
Automatic Inference of Structural
Changes for Matching Across

Program Versions

Miryung Kim, David Notkin, Dan Grossman
Computer Science & Engineering

University of Washington

Foo.mA()

Foo.mB()

Foo.mC()

Boo.mA(bool)

Boo.mB(bool)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(bool)

Boo.mA(int)

Boo.mB(int)

Bar.Bar()

Bar.mC(int)

Foo.mA()

Foo.mB()

Foo.mC()

Boo.mA(bool)

Boo.mB(bool)

Bar.Bar()

Bar.mC(int)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(bool)

Boo.mA(int)

Boo.mB(int)

P P’

Code Matching Problem

Bar.Bar()

Bar.mC(int)

Foo.mA()

Foo.mB()

Foo.mC()

Boo.mA(bool)

Boo.mB(bool)

Bar.Bar()

Bar.mC(int)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(bool)

Boo.mA(int)

Boo.mB(int)

P P’

Our Approach:
Matching with Change Rules

Change Rules

Bar.Bar()

Bar.mC(int)

Foo.mA()

Foo.mB()

Foo.mC()

Boo.mA(bool)

Boo.mB(bool)

Bar.Bar()

Bar.mC(int)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(bool)

Boo.mA(int)

Boo.mB(int)

P P’

Our Approach:
Matching with Change Rules

Change Rules

all methods in Boo class take int
argument instead of bool.

Motivations for Matching Code

• A fundamental building block for mining
software repositories

• Also a basis for classic software evolution
research and tools

• Software version merging

• Regression testing

• Profile propagation

Matching is Challenging.

• Matching is hard due to code addition &
deletion, copy & paste, refactorings, etc.

• Delta between two versions can be very
large.

• For many uses, matching results must be
concise and comprehensible.

Outline

• background

• our rule-based matching approach

• inference algorithm

• evaluation

• potential applications of change rules

Matching Problem ≈
Change Identification Problem

The problem of identifying code matches

The problem of identifying changes

Existing Approaches

diff, Syntactic Diff (CDiff), Semantic Diff, JDiff,
origin analysis, refactoring reconstruction
tools, etc.

Individually compare code elements
 at particular granularities
 using similarity measures

P P’

Limitations of Existing
Approaches

Bar.Bar()

Bar.mC(int)

Foo.mA()

Foo.mB()

Foo.mC()

Boo.mA(bool)

Boo.mB(bool)

Bar.Bar()

Bar.mC(int)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(bool)

Boo.mA(int)

Boo.mB(int)

P P’

Limitations of Existing
Approaches

Bar.Bar()

Bar.mC(int)

Foo.mA()

Foo.mB()

Foo.mC()

Boo.mA(bool)

Boo.mB(bool)

Bar.Bar()

Bar.mC(int)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(bool)

Boo.mA(int)

Boo.mB(int)

P P’

Limitations of Existing
Approaches

Bar.Bar()

Bar.mC(int)

Foo.mA()

Foo.mB()

Foo.mC()

Boo.mA(bool)

Boo.mB(bool)

Bar.Bar()

Bar.mC(int)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(bool)

Boo.mA(int)

Boo.mB(int)

P P’

Limitations of Existing
Approaches

Bar.Bar()

Bar.mC(int)

Foo.mA()

Foo.mB()

Foo.mC()

Boo.mA(bool)

Boo.mB(bool)

Bar.Bar()

Bar.mC(int)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(bool)

Boo.mA(int)

Boo.mB(int)

P P’

Cannot disambiguate among many potential matches

Limitations of Existing
Approaches

Bar.Bar()

Bar.mC(int)

Foo.mA()

Foo.mB()

Foo.mC()

Boo.mA(bool)

Boo.mB(bool)

Bar.Bar()

Bar.mC(int)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(bool)

Boo.mA(int)

Boo.mB(int)

P P’

Difficult to spot inconsistent and incomplete changes

Limitations of Existing
Approaches

P P’

Limitations of Existing
Approaches

Output is an unstructured, usually lengthy list of
matches

P P’

Limitations of Existing
Approaches

Output is an unstructured, usually lengthy list of
matches

move axis drawing
classes from chart
to chart.axis

add boolean
input arg to all

chart creation APIs

P P’

Limitations of Existing
Approaches

Output is an unstructured, usually lengthy list of
matches

Outline

✓background

• our rule-based matching approach

• inference algorithm

• evaluation

• potential applications of change rules

• Our change rule can concisely describe a
set of related refactorings and API changes
at or above the method header level.

• Our tool automatically infers a set of
likely change rules between two
versions of a program.

Our Rule-based Matching
Approach

P P’

Represent a high-level change pattern using a change rule
➡ Easy to understand change intent

move axis drawing
classes from chart
to chart.axis

add boolean
input arg to all

chart creation APIs

Our Contribution 1.
Comprehensibility

for all x in chart.*Axis*.*(*)
packageReplace(x, chart, chart.axis)

for all x in Factory.create*Chart(*)
argAppend(x, boolean)

P P’

Our Contribution 2.
Conciseness

R1

R2
R3

R4
R5

R6

Concisely represent large deltas using a small number of
change rules

Bar.Bar()

Bar.mC(int)

Foo.mA()

Foo.mB()

Foo.mC()

Boo.mA(bool)

Boo.mB(bool)

Bar.Bar()

Bar.mC(int)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(bool)

Boo.mA(int)

Boo.mB(int)

P P’

Find matches evidenced by a more general change pattern
➡ Improving recall

Our Contribution 3.
High Recall

X
O

Bar.Bar()

Bar.mC(int)

Foo.mA()

Foo.mB()

Foo.mC()

Boo.mA(bool)

Boo.mB(bool)

Bar.Bar()

Bar.mC(int)

Foo.mA(float)

Foo.mB(float)

Foo.mC()

Bar.mA(bool)

Boo.mA(int)

Boo.mB(int)

P P’

Our rule encodes exceptions explicitly
➡ Easy to notice inconsistent and incomplete changes

Our Contribution 4.
Explicit Exceptions

for all x in Foo.m*()
except {Foo.mC()}
argAppend(x, float)

Change Rule

.

P P’

for all x:method in scope
transformation(x)

Scope

• We use a regular expression to denote a
set of methods

• e.g. chart.Factory.create*Chart(*)

Transformations At or Above
the Level of Method Header

• 9 types of transformations representing:

• replace the name of package, class, and
method

• replace the return type

• modify the input signature, etc.

Change Rule with Exceptions

.

P P’

for all x:method in (scope - exceptions)
transformation(x)

Example Change Rule

.
Factory.createChart()
Factory.createBarChart()
...
Factory.createPieChart()
Factory.createLineChart()

Factory.createChart(int)
Factory.createBarChart(int)
...
Factory.createPieChart()
Factory.createLineChart(int)

P P’

Chart creation APIs were changed to take an
additional int parameter.

Example Change Rule

.
Factory.createChart()
Factory.createBarChart()
...
Factory.createPieChart()
Factory.createLineChart()

Factory.createChart(int)
Factory.createBarChart(int)
...
Factory.createPieChart()
Factory.createLineChart(int)

P P’

For all x in Factory.create*Chart(*)
argAppend(x, [int])

Example Change Rule

.
Factory.createChart()
Factory.createBarChart()
...
Factory.createPieChart()
Factory.createLineChart()

Factory.createChart(int)
Factory.createBarChart(int)
...
Factory.createPieChart()
Factory.createLineChart(int)

P P’

For all x in Factory.create*Chart(*)
except {Factory.createPieChart()}

argAppend(x, [int])
14 matches and 1 exception

Outline

✓background

✓our rule-based matching approach

• inference algorithm

• evaluation

• potential applications of change rules

Inference Algorithm Overview

Input: two versions of a program

Output: a set of likely change rules

1. Generate seed matches

2. Generate candidate rules by generalizing seed
matches

3. Evaluate and select candidate rules (greedy algorithm)

Step 1: Generate Seed Matches

• Seed matches provide hints
about likely changes.

• We generate seeds based on
textual similarity between two
method headers.

• Seed matches need not be all
correct matches.

Foo.getBar(int)

Foo.getBar(bool)

textual similarity: 0.75

Step 2: Generate Candidate
Rules for each seed [x, y]

Given a seed match,
[Foo.getBar(int), Boo.getBar(bool)]

Transformations = {
replaceArg(x, int, bool)
replaceClass(x, Foo, Boo)}

Scopes = {*.*(*), Foo.*(*), ...,
 .get(*), *.*Bar(*), ... ,
 Foo.get*(int),... }

Candidate Rules = {
 for all x in *.*(*)
replaceArg(x, int, bool),

 for all x in Foo.*(*)
replaceClass(x, Foo, Boo), ...,

 for all x in *.*(*)
replaceArg(x, int, bool) AND
replaceClass(x, Foo, Boo)

• Compare x and y and
reverse engineer a set of
transformations, T.

• Based on x, guess a set of
scopes, S.

• Generate candidate rules

for each pair in S ×

PowerSet(T).

Step 3: Evaluate and Select
Rules

• Greedily select a small subset of candidate
rules that explain a large number of
matches.

• In each iteration

• evaluate all candidate rules

• select a valid rule with the most number of
matches

• exclude the matched methods from the set of
remaining unmatched methods

• Repeat until no rule can find any additional matches.

Finding Exceptions

.

Factory.createChart()
Factory.createBarChart()
Factory.createPieChart()
Factory.createLineChart()

Factory.createChart(int)
Factory.createBarChart(int)
Factory.createPieChart()
Factory.createLineChart(int)

P P’

For all x in Factory.create*Chart(*)
argAppend(x, [int])

a rule is valid if # exceptions < ε × |scope|

Finding Exceptions

P P’

For all x in Factory.create*Chart(*)
except {Factory.createPieChart}

argAppend(x, [int])
3 matches 1 exceptions

.

Factory.createChart()
Factory.createBarChart()
Factory.createPieChart()
Factory.createLineChart()

Factory.createChart(int)
Factory.createBarChart(int)
Factory.createPieChart()
Factory.createLineChart(int)

a rule is valid if # exceptions < ε × |scope|

Optimizations

• We create and evaluate rules on
demand.

1. Candidate rules have subsumption
structure. e.g. *.*.*(*Axis) ⊂ *.*.*(*)

2. The nature of greedy algorithm

• Running time: a few seconds (usual check-
ins), average 7 minutes (releases)

Outline

✓background

✓our rule-based matching approach

✓inference algorithm

• evaluation

• potential applications of change rules

Quantitative Evaluation

• Precision

• Recall

• Conciseness = |Matches| / |Rules| (M/R
Ratio)

• We created evaluation data sets by manually
inspecting our results combined with the
results from other tools.

Rule-based Matching Results
for Three Release Archives

JFreeChart jHotDraw jEdit

(17 release pairs) (4 release pairs) (4 release pairs)

Precision
Median

(Min ~ Max)

94%
(78~100%)

99%
(82~100%)

93%
(87~95%)

Recall
Median

(Min ~ Max)

93%
(70~100%)

99%
(92~100%)

98%
(95~100%)

M/R ratio
Median

(Min ~ Max)

3.50
(1.20~135.23)

2.54
(1.00~244.26)

1.73
(1.23~2.39)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 20% 40% 60% 80% 100%

Percentage of Found Rules

P
re

c
is

io
n

 a
n

d
 R

e
c
a
ll

 o
f

F
o

u
n

d
 M

a
tc

h
e
s

Precision(JFreeChart0.9.8-

0.9.9)

Precision(JHotDraw-5.3-5.41)

Precision(JEdit4.0-4.1)

Recall(JFreeChart0.9.8-0.9.9)

Recall(JHotDraw5.3-5.41)

Recall(JEdit4.0-4.1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 20% 40% 60% 80% 100%

Percentage of Found Rules

R
e
c
a
ll

 o
f

F
o

u
n

d
 M

a
tc

h
e
s

Recall(JFreeChart0.9.8-0.9.9)

Recall(JHotDraw5.3-5.41)

Recall(JEdit4.0-4.1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 20% 40% 60% 80% 100%

Percentage of Found Rules

P
re

c
is

io
n

 o
f

F
o

u
n

d
 M

a
tc

h
e

s

Precision(JFreeChart0.9.8-
0.9.9)

Precision(JHotDraw-5.3-5.41)

Precision(JEdit4.0-4.1)

Rule-based Matching Results
for Three Release Archives

Top 20% of the rules find over 55% of the matches.
Top 40% of the rules find over 70% of the matches.

Comparison with Three
Existing Tools

• UMLDiff [Xing and Stroulia 05]

• Refactoring Reconstruction [Weißgerber
and Diehl 06]

• Automatic Renaming Identification [S. Kim,
Pan, and Whitehead 05]

Comparison: Recall & Precision

programs
Other’s
Recall

Our
Recall

Other’s
Prec.

Our
Prec.

[XS05] jfreechart
18 releases

92% 98% 99% 97%

[WD06]

jEdit
2715 check-ins

72% 96% 93% 98%

Tomcat
5096 check-ins

82% 89% 89% 93%

 [KPW05]

jEdit
1189 check-ins

70% 96% 98% 96%

ArgoUML
4683 check-ins

82% 95% 98% 94%

Comparison: Recall & Precision

programs
Other’s
Recall

Our
Recall

Other’s
Prec.

Our
Prec.

[XS05] jfreechart
18 releases

92% 98% 99% 97%

[WD06]

jEdit
2715 check-ins

72% 96% 93% 98%

Tomcat
5096 check-ins

82% 89% 89% 93%

 [KPW05]

jEdit
1189 check-ins

70% 96% 98% 96%

ArgoUML
4683 check-ins

82% 95% 98% 94%

6-26% higher recall with
roughly the same precision

Comparison: Conciseness

programs
Other’s
Results

Our
Results

Our
Improvement

[XS05] jfreechart
18 releases

4004
refactorings

939
rules

77% decrease
in size

[WD06]

jEdit
2715 check-ins

1218
refactorings

906
rules

26% decrease
in size

Tomcat
5096 check-ins

2700
refactorings

1033
rules

62% decrease
in size

 [KPW05]

jEdit
1189 check-ins

1430
matches

1119
rules

22% decrease
in size

ArgoUML
4683 check-ins

3819
matches

2127
rules

44% decrease
in size

Comparison: Conciseness

programs
Other’s
Results

Our
Results

Our
Improvement

[XS05] jfreechart
18 releases

4004
refactorings

939
rules

77% decrease
in size

[WD06]

jEdit
2715 check-ins

1218
refactorings

906
rules

26% decrease
in size

Tomcat
5096 check-ins

2700
refactorings

1033
rules

62% decrease
in size

 [KPW05]

jEdit
1189 check-ins

1430
matches

1119
rules

22% decrease
in size

ArgoUML
4683 check-ins

3819
matches

2127
rules

44% decrease
in size

22-77% reduction in the size
of matching results

Outline

✓background

✓our rule-based matching approach

✓inference algorithm

✓evaluation

• potential applications of change rules

• bug finding, documentation assistant, API catch
up, API evolution analysis, etc.

Potential App: Bug Finding Tool

for all x in J*.addTitle(Title)
except {JThermometer.addTitle(Title)}

procedureReplace(x, addTitle, addSubtitle)

Dynamic dispatching of JFreeChart.addSubtitle does not
work properly.

JFreeChart.addTitle

JThermometer.addTitle

JLineChart.addTitle

JPieChart.addTitle

...

...

JFreeChart.addSubtitle

JThermometer.addSubitle
JLineChart.addSubtitle

JPieChart.addSubtitle

...

Conclusions

• Matching is a basis for a variety of software
engineering research & tools.

• Our approach is the first to automatically
infer structural changes and concisely
represent them as a set of change rules.

• Our tool find matches with high precision
and recall.

Acknowledgment

David Notkin
University of Washington

Dan Grossman
University of Washington

Sunghun Kim,
Jim Whitehead

University of California,
Santa Cruz

Peter Weißgerber
Stephan Diehl
University of Trier

Zhenchang Xing
Eleni Stroulia

University of Alberta

