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Abstract—With the development of big data, ma-
chine learning, and AI, existing software engineering
techniques must be re-imagined to provide the pro-
ductivity gains that developers desire. Furthermore,
specialized hardware accelerators like GPUs or FPGAs
have become a prominent part of the current computing
landscape. However, developing heterogeneous appli-
cations is limited to a small subset of programmers
with specialized hardware knowledge. To improve
productivity and performance for data-intensive and
compute-intensive development, now is the time that
the software engineering community should design
new waves of refactoring, testing, and debugging tools
for big data analytics and heterogeneous application
development.

In this paper, we overview software development
challenges in this new data-intensive scalable comput-
ing and heterogeneous computing domain. We describe
examples of automated software engineering (debug-
ging, testing, and refactoring) techniques that target
this data and compute intensive domain and share
lessons learned from building these techniques.

Index Terms—data-intensive scalable computing, het-
erogeneous computing, big data analytics, debugging,
testing, refactoring, software development tools

I. RISE OF DATA-INTENSIVE AND

COMPUTE-INTENSIVE DEVELOPMENT

Data Intensive Scalable Computing. The impor-
tance of emerging data-intensive and compute-
intensive applications continues to grow at an in-
creasing rate. Cloud computing frameworks make
such development widely accessible by providing
readily available resources. For example, cloud ser-
vices such as Amazon Web Services, Google Cloud,
and Microsoft Azure make it easy to run big data
applications on data-intensive scalable computing
frameworks such as Google’s MapReduce, Apache
Spark, and Apache Hadoop. DISC frameworks en-
able processing massive data sets by providing
distributed, parallel versions of dataflow operator

implementation and allow developers to express
application logic expressed in terms of user-defined
functions (UDFs). In the context of this paper, we
use a term, big data analytics or DISC applications,
to refer to software that run on DISC frameworks.
Heterogeneous Computing. The end of Moore’s
law has led to a plateau in traditional single-
core and software-based performance optimiza-
tions, highlighting the importance of incorporat-
ing hardware heterogeneity and specialization in
software systems. To facilitate such architectures,
hardware vendors support CPU+accelerator multi-
chip packages (e.g., Intel Xeon [1, 2], Samsung
SmartSSD [3]). Concurrently, the widespread adop-
tion of public cloud services, such as Amazon F1 [4]
and Intel Devcloud [5], hold promise for integrating
heterogeneous hardware resources and enabling
on-demand custom hardware acceleration. Despite
these resources and public’s awareness, a marked
disparity remains evident, as the U.S. Bureau of
Labor Statistics [6] records only 74,640 hardware
designers compared to 1.8 million software engi-
neers. This significant discrepancy necessitates con-
certed effort on democratizing heterogeneous com-
puting—in other words, we must reduce adoption
barriers for leveraging hardware heterogeneity for
typical software engineers without deep hardware
expertise.

In Section III, we discuss significant challenges
for making automated SE tractable in the data-
intensive and compute-intensive domain, which
include:

‚ the scale of large input,
‚ long invocation latency,
‚ performance overhead, and
‚ layers and layers

In Sections IV and V, we showcase examples



of automated debugging, testing, and refactoring
techniques that our team at UCLA has developed
over the past ten years. These techniques are the re-
sults of interdisciplinary research between software
engineering, big data systems, and heterogeneous
computer architectures.

In Section VI, we then summarize the lessons
learned from this research effort, which are sum-
marized below:

‚ Abstraction is necessary for speed.
‚ Injecting debuggability requires re-design of

underlying runtimes, compilers, and systems.
‚ Systems-level optimizations are necessary; sig-

nificant interdisciplinary engineering effort is
necessary and worthwhile.

‚ Less is more. Winnowing out debugging re-
sults is necessary at this scale.

‚ Domain-specialization is necessary and we
cannot wait for a large corpus to exist first.

II. BACKGROUND

A. Data Intensive Scalable Computing (DISC)

Dataflow operators and user-defined functions. DISC
applications, such as the one written for Apache
Spark in Figure 1a, use a combination of dataflow
operators, such as map and join that take user-
defined functions (UDF) as an argument. Unlike
SQL queries that use a simple predicate as a user-
defined function, user-defined functions in DISC
applications could be arbitrarily long and complex,
ranging from a few hundred lines to 100+ KLOC.
Figure 1a shows an example DISC application that
depends on almost 1.9 million LOC in Apache
Spark. Our prior experience of designing DISC
debugging tools [7, 8] indicates that most bugs
appear in user-defined functions and the use of
framework APIs, not the framework code itself.

Though dataflow operators have clean logical
semantics, their framework implementation easily
surmounts to a million lines of code, as the code is
responsible for parallel executions, job scheduling,
data partitioning, fault tolerance, etc, as shown
in Figure 1b. Spark’s runtime transforms the sub-
mitted program into smaller chunks of tasks and
assign these tasks to workers to be executed on a
subset of data, called partition. As a result, the start-
up latency associated with invoking the Spark frame-
work can take several seconds for merely setting up
an execution environment. This very long latency
makes it impossible to directly apply existing test
generation techniques such as fuzzing to big data
analytics.

val trips = sc.textFile(“trips”) 
.map { s => val c = s.split(","); (c(1), c(3).toInt / c(4).toInt)} 

val locations = sc.textFile(”zipcode”) 
.map { s => val c= s.split(","); (c(0), c(1))} 
.filter { s => s._2.equals(“UCLA") } 

val result= trips.join(locations).map { s => 
if (s._2._1 > 40) ("car", 1) 

else if (s._2._1 > 15) ("public", 1) 
else ("onfoot", 1)} 

.reduceByKey(_ + _)

s => 
val c= s.split(","); 
(c(0), c(1))
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Map
Map
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Map

ReduceByKey

Filter

Spark Eco System
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s => 
if(s._2._1>40) 
("car",1) 
else if(s._2._1>15) 
("public",1)
else ("onfoot", 1)} 
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(a) A data-intensive Apache Spark application relies on
1.9 millions of lines of Spark framework code, whereas
the user-defined functions are hundreds of lines of code.Apache Spark 101
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SC.textFile("s3://credit
history") 
.map{line => 

readPersonCredit(line)} 

(b) Spark applications consist of API calls to dataflow op-
erators such as map and reduce. Execution is distributed,
complex, lazy-evaluated, and highly optimized. Spark’s
runtime transforms the submitted program into smaller
chunks of tasks and assign these tasks to workers to be
executed on a subset of data, called partition.

Fig. 1: Apache Spark: an example of data-intensive scal-
able computing

Postmortem debugging based on logs. Currently, de-
velopers do not have easy means to debug DISC
applications. The use of cloud computing makes
application development feel more like batch jobs
and the nature of debugging is therefore post-
mortem, as shown in Figure 4a. Developers are
notified of runtime failures or incorrect outputs
after many hours of wasted computing cycles on
the cloud. DISC systems such as Spark do provide
execution logs of submitted jobs. However, these
logs present only the physical view of big data
processing, as they report the number of worker
nodes, the job status at individual nodes, the overall
job progress rate, the messages passed between
nodes, etc. These logs do not provide the logical
view of program execution e.g., system logs do not
convey which intermediate outputs are produced
from which inputs, nor do they indicate what in-
puts are causing incorrect results or delays, etc.
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Field programmable gate array (FPGA)

Programmable logics, interconnects, and customizable 
building blocks

Catapult – Bing search with FPGA-enabled servers
50% throughput increase and 25% latency reduction.  

Difficult to programs in RTL languages  
Hardware accelerators are widely available

Fig. 2: A spectrum of heterogeneous hardware architec-
tures is becoming available on cloud services

Testing via sampling. The standard practice for test-
ing DISC applications today is to select a subset
of inputs based on the developers’ hunch with
the hope that it will reveal possible defects. For
example, to test big data applications, developers
may use a small sample of data selected via random
sampling or top k sampling. Not surprisingly, such
sampling is unlikely to yield adequate coverage,
leading to errors in production [9]. Developers
could always increase the number of samples or
run the application on the entire data set stored on
the cloud. However, increasing a sample size also
increases testing time. More importantly, testing on
the entire dataset may still be inadequate, as the
application code could be continuously evolving
and thus it is hard to know what should be ingested
data for the evolving application a priori.

B. Heterogenous Computing

Cloud’s shift to HW heterogeneity. Moore’s original
prediction in 1965 called for a doubling in transistor
density yearly. Although Moore’s Law held for
many decades, it began to slow sometime around
2000 and by 2018 showed a roughly 15-fold gap
between Moore’s prediction and current capability.
Dennard scaling states that as transistor density
increased, power consumption per transistor would
drop so the power per square-mm of silicon would
be near constant. However, Dennard scaling began
to slow significantly in 2007 and faded to almost
nothing by 2012. Cost efficiency, specifically, comes
from leveraging the economies of scale of buy-
ing tens of thousands of mostly the same type
of servers. Managing a homogeneous system is
much easier from the perspective of the operating
system. So why are cloud services shifting to hardware
heterogeneity? The obvious reason is the slowdown
of technology scaling, also known as the obliga-

tory computer architect’s reference to the end of
Moore’s Law. If applications require more compute
with energy efficiency, they need to look at special
purpose hardware design. Many services such as a
search engine has a strict latency requirement. The
tail latency target of individual micro-services is in
the order of microseconds.
Heterogeneous hardware accelerators. We are currently
entering the era of heterogeneous hardware accel-
erators on the cloud where cloud services are going
beyond CPUs and GPUs, as shown in Figure 2.
Amazon F1 at Amazon Web Services and Intel One
API are such examples. For example, Microsoft’s
Catapult and Brainwave are built on reconfigurable
fabrics built on FPGA. Expensive hardware such as
supercomputers and quantum computers are also
being offered as a public cloud service. This is
attractive for developers and users—Pay as you
go—as there is no need to buy and maintain ex-
pensive hardware.

The main advantage of CPUs is that it is very
easy to program them and supports any program-
ming framework. GPUs are specialized processing
units that were mainly designed to process images
and videos. GPUs are programmed in languages
like CUDA and OpenCL and therefore provide lim-
ited flexibility compared to CPUs. FPGAs are Field
Programmable Gate Arrays. In the past, FPGAs
used to be a configurable chip that was mainly
used to implement glue logic and custom functions.
However, currently FPGAs have been emerged
as a very powerful processing units that can be
reprogrammed to meet applications’ requirements
with lower cost and lower power consumption.
ASICs are application-specific integrated circuits.
For ASIC, its design cycle is long at around 6
months to several years; thus, it is impractical to
spin up ASIC for each algorithm or every evolving
application.
High level synthesis for FPGA. We discuss FPGA in
more detail, as it is re-programmable hardware. FP-
GAs are high-performance hardware devices that
can be customized to accelerate compute-intensive
software [10, 11, 12] across a wide variety of do-
mains, including data science and machine learn-
ing [13, 14, 15]. With FPGAs, developers can create
heterogeneous applications that consist of both host
code and kernel code, where compute-intensive ker-
nels can be offloaded from CPU to FPGA accelera-
tors. Although FPGAs provide substantial benefits
and are commercially available to a broad user
base, they are associated with a high learning bar-
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int main(int argc,char* 
argv[]){
int data[] = argv[1];
int size = data.size();
  accumulate(data[size], 
int size);
}

int accumulate(int 
data[size],int size){
  // Define Interface 
  // Statements
}

Co Simulation
(in minutes to hours)

Fig. 3: High level synthesis development work flow:
simulation and synthesis range 5 minutes and 3.5 hours
on average for the popular HLS Rosetta benchmark [19].

rier [16]. Programming an FPGA is a difficult task;
hence, it is limited to a small subset of programmers
with deep knowledge of micro-architecture details.

To address this issue, there has been work on
high-level synthesis (HLS) compilers for FPGAs
[17]. HLS tools take a kernel written in C/C++ as
input and automatically generates an FPGA accel-
erator. For example, Intel/Altera SDK for OpenCL
and Xilinx Vivado HLS [17, 18] automatically gener-
ate Register-Transfer Level (RTL) descriptions in the
form of a bitstream from code written in C/C++.

During HLS, the front-end process generates an
RTL description, which is then sent to its backend
to schedule each operation from the kernel code
to specific clock cycle time slots. Next, it allocates
the number and type of hardware unit resources
used for implementing functionality, like loop-up-
tables (LUTs), flipflops (FFs), Block RAM (BRAMs),
digital signal processing units (DSPs), etc. Finally,
the binding stage maps all operations to the allo-
cated hardware units. As illustrated in Figure 3,
given a heterogeneous application with host code
and kernel code, the build and execution process
involve: (1) C simulation which runs the program
as a C program; (2) co-simulation which runs
the host code on CPU but maps the kernel calls
to the simulator calls with the generated RTL by
HLS; and (3) hardware execution which runs the
host code on CPU and kernel code on hardware
with generated bitstream by RTL synthesis. This
process can take several minutes for simulation and
several hours for synthesis, depending on kernel
logic complexity.

III. CHALLENGES

A. Testing

The long latency of data-intensive and compute-
intensive applications prohibits the applicability of
fuzzing. Fuzzing normally requires thousands of

Big Data Analytics Lifecycle

Run

3

• Design the application locally

• Test locally on a sample data

• Execute on the cloud, hoping that 
it would work

• Several hours later, the job 
crashes

Develop 

1

Test

2
Repeat

Debug 
4

(a) Life cycle of DISC applications

SC.textFile("s3://credithistoy") 
.map{line => readPersonCredit(line)} 
.map{p => ( (p.ssn,p.cid) , p.sDate ) }   
.groupByKey() 
.map{p => (p.ssn, MAX(p.value)-MIN(p.value) )}
.reduceByKey(_+_)

Characteristics of Apache Spark Applications
Relational and dataflow operator

Custom logic as user-defined functions

String operations are common

Must model collections

(b) Characteristics of DISC applications

Fig. 4: Data-intensive scalable application development

program invocations in a second; however, the
minimum execution time of a big data application
running on Apache Spark is 10 seconds just for
the Spark context set up. The simulation time of
an FPGA-based heterogeneous application is over
at least 2 minutes. As a result, AFL[20]-like naı̈ve
fuzzing would spend 98% of the time setting up a
test environment.

Conventional guidance metrics and low-level
mutation operators are unlikely to scale for the
data-intensive and compute-intensive domain. A
significant chunk of big data analytics code comes
from the DISC framework implementation (e.g.,
1.9MLOC for Apache Spark). Therefore, not being
able to distinguish framework code vs. applica-
tion code during coverage monitoring could eas-
ily target more testing of the underlying frame-
work, not the application logic. Furthermore, to
analyze DISC applications, we must reason about
the semantics of relational and dataflow operators
such as map, groupByKey, reduceByKey, shown
in pink in Figure 4b. Custom application logic is
often expressed as user-defined functions (UDF)
shown in orange. String operations are common
as DISC applications often process unstructured,
semi-structured, or structured data sets. Due to
frequent use of aggregators, we must also model
collections. Therefore, symbolic testing techniques
must account for the use of dataflow operators,
the semantics of UDFs, and symbolic modeling of
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strings and collections.
Our investigation has found that most bugs ap-

pear in the user application, not the framework
implementation. Similarly, in the domain of het-
erogeneous computing, traditional code coverage
as a fuzzing guidance metric cannot account for
hardware accelerator synthesis assumptions that
are often the root cause of divergent behavior be-
tween CPU and custom accelerators. Due to lack
of guidance signals at the hardware level, testing
applications that run on real heterogeneous archi-
tectures is extremely challenging as kernels are
black boxes, providing no information about the
kernels’ internal execution to diagnose issues such
as silent hangs or unexpected results.

Random bit or byte-level mutations can hardly
generate meaningful data capable of revealing real-
world bugs in these domains as well. For example,
flipping a random bit in the input is unlikely to
generate the expected tabular or matrix input for-
mat, resulting in unnecessary invocation or early
termination of the target program. Additionally,
traditional iterative fuzz testing techniques often
mutate a small part of a seed input to generate
new inputs. While this approach works well for
many CPU programs, it is extremely ineffective
for heterogeneous applications. Inputs of hetero-
geneous applications are often large matrices and
tensors, leading to significant data access and trans-
fer overheads —the host, which mutates matrices,
must send newly mutated matrices (e.g., with only
a few elements modified) to the device. For a
100kˆ100k matrix, a single process of offloading
the newly generated matrix from CPU to the device
would take 2 minutes, prohibiting fast fuzzing on
heterogeneous architectures.

B. Debugging

Currently, debugging big data analytics is there-
fore an ad-hoc, time-consuming process. When a
job fails or they get results that end up being
suspicious, data scientists must identify the source
of the error, often by digging through post-mortem
logs. In such cases, the programmer may want to
pinpoint the root cause of errors by investigating a
subset of corresponding input records. Due to the
scale of large data, manually sift through a tera-
byte size data set is clearly time-consuming and
infeasible.

Similarly, debugging heterogeneous applications
is similarly challenging due to the lack of observ-
ability. Traditional hardware simulation waveforms
rarely help developers reflect faults at the software

or data level. Developers in heterogeneous com-
puting domain often have questions about “what
caused my program to produce unexpected results and to
slow down?” In practice, most HLS designers are ac-
customed to using simulation waveforms to debug
their accelerators and to estimate execution time at
a cycle level. However, it is extremely difficult to
locate faults in developers’ source code based on
hardware execution or waveforms from hardware
simulation. There are two primary causes: (1) The
non-monotonic code increase during the HLS com-
pilation process reduces source code traceability
from C/C++ to hardware bitstreams, and (2) de-
velopers lack deep understanding of heterogeneous
system stacks and numerous customizable hard-
ware configurations, which have a confounding
effect on ensuring correctness.

C. Refactoring

While HLS compilers take kernel code in C
dialects, a developer must perform a substantial
amount of manual refactoring to make it synthe-
sizable (i.e., hardware-compatible) and efficient, as
shown in Figure 5a. For example, all recursions
produce compilation errors in HLS and must be
converted into iterations using a stack with a finite
estimated size (i.e., resource finitization on hard-
ware). Additionally, developers must insert syn-
thesis directives and pragmas in their source code
manually to achieve good performance. Technically
HLS-C is a dialect of C and is not the same as
regular C/C++, as significant manual rewriting is
required for synthesizability and optimization. This
requires having inter-disciplinary expert knowl-
edge and knowing obscure platform-dependent de-
tails. For example, developers need to know micro-
architecture level details to decide on how to par-
allelize and pipeline computation, how to partition
data arrays to map to on-chip memory blocks, etc.
Most software programmers do not know how to
perform these hardware-specific optimizations.

IV. EXAMPLE TECHNIQUES FOR

DATA INTENSIVE SCALABLE COMPUTING

For the past ten years, our team at UCLA have
worked on extending and adapting software de-
bugging and testing techniques to the domain of
big data analytics written in Apache Spark [7, 9,
21, 22, 23, 24, 25, 26, 27]. From this experience,
we have learned that designing interactive debug
primitives for a dataflow based big data system
requires deep understanding of an internal exe-
cution model, job scheduling, and materialization;
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int KNN()
...
// Calculate distance
for (i = 0 to 

number){
dist[i] = 

l2norm(data[i], dim);
}

//Top 1 nearest 
neighbor

...
}

Developer workflow with High Level Synthesis

1 Performance profiling

Kernel function 
identification in C

Differential testing with 
input samples (RTL 
simulation vs. C execution)

2

3

4

Manual rewriting from C 
to HLS-C

Iterative
optimization

5

HLS compilation to RTL
6 minutes

CPU-FPGA 
co-simulation 
8 minutes 7X speed up on FPGA

(a) Developer workflow with high level synthesis

HLS tools are not easy to use for SW developers

C/C++ HLS-C
No developer tools for 

code translation

Manual rewriting for 
synthesizability and 

optimization

● Resource finitization
● Hardware expertise and pragmas (directives) for optimization
● Partitioning, parallelization, pipelining, etc. 

(b) HLS tools are not easy to use.

Fig. 5: High level synthesis (HLS)

providing traceability requires re-engineering an
underlying data-parallel runtime framework; and
abstraction is a powerful force in simplifying code
paths and reducing the latency of test execution.

A. BigDebug: Interactive Debug Primitives for Big
Data Analytics

We have had tools such as GDB for a long
time. So why is hard to build an interactive de-
bugger for Apache Spark? Naı̈ve implementation
of breakpoints would not work, because pausing
the entire computation in the data-parallel pipeline
reduces throughput and it is clearly infeasible for
a user to inspect billion of records through a
regular watchpoint. BigDebug [7] does not pause
program execution but instead simulates a break-
point through on-demand state regeneration from
the latest checkpoint and delivers program states
in a guarded, stream processing fashion. By effec-
tively tapping into internal checkpointing and job
scheduling mechanisms, we were able to imple-
ment interactive debugging and repair capability
in Apache Spark efficiently, while adding at most
34% overhead [7].

B. Titian: Data Provenance for Apache Spark

Data provenance is a long studied problem in
databases. Given an output of query, data prove-
nance identifies specific inputs contributing to the
query results. The idea is similar to dynamic taint
propagation. For big data analytics with terabyte
data, scalability poses a new challenge. To provide
record level data provenance, we re-engineered
Apache Spark’s runtime by storing lineage tables
(the input and output tag mappings) at a stage
granularity in a distributed manner and building
a distributed optimized join for backward tracing,
which is order of magnitude faster than alterna-
tives [22].

C. BigSift: Automated Debugging of Big Data Analyt-
ics

BigSift takes a program and a test function as
inputs, and automatically finds a minimum subset
of inputs producing test failures. BigSift combines
two mature ideas—data provenance in DB and
delta debugging in SE—and implements several
optimizations: (1) test predicate pushdown, (2) pri-
oritizing backward traces, and (3) bitmap based
memorization, which enabled us to build an au-
tomated debugging solution that is 66X faster than
delta debugging and takes 62% less time than the
original job’s run [21].

D. BigTest: White-Box Testing of Big Data Analytics

Currently, developers sample data (e.g., random
sampling, top n sampling, and top k% sampling)
to test data analytics, which leads to low code
coverage. Another option is to use traditional test
generation such as symbolic execution but such
technique would not scale for Apache Spark (about
700 KLOC).

To automatically generate tests for a Spark ap-
plication, BigTest abstracts dataflow operators, in
terms of clean first order logic [9]. For example,
join could be defined as three equivalence classes
where a key is only present in the left table, the
right table, and neither. Then for a user defined
application code, BigTest performs symbolic ex-
ecution and combines it together with dataflow
logical specifications. These combined constraints
are called as JDU path constraints (joint dataflow
and UDF constraints) as shown in Figure 6 and
they are solved using SMT to create concrete inputs.
Only 30 or so records are required to achieve the
same code coverage as the entire data, implying
that testing on the entire data is not necessary.
By automatically generating data with BigTest, we
can reduce the required test data by 108, achieving
almost 200X speed up [9].
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Trips Zipcode

Map: !map1

Map: !map2

Filter: !filter

Join: ⨝

Map: !map3

ReduceByKey: !Agg

~!filter(K2 , V2)

T1

T4

FalseTrue

!filter(K2, V2) ⋀ K1 = K2

(K1 , V1)
(K2 , V2)

(K1 , (V1, V2))

(S ,1)

(S ,N)

!filter(K2, V2) ⋀
K1 ∉ Zipcode 

K1 ∉ Zipcode K2 ∉ Trips

!filter(K2, V2) ⋀
K2 ∉ Trips

T2 T3

T Z

Z.split(“,”)[1]=“Palms” ⋀
Z.split(“,”).length >1 ⋀

T.split(“,”)[1] = 
Z.split(“,”)[0] ⋀

T.split(“,”).length >1 ⋀ … 

Fig. 6: Joint Dataflow and UDF Path in a DISC application

E. PerfDebug: Performance Debugging of Computation
Skews

Performance is a key factor for big data appli-
cations, and much research has been devoted to
optimizing these applications. When an application
shows signs of poor performance through an in-
crease in general CPU time, garbage collection (GC)
time, or serialization time, the first question a user
may ask is “what caused my program to slow down?”
While prior work can diagnose and correct data
skew, the problem of computation skew—abnormally
high computation costs for a small subset of input
data—has been largely overlooked.

PERFDEBUG [24] is a post-mortem performance
debugging tool that enables a user to debug ap-
plications that exhibit computation skew. It auto-
matically finds input records responsible for such
abnormalities in a big data application by reasoning
about deviations in performance metrics such as job
execution time, garbage collection time, and serial-
ization time. The key enabler behind PERFDEBUG is
a data provenance-based technique that computes
and propagates record-level computation latency to
keep track of abnormally expensive records through-
out the pipeline. The input records that have the
largest latency contributions are then presented to
the user for bug fixing.

F. FlowDebug: Influence-based Provenance with Taint
Propagation

FLOWDEBUG [25] further improves data prove-
nance using two insights. First, precisely tracks
control and data flow within user-defined functions
to propagate taints at a fine-grained level by insert-
ing custom data abstractions through automated
source to source transformation. Second, it intro-
duces a novel notion of influence-based provenance
for many-to-one dependencies to prioritize which
input records are more responsible than others by
analyzing the semantics of a user-defined function
used for aggregation. FLOWDEBUG significantly

improves the precision of debugging results by up
to 99.9 percentage points and avoids repetitive re-
runs required for post-mortem analysis by a factor
of 33 while incurring an instrumentation overhead
of 0.4X - 6.1X on vanilla Spark.

G. OptDebug: Operation Provenance with Spectra-
based Fault Localization

Data provenance is concerned with fault isolation
only in the data-space, as opposed to fault isolation
in the code-space—how can we precisely localize oper-
ations or APIs in code responsible for a given suspicious
or incorrect result?

OPTDEBUG [26] identifies fault-inducing opera-
tions (i.e., APIs) in code in a dataflow application
using three insights. First, debugging is easier with
a small-scale input than a large-scale input. So, it
uses data provenance to simplify the original input
records to a smaller set leading to test failures
and test successes. Second, keeping track of oper-
ation provenance is crucial for debugging. Thus, it
leverages automated taint analysis to propagate the
lineage of operations downstream with individual
records. Lastly, each operation may contribute to
test failures to a different degree. Thus, OPTDEBUG

ranks each operation’s spectra—the relative partic-
ipation frequency in failing vs. passing tests. In
our experiments, OPTDEBUG achieves 100% recall
and 86% precision in terms of detecting faulty
operations and reduces the debugging time by 17ˆ

compared to a naı̈ve approach.

H. BigFuzz: Fuzz Testing using Framework Abstraction

BIGFUZZ [27] is a coverage-guided fuzz testing
tool for data-intensive applications. It focuses on
exercising application logic instead of increasing
framework code coverage by abstracting the frame-
work using specifications. The key insight behind
BIGFUZZ is that fuzz testing of data-intensive appli-
cations can be made tractable by abstracting frame-
work code and by analyzing application logic in tan-
dem. The key idea is to perform source-to-source
transformation of a data-intensive application and
generate a semantically equivalent yet framework-
independent program that is more amenable to
fuzzing. Figure 7 illustrates BIGFUZZ’s approach
and three key components to reduce fuzzing la-
tency, to construct error-type guided mutations,
and to design a new guidance metric.

BIGFUZZ performs automated source to source
transformation to construct an equivalent DISC
application suitable for fast test generation. It intro-
duces schema-aware data mutation operators based
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on an in-depth study of dataflow application error
types. Through an extensive evaluation, we have
shown that BIGFUZZ speeds up the fuzzing time by
78 to 1477X compared to random fuzzing, improves
application code coverage by 20% to 271%, and
achieves 33% to 157% improvement in detecting
81% more application bugs.

V. EXAMPLE TECHNIQUES FOR

HETEROGENEOUS COMPUTING

Specialized hardware accelerators like GPUs and
FPGAs become a prominent part of the current
computing landscape. However, developing hetero-
geneous applications is limited to a small subset
of programmers with specialized hardware knowl-
edge. To democratize heterogeneous computing,
for the past four years, our team at UCLA has
worked on automated refactoring, testing, and de-
bugging tools for heterogeneous application de-
velopment [28, 29, 30, 31, 32]. From this experi-
ence, we have learned that deep understanding of
underlying hardware platforms’ design and opti-
mization assumptions can improve effectiveness of
automated SE tools.

A. HeteroRefactor: Refactoring for Heterogeneous Com-
puting for FPGA

High-level synthesis (HLS) tools made significant
progress in raising the level of programming ab-
straction from hardware programming languages
to C/C++, but they usually cannot compile and
generate accelerators for kernel programs with
pointers, memory management, and recursion, and
require manual refactoring to make them HLS-
compatible. Besides, experts also need to provide
heavily handcrafted optimizations to improve re-
source efficiency, which affects the maximum op-
erating frequency, parallelization, and power effi-
ciency. For example, as shown in Figure 9a, HLS
requires specifying bit-width for each data type.
Instead of using default 32 bits on CPU, HLS uses
arbitrary bitwidths. For example, one can use 7
bit integers for her program. Similarly, a developer
needs to tune the precision of floating point num-
bers. Instead of using default 8bits exponent and
23 bit mantissa for a 32 bit floating points (IEEE
FP standard), HLS developers have the flexibility
of tuning precision for memory saving, as shown
in Figure 9b. Recursion, pointer, dynamic memory
allocation such as malloc and free in standard
C, are not available in HLS, so developers must
rewrite their application using a finite size array,
as shown in Figure 9c. In fact, such C to HLS-C

refactoring is extremely time-consuming and with-
out manual optimizations, performance boost is not
automatic. A recent article [33] reports that, for
a 7 line convolution neural network example C
code, an existing commercial HLS tool generates
an FPGA-based accelerator 108ˆ slower than a
single-core CPU. Then after proper re-structuring
of the input C code (to tile the computation, for
example) and inserting 28 pragmas, the final FPGA
accelerator is 89ˆ faster than a single-core CPU.

HETEROREFACTOR [28] performs automated
refactoring for HLS-based heterogeneous applica-
tions by leveraging FPGA-specific dynamic invari-
ant detection. First, HETEROREFACTOR monitors
the required bitwidth of integer and floating-point
variables, and the size of recursive data structures
and stacks. Second, using this knowledge of dy-
namic invariants, it refactors the kernel to make tra-
ditionally HLS-incompatible programs synthesiz-
able and optimize the accelerator’s resource usage
and frequency further. Third, to guarantee correct-
ness, it selectively offloads the computation from
CPU to FPGA, only if an input falls within the
dynamic invariant. On average, for a recursive pro-
gram of size 175 LOC, an expert FPGA programmer
would need to write 185 more LOC to implement
an HLS compatible version, while HETEROREFAC-
TOR automates such transformation. Our results on
Xilinx FPGA show that HETEROREFACTOR mini-
mizes BRAM by 83% and increases frequency by
42% for recursive programs; reduces BRAM by 41%
through integer bitwidth reduction; and reduces
DSP by 50% through floating-point precision tun-
ing.

B. HeteroGen: Transpiling C to Heterogeneous HLS
Code

HeteroGen [29] is an automated repair tool
that takes as input a regular C/C++ program
and produces its HLS-C counterpart without in-
volving any human developer in the loop. On
one hand, HETEROGEN is a transpiler that per-
forms behavior-preserving source-to-source trans-
lation from C/C++ to HSL-C by automatically re-
solving compatibility issues; on the other hand, it
is an optimizer that checks whether the updated
code has superior performance than the original
version. Although HETEROGEN does not guaran-
tee to generate optimal code, it represents a best-
effort approach to produce the highest level of HLS
compatibility and efficiency improvement within
a time budget. Figure 10 illustrates HETEROGEN’s
approach.
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Spark Program Bytecode

Framework Abstraction:
Automated S2S Transformation 

with Specification

Instrumentation:
Joint Dataflow and UDF Coverage

Fuzzing Loop:
Error Type Guided Mutation for 

Data Analytics

...

ArrayList<Map1> results1 =LoanSpec.map1 

(inputs);

ArrayList<Map1> results2 =LoanSpec.filter2

(results1)

...

public ArrayList<Map1> 

map1(ArrayList<String> input){

ArrayList<Map1> output = new ArrayList<>();

for (String item: input){

output.add(Map1.apply(item) );}

return output;}

...
val locations = 
sc.textFile("zipcode.csv")
  .map{s =>
    val cols = s.split(",")
    (cols(0), cols(1) }
  .filter{s => s._2 == "New York"}
...

(b) Extracted UDF from .map{...}
      is represented as Map1.java

Step 1: UDF Extraction Step 2: S2S Transformation

(a)  Original Spark Code 

(d) Specification implementation of map 
operator

public class Map1 {

static final Map1 apply(String line2) 

{

String cols[]=line2.split(",");

return new Map1(cols[0],cols[1]); 

}

(c)  Transformed program with executable 
specifications

Fig. 8: BigFuzz: Improving fuzzing using executable specifications of dataflow implementation

HLS-C requires specifying bitwidth for each type   

float vecdot(
float a[],
float b[],
int n) {
for (int i = 0; i < n; 

i++)
sum += a[i] * b[i];

return sum;
}

float vecdot(
float a[],
float b[],
fpga_int<7> n) {
for (fpga_int<7> i = 0; 

i < n; i++)
sum += a[i] * b[i];

return sum;
}

C Program HLS-C Program

(a) HLS-C requires specifying bidwidth for each type

float vecdot(
float a[],
float b[],

fpga_int<7> n) {
for (fpga_int<7> i = 0; i 

< n; i++)
sum += a[i] * b[i];

return sum;
}

C Program HLS-C Program

HLS-C uses a custom floating point type

fpga_float<8,15> vecdot(
fpga_float<8,15> a[],
fpga_float<8,15> b[],

fpga_int<7> n) {
for (fpga_int<7> i = 0; i < n; 

i++)
sum += a[i] * b[i];

return sum;
}

(b) HLS-C uses a custom floating point type
HLS-C requires finitizing resources

Node Node_arr[NODE_ARR_SIZE];
struct Node {

Node *left, *right;
int val; }; 

void delete_tree(Node_ptr root) 
{...

node_free(root); }
void traverse_converted(Node_ptr 
curr) {

stack<context> s(STACK_SIZE);
while (!s.empty()) {
...}}

C Program HLS-C Program

struct Node {
Node *left, *right;
int val; };

void init(Node **root) {
*root = (Node 

*)malloc(sizeof(Node)); }
void delete_tree(Node *root) {...

free(root); }
void traverse(Node *curr) {

if (curr == NULL) return;
int ret = visit(curr->val);
traverse(curr->left);
traverse(curr->right);

}

HLS compile 
error 

(c) HLS-C requires finitizing resources

Fig. 9: HLS rewriting examples

To repair compatibility errors, there is a huge
search space (of possible program edits). To tackle
this challenge, HETEROGEN leverages common HLS
repair patterns. With a study of more than 1,000
posts from Xilinx’s HLS Q&A forum, we summa-
rize six common repair patterns, regarding dynamic
data structures, unsupported data types, dataflow
optimization, loop parallelization, struct and union,
and top functions. These edit patterns are encoded
as parameterized repair templates at the level of
abstract syntax trees. To overcome the challenge of
long HLS compilation time, HETEROGEN leverages
a lightweight LLVM-based checker to validate re-
pairs. Our key insight here is that if a repair does
not conform to HLS coding styles, it does not need to
be compiled.

Its evaluation shows that HETEROGEN could
repair all of HLS compatibility errors, with an
average of 2,437 tests generated per application,
achieving branch coverage of 97%. It automated 9
to 438 lines of edits to produce an HLS version,
which is, on average, 1.63ˆ faster than the original
C version.

C. HeteroFuzz: Fuzz Testing to Detect Platform Depen-
dent Divergence

HETEROFUZZ [30] targets fuzzing of heteroge-
neous applications to detect platform-dependent
divergence. The key essence of HETEROFUZZ is to
reduce the long latency of repetitively invoking a
hardware simulator on a heterogeneous applica-
tion. First, in addition to monitoring code cover-
age as a fuzzing guidance mechanism, it analyzes
synthesis pragmas in kernel code and monitors
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Fig. 10: HETEROGEN takes as input an original kernel program (Porig). It auto-generates test inputs for Porig, and
an initial version Pbroken with estimated HLS types. Next, it finds repair locations based on an HLS error symptom,
explores the space of applicable repairs based on fix patterns, and evaluates behavior preservation via differential
testing.

accelerator-relevant value spectra. Second, it uses
dynamic probabilistic mutations to increase the
chance of hitting divergent behavior under different
platforms. Third, it memorizes the boundaries of
seen kernel inputs and skip HLS simulator invo-
cation if it can expose only redundant divergent
behavior. On seven real-world heterogeneous appli-
cations with FPGA kernels, HETEROFUZZ is 754ˆ

faster in exposing the same set of distinct diver-
gence symptoms than naive fuzzing. Probabilistic
mutations contribute to 17.5ˆ speed up than the
one without. Selective invocation of HLS simulation
contributes to 8.8ˆ speed up than the one without.

D. HFuzz: Leveraging Hardware Probes and Optimiza-
tions for Accelerating Fuzzing

Testing applications on real heterogeneous archi-
tectures is extremely challenging, as kernels are
black boxes, providing no information about their
internal hardware execution to diagnose issues
such as silent hangs or unexpected results. HFUZZ

[31] leverages the capability of heterogeneous hard-
ware for testing heterogeneous applications. HFUZZ

increases both the observability of hardware ker-
nels and testing efficiency through a three-pronged
approach. It inserts device-side in-kernel hardware
probes in addition to host-side software monitors.
Second, it performs rapid input space exploration
by offloading compute-intensive input mutations
to hardware kernels. Third, it parallelizes fuzzing

and enables fast on-chip memory access, by utiliz-
ing four FPGA-level optimizations including loop
unrolling, shannonization, data preloading, and dy-
namic kernel sharing.

On Intel OneAPI subject programs, HFUZZ

speeds up fuzz testing by 4.7ˆ with HW-
accelerated input space exploration. By incorpo-
rating HW probes in tandem with SW moni-
tors, HFUZZ finds more defects and reveals more
unique, unexpected behavior symptoms that could
not be found by SW-based monitoring alone.

E. QDiff: Differential Testing of Quantum Software
Stacks

Quantum computing continues to grow in pop-
ularity as an alternative heterogeneous hardware,
as quantum supremacy for certain classes of algo-
rithms has now been illustrated. QDIFF [32] is an
automated testing framework for quantum compil-
ers and simulators. There are three main challenges
for testing quantum software stacks including (a)
generating semantically equivalent programs for
testing compilers, (b) exposing and examining bugs
in quantum simulators and hardware, and (c) inter-
preting measurements from the results of running
quantum programs given their probabilistic nature.
To address these issues, QDIFF generates logically
equivalent quantum programs using a set of equiv-
alent gate transformation rules, selects subsets of
said programs to run on hardware, and determines
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how many measurements are needed for a reliable
comparison between equivalent programs to detect
potential issues.

QDIFF was evaluated with three widely-used
open source QSSes: Qiskit from IBM, Cirq from
Google, and Pyquil from Rigetti. QDIFF found sev-
eral critical bugs revealing potential instabilities in
these platforms.

VI. LESSONS LEARNED

We discuss the lessons that we learned by adapt-
ing automated debugging, testing, and refactoring
methods to data intensive scalable computing and
heterogeneous computing. In particular, we share
broken assumptions, a set of assumptions that typi-
cally hold when designing an automated software
engineering tool that no longer hold in the data-
intensive and compute-intensive domain.

Lesson 1: Abstraction is useful for increasing
speed.

Based on our experience of designing
BIGTEST [34] and BIGFUZZ [27], we learned
that abstraction is necessary not only for taming
complexity but also for increasing speed. The
key idea of BIGFUZZ was to leverage abstraction
to increase speed by applying source-level API
rewriting for dataflow and relational APIs. The key
idea was of BIGTEST was to leverage abstraction
to simplify path constraints by combining UDF
symbolic execution with dataflow and relational
operator specifications.

When it comes to test input generation, symbolic
execution is generally considered to be not suitable
for real-world size applications due to poor scala-
bility. On the other hand, fuzzing is often shown to
be effective in practice. However, the effectiveness
of fuzz testing is built on the implicit assumption
that a subject program under test must run super
fast (say a few milliseconds per invocation) to allow
a huge number of repetitive invocations in a short
time span. In the context of data-intensive and
compute-intensive domain, we observed none of
these assumptions about test generation are true,
because the time to initialize DISC framework adds
significant latency (e.g., 15 seconds to initialize
Spark context), preventing the applicability of naive
fuzzing. Despite the size of a DISC application
code, on the other hand, symbolic execution is feasi-
ble, when we abstract dataflow operators with log-
ical specifications, since the semantics of dataflow
operators such as map and reduceByKey are stable
and thus their specifications do not change.

Broken assumptions: A program runs fast to allow
fuzzing. Code is too big for symbolic execution.

Lesson 2: Injecting debuggability and traceabil-
ity requires re-design.

When we were initially designing an interactive
debugger [7] and data provenance support for
Apache Spark [35], we encountered common mis-
conceptions: injecting traceability into distributed
system runtimes would add intolerable overhead
and replay debugging is too slow to be practical.

However, in the BIGDEBUG project [7], we
demonstrated that adding data provenance adds
about 25% overhead and this tradeoff is worth-
while, since developers could gain visibility into
opaque computation in return. We also demon-
strated that if we replay the computation from the
latest checkpoint such as the latest materialization
point at the shuffle boundary that already exist in
Spark’s runtime system, we do not need to add
much extra overhead. Similarly, in the PERFDE-
BUG project [24], we demonstrated that fine-grained
latency tracking is feasible by rewriting Spark’s
runtime to enable performance lineage tracking.

Broken assumptions: Injecting traceability and debug-
gability adds intolerable overhead.

Lesson 3: Systems-level innovations and opti-
mizations are absolutely necessary

The idea of data provenance in Titian [35] is es-
sentially the same as dynamic taint tracking in soft-
ware engineering. The key idea behind BigSift [21]
is essentially delta debugging, a 20+ years old, well-
known technique. However, implementing these
simple ideas at the scale of terabyte data requires
significant innovations in terms of systems level
optimization. In TITIAN [35], we had to implement
distributed, optimized, backward recursive join via
partition-id tracking to make data provenance effi-
cient and scalable. In BIGSIFT [8], we had to also
implement systems-level optimizations for memo-
izing similar executions and pushing oracle evalu-
ation to earlier computation stages when applying
delta debugging to DISC applications. BIGSIFT is
66ˆ faster than delta debugging and takes 62% less
time to debug than the original job’s run due to
these optimizations.

Lesson 4: Less is more

In software engineering and program analysis,
there is natural gravity towards soundness and
completeness. Completeness in debugging is often
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interpreted as finding all causes (or all inputs) that
affect the buggy outcome. However, such complete-
ness may be unnecessary or even be counterpro-
ductive at the scale of huge data.

In FLOWDEBUG [25], when implementing taint
analysis with an influence function, we learned
that the use of aggregation operators such as
reduceByKey to compute sum or average in-
evitably makes all inputs contributing to the ag-
gregated outcome. Similarly, in OPTDEBUG [26],
when implementing spectra-based fault localization
for DISC applications, we learned that winnowing
out a large portion of failure-inducing inputs via
operation-level tainting is necessary not to over-
whelm developer’s attention span.

Broken assumptions: conservatively identifying all
inputs that affect a given outcome is important.

Lesson 5: Domain-specialization is necessary,
yet no large corpus exists for a new domain.

In HETEROREFACTOR [28], when building an au-
tomated refactoring for heterogeneous applications,
we had to encode domain specific knowledge when
optimizing bitwidths and FP precision for the best
accuracy and performance tradeoffs. In HETERO-
FUZZ [30], when designing a test input genera-
tion technique for heterogeneous applications, we
had to account for hardware behavior by design-
ing HW-specific monitoring criteria (i.e., accelerator
spectra) to be used as fuzzing guidance signals. In
HETEROGEN [29], we had to encode common edit
recipes to make automated HLS compatibility error
repair feasible.

The challenge that we must face is that such
domain-specialization cannot be easily delegated
to the power of machine learning or large lan-
guage models, since a large corpus does not exist
for a yet-to-be-democratized domain. For exam-
ple, the corpus statistics for InCoder [36] in Fig-
ure 11 shows that most training data comes from
popular programming languages such as Python
and JavaScript. On the other hand, Scala or Rust
are marginalized in the representation. Languages
for heterogeneous application development such as
HLS-C hardly appear in the training corpus due to
lack of available data.

Broken assumptions: Many examples exist to allow
machine learning or mining software repositories meth-
ods to infer domain-specific knowledge.

VII. FUTURE OPPORTUNITIES

From targeting heterogeneity to leveraging hetero-
geneity. Slow program execution is one challenge

Fig. 11: Incoder Corpus Statistics [36]

in applying automated test generation in both data
intensive scalable computing and heterogeneous
computing domains. However, there is an oppor-
tunity to leverage hardware parallelism directly
for test generation purposes. Test generation is a
typically iterative process, where repetitive invo-
cation of a subject program is required, and input
mutations are applied repetitively. Therefore, there
is an opportunity to leverage hardware parallelism
to expedite fuzz testing. Further, there is also an
opportunity to extract high fidelity feedback signals
at the hardware level by injecting in-kernel probes
to hardware devices.
Targeting a system of systems not a standalone
system. Increasingly, software system stacks for
data intensive scalable computing and heteroge-
neous computing are becoming increasingly built
on layers of extensions. For example, the CIRCT
project [37] shown in Figure 12 are built on multi-
ple layers of compiler extensions fueled by a new
LLVM MLIR [38] project that supports hybrid IR
to enable different IR requirements in a unified
infrastructure. Debugging and testing such multi-
layer compilers and systems is challenging, because
each layer of extension is also rapidly evolving in
terms of IR representations and operator semantics.
This trend thus necessitates the needs of expanding
the scope of debugging from a single system to an
ecosystem of systems; in other words, one must
isolate the root cause for a cascading effect of a
bug—an infection chain across multiple layers or
compiler extensions, runtimes, and systems.
Active incorporation of human feedback, while
reducing inspection effort. As we discussed in
Section V, domain specialization of SE techniques
is often necessary, yet a large corpus does not exist
yet for such a yet-to-be-democratized domain such
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Fig. 12: CIRCT MLIR Dialects

as heterogeneous computing with FPGA. A similar
case holds true for the data intensive computing
domain, where sharing or public release of a DISC
application code is discouraged due to privacy
concerns about the input data that the application
ingests.

To make fuzz testing effective in heteroge-
neous computing, we need custom mutation op-
erators, domain-specific search strategies, custom
feedback guidance signals, etc. We anticipate that
such domain-specific knowledge should be inferred
from example test cases, example code snippets,
or example type declarations associated with prag-
mas. In order to make automated repair effective
in heterogeneous computing, one needs custom
fitness functions or custom repair (/fix) patterns.
Active learning from example patches and human-
in-the-loop design space exploration may provide
advances in this area.
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