4

RefDistiller: A Refactoring Aware Code Review Tool for

Inspecting Manual Refactoring Edits

Everton L. G. Alves,! 2 Myoungkyu Song,* Miryung Kim?
1 University of Texas at Austin, 2Federal University of Campina Grande, 3University of California, Los Angeles

Problem Statement: How can we inspect manual refatoring edits effectively?

Static Analysis for Inspecting & Detecting Potential Semantic Changes in Manual Refactoring Edits

Problem

Manual refactoring edits are error prone, as
refactoring requires developers to coordinate
related transformations and understand the
complex inter-relationship between affected types,
methods, and variables.

Existing approaches either require having enough
test coverage or do not detect semantics-modifying
edits

Our Solution

To

detect potential deviations from pure refactoring

edits, RefDistiller incorporates two key techniques:

RefChecker detects missing edits. Using

refactoring templates, it checks for all required,
constituént edits and required reference bindings.
RefSeparator isolates extra semantics-modifying
edits. It applies an equivalent pure refactoring to
create a pure refactoring version and then
compares the version against the manual
refactoring version.

-----\

Refactored
Version

I Potential Errors Outputs
1
1
puts | M @
1 B Location
B * Possible Cause
1
1

RefDistiller
Refactoring

Detection fLauu dl RefSet (Inferred refactorings)
via RefFinder * 1

RefChecker RefSeparator

Original

T 4
‘-----

Required Edits Manual Refactoring Edits Pure-
Refactoring

1 Requlred method deletlons { - Found method deletions \\\‘. Eclipse’s Automated Version

' - Required method additions || - Found method additions | Refactoring APIs
' - Required field deletions i . - Found field deletions ’
' - Required field additions i ' - Found field additions
i - Required updates to caller ! i - Found updates to caller
i - Required updates to type, i ' - Found updates to type,
 method, field, and variable | i method, field, and variable i
. ' bindings | bindings | Library

Practical Examples: Detecting Manual Refactoring Anomalies - Missing and Extra Edits

Missing Edits

Original Version Manual Refactoring Version

1 class BookManager extends SupplyManager{
2 ArrayList<Book> books;

3

4 Book findBooKk(String title, String name){
5 for(inti=0;1 < books.size(); i++){

6
7

3
9

10
11
12}

13 void rent(Book book, int days){

14
15
16
171}

}

1 class EBookManager extends BookManager {

Book book = books.get(i);
if (book.getTitle().equals(title)){
return book;

Client client = getClient();
double price = getPrice(book, days);
registerRental (client, book, price);

18}jdouble getPrice(Supply obj, int days){

double getPrice(Supply obj, int days) { e 21] else

if (obj.isRecent())

else

1

return days * 4; ‘ B

if (obj.isRecent())
¢ return days * 4;

22 return days * 2;

Detected a problematic binding of the
reference to “getPrice(book, days)”,

1 which has been affected by a manual
) Pull Up Method refactoring.
return null; =» It should instead call
“super.getPrice(book, days)”

13 v01d rent(Book book int days){

Extra Edits

Pure Refactoring Version

1 class BookManager extends SupplyManager{
2 ArrayList<Book> books;

3

4 Book findBooKk(String title, String name){

5 for(inti=0;i < books. size() i++){

return book;

}

10 }
11 return null;

; Extract Method

13] public boolean checkTitle(Book book, String title){

return book.getTitle().equals(title);

Manual Refactoring Version

4 Book findBooKk(String title, String name){

5 for(inti=0;i < books.size(); i++){ Detected semantics-
Book book = books.get(i); modifying edits

Pull up Method if (checkTitle(book, name)){ | R1111iTaa o 7070) 1 &u () 1 (0

return book.clone(); =» It should remove a
call to “clone().”

return days * 2; 1 class EBookManager extends BookManagery{ 10 }

: Original Position

}

11 return null;

] Extract Method

¥

This work was supported by National Science Foundation under grants CCF-1149391, CCF-1117902, SHF-0910818, a Google Faculty Award, and
by National Institute of Science and Technology for Software Engineering, funded by CNPq/Brasil, grant 573964 /2008-4.

