Cookbook: In Situ Code Completion using Edit Recipes
Learned from Examples

John Jacobellis, Na Meng, Miryung Kim
University of Texas at Austin, USA

jwjacobellis@gmail.com, mengna09@cs.utexas.edu, miryung@ece.utexas.edu

ABSTRACT

Existing code completion engines leverage only pre-defined
templates or match a set of user-defined APIs to complete the
rest of changes. We propose a new code completion technique,
called COOKBOOK, where developers can define custom edit
recipes—a reusable template of complex edit operations—by
specifying change examples. It generates an abstract edit
recipe that describes the most specific generalization of the
demonstrated example program transformations. Given a
library of edit recipes, it matches a developer’s edit stream
to recommend a suitable recipe that is capable of filling out
the rest of change customized to the target. We evaluate
COOKBOOK using 68 systematic changed methods drawn from
the version history of Eclipse SWT. COOKBOOK is able to
narrow down to the most suitable recipe in 75% of the cases.
It takes 120 milliseconds to find the correct suitable recipe
on average, and the edits produced by the selected recipe are
on average 82% similar to developers’ hand edit. This shows
COOKBOOK’s potential to speed up manual editing and to
minimize developers’ errors. Our demo video is available at
https://wuw.youtube.com/watch?v=y4BNc8FT4RU.

Categories and Subject Descriptors

D.2.6 [Programming Environments|: Interactive envi-
ronments

General Terms

Experimentation, Performance

Keywords

code completion, edit recipe

1. INTRODUCTION

Automated code completion is a feature provided by many
source editors and it has become an essential arsenal of mod-
ern software development. Existing code completion engines

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

ICSE Companion’14, May 31 — June 7, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2768-8/14/05...$15.00
http://dx.doi.org/10.1145/2591062.2591076

584

either provide simple “quick fix” for API method calls and
object instantiation values, or perform complex edit opera-
tions based on predefined templates. Several code completion
approaches [1,5,9] rank certain method targets higher than
others based on the patterns found in the codebase or ver-
sion histories. Omar et al. [8] suggest possible values to use
based on a predefined value set. However, these tools cannot
perform complex edit operations customized to individual
targets. Ge et al. and Forster et al. [3,4] monitor a user’s
editing actions to predict which type of refactoring the user
intends to apply and then complete the rest of refactoring
operations. However, they are limited to predefined refactor-
ing operations supported by IDEs. Nguyen et al. [7] support
code completion of complex API usage adaptations in client
applications but require developers to manually input API
usage patterns to extend code completion capability.

‘We propose a new code completion technique, called COOK-
BOOK. Developers can define custom edit recipes—a reusable
template of complex edit operations—by specifying change
examples. When a user provides one or more method-level
change examples by selecting their old and new versions,
COOKBOOK generates an abstract edit recipe that shows the
most specific generalization of changes demonstrated by the
change examples. This edit recipe then can be applied to
different target contexts where control and data flow contexts
match but use different type, method, and variable names.
Specifically, for each edit recipe, COOKBOOK first extracts
the common edit operations among a set of changed methods.
It then creates a general representation for the extracted edit
operations. Next, it identifies context relevant to the common
edit operations in each method based on control and data
dependences. Fourth, it extracts the largest common context
between the identified contexts. Finally, by combining the
common edit operations and common context, COOKBOOK
creates an edit recipe—an abstract program transformation
script that is capable of transforming similar code fragments.
Once users have a collection of recipes in COOKBOOK, their
edit operations are matched with the recipes frequently so
that any potentially applicable recipes are found as early
as possible and listed for developers to select and automat-
ically complete the rest of editing. COOKBOOK is built on
our prior work LASE [6]. While LASE focuses on matching
codebase against a single recipe to perform similar edits to all
matching code locations, COOKBOOK matches an incoming
edit stream against multiple recipes to find the most suitable
recipe. COOKBOOK therefore includes a new algorithm of
matching incoming edits to AST-level edits in the recipe
library and an algorithm to rank suitable recipes. In this

paper, we present a COOKBOOK Eclipse plug-in with the
following features:

e A user can define a new edit recipe by specifying more
than one exemplar changed method. Once an edit
recipe is defined, a user can review the edit recipe with
a graphical viewer. More information on recipe creation
can be found in [6].

A user can save an edit recipe in an XML format and
add it to the library of edit recipes. A user can also
load a library of edit recipes defined by other users.

COOKBOOK performs real time matching of an incom-
ing edit stream against the library of edit recipes. It
then presents a ranked list of suitable recipes with a
confidence score.

When a user selects an edit recipe and invokes code
completion, COOKBOOK concretizes template edits to
the current context and then performs AST-level edits
to apply the rest of changes.

We evaluate COOKBOOK using 68 exemplar changed meth-
ods drawn from the version history of Eclipse SWT. Each
method contains one or more statement changes. Methods
containing similar changes are grouped together, leading to
28 method groups. Each group of methods is used both as
the exemplar edits for COOKBOOK to learn edit recipes from
and the expected edits (the test oracle) when developers are
editing the corresponding methods’ original versions. In this
way, we evaluate COOKBOOK’s accuracy in selecting a correct
recipe and completing the expected changes. When a user
simulates typing each exemplar change, we check whether
COOKBOOK ranks the correct recipe as the most suitable
recipe and measure the time taken for the recipe to rank top.
In our empirical evaluation, COOKBOOK is able to narrow
down to the most suitable recipe in 75% of the cases and it
spends 120 milliseconds to find the correct recipe on average.
We also measure the accuracy of COOKBOOK by comparing
the auto-completion result with the expected change. The
edits produced by the selected recipe are on average 82%
similar to developer’s hand edit. This shows COOKBOOK’s
potential to speed up manual hand editing and minimize
developers’ errors.

2. RELATED WORK

API code completion tools [1,5,9] improve existing IDE’s
code completion features by integrating information mined
from version control systems. Robbes et al. [9] rank most
recently used API methods higher than other APIs. Bruch
et al. [1] rank methods which are always called together with
those that are already present in the code under editing.
Lee et al. [5] use refactoring history information to suggest
correct, updated APIs. These tools do not perform complex
edit operations such as statement, if-condition, and while loop
insertions or deletions. Graphite [8] associates all possible
values or expressions of an object with colors on a pop-
up palette menu. Each time when a developer wants to
insert a certain value to the code, she can simply click the
corresponding color in the menu. Graphite does not handle
complex edit operations either. In addition, it does not scale
when there are hundreds of values, because developers need
to memorize all bindings between values and colors.

585

UPDATE: if (this.v$ 0 !=null) {

TO: if (this.v$_1_ >= 0)

INSERT: int[] range=null;

INSERT: for(int i = 0; range == null && {
INSERT: if (this.v$ 2 [i]==node) {

INSERT: range=this.v$ 3 [i];

DELETE : range=(int[]) this.v$ 0 .get(node);

Figure 1: Comment Mapper Recipe

BeneFactor [4] and WitchDoctor [3] model common edit-
ing patterns for certain refactoring tasks. By matching a
developer’s edits at runtime with the predefined refactoring
edit patterns, the tools infer the refactoring task in the devel-
oper’s mind and suggest automated refactoring completion
accordingly. The tools are limited to pre-defined refactoring
operations and cannot handle complex, semantic-changing
edit operation recipes handled in COOKBOOK. On the other
hand, COOKBOOK allows users to define edit recipes easily
using code change examples.

GraPacc [7] is the most relevant work to COOKBOOK. It
extracts API usage patterns together with relevant contexts
based on data/control dependencies and models them as
graphs. When a user queries the tool for code completion
suggestions, GraPacc extracts context-sensitive features from
the code under editing, ranks patterns that best match the
features, and fills in missing code. However, the tool requires
developers to manually input API usage patterns to extend
its code completion capability. In contrast, COOKBOOK only
needs developers to specify more than one example change
to define a new edit recipe. In COOKBOOK, such examples
can be either demonstrated by developers or specified from
version histories.

3. MOTIVATING EXAMPLE

Suppose Jon wants to refactor comment processing logic
code by updating an if-condition check and an element re-
trieval from a collection. The refactoring is complex and
tedious because it involves similar yet not identical changes
to multiple methods. Therefore, Jon refactors two of the
methods on his own and uses them as exemplar edits for
COOKBOOK to generate a CommentMapper recipe. Jon saves
the recipe for later use, as shown in Figure 1. Meanwhile,
Alice creates and saves another recipe when she refactors a
widget event handler (see Figure 2). Both recipes are saved
to the developers’ shared recipe library in COOKBOOK.

Later Jon starts to perform a similar change to the ge-
tExtendedStartPosition method by updating "!= null"
to ">= 0" (see line 155 in Figure 3). COOKBOOK runs in the
background to identify a suitable recipe for Jon’s edit stream.
COOKBOOK ranks the CommentMapper recipe higher than the
EventHandler recipe, as Jon’s edit matches the UPDATE
operation in CommentMapper and the line 156 also matches
the recipe’s context. Since Alice’s recipe does not match the
change in line 155, it is not suggested to Jon. When Jon
invokes code completion using CommentMapper, COOKBOOK
performs all entailed operations, but excluding the one al-
ready done by Jon to complete the rest of the change. After
applying the recipe, Jon manually fills in some generalized
identifiers (e.g. v$_2) that COOKBOOK could not fill in. The
reason why COOKBOOK cannot fill in v$_2 is that the identi-
fier is newly introduced by the recipe and COOKBOOK gets
no clue about how to concretize it.

[J) *DefaultCommentMapper.java &2 = 8]
i21§4* public int getExtendedStartPosition (ASTNode node) { A -
(5155 if (this.leadingComments >= 0p ¢{
£ 156 int[] range = (int[]) this.leadingComments.get (node);
157 if (range != null) { -
158 return this.comments[range[0]].getStartPosition() -
60 } : public int getExtendedEnd (ASTNode node) {
= 161 return ndint end=node.getStartPosition() + node.getLength();
- } if (this.vS_1_ >= 0) {
163 int[] range=null;
164 /% for (int i=0; range == null && i <= this.v§ 1 ; i++) {
165 * Returns t if (this.y$ 2 [i] == node) {
R - s range=this.vS_3 [i];
}
& CookBook 2 @ Javadoc|[{ }

elementMoved_Deleted, 1 pts

Figure 3:

UPDATE: if (focusIndex==1) {

TO: if (focusItem==null) {

DELETE: expandItem item=items[focusIndex];
event event = new Event();

UPDATE : event.item=item;

TO: event.item=focusItem;

Figure 2: Event Handler Recipe

4. APPROACH

With COOKBOOK, a user can create a new recipe by speci-
fying exemplar edits and save the recipe for later use. The
user can also run COOKBOOK in the background of Eclipse
while editing code so that COOKBOOK matches the incoming
edit stream against all saved recipes to identify and rank
recipes suitable to the current editing context. When a user
selects a recipe and invokes code completion, COOKBOOK
fills out the rest of edit operations in the selected recipe.
Recipe Creation. When a user provides multiple exem-
plar changed methods, COOKBOOK uses an AST differencing
algorithm to create an edit script for each method, extracts
the common edits, and only abstracts identifiers which are
used differently in different methods in order to create the
most specific generalization of all inferred edit scripts. The
recipe is then saved to an XML file and added to the recipe
library of COOKBOOK.

Recipe Matching with Edit Stream. When a user
activates COOKBOOK’s matching feature and starts editing
code, COOKBOOK first searches for suitable recipes solely
based on context matching. If the edited code contains AST
matching nodes for all context nodes in a recipe based on
their content’s string similarity, the recipe is considered as
a candidate. As the user makes edits, COOKBOOK performs
a line-level diff and interprets the differences as potential

586

- if(this.v$_0_!=null)
+ if(thisv$_1_>=0)

then
+ int[] range=null

then
+ for(int i=0;range==null&&i<=thisv§_1_i++)

for(int i=0:range==null&&i<=thisv$ 1 :i++)

Eclipse plug-in for CookBook. The method before and after recipe completion are shown.

AST node insertions, deletions, updates, or moves, as shown
in Table 1, to make sure that it does not incorrectly guess
the user’s intent. By comparing these inferred operations
with the edit operations of each suitable recipe, COOKBOOK
calculates a matching score for each recipe and ranks them
accordingly.

Recipe Ranking. A recipe’s rank depends on its matching
score for the method under editing. A higher score means a
higher rank. Scores are affected by both context matching
and edit matching. Intuitively, a successful context matching
initializes the matching score to 50 points. Each time a user
edits a line, COOKBOOK infers the edit operation and matches
it to every edit operation in each candidate recipe based on
edit types and content. When edit types match, an exact
match for content between the inferred edit operation and
an edit operation of a certain recipe increases the recipe’s
matching score by 50 points, while a partial match gives
points based on the matching percentage.

Recipe Application When a user selects a suggested recipe
to complete editing, COOKBOOK applies all edit operations in
the recipe to the method’s original version, if COOKBOOK’s
matching feature was activated. COOKBOOK manipulates the
method’s AST according to the edit operations in the recipe
and generates source code from the new AST.

Table 1: AST edit operation types corresponding
with a user’s line-level edits
User’s edit Potential AST edit type

Insert line INSERT, MOVE
Delete line DELETE, MOVE
Change line | UPDATE, INSERT, DELETE, MOVE

5. EVALUATION

To evaluate COOKBOOK, we use 68 exemplar changed meth-
ods drawn from the version history of Eclipse SWT. This data
set is used in the evaluation of LASE for automating similar
changes [6]. Methods containing similar changes are grouped
together, leading to 28 groups. In each group, methods have
at least 40% similar content according to ChangeDistiller [2]
and experience at least one similar AST edit operation. How-
ever, these methods do not necessarily experience the same
number of identical AST edits. Therefore, this experiment
demonstrates a realistic scenario of applying similar but dif-
ferent edits to different methods. Each group of methods
is used to generate an edit recipe, resulting 28 recipes in
COOKBOOK’s library. Evaluation results are shown in Table 2.
Column 1 lists recipe names. Column 2 shows the number
of examples in each group. The other columns show our
evaluation for COOKBOOK in terms of response time, effec-
tiveness in saving developers’ manual effort (convergence),
and quality of code completion (accuracy). These tests aim
to provide a baseline performance measurement, and are not
exhaustive.

Response Time. In our experiment, the first author simu-
lated by hand the original refactoring operations from the
version history on each of the 62 test methods. We timed how
fast COOKBOOK could find applicable recipes and how fast
the user could complete the refactorings with COOKBOOK.
Columns 3 and 4 show the average matching times for each
group of test runs. The longest delay, context matching, took
under 200 ms in 85 percent of cases, and under 500 ms in 95
percent of cases. Column 5 shows the group average total
runtime for the user to completely refactor a method, with a
total average of 6 seconds.

Convergence. We measure convergence in terms of how
many keystrokes and syntactic edit operations a user has
to make before COOKBOOK has significant confidence in its
top ranked recipe, meaning that the top one has at least ten
more points of matching score than its followers. In 60% of
the cases, COOKBOOK converges within 10 keystrokes (and
within a single AST edit operation).

Accuracy. We measure accuracy by comparing the auto-
completed version by COOKBOOK with the expected version
using an AST differencing algorithm [2] to compute similarity
between them. On average, COOKBOOK generates code 82%
similar to the expected one.

6. SUMMARY

While existing code completion in popular IDEs leverages
pre-defined templates to complete changes, COOKBOOK lets
developers define custom, reusable templates of complex edit
operations by specifying change examples. It allows users to
define new recipes and store them in an XML file for easy
sharing of the library. COOKBOOK matches a developer’s edit
stream to the individual recipes’ context and edit operations
and ranks suitable recipes in the background. Our evaluation
shows that the overhead of recipe matching in real time is
imperceptible, and COOKBOOK is able to narrow down to a
single most suitable recipe within 8.2 keystrokes on average.
COOKBOOK is highly accurate, producing results 82% similar
to the expected edits in the evaluation data set. In the future,
we would like to perform a comprehensive user study and
improve the usability of our current UI.

587

Table 2: CookBook Evaluation Results

Recipe | >° | Matching (ms) Task | Convergence Accu.
Ctxt Edit | (sec) | Key. Synt. | (%)

Average Per Changed Method in Each Group
win32 2 160 2.7 3.8 1 0 72
selectListener 2 8 0 2.6 1 0 75
compListener 2 14 1.1 8.6 23 1 83
mergeSrc 2 55 0 3.3 1 0 100
CompareRun 2 17 1.5 8.7 21 1 100
getColor 2 230 6.9 8.3 1 0 100
srcLocator 2 177 11 4 1 0 80
migration 2 52 0.1 6.9 21 0.5 90
setList 2 78 0.5 4.5 1 0 85
elmtMoved 2 23 10.5 4.2 1 0 80
getNewRange 2 41 2.5 4.7 | NJA N/A 100
fixFocus 3 119 6.7 2.8 1 0 100
foreground 6 123 1.4 11.5 35 1 100
verifyText 2 85 1 2.5 1 0 100
diff Viewer 2 19 1.5 5.7 1 0 100
strokeColor 2 144 4.5 4.7 1 0 100
paintSides 2 144 5.5 3.4 1 0 100
addNewRange 2 48 3 55 | N/JA N/A 100
saveAdapter 2 41 0.8 3.7 2 0 58
paintCenter 2 828 12 4.2 1 0 100
comparelpt 2 13 1 3.9 1 0 50
opCompare 2 82 1 4.6 1 0 74
setDIrty 2 14 0.9 4.3 3 0 14
getExtended 2 32 0.6 74 | NJA N/A 42
commentMap 2 133 2.8 5.7 | NJA N/A 73
ExpandBar18 2 455 2.1 12.6 | N/A N/A 58
ExpandBar14 2 126 1.8 | 11.7 | N/JA N/A 54
ExpandBar10 2 61 1 59 | N/JA N/A 54

Per Changed Method of All Groups

Average 120 3.0 6.0 8.2 0.2 82.0
Min 0 0 1.6 1 0 14
Max 1144 21 15 43 1 100
Median 54 1.1 5.2 1 0 92

7. ACKNOWLEDGEMENTS

This work was supported in part by the National Science
Foundation under grants CCF-1149391, CCF-1117902, SHF-
0910818, CCF-1018271, CCF-0811524, CNS-1239498, and a
Google Faculty Award.

8. REFERENCES

[1] M. Bruch, M. Monperrus, and M. Mezini. Learning from
examples to improve code completion systems. In
ESEC/FSE 09, 2009.

B. Fluri, M. Wiirsch, M. Pinzger, and H. C. Gall.
Change distilling—tree differencing for fine-grained
source code change extraction. T'SE ’07, 2007.

S. R. Foster, W. G. Griswold, and S. Lerner.
Witchdoctor: Ide support for real-time auto-completion
of refactorings. In ICSE ’12, 2012.

X. Ge, Q. L. DuBose, and E. Murphy-Hill. Reconciling
manual and automatic refactoring. In ICSE ’12, 2012.
Y. Y. Lee, S. Harwell, S. Khurshid, and D. Marinov.
Temporal code completion and navigation. In ICSE 13,
2013.

N. Meng, M. Kim, and K. McKinley. Lase: Locating and
applying systematic edits. In ICSE 13, 2013.

A. T. Nguyen, T. T. Nguyen, H. A. Nguyen,

A. Tamrawi, H. V. Nguyen, J. Al-Kofahi, and T. N.
Nguyen. Graph-based pattern-oriented, context-sensitive
source code completion. In ICSE 12, 2012.

C. Omar, Y. Yoon, T. D. LaToza, and B. A. Myers.
Active code completion. In ICSE ’12, 2012.

R. Robbes and M. Lanza. How program history can
improve code completion. In ASE ’08, 2008.

2]

3]

[6]

7]

8]

[9]

