWEEN BUG FIXES AND API

UPDATES

Client
Application

Correlation
with bugs

p-value

Congress T
Total CLOC 0.39 1.33E-13
API Update CLOC 0.56 2.20E-16
Non API Update CLOC 0.39 1.96E-13

Cyanogen
Total CLOC 0.58 8.53E-08
API Update CLOC 0.63 3.749E-09
Non API Update CLOC 0.58 1.035E-07

Google Analytic
Total CLOC 0.36 1.92E-11
API Update CLOC 0.54 2.20E-16
Non API Update CLOC 0.31 5.83E-09

LastFM
Total CLOC 0.42 1.10E-07
API Update CLOC 0.37 5.18E-06
Non API Update CLOC 0.43 1.04E-07

OneBusAway
Total CLOC 0.26 1.06E-07
API Update CLOC 0.46 2.20E-16
Non API Update CLOC 0.25 2.28E-07

OwnCloud
Total CLOC 0.43 6.113E-16
API Update CLOC 0.55 2.2E-16
Non API Update CLOC 0.42 2.81E-15

RedPhone
Total CLOC 0.23 1.44E-03
API Update CLOC 0.24 1.13E-03
Non API Update CLOC 0.23 1.48E-03

XMBCremote
Total CLOC 0.34 2.20E-16
API Update CLOC 0.62 2.20E-16
Non API Update CLOC 0.33 2.20E-16

avoid frequent updates to unstable APIs.
We found a positive correlation of 0.844 between API

usage and propagation count with p-value 1.93E-05 (see also
Figure 9 for the graph on API usage % and propagation
count). The more an API is used, the higher its number of
client code updates. In other words, highly used taxa are
adopted more frequently.

RQ8. What is the relationship between API updates
and bugs in client code? To investigate how API updates
affect the likelihood of defects in client code, we analyze the
correlation between the number of bugs and the amount of
lines changed for the purpose of upgrading to newer APIs.
By analyzing version history, we identify java files changed
in each commit. For those files, we measure the number of
added lines, the number of changed lines for the purpose of
upgrading to newer APIs, and the number of changed lines
not related to API updates. Next, using a heuristic similar
to Mockus and Votta [19], we identify the number of bug
fixes by searching for commit messages with the keywords:
bug, error, fix, and solve.

We then calculate the Spearman correlation between bug
fix CLOC and API upgrade CLOC in client code at the file
granularity [30]. We also measure how bugs are correlated
with total CLOC and non-API upgrade CLOC respectively.
Table VII shows the results. The correlation between bug

0	

5	

10	

15	

20	

0	

10	

20	

30	

40	

.io
	

te
xt
	

bl
ue

to
ot
h	

ha
rd
w
ar
e	

te
le
ph

on
y	

co
nt
en

t	

an
im

a;
on

	

lo
ca
;o

n	

te
st
	

ne
t	

u;
l	

gr
ap
hi
cs
	

w
eb

ki
t	

da
ta
ba
se
	

se
cu
ri
ty
	

os
	

vi
ew

	

A
PI
	
 u
pd

at
e	

in
te
rv
al
	
 (m

on
th
s)
	

A
PI
	
 u
sa
ge
	
 (%

)	

API	
 evolu8on	
 vs	
 client	
 usage	

usage	
 (%)	
 API	
 update	
 interval	

0	

5	

10	

15	

20	

25	

0	

10	

20	

.io
	

te
xt
	

bl
ue

to
ot
h	

ha
rd
w
ar
e	

te
le
ph

on
y	

co
nt
en

t	

an
im

a9
on

	

lo
ca
9o

n	

te
st
	

ne
t	

u9
l	

gr
ap
hi
cs
	

w
eb

ki
t	

da
ta
ba
se
	

se
cu
ri
ty
	

os
	

vi
ew

	

A
PI
	
 u
pd

at
e	

in
te
rv
al
	
 (m

on
th
)	

pr
op

ag
a6

on
	
 c
ou

nt
	
 (%

)	

API	
 evolu6on	
 vs	
 propaga6on	
 occurance	

API	
 update	
 interval	
 propaga9on	
 count	
 (%)	
 	

Figure 8. Taxa API update vs. client adoptions

Table V
CORRELATION BETWEEN API PROPAGATION AND API USAGE

correlation p-value

API usage (%) propagation time 0.6966134 2.72E-03
API usage (%) propagation count 0.8441176 1.93E-05

Table VI
CORRELATION BETWEEN API EVOLUTION AND CLIENT ADOPTION

correlation p-value

avg API update interval API usage (%) -0.4706808 0.01757
avg API update interval propagation count -0.7072448 0.0001113

0

5

10

15

20

25

.io

te
xt

b
lu
et
o
o
th

h
ar
d
w
ar
e

te
le
p
h
o
n
y

rt
p

si
p

o
p
en

gl

m
ed

ia

su
p
p
o
rt

co
n
te
n
t

an
im

at
io
n

lo
ca
ti
o
n

te
st

n
et u
ti
l

gr
ap
h
ic
s

w
eb

ki
t

ap
p
w
id
ge
t

d
at
ab
as
e

w
if
i

ge
st

se
cu
ri
ty o
s

vi
ew

A
ve

ra
ge

 P
ro

p
ag

at
io

n
 T

im
e

 (
m

o
n

th
s)

Taxon

0

200

400

600

800

1000

1200

1400

1600
.io

te
xt

b
lu
et
o
o
th

h
ar
d
w
ar
e

te
le
p
h
o
n
y

rt
p

si
p

o
p
en

gl

m
ed

ia

su
p
p
o
rt

co
n
te
n
t

an
im

at
io
n

lo
ca
ti
o
n

te
st

n
et u
ti
l

gr
ap
h
ic
s

w
eb

ki
t

ap
p
w
id
ge
t

d
at
ab
as
e

w
if
i

ge
st

se
cu
ri
ty o
s

vi
ew

To
ta

l P
ro

p
ag

at
io

n
s

Taxon

Figure 9. Average Propagation Time and Total Propagation Count for Each Taxon

fixes and API updates is stronger than the correlation be-
tween bug fixes and non-API updates in all applications
except LastFM. Note that two applications, Apollo Music
and mp3Tunes, were omitted from this table because we
recorded zero API updates in these applications.

These results show that, in general, the files with more
API updates are more prone to bugs. The stronger correlation
between API update and bug-fix may explain the slower
adoption of new APIs—developers may be skeptic about
API adoption as it may introduce bugs. In fact, many de-
velopers notice that the API implementation on the Android
OS side is often buggy when released. For example, sev-

eral major bugs related to random rebooting and excessive
battery drainage were reported regarding Android 4.2 (Jelly
Bean) release [1]. Because of these bugs, developers were
hesitant to adopt new APIs or frustrated with their attempts
at adoption, some claiming that the release was the most
buggy update since Honeycomb and they were definitely
expecting an update pretty soon [1].

V. THREATS TO VALIDITY

Regarding threats to construct validity, we use a syntax-
based lexical search to identify Android API references
in client code, and we match an API reference with a

corresponding API declaration based on the API method
name and the number of arguments without considering
argument types. For example, consider an API method
declaration is updated from void foo(char, int) to
void foo(char, char) on a library side. If nothing
is altered at a client call site except the type of the second
argument, we cannot detect the change.

Because our method detects API usage change in client
code by keeping track of the used API method name, the
number of arguments, and argument names, our method
could accidentally detect an API usage update when a
method invocation is changed from foo(varA, varB)
to foo(varA, varC) even though varC is a simply re-
named variable of varB. While calculating the propagation
time and lag time of API references, our method considers
API method invocations only, not changes to how API fields
were read or used.

Additionally, it is possible for an application to support
many different API versions simultaneously [2]. Developers
can use version specific APIs inside if and switch blocks.
At runtime, using a Android Build class the API version
of a device can be retrieved and appropriate conditional
blocks can be executed. Our method of detecting and logging
lagging methods does not take into account such multi-
version API support.

In terms of threats to internal validity, our study presents
the correlation between API usage, adoption, and bugs, but
not causation. Furthermore, regarding outdated API usages,
it is possible that clients are purposely leaving outdated API
usages in the codebase to account for the distribution of
Android user base. In fact, we find that the most number
of propagations are about upgrading to API version 10
(Gingerbread), which currently has the highest market share.
The average propagation time to versions up to Gingerbread
is higher than that of later versions. This may suggest that
developers may eventually gravitate to the versions with a
large number of users. Similarly, a high correlation between
API updates and bug fixes may be caused by factors beyond
our study scope such as test coverage, expertise, etc.

Regarding external validity, we investigate Android and
ten open source mobile applications found in github, and
the results may not generalize to a broader set of mobile
applications. Because we chose projects with high activity
statistics from different application categories, we believe
that our results provide valuable insights on the co-evolution
behavior of API and dependent applications.

VI. CONCLUSION AND FUTURE WORK

In this paper, we perform an empirical study on the
co-evolution of Android OS and its clients. Android is
evolving fast with an average of 115 API updates per
month. Although client applications are heavily dependent
on Android, developers seem hesitant to embrace unstable,
fast-evolving APIs quickly: 28% of Android references in

client code are out-of-date with a median lag time of 16
months. Approximately 22% of these outdated references
are eventually adapted to use newer APIs, but the average
propagation time is 14 months, or almost 5 Android API
version updates.

Furthermore, we study correlations between API usage,
API evolution rate, the time taken for API adoption, and the
number of bugs in client code. The APIs that clients use most
are the ones Google update most frequently. These same
APIs have the higher number of propagations, but with the
greater hesitancy (i.e., longer propagation time). Connecting
these results with our finding on defect-proneness of API
usage adaptation, we believe that developers are hesitant to
quickly adopt new, unstable APIs, but eventually tend to
migrate their code to keep up with the mass of the Android
user base.

To the best of our knowledge, we are the first to find
that API updates are more defect prone than other types of
changes in client code. Fast-evolving APIs are used more,
but the time taken for API adoption is longer. This slow
adoption trend may pose various types of risks for client
applications such as security vulnerability or poor perfor-
mance. According to the American Civil Liberties Union
(ACLU), “the lag in software updates leaves smartphone
users with out-of-date and dangerous systems” [3]. ACLU
filed complaints on such spotty Android updates, stating they
could potentially harm users by letting hackers steal user
data by utilizing security holes. As a part of future work,
we would like to understand how the speed of API adoption
affects software reliability.

Various stakeholders affect the process of API adoption
in the software ecosystem, and further studies are needed to
identify factors affecting API adoption. We believe that our
findings are a crucial first step and inform future studies on
how to promote API adoption and ultimately facilitate the
growth of software ecosystems.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under grants CCF-1149391 and CCF-1117902.

REFERENCES

[1] http://androidheadlines.com/2012/11/2/android/, 2012. [On-
line; accessed 23-June-2013].

[2] http://stackoverflow.com/questions/3779/, 2012. [Online; ac-
cessed 23-June-2013].

[3] Aclu: Android fragmentation creates privacy
risk. http://appleinsider.com/articles/13/04/20/
aclu-android-fragmentation-creates-privacy-risk, 2012.
[Online; accessed 24-April-2013].

[4] Android platform versions. http://developer.android.com/
about/dashboards/index.html, 2012. [Online; accessed 8-
April-2013].

[5] International Data Corporation Worldwide Quarterly Mobile
Phone Tracker. http://www.idc.com/tracker/showproductinfo.
jsp?prod id=37.UWMCM5OR98E, 2012. [Online; accessed
26-March-2013].

[6] The many faces of a little green robot. http://opensignal.com/
reports/fragmentation.php, 2012. [Online; accessed 8-April-
2013].

[7] S. Black. Computing ripple effect for software maintenance.
Journal of Software Maintenance, 13(4):263–, Sept. 2001.

[8] K. Chow and D. Notkin. Semi-automatic update of appli-
cations in response to library changes. In ICSM ’96: Pro-
ceedings of the 1996 International Conference on Software
Maintenance, page 359, Washington, DC, USA, 1996. IEEE
Computer Society.

[9] B. E. Cossette and R. J. Walker. Seeking the ground truth: A
retroactive study on the evolution and migration of software
libraries. In FSE ’12 Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software
Engineering, New York, NY, USA, 2012. ACM.

[10] D. Dig and R. Johnson. The role of refactorings in api
evolution. In ICSM ’05: Proceedings of the 21st IEEE Inter-
national Conference on Software Maintenance, pages 389–
398, Washington, DC, USA, 2005. IEEE Computer Society.

[11] D. Dig, K. Manzoor, R. Johnson, and T. N. Nguyen.
Refactoring-aware configuration management for object-
oriented programs. In ICSE ’07: Proceedings of the 29th In-
ternational Conference on Software Engineering, pages 427–
436, Washington, DC, USA, 2007. IEEE Computer Society.

[12] D. Dig, S. Negara, V. Mohindra, and R. Johnson. Refactoring-
aware binary adaptation of evolving libraries. In Proceedings
of the 30th International Conference on Software Engineer-
ing, pages 441–450, 2008.

[13] T. Ekman and U. Asklund. Refactoring-aware versioning in
eclipse. Electron. Notes Theor. Comput. Sci., 107:57–69, Dec.
2004.

[14] J. Henkel and A. Diwan. Catchup!: Capturing and replaying
refactorings to support api evolution. In ICSE ’05: Pro-
ceedings of the 27th International Conference on Software
Engineering, pages 274–283, New York, NY, USA, 2005.
ACM.

[15] D. Hou and X. Yao. Exploring the intent behind api evolution:
A case study. In Proceedings of the 2011 18th Working
Conference on Reverse Engineering, WCRE ’11, pages 131–
140, Washington, DC, USA, 2011. IEEE Computer Society.

[16] M. Kim, D. Cai, and S. Kim. An empirical investigation
into the role of refactorings during software evolution. In
ICSE’ 11: Proceedings of the 2011 ACM and IEEE 33rd
International Conference on Software Engineering, 2011.

[17] M. Kim, D. Notkin, and D. Grossman. Automatic inference of
structural changes for matching across program versions. In
ICSE ’07: Proceedings of the 29th International Conference
on Software Engineering, pages 333–343, Washington, DC,
USA, 2007. IEEE Computer Society.

[18] M. Lungu. Towards reverse engineering software ecosystems.
In Software Maintenance, 2008. ICSM 2008. IEEE Interna-
tional Conference on, pages 428–431, 2008.

[19] A. Mockus and L. G. Votta. Identifying reasons for software
changes using historic databases. In ICSM ’00: Proceedings
of the International Conference on Software Maintenance,
page 120. IEEE Computer Society, 2000.

[20] A. Pathak, Y. C. Hu, and M. Zhang. Bootstrapping energy
debugging on smartphones: a first look at energy bugs in
mobile devices. In Proceedings of the 10th ACM Workshop
on Hot Topics in Networks, HotNets-X, pages 5:1–5:6, New
York, NY, USA, 2011. ACM.

[21] R. Robbes, M. Lungu, and D. Röthlisberger. How do
developers react to api deprecation?: the case of a smalltalk
ecosystem. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software
Engineering, FSE ’12, pages 56:1–56:11, New York, NY,
USA, 2012. ACM.

[22] I. Ruiz, M. Nagappan, B. Adams, and A. Hassan. Understand-
ing reuse in the android market. In Program Comprehension
(ICPC), 2012 IEEE 20th International Conference on, pages
113–122, 2012.

[23] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, and
P. Bringas. On the automatic categorisation of android
applications. In Consumer Communications and Networking
Conference (CCNC), 2012 IEEE, pages 149–153, 2012.

[24] A. Shabtai, Y. Fledel, and Y. Elovici. Automated static code
analysis for classifying android applications using machine
learning. In Computational Intelligence and Security (CIS),
2010 International Conference on, pages 329–333, 2010.

[25] M. D. Syer, B. Adams, Y. Zou, and A. E. Hassan. Explor-
ing the development of micro-apps: A case study on the
blackberry and android platforms. Source Code Analysis
and Manipulation, IEEE International Workshop on, 0:55–
64, 2011.

[26] P. Weißgerber and S. Diehl. Are refactorings less error-
prone than other changes? In MSR ’06: Proceedings of the
2006 international workshop on Mining software repositories,
pages 112–118, New York, NY, USA, 2006. ACM.

[27] B. Womack. Google Says 700,000 Applications Available for
Android. http://www.businessweek.com/news/2012-10-29/
google-says-700-000-applications-available-for-android-devices,
2012. [Online; accessed 1-April-2013].

[28] Z. Xing and E. Stroulia. Refactoring practice: How it is and
how it should be supported - an eclipse case study. In ICSM
’06: Proceedings of the 22nd IEEE International Conference
on Software Maintenance, pages 458–468, Washington, DC,
USA, 2006. IEEE Computer Society.

[29] S. Yau, J. Collofello, and T. MacGregor. Ripple effect
analysis of software maintenance. In Computer Software and
Applications Conference, 1978. COMPSAC ’78. The IEEE
Computer Society’s Second International, pages 60–65, 1978.

[30] J. H. Zar. Significance Testing of the Spearman Rank
Correlation Coefficient. Journal of the American Statistical
Association, 67(339):578–580, 1972.

